EP3332168B1 - Laserbeleuchtungsvorrichtung für fahrzeugscheinwerfer - Google Patents

Laserbeleuchtungsvorrichtung für fahrzeugscheinwerfer Download PDF

Info

Publication number
EP3332168B1
EP3332168B1 EP16750360.6A EP16750360A EP3332168B1 EP 3332168 B1 EP3332168 B1 EP 3332168B1 EP 16750360 A EP16750360 A EP 16750360A EP 3332168 B1 EP3332168 B1 EP 3332168B1
Authority
EP
European Patent Office
Prior art keywords
laser
laser light
lighting device
light
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16750360.6A
Other languages
English (en)
French (fr)
Other versions
EP3332168A1 (de
Inventor
Bettina REISINGER
Markus REINPRECHT
Klaus-Dieter Scharf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZKW Group GmbH
Original Assignee
ZKW Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZKW Group GmbH filed Critical ZKW Group GmbH
Publication of EP3332168A1 publication Critical patent/EP3332168A1/de
Application granted granted Critical
Publication of EP3332168B1 publication Critical patent/EP3332168B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the invention relates to a laser illumination device for vehicles with two or more laser light sources, each adapted to produce a primary laser light beam, each assigned to each laser light source light guide, each primary laser light beam coupled to its first end and decoupled from its second end as a secondary laser light beam and each secondary Laser light beam is directed to a light conversion means to generate a predetermined luminous image on this, which is projected via a the light conversion means associated with the projection system as a light image on the road.
  • the invention relates to a headlight with at least one such laser illumination device.
  • the invention relates to a vehicle with at least one such headlight.
  • Headlamps that work with laser beams scanning via a light conversion medium are known. They usually generate a light image on a light conversion medium, often called “phosphor” for short, on which the blue laser light, for example, is converted into essentially "white” light by fluorescence. The luminous image produced is then projected onto the roadway with the aid of the imaging system, for example a lens optic (see, for example, US Pat US 20150062943 A1 . JP 2013232390 A . US 20120051074 A1 . JP 2014010918 A . WO 2014121314 A1 and US 20130265561 A1 ).
  • the microscanner is generally a beam deflection means, for example a micromirror, which can be moved about one or two axes, so that, for example, a row-by-row illumination image is "written".
  • the modulation of the laser light source determines the desired luminance for each point or line of the luminous image, which on the one hand has to comply with legal specifications for the projected photograph and, on the other hand, can be adapted to the respective driving situation.
  • micro-scanner with one or more laser beams, which are modulated synchronously with the mirror oscillation, makes it possible to produce almost any light distribution.
  • Such a method is also known in principle so-called Pico projectors and head-up displays, which also use micromirrors, which are designed as MEMS (micro-electro-mechanical systems).
  • MEMS micro-electro-mechanical systems
  • significantly higher laser powers must be introduced for headlamps.
  • working with blue laser light which originates for example from laser diodes, is usually used. In view of the required high laser power in the order of 5 to 30 watts, it is important to make the best possible use of the laser power installed in a headlight.
  • the so-called 1D microscanner systems find their application in the headlamps.
  • Several blue laser diodes are arranged so that the laser beams generated by them are directed to the phosphor via a single 1D microscanner.
  • a "1D microscanner” is understood to mean a microscanner movable about a single axis. Each laser diode illuminates its own area on the phosphor so that separate lines are "written".
  • the spot diameter of the laser diodes i. the diameter of a light spot generated by the corresponding laser diode by the fluorescence, be correspondingly different on the phosphor.
  • these values can vary widely, e.g. if line heights between 0.2 mm and 0.9 mm are to be realized on a phosphor.
  • the light intensity in such a spot usually has a Gaussian shape, and decreases exponentially to spots edges (see, eg US 20150062943 A1 and US 20130265561 A1 ).
  • the laser beams generated by the conventional laser diodes have spatial asymmetries, which is why the spot is substantially elliptical, wherein the length of the ellipse main axis may differ greatly from the length of the ellipse axis.
  • the limit of the spot is usually assumed to be the point at which the intensity has fallen to 1 / e or to 1 / e 2 . The assumed value then defines the boundary to the next line in the luminous image.
  • An object of the invention is to provide a laser illumination device in which a light image with improved photometric properties can be realized. This object is achieved with a laser illumination device of the aforementioned type according to the invention that each primary laser light beam couples into a first end of the optical fiber and decouples from a second optical fiber end as a secondary laser light beam, wherein the second ends are arranged adjacent to each other in a row, and the light guide a different have a large cross-section.
  • the micro-scanner In an embodiment which is expedient with regard to the control-related expenditure, provision can be made for the micro-scanner to be pivotable about exactly one axis.
  • Such a 1D microscanner can also be used to deal with EMC problems (EMC stands for electromagnetic compatibility).
  • EMC electromagnetic compatibility
  • the beam deflection means such as a micromirror
  • the beam deflection means must oscillate a lot faster, so that a uniformly illuminated light image can be realized as the path through which the image is scanned will be much longer. As a result, one must be able to turn on and off the laser light sources themselves very quickly.
  • each laser light source is followed by an optical attachment which couples the primary laser light beam into the first end of the optical waveguide associated with this laser light source.
  • the secondary laser light beams are subdivided into two or more laser light beam groups, each laser light beam group being guided by a respective micro scanner.
  • the optical fibers of at least a subset of the optical fibers are arranged as a cone tapering in the direction of light propagation.
  • the light guides for example, glass rods
  • Use of curved optical fibers can contribute to increasing the divergence of the laser beam in one or both of its axes (major ellipse axis, ellipse minor axis) and affect the tuning of the laser beam profile size to the size of the micro-scanner.
  • the second ends may be arranged and / or formed such that the secondary light beams extend substantially parallel to one another.
  • the second ends In order to produce a luminous image subdivided in lines, it is expedient for the second ends to be arranged adjacent to one another in a row.
  • each optical scanner is preceded by an optical imaging system.
  • the optical imaging system prefferably has one, two or more lenses and / or one, two or more diaphragms and / or one, two or more reflectors.
  • the primary laser light beams couple at least a subset of the primary laser light beams into the first ends via at least one beam deflection means, for example a mirror or a prism.
  • the light guides prefferably have a substantially rectangular cross section.
  • the light guides In order to vary the spot size, the light guides have a different sized cross-section.
  • the quality and the resolution of the light image it is of particular advantage if the first intensity profile in each spatial direction substantially Gaussian shape and the second intensity profile in each spatial direction substantially flat-top shape (even in top hat shape or Top Hat intensity profile known).
  • the second intensity profile in each spatial direction has a substantially flat top shape and the beam cross section of the secondary light beams is substantially rectangular.
  • Photometric starting point of the laser illumination device shown here are two, here superimposed groups 1 and 2 of four laser light sources 11, 12, 13, 14 and 21, 22, 23, 24, which can each emit a denoted by 11p to 18p laser beam.
  • the laser light sources 11 to 18 are associated with a laser driver 3, wherein this driver 3 is used for power supply and is also set up to modulate the beam intensity of the individual lasers.
  • modulating in the context of the present invention is meant that the intensity of a laser light source can be changed, be it continuous or pulsed, in the sense of switching on and off, pulsed. It is essential that the light output can be changed dynamically analogously, depending on where the beams are directed. In addition, there is the possibility of switching on and off for a certain time in order not to illuminate defined places
  • the laser driver 3 in turn contains signals from a central headlight driver 4, which sensor signals s1 ... si ... sn can be supplied.
  • these control and sensor signals can be, for example, switching commands for switching from high beam to low beam or, on the other hand, signals received by light sensors or cameras which detect the lighting conditions on the road and, for example, hide or attenuate certain areas in the light screen.
  • Each laser light source 11 to 18 is followed by its own collimator optics 21 to 28, which bundles the initially highly divergent laser beam 11p to 18p. Subsequently, the distance of the laser beams of the first group 1 and the second group 2 is each reduced by a common converging lens 31 and 32 and with subsequent diverging lenses 41 and 42, the exit angle of the laser beams is kept as low as possible.
  • microscanner is understood here to mean a universal beam deflecting device which can be pivoted about one or two spatial axes, which is usually designed as a micromirror, does not necessarily have to be designed as such, but is designed as e.g. a prism can be formed.
  • the light conversion means 60 comprises, in a known manner, a phosphor for light conversion, which, for example, converts blue or UV light into “white” light.
  • phosphorus is generally understood to mean a substance or a substance mixture which converts light of one wavelength into light of another wavelength or of a wavelength mixture, in particular into “white” light, which can be subsumed under the term “wavelength conversion” is.
  • white light is understood as meaning light of such a spectral composition which causes the color impression "white” in humans.
  • the term “light” is not limited to radiation visible to the human eye.
  • optoceramics ie transparent ceramics, such as, for example, YAG-Ce (an yttrium-aluminum garnet doped with cerium).
  • the microscanner 51 is driven by a micro scanner drive 5 and set in oscillations of constant frequency, whereby these vibrations can correspond in particular to the mechanical natural frequency of the micro scanner.
  • the microscanner drive 5 is in turn controlled by the headlight drive 4 in order to adjust the oscillation amplitude of the microscanners 51, 52, whereby asymmetric oscillation about the axis can be adjustable.
  • the control of microscanners is known and can be done in many ways, eg electromagnetic, electrostatic, thermoelectric and piezoelectric.
  • the microscanners 51, 52 vibrate, for example, with a frequency of a few hundred Hz and their maximum deflection is a few degrees to 60 °, depending on their control.
  • the position of the microscanners 51, 52 is expediently reported back to the micro scanner control 5 and / or to the headlight driver 4.
  • the two microscanners can oscillate synchronously, but it is also a non-synchronous Swing applicable, for example, to make the thermal load of the luminous surface or the light conversion medium uniform.
  • microscanners produce the focused laser beams 11p to 18p on the light conversion means 60, namely the luminous surface, which is generally flat, but need not be flat, light spots, each having a luminous flux distribution, the Intensity profile of the relevant laser light beam correspond.
  • Fig. 1a For example, two spots 71p and 72p are schematically shown by a laser illumination device of FIG Fig. 1 be generated.
  • each luminous flux distribution is essentially Gaussian and corresponds to the intensity profile of the two "adjacent" laser beams, for example 11p and 12p.
  • a section along the line AA represents a luminous flux course 73 and is of high relevance for the luminous image to be imaged on the carriageway by means of a projection system PS.
  • the luminous flux profile 73 described here does not allow a sharp demarcation between the light spots and leads to large fluctuations in light intensity in the light image.
  • road surface is used here for a simplified representation, because of course it depends on the local conditions, whether the photo is actually on the road or even beyond.
  • road surface is used here for a simplified representation, because of course it depends on the local conditions, whether the photo is actually on the road or even beyond.
  • a projection of the light image on a vertical surface in accordance with the relevant standards, which relate to the automotive lighting technology.
  • a laser illumination device which has technical means with which the solution is implemented, are based on a non-limiting embodiment in FIG Fig. 2 shown.
  • FIG Fig. 2 shown.
  • Each laser light source 11 to 14 is followed by its own intent optics 81 to 84, which bundles the initially highly divergent primary laser beam 11p to 18p and then focused on the first ends 91e to 94e of the optical fibers 91 to 94 so that the primary laser light beams substantially without losses couple into the light guides.
  • the laser light beams are advantageously coupled into the light guide in such a way that, for example, in a rectangular light guide the Longitudinal axis of, emitted by the laser light source, typically elliptical beam cross-section having, laser beam, parallel to the cross-sectional longitudinal axis of the rectangular light guide runs.
  • the type of coupling depends on which axis (major ellipse axis or ellipse minor axis) the laser light beams are to have less divergence on coupling out (the secondary laser light beams).
  • beam profile shapers are applicable to a specific technical embodiment of the present invention.
  • multimode fibers or glass rods of various types can be used.
  • the type of beamformer refers to the behavior of its refractive index. One differentiates between e.g. Step index fibers, gradient index fibers or homogeneous beam profile shapers (with a constant refractive index).
  • the beam profile formers may have different cross-sectional sizes (from a few to hundreds of microns to a few millimeters).
  • Such a beam profiler may be used, for example, as an array of optics, e.g. Lenses, mirrors and diaphragms, be realized.
  • attachment optics in the context of the present invention is understood to mean an optical system which is suitable for focusing the originally diverging primary laser light beams 11p to 14p onto the associated first ends 91e to 94e.
  • This attachment optics may include a collimator lens and a condenser lens, but may alternatively include other optical means available to those skilled in the art that are suitable for focusing the primary laser light beams.
  • the beam profile of the light beams emerging from the light guides as secondary light beams 11s to 14s essentially assumes the shape of the cross section of the light guides.
  • used optical fibers have a substantially rectangular shape of the cross section. Accordingly, the secondary light beams 11s to 14s have a substantially rectangular intensity profile.
  • two rectangular spots 71s and 72s formed on the light conversion means 60 by two of the secondary beams have a substantially rectangular beam cross section and a substantially rectangular intensity profile, also referred to in the literature as a flat top or top -Hat form or simply called top hat, the secondary laser beams correspond and have a substantially rectangular luminous flux profile 73 a and 73 b along the section BB.
  • the size of the cross section may vary from optical fiber to optical fiber and, as a result, lead to differently sized spots on the light conversion means 60.
  • the luminous flux density (illuminance) in a light spot and consequently the light intensity of this light spot can be adjusted. This is in the Fig.
  • thematized which shows eight differently sized and differently bright luminous spots 100 to 107. Such spots occur when the microscanners 51, 52 do not vibrate. If these are set in vibration by the microscanner drive 5, so that the microscanners 51, 52 are pivoted about an axis, light bands z0 to z8 are formed on the light conversion means.
  • microscanners that vibrate only about one axis
  • microscanners that oscillate about two axes.
  • a plurality of laser beams may be directed to such a micro-scanner, directly generated adjacent light bands.
  • Embodiments with only a single micro-scanner are also conceivable, in which, for example, the secondary laser beams impinge against the main emission direction of the headlight directly onto the micro-scanner, which then directs the laser beams to a phosphorescent phosphor.
  • Fig. 2a and Fig. 2b show two embodiments of the present invention, in which the secondary laser light beams 11 s to 14 s reach the micro scanner 51 via an optical imaging system 6.
  • the imaging system 6 is shown schematically as a converging lens. In general, it is an optical system comprising one, two or more lenses, which are arranged one behind the other and / or each associated with a light guide, and / or reflectors, and which optical system the secondary light beams 11s to 14s via the micro scanner 51 on the light conversion means 60 collimated / focused.
  • Light guides 91 to 94 which are arranged as a converging in the light propagation direction cone. In this arrangement, the light guides 91 to 94 can be "rigid".
  • Fig. 2b shows a light guide assembly, which is particularly suitable for formed as a multimode fiber light guide 91 to 94.
  • the optical fibers can be curved and arranged such that the second ends 91z to 94z are arranged adjacent to each other in a row.
  • the secondary laser light beams 11s to 14s are substantially parallel, and the distance between the light spots on the light conversion means 60 by the imaging optical system 6 can be minimized.
  • Fig. 4 shows an arrangement of the optical fiber ends of the Fig. 2a , Although the optical fibers 91 to 94 converge in a cone shape at an opening angle ⁇ , the second ends 91z to 94z are formed, eg, by grinding, so that the secondary light beams 11s to 14s are substantially parallel to each other.
  • the opening angle ⁇ must not be arbitrarily large, since this would require the corresponding grinding of the second ends 91z to 94z and would lead to undesirable distortions in the light and thus in the light image.
  • FIG. 5 schematically illustrated embodiment couple the primary laser light beams via mirrors 200 to 207 (via a so-called "mirror staircase") in the first ends.
  • mirror staircase a so-called "mirror staircase”
  • both the opening angle ⁇ reduced as well as a optimized cooling of the laser diodes can be realized, since they can be arranged in one plane and thereby realize a simpler connection to a common heat sink.
  • a mirror staircase has been used in this embodiment, it may be replaced by other technical means, generally beam deflection means, which are suitable for deflecting light.
  • the mirrors 200 to 207 can be partially or entirely replaced by prisms.
  • arrangements are conceivable in which two or more primary laser beams are deflected via one and the same beam deflection means.
  • the overlapping of the light bands on a light surface or a light conversion means does not take place, and the light image thus generated is projected onto the road surface.
  • two or more separate laser illumination devices according to the invention to be provided in a headlight, with these being aligned with one another such that the overlapping of the light images takes place.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

  • Die Erfindung betrifft eine Laserbeleuchtungsvorrichtung für Fahrzeuge mit zwei oder mehreren Laserlichtquellen, wobei jede zur Erzeugung eines primären Laserlichtstrahls eingerichtet sind, einem jeder Laserlichtquelle zugeordneten Lichtleiter, wobei jeder primäre Laserlichtstrahl in sein erstes Ende einkoppelt und aus seinem zweiten Ende als sekundärer Laserlichtstrahl auskoppelt und jeder sekundäre Laserlichtstrahl auf ein Lichtkonversionsmittel gelenkt ist, um an diesem ein vorgegebenes Leuchtbild zu erzeugen, welches über ein dem Lichtkonversionsmittel zugeordnetes Projektionssystem als Lichtbild auf die Fahrbahn projiziert wird.
  • Darüber hinaus betrifft die Erfindung einen Scheinwerfer mit zumindest einer solchen Laserbeleuchtungsvorrichtung.
  • Weiters betrifft die Erfindung ein Fahrzeug mit zumindest einem solchen Scheinwerfer.
  • Scheinwerfer, die mit über ein Lichtkonversionsmittel scannenden Laserstrahlen arbeiten, sind bekannt. Sie erzeugen üblicherweise ein Leuchtbild auf einem Lichtkonversionsmittel, oft kurz "Phosphor" genannt, auf welchem durch Fluoreszenz das z.B. blaue Laserlicht in im Wesentlichen "weißes" Licht umgewandelt wird. Das erzeugte Leuchtbild wird dann mit Hilfe des Abbildungssystems, z.B. einer Linsenoptik, auf die Fahrbahn projiziert (siehe z.B. US 20150062943 A1 , JP 2013232390 A , US 20120051074 A1 , JP 2014010918 A , WO 2014121314 A1 und US 20130265561 A1 ). Problematisch bei vielen solchen Scheinwerfern, dass das Leuchtbild oft nur leuchtfleckweise, also in Form von sogenannten Licht-Spots erzeugt wird und für Erzeugung einer gesetzeskonformen, beispielsweise dynamischen Lichtverteilung mäßig geeignet sind. Der Mikroscanner ist im Allgemeinen ein Strahlablenkmittel, beispielsweise ein Mikrospiegel, der um eine oder um zwei Achsen bewegt werden kann, sodass z.B. ein zeilenweises Leuchtbild "geschrieben" wird. Die Modulation der Laserlichtquelle bestimmt für jeden Punkt oder jede Zeile des Leuchtbildes die gewünschte Leuchtdichte, die einerseits gesetzlichen Vorgaben für das projizierte Lichtbild entsprechen muss und andererseits der jeweiligen Fahrsituation angepasst werden kann.
  • Die Verwendung des Mikroscanners mit einem oder mehreren Laserstrahlen, welche synchron zu der Spiegelschwingung moduliert werden, ermöglicht es, eine nahezu beliebige Lichtverteilung zu erzeugen. Bekannt ist ein solches Verfahren prinzipiell auch bei sogenannten Pico Projektoren und Head-up-Displays, die gleichfalls Mikrospiegel verwenden, die als MEMS (Mikro-Elektro-Mechanische-Systeme) ausgebildet sind. Im Gegensatz zu solchen Systemen, die oft in der Unterhaltungselektronik eingesetzt werden, müssen jedoch bei Scheinwerfern deutlich höhere Laserleistungen eingebracht werden. Dabei ist es allerdings nicht nötig, eine farbige Lichtverteilung darzustellen. Wie oben erwähnt, wird üblicherweise mit blauen Laserlicht, das beispielsweise von Laserdioden stammt, gearbeitet. Im Hinblick auf die benötigte hohe Laserleistung in der Größenordnung von 5 bis 30 Watt, ist es wichtig, die in einem Scheinwerfer installierte Laserleistung bestmöglich zu nützen.
  • Insbesondere finden die sogenannten 1D-Mikroscanner-Systeme ihre Anwendung in den Scheinwerfern. Dabei sind mehrere blaue Laserdioden so angeordnet, dass die von ihnen erzeugten Laserstrahlen über einen einzelnen 1D-Mikroscanner auf den Phosphor gelenkt sind. Unter einem "1D-Mikroscanner" wird hierbei ein um eine einzige Achse bewegbarer Mikroscanners verstanden. Jede Laserdiode beleuchtet dabei einen eigenen Bereich am Phosphor, sodass voneinander getrennte Zeilen "geschrieben" werden.
  • Soll die Höhe der Zeilen im Fernfeld unterschiedlich sein (beispielsweise um eine Lichtverteilung möglichst effizient auf einzelne Zeilen aufzuteilen), muss der Spotdurchmesser der Laserdioden, d.h. der Durchmesser eines von der entsprechenden Laserdiode durch die Fluoreszenz erzeugten Leuchtflecks, am Phosphor entsprechend unterschiedlich sein. Je nach Einsatzfall können diese Werte stark schwanken, z.B. wenn auf einem Phosphor Zeilenhöhen zwischen 0.2 mm und 0.9 mm realisiert werden sollen.
  • Dabei weist die Lichtintensität in einem solchen Spots üblicherweise einen gaußförmigen Verlauf auf, und nimmt zu Spotsrändern exponentiell ab (siehe z.B. US 20150062943 A1 und US 20130265561 A1 ).
  • Darüber hinaus weisen die von den herkömmlichen Laserdioden erzeugten Laserstrahlen räumliche Asymmetrien auf, weswegen der Spot im Wesentlichen ellipsenförmig ist, wobei sich die Länge der Ellipsenhauptachse von der Länge der Ellipsennebenachse stark unterscheiden kann. Als Grenze des Spots wird üblicherweise die Stelle angenommen, bei der die Intensität auf 1/e beziehungsweise auf 1/e2 abgefallen ist. Der angenommene Wert definiert sodann die Grenze zur nächsten Zeile im Leuchtbild.
  • Dabei tritt das Problem auf, dass die Breite der Gauß'schen Verteilung eine scharfe Abgrenzung zwischen den Zeilen nicht möglich macht.
  • Eine Möglichkeit diesem Problem zumindest teilweise zu begegnen liegt darin, den für die Bestimmung der Zeilengrenze angenommenen Intensitätswert zu variieren (siehe z.B. EP 2690352 A1 ). Dabei tritt allerdings ein weiteres Problem auf, dass bei zu niedrig angesetzten Werten dunkle Streifen zwischen den Zeilen im Leuchtbild und folglich auch im Lichtbild entstehen.
  • Eine Aufgabe der Erfindung liegt darin, eine Laserbeleuchtungsvorrichtung zu schaffen, bei welcher ein Lichtbild mit verbesserten lichttechnischen Eigenschaften realisierbar ist.
    Diese Aufgabe wird mit einer Laserbeleuchtungsvorrichtung der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass jeder primäre Laserlichtstrahl in ein erstes Lichtleiterende einkoppelt und aus einem zweiten Lichtleiterende als sekundärer Laserlichtstrahl auskoppelt, wobei die zweiten Enden aneinander angrenzend in einer Reihe angeordnet sind, und die Lichtleiter einen unterschiedlich großen Querschnitt aufweisen.
  • Bei einer hinsichtlich des steuerungstechnischen Aufwands zweckmäßigen Ausführungsform kann vorgesehen sein, dass der Mikroscanner um genau eine Achse verschwenkbar ist. Mit einem solchen 1D-Mikroscanner kann auch EMV-Problemen (EMV steht für elektromagnetische Verträglichkeit) begegnet werden. Im Vergleich zu den 1D-Mikroscannern muss bei den um zwei Achsen verschwenkbaren Mikroscannern - kurz 2D-Mikroscannern - das Strahlablenkmittel (beispielsweise ein Mikrospiegel) um einiges schneller oszillieren, damit ein einheitlich leuchtendes Lichtbild realisiert werden kann, da der Weg durch den das Bild abgescannt wird wesentlich länger ist. Infolgedessen muss man die Laserlichtquellen selbst sehr schnell ein und ausschalten können. Somit sind extrem kurze Schaltzeiten und auch extrem steile Schaltflanken der Laserlichtquellen realisiert werden müssen, um Laserlichtquellen effizient zu modulieren. Dies ist vor allem bei Ausblendszenarien wichtig, d.h. wenn vorgegebene Bereiche der Fahrbahn aufgrund beispielswese des entgegenkommenden oder des nah vorausfahrenden Verkehrs oder der Gegenstände an einem Straßenrand ausgeblendet werden sollen.
    Hinsichtlich der Reduzierung der Lichtverluste beim Einkoppeln der primären Laserstrahlen in die Lichtleiter ist es vorteilhaft, wenn jeder Laserlichtquelle eine Vorsatzoptik nachgeordnet ist, welche den primären Laserlichtstrahl in das erste Ende des dieser Laserlichtquelle zugeordneten Lichtleiters einkoppelt.
  • Hinsichtlich eines kompakten Aufbaus und einer gut beherrschbaren Wärmeabfuhr ist es zweckmäßig, wenn die sekundären Laserlichtstrahlen in zwei oder mehrere Laserlichtstrahlen-Gruppen unterteilt sind, wobei jede Laserlichtstrahlen-Gruppe über je einen Mikroscanner gelenkt ist.
  • Hinsichtlich der Divergenz des Laserstrahls kann es vorteilhaft sein, wenn die Lichtleiter zumindest einer Teilmenge der Lichtleiter als ein in Lichtausbreitungsrichtung zulaufender Konus angeordnet sind. Dabei können die Lichtleiter (beispielsweise Glasstäbe) ungekrümmt verwendet werden. Verwendung von gekrümmten Lichtleitern (beispielsweise Fasern) kann zur Vergrößerung der Divergenz des Laserstrahls in einer oder in beiden seiner Achsen (Ellipsenhauptachse, Ellipsennebenachse) beitragen und die Abstimmung der Laserstrahlprofilgröße auf die Größe des Mikroscanners beeinträchtigen.
  • Hinsichtlich der Kollimation der sekundären Lichtstrahlen kann es vorteilhaft sein, die zweiten Enden derart angeordnet und / oder ausgebildet sind, dass die sekundären Lichtstrahlen im Wesentlichen parallel zueinander verlaufen.
  • Um ein in Zeilen unterteiltes Leuchtbild zu erzeugen, ist es zweckdienlich, wenn die zweiten Enden aneinander angrenzend in einer Reihe angeordnet sind.
  • Hinsichtlich Fokussierung bzw. Kollimation kann es vorteilhaft sein, wenn jedem Mikroscanner ein optisches Abbildungssystem vorgelagert ist.
  • Es ist zweckdienlich, wenn das optische Abbildungssystem eine, zwei oder mehr Linsen und / oder ein, zwei oder mehr Blenden und / oder ein, zwei oder mehr Reflektoren aufweist.
  • Hinsichtlich der kompakten Anordnung von den Lichtleitern kann es vorgesehen sein, dass die primären Laserlichtstrahlen zumindest einer Teilmenge der primären Laserlichtstrahlen über zumindest ein Strahlumlenkmittel, beispielsweise ein Spiegel oder ein Prisma, in die ersten Enden einkoppeln.
  • Hinsichtlich einer effizienten Formung des Intensitätsprofils der Lichtstrahlen ist es zweckmäßig, wenn die Lichtleiter einen im Wesentlichen rechteckigen Querschnitt aufweisen.
  • Um die Leuchtfleckgröße zu variieren, weisen die Lichtleiter einen unterschiedlich großen Querschnitt auf.
  • Hinsichtlich der Qualität und der Auflösung des Lichtbildes ist es vom besonderen Vorteil, wenn das erste Intensitätsprofil in jede Raumrichtung im Wesentlichen Gauß'sche Form und das zweite Intensitätsprofil in jede Raumrichtung im Wesentlichen Flat-Top-Form (auch unter Top-Hat-Form bzw. Top-Hat-Intensitätsprofil bekannt) aufweist.
  • Darüber hinaus kann es vorteilhaft sein, wenn das zweite Intensitätsprofil in jede Raumrichtung im Wesentlichen Flat-Top-Form aufweist und der Strahlenquerschnitt der sekundären Lichtstrahlen im Wesentlichen rechteckförmig ausgebildet ist.
  • Die Erfindung samt weiteren Vorteilen ist im Folgenden an Hand beispielsweiser Ausführungsformen näher erläutert, die in der Zeichnung veranschaulicht sind. In dieser zeigen
    • Fig. 1 die für die Erfindung wesentlichen Komponenten einer Laserbeleuchtungsvorrichtung herkömmlicher Art ( AT 514834 A2 ) und deren Zusammenhang in schematischer Darstellung,
    • Fig. 1a zwei überlagernde durch die Laserbeleuchtungsvorrichtung herkömmlicher Art erzeugte Leuchtflecken und ihre Intensitätsprofile,
    • Fig. 2 die wesentlichen Komponenten einer erfindungsgemäßen Laserbeleuchtungsvorrichtung und deren Zusammenhang in schematischer Darstellung,
    • Fig. 2a die erfindungsgemäße Laserbeleuchtungsvorrichtung mit konusförmig angeordneten starren Lichtleitern und einem schematisch dargestellten Abbildungssystem,
    • Fig. 2b die erfindungsgemäße Laserbeleuchtungsvorrichtung mit gekrümmten Lichtleitern und einem schematisch dargestellten Abbildungssystem,
    • Fig. 2c zwei durch die erfindungsgemäße Laserbeleuchtungsvorrichtung erzeugte Leuchtflecken und ihre Intensitätsprofile,
    • Fig. 3 ein stationäres durch die Laserbeleuchtungsvorrichtung erzeugte Leuchtbild,
    • Fig. 4 eine beispielhafte Anordnung der Lichtleiterenden aus der Fig. 2a, und
    • Fig. 5 eine schematische Darstellung einer Einkoppelung der primären Strahlen in die Lichtleiter über Umlenkspiegel.
  • Anhand von Fig. 1 und Fig. 1a wird nun das mit der vorliegenden Erfindung zu lösendes Problem erläutert. Lichttechnischer Ausgangspunkt der hier dargestellten Laserbeleuchtungsvorrichtung sind zwei, hier übereinander liegende Gruppen 1 und 2 von je vier Laserlichtquellen 11, 12, 13, 14 bzw. 21, 22, 23, 24, welche je einen mit 11p bis 18p bezeichneten Laserstrahl abgeben können. Den Laserlichtquellen 11 bis 18 ist eine Laseransteuerung 3 zugeordnet, wobei diese Ansteuerung 3 zur Stromversorgung dient und auch zum Modulieren der Strahlintensität der einzelnen Laser eingerichtet ist. Unter "Modulieren" wird in Zusammenhang mit der vorliegenden Erfindung verstanden, dass die Intensität einer Laserlichtquelle geändert werden kann, sei es kontinuierlich oder gepulst, im Sinne eine Ein- und Ausschaltens, gepulst. Wesentlich ist, dass die Lichtleistung analog dynamisch geändert werden kann, je nachdem, an welche Stelle die Strahlen gelenkt werden. Zusätzlich gibt es noch die Möglichkeit des Ein- und Ausschaltens für eine gewisse Zeit, um definierte Stellen nicht zu beleuchten
  • Die Laseransteuerung 3 enthält ihrerseits wiederum Signale von einer zentralen Scheinwerferansteuerung 4, welcher Sensorsignale s1 ... si ... sn zugeführt werden können. Diese Steuer- und Sensorsignale können einerseits beispielsweise Schaltbefehle zum Umschalten von Fernlicht auf Abblendlicht sein oder andererseits Signale, die von Lichtsensoren oder Kameras aufgenommen werden, welche die Beleuchtungsverhältnisse auf der Fahrbahn erfassen und beispielsweise bestimmte Bereiche im Leuchtbild ausblenden oder abschwächen sollen. Die Laserlichtquellen 11 bis 18, die bevorzugt als Laserdioden ausgebildet sind, geben beispielsweise blaues oder UV-Licht ab.
  • Jeder Laserlichtquelle 11 bis 18 ist eine eigene Kollimatoroptik 21 bis 28 nachgeordnet, welche den zunächst stark divergenten Laserstrahl 11p bis 18p bündelt. Anschließend wird der Abstand der Laserstrahlen der ersten Gruppe 1 bzw. der zweiten Gruppe 2 je durch eine gemeinsame Sammellinse 31 bzw. 32 verringert und mit nachfolgenden Zerstreuungslinsen 41 bzw. 42 wird der Austrittswinkel der Laserstrahlen so gering wie möglich gehalten.
  • Die vier in der beschriebenen Weise "gebündelten" Laserstrahlen 11p, 12p, 13p, und 14p der ersten Gruppe 1 treffen auf einen ersten Mikroscanner 51 und analog treffen die Laserstrahlen 15p, 16p, 16p, und 18p der zweiten Gruppe 2 auf einen zweiten Mikroscanner 52 auf und werden gemeinsam auf ein im vorliegenden Fall als Leuchtfläche ausgebildetes Lichtkonversionsmittel 60 reflektiert. Unter dem Begriff "Mikroscanner" wird hier ein um eine oder zwei räumliche Achsen verschwenkbares allgemeines Strahlablenkmittel verstanden, das meist als ein Mikrospiegel ausgebildet ist, nicht unbedingt als solcher ausgebildet sein muss sondern als z.B. ein Prisma ausgebildet sein kann. Das Lichtkonversionsmittel 60 weist in bekannter Weise einen Phosphor zur Lichtkonversion auf, welcher beispielsweise blaues oder UV-Licht in "weißes" Licht umwandelt. Unter "Phosphor" wird in Zusammenhang mit der vorliegenden Erfindung ganz allgemein ein Stoff oder eine Stoffmischung verstanden, welche Licht einer Wellenlänge in Licht einer anderen Wellenlänge oder eines Wellenlängengemisches, insbesondere in "weißes" Licht, umwandelt, was unter dem Begriff "Wellenlängenkonversion" subsumierbar ist. Dabei wird unter "weißes Licht" Licht einer solchen Spektralzusammensetzung verstanden, welches beim Menschen den Farbeindruck "weiß" hervorruft. Der Begriff "Licht" ist natürlich nicht auf für das menschliche Auge sichtbare Strahlung eingeschränkt. Für das Lichtkonversionsmittel kommen auch Optokeramiken in Frage, das sind transparente Keramiken, wie beispielsweise YAG-Ce (ein Yttrium-Aluminium-Granat mit Cer dotiert).
  • Der Mikroscanner 51 wird von einer Mikroscanneransteuerung 5 angesteuert und in Schwingungen konstanter Frequenz versetzt, wobei diese Schwingungen insbesondere der mechanischen Eigenfrequenz des Mikroscanners entsprechen können. Auch die Mikroscanneransteuerung 5 wird ihrerseits von der Scheinwerferansteuerung 4 gesteuert, um die Schwingungsamplitude der Mikroscanner 51, 52 einstellen zu können, wobei auch asymmetrisches Schwingen um die Achse einstellbar sein kann. Die Ansteuerung von Mikroscannern ist bekannt und kann auf vielerlei Art erfolgen, z.B. elektromagnetisch, elektrostatisch, thermoelektrisch und piezoelektrische. Bei erprobten Ausführungsformen der Erfindung schwingen die Mikroscanner 51, 52 beispielsweise mit einer Frequenz von einigen hundert Hz und ihr maximaler Ausschlag beträgt in Abhängigkeit von ihrer Ansteuerung einige wenige Grad bis 60°. Die Position der Mikroscanner 51, 52 wird zweckmäßigerweise an die Mikroscanneransteuerung 5 und/oder an die Scheinwerferansteuerung 4 rückgemeldet. Die beiden Mikroscanner können synchron schwingen, es ist aber auch ein nicht synchrones Schwingen anwendbar, beispielsweise um die thermische Belastung der Leuchtfläche bzw. des Lichtkonversionsmittels gleichmäßiger zu gestalten.
  • Bei den stillgehaltenen, d.h. nicht in eine Schwingung versetzten, Mikroscannern erzeugen die gebündelten Laserstrahlen 11p bis 18p auf dem Lichtkonversionsmittel 60, nämlich der Leuchtfläche, die im Allgemeinen eben ist, jedoch nicht eben sein muss, Leuchtflecken, die je eine Lichtstromverteilung aufweisen, die dem Intensitätsprofil des einschlägigen Laserlichtstrahls entsprechen. In Fig. 1a sind zwei Leuchtflecken 71p und 72p schematisch gezeigt, die durch eine Laserbeleuchtungsvorrichtung der Fig. 1 erzeugt werden. Dabei ist jede Lichtstromverteilung im Wesentlichen Gauß'sch und entspricht dem Intensitätsprofil der zwei "benachbarten" Laserstrahlen, beispielsweise 11p und 12p. Ein Schnitt entlang der Linie AA stellt einen Lichtstromverlauf 73 dar und ist für das auf die Fahrbahn mittels eines Projektionssystems PS abzubildende Leuchtbild von hoher Relevanz. Der hier beschriebene Lichtstromverlauf 73 ermöglicht keine scharfe Abgrenzung zwischen den Leuchtflecken und führt zu großen Lichtintensitätsschwankungen im Lichtbild.
  • Der Begriff "Fahrbahn" wird hier zur vereinfachten Darstellung verwendet, denn selbstverständlich hängt es von den örtlichen Gegebenheiten ab, ob sich das Lichtbild tatsächlich auf der Fahrbahn befindet oder auch darüber hinaus erstreckt. Z.B. um die abgestrahlten Lichtverteilungen zu testen, erzeugt man eine Projektion des Lichtbildes auf eine vertikale Fläche entsprechend der einschlägigen Normen, die sich auf die KFZ-Beleuchtungstechnik beziehen.
  • Erfindungsgemäß wird dieses Problem durch Formung des Strahlprofils der Laserlichtstrahlen gelöst. Die wesentlichen Komponenten einer erfindungsgemäßen Laserbeleuchtungsvorrichtung, die technische Mittel aufweist, mit welchen die Lösung umgesetzt wird, sind anhand eines nichteinschränkenden Ausführungsbeispiels in Fig. 2 dargestellt. Dabei wird der Einfachheit halber nur eine der beiden Laserlichtquellen Gruppen der Fig. 1 in Betracht gezogen. Jeder Laserlichtquelle 11 bis 14 ist eine eigene Vorsatzoptik 81 bis 84 nachgeordnet, welche den zunächst stark divergenten primären Laserstrahl 11p bis 18p bündelt und anschließend auf die ersten Enden 91e bis 94e der Lichtleiter 91 bis 94 so fokussiert, dass die primären Laserlichtstrahlen im Wesentlichen ohne Verluste in die Lichtleiter einkoppeln. Die Laserlichtstrahlen werden dabei vorteilhafterweise derart in die Lichtleiter eingekoppelt, dass beispielsweise bei einem rechteckförmigen Lichtleiter die Längsachse des, von der Laserlichtquelle emittierten, typischer Weise elliptischen Strahlquerschnitt aufweisenden, Laserstrahls, parallel zur Querschnittslängsachse des rechteckförmigen Lichtleiters verläuft. Im Allgemeinen hängt die Art der Einkoppelung davon ab, in welcher Achse (Ellipsenhauptachse oder Ellipsennebenachse) die Laserlichtstrahlen beim Auskoppeln (die sekundären Laserlichtstrahlen) eine geringere Divergenz aufweisen sollen.
  • Es sei an dieser Stelle vermerkt, dass unter dem Begriff "Lichtleiter" auch alle technischen Mittel subsumiert sind, die sich zur Formung des Strahlprofils (Intensitätsprofils und des Querschnitts der Laserstrahlen) eignen. Es sind also alle "Strahlprofilformer" bei einer konkreten technischen Ausführung der vorliegenden Erfindung anwendbar. Beispielsweise können Multimodefaser oder Glasstäbe verschiedener Typen verwendet werden. Dabei bezieht sich der Typ eines Strahlprofilformers auf das Verhalten seines Brechungsindexes. Man unterscheidet zwischen z.B. Stufenindexfasern, Gradientenindexfasern oder homogenen Strahlprofilformern (mit einem konstanten Brechungsindex). Darüber hinaus können die Strahlprofilformer unterschiedliche Querschnittsgrößen (von einigen über hunderte von Mikrometern bis einige Millimeter) aufweisen. Dadurch kann die Größe der Leuchtflecken auf dem Lichtkonversionsmittel und infolgedessen die Auflösung des Lichtbilds variiert werden. Des Weiteren kann ein solcher Strahlprofilformer beispielsweise als eine Anordnung von Optiken, z.B. Linsen, Spiegeln und Blenden, realisiert werden.
  • Unter dem Begriff "Vorsatzoptik" wird in Zusammenhang mit der vorliegenden Erfindung ein optisches System verstanden, das sich dazu eignet, die ursprünglich divergierenden primären Laserlichtstrahlen 11p bis 14p auf die dazugehörigen ersten Enden 91e bis 94e zu fokussieren. Diese Vorsatzoptik kann, wie in dem dargestellten Ausführungsbeispiel, eine Kollimatorlinse und eine Sammellinse aufweisen, kann aber auch alternativ andere dem Fachmann zur Verfügung stehende optische Mittel umfassen, die sich zur Fokussierung der primären Laserlichtstrahlen eignen.
  • Bei der Ausbreitung der primären Laserlichtstrahlen 11p bis 14p in den Lichtleitern 91 bis 94 werden diese mehrfach totalreflektiert. Dies führt dazu, dass das Licht den gesamten Querschnitt des Lichtleiters "ausfüllt". Dabei nimmt das Strahlprofil der aus den Lichtleitern als sekundären Lichtstrahlen 11s bis 14s austretenden Lichtstrahlen im Wesentlichen die Form des Querschnittes der Lichtleiter an. Die in Zusammenhang mit der vorliegenden Erfindung verwendeten Lichtleiter weisen eine im Wesentlichen rechteckige Form des Querschnittes auf. Demensprechend weisen die sekundären Lichtstrahlen 11s bis 14s ein im Wesentlichen rechteckiges Intensitätsprofil auf. In der Fig. 2c sind zwei auf dem Lichtkonversionsmittel 60 durch zwei der sekundären Lichtstrahlen, beispielsweise durch 11s und 12s, erzeugte rechteckige Leuchtflecken 71s und 72s gezeigt, die einem im Wesentlichen rechteckförmigen Strahlquerschnitt und einem im Wesentlichen rechteckförmigen Intensitätsprofil, in der Fachliteratur auch als Flat-Top- oder Top-Hat-Form oder einfach Top-Hat genannt, der sekundären Laserstrahlen entsprechen und einen im Wesentlichen rechteckigen Lichtstromverlauf 73a und 73b entlang des Schnittes BB aufweisen. Die Größe des Querschnitts kann von Lichtleiter zu Lichtleiter variieren und als Folge zu unterschiedlich großen Leuchtflecken auf dem Lichtkonversionsmittel 60 führen. Dadurch kann auch der Lichtstromdichte (Beleuchtungsstärke) in einem Leuchtfleck und infolgedessen die Lichtstärke dieses Leuchtflecks angepasst werden. Dies ist in der Fig. 3 thematisiert, welche acht unterschiedlich große und unterschiedlich stark leuchtende Leuchtflecken 100 bis 107 zeigt. Solche Leuchtflecken entstehen wenn die Mikroscanner 51, 52 nicht schwingen. Werden diese von der Mikroscanneransteuerung 5 in Schwingung versetzt, sodass die Mikroscanner 51, 52 um eine Achse verschwenkt werden, entstehen auf dem Lichtkonversionsmittel Leuchtbänder z0 bis z8.
  • Wenngleich das bevorzugte Ausführungsbeispiel Mikroscanner zeigt, die nur um eine Achse schwingen, ist es auch möglich, Mikroscanner zu verwenden, die um zwei Achsen schwingen. In diesem Fall können mehrere Laserstrahlen auf einen solchen Mikroscanner gerichtet sein, direkt aneinander anliegende Lichtbänder erzeugt. Auch sind Ausführungen mit lediglich einem einzigen Mikroscanner denkbar, bei welchen beispielsweise die sekundären Laserstrahlen entgegen der Hauptabstrahlrichtung des Scheinwerfers direkt auf den Mikroscanner auftreffen, der dann die Laserstrahlen auf einen durchleuchteten Phosphor lenkt.
  • Fig. 2a und Fig. 2b zeigen zwei Ausführungsformen der vorliegenden Erfindung, bei den die sekundären Laserlichtstrahlen 11s bis 14s über ein optisches Abbildungssystem 6 auf den Mikroscanner 51 gelangen. Das Abbildungssystem 6 ist dabei schematisch als eine Sammellinse dargestellt. Im Allgemeinen handelt es sich um ein optisches System, das eine, zwei oder mehr Linsen, welche hintereinander angeordnet und / oder je einem Lichtleiter zugeordnet sind, und / oder Reflektoren umfasst, und welches optische System die sekundären Lichtstrahlen 11s bis 14s über den Mikroscanner 51 auf das Lichtkonversionsmittel 60 kollimiert / fokussiert.
  • Dabei zeigt Fig. 2a Lichtleiter 91 bis 94, die als ein in Lichtausbreitungsrichtung zulaufender Konus angeordnet sind. Bei dieser Anordnung können die Lichtleiter 91 bis 94 "starr" verlaufen.
  • Fig. 2b zeigt eine Lichtleiteranordnung, welche sich insbesondere für als Multimodefaser ausgebildete Lichtleiter 91 bis 94 eignet. Dabei können die Lichtleiter gekrümmt und derart angeordnet werden, dass die zweiten Enden 91z bis 94z aneinander angrenzend in einer Reihe angeordnet sind. Infolgedessen verlaufen die sekundären Laserlichtstrahlen 11s bis 14s im Wesentlichen parallel, wobei der Abstand zwischen der Leuchtflecken auf dem Lichtkonversionsmittel 60 durch das optische Abbildungssystem 6 minimiert werden kann.
  • Fig. 4 zeigt eine Anordnung der Lichtleiterenden aus der Fig. 2a. Obgleich die Lichtleiter 91 bis 94 konusförmig unter einem Öffnungswinkel α aufeinander zulaufen, sind die zweiten Enden 91z bis 94z dergestalt, z.B. durch Schleifen, ausgebildet, dass die sekundären Lichtstrahlen 11s bis 14s im Wesentlichen parallel zueinander verlaufen. Dabei darf der Öffnungswinkel α nicht beliebig groß werden, da dies das entsprechende Schleifen der zweiten Enden 91z bis 94z erfordern und zu unerwünschten Verzerrungen im Leucht- und folglich im Lichtbild führen würde.
  • Es sei an dieser Stelle angemerkt, dass es sich bei der in Fig. 4 dargestellten Anordnung um einen Spezialfall handelt. In der Praxis kann es durchaus vorkommen, dass sich die zweiten Enden 91z bis 94z nicht in einer Ebene befinden. Dabei wird der Schliffwinkel durch das Brechungsgesetz und durch den Öffnungswinkel α vorgegeben. Die Gestaltung der zweiten Enden 91z bis 94z (durch Schleifen) dient als technisches Mittel dazu, dass die sekundären Laserlichtstrahlen, die die Leuchtflecken auf dem Lichtkonversionsmittel erzeugen, in einem vorgegebenen Winkel, bevorzugter Weise parallel zueinander, auf das Lichtkonversionsmittel treffen.
  • Bei einer in Fig. 5 schematisch dargestellten Ausführungsform koppeln die primären Laserlichtstrahlen über Spiegel 200 bis 207 (über eine sogenannte "Spiegeltreppe") in die ersten Enden ein. Dadurch kann sowohl der Öffnungswinkel α verkleinert als auch eine optimierte Kühlung der Laserdioden realisiert werden, da diese in einer Ebene angeordnet werden können und sich dadurch eine einfachere Anbindung an einen gemeinsamen Kühlkörper realisieren lässt. Obwohl in diesem Ausführungsbeispiel eine Spiegeltreppe verwendet wurde, kann diese durch andere technische Mittel - im Allgemeinen Strahlumlenkmittel - ersetzt werden, die sich zur Umlenkung von Licht eignen. So können z.B. die Spiegel 200 bis 207 teilweise oder ganz durch Prismen ersetzt werden. Genauso sind Anordnungen denkbar, bei welchen zwei oder mehr primäre Laserstrahlen über ein und dasselbe Strahlumlenkmittel umgelenkt werden.
  • Bei den gezeigten Ausführungsbeispielen der vorliegenden Erfindung findet das Überlappen der Lichtbänder auf einer Leuchtfläche bzw. einem Lichtkonversionsmittel nicht statt und das solchermaßen erzeugte Leuchtbild wird auf die Fahrbahn projiziert. Es ist jedoch auch möglich, dass in einem Scheinwerfer zwei oder mehr getrennte erfindungsgemäße Laserbeleuchtungsvorrichtungen vorgesehen sind, wobei diese so zueinander ausgerichtet sind, dass das Überlappen der Lichtbilder stattfindet. Wenngleich bei den gezeigten Ausführungsbeispielen eine bzw. zwei Gruppen mit je vier Laserlichtquellen beschrieben sind, sollte es dem Fachmann klar sein, dass auch mehrere Gruppen mit anderer und unterschiedlicher Anzahl von Laserlichtquellen dem jeweiligen Einsatzzweck entsprechend denkbar sind.

Claims (14)

  1. Laserbeleuchtungsvorrichtung für Fahrzeuge mit
    - zwei oder mehreren Laserlichtquellen (11 bis 18), wobei jede zur Erzeugung eines primären Laserlichtstrahls (11p bis 18p) eingerichtet ist,
    - einem jeder Laserlichtquelle zugeordneten Lichtleiter (91 bis 94), wobei jeder primäre Laserlichtstrahl in sein erstes Ende (91e bis 94e) einkoppelt und aus seinem zweiten Ende (91z bis 94z) als sekundärer Laserlichtstrahl (11s bis 14s) auskoppelt und jeder sekundäre Laserlichtstrahl auf ein Lichtkonversionsmittel (60) gelenkt ist, um an diesem ein vorgegebenes Leuchtbild zu erzeugen, welches über ein dem Lichtkonversionsmittel zugeordnetes Projektionssystem (PS) als Lichtbild auf die Fahrbahn projiziert wird, wobei
    - jeder primäre Laserlichtstrahl ein erstes Intensitätsprofil (71p, 72p) aufweist, dadurch gekennzeichnet, dass
    - jeder sekundäre Laserlichtstrahl ein zweites, von dem ersten Intensitätsprofil unterschiedliches Intensitätsprofil (73a, 73b) aufweist, und
    - jeder sekundäre Laserlichtstrahl über einen Mikroscanner (51, 52) auf das Lichtkonversionsmittel gelenkt ist,
    - die zweiten Enden (91z bis 94z) der Lichtleiter (91 bis 94) aneinander angrenzend in einer Reihe angeordnet sind, und
    - die Lichtleiter einen unterschiedlich großen Querschnitt aufweisen.
  2. Laserbeleuchtungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Mikroscanner (51, 52) um genau eine Achse verschwenkbar ist.
  3. Laserbeleuchtungsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass jeder Laserlichtquelle eine Vorsatzoptik (81 bis 84) nachgeordnet ist, welche den primären Laserlichtstrahl in das erste Ende (91e bis 94e) des dieser Laserlichtquelle zugeordneten Lichtleiters (91 bis 94) einkoppelt.
  4. Laserbeleuchtungsvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die sekundären Laserlichtstrahlen in zwei oder mehrere Laserlichtstrahlen-Gruppen unterteilt sind, wobei jede Laserlichtstrahlen-Gruppe über je einen Mikroscanner (51, 52) gelenkt ist.
  5. Laserbeleuchtungsvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Lichtleiter (91 bis 94) zumindest einer Teilmenge der Lichtleiter als ein in Lichtausbreitungsrichtung zulaufender Konus angeordnet sind.
  6. Laserbeleuchtungsvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die zweiten Enden derart angeordnet und / oder ausgebildet sind, dass die sekundären Lichtstrahlen im Wesentlichen parallel zueinander verlaufen.
  7. Laserbeleuchtungsvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass jedem Mikroscanner ein optisches Abbildungssystem (6) vorgelagert ist.
  8. Laserbeleuchtungsvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass das optische Abbildungssystem (6) eine, zwei oder mehr Linsen und / oder ein, zwei oder mehr Blenden und / oder ein, zwei oder mehr Reflektoren aufweist.
  9. Laserbeleuchtungsvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die primären Laserlichtstrahlen zumindest einer Teilmenge der primären Laserlichtstrahlen über zumindest ein Strahlumlenkmittel (200 bis 207), beispielsweise ein Spiegel oder ein Prisma, in die ersten Enden einkoppeln.
  10. Laserbeleuchtungsvorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Lichtleiter einen im Wesentlichen rechteckigen Querschnitt aufweisen.
  11. Laserbeleuchtungsvorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das erste Intensitätsprofil in jede Raumrichtung im Wesentlichen Gauß'sche Form und das zweite Intensitätsprofil in jede Raumrichtung im Wesentlichen Flat-Top-Form (73a, 73b) aufweist.
  12. Laserbeleuchtungsvorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das zweite Intensitätsprofil in jede Raumrichtung im Wesentlichen Flat-Top-Form (73a, 73b) aufweist und der Strahlenquerschnitt der sekundären Lichtstrahlen im Wesentlichen rechteckförmig (71s, 72s) ausgebildet ist.
  13. Scheinwerfer mit zumindest einer Laserbeleuchtungsvorrichtung nach einem der Ansprüche 1 bis 12.
  14. Fahrzeug mit zumindest einem Scheinwerfer nach Anspruch 13.
EP16750360.6A 2015-08-03 2016-07-19 Laserbeleuchtungsvorrichtung für fahrzeugscheinwerfer Active EP3332168B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50700/2015A AT517524B1 (de) 2015-08-03 2015-08-03 Laserbeleuchtungsvorrichtung für Fahrzeugscheinwerfer
PCT/AT2016/060009 WO2017020054A1 (de) 2015-08-03 2016-07-19 Laserbeleuchtungsvorrichtung für fahrzeugscheinwerfer

Publications (2)

Publication Number Publication Date
EP3332168A1 EP3332168A1 (de) 2018-06-13
EP3332168B1 true EP3332168B1 (de) 2019-08-28

Family

ID=56681898

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16750360.6A Active EP3332168B1 (de) 2015-08-03 2016-07-19 Laserbeleuchtungsvorrichtung für fahrzeugscheinwerfer

Country Status (6)

Country Link
US (1) US10288242B2 (de)
EP (1) EP3332168B1 (de)
JP (1) JP6506881B2 (de)
CN (1) CN107850281B (de)
AT (1) AT517524B1 (de)
WO (1) WO2017020054A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT517519B1 (de) * 2015-08-03 2017-04-15 Zkw Group Gmbh Verfahren zum Ansteuern einer Laserbeleuchtungsvorrichtung für einen Fahrzeugscheinwerfer
WO2018021109A1 (ja) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 発光装置及び照明装置
DE102016217008A1 (de) * 2016-09-07 2018-03-08 Osram Gmbh Beleuchtungseinrichtung
CN107166179A (zh) * 2017-06-14 2017-09-15 杨毅 灯具
EP3438525B1 (de) * 2017-08-04 2020-01-08 Atlas Material Testing Technology GmbH Beleuchtungsvorrichtung für simulationsanordnung für kraftfahrzeugunfälle
JP6816679B2 (ja) * 2017-09-05 2021-01-20 トヨタ自動車株式会社 車両の制御装置
JP7109934B2 (ja) 2018-02-13 2022-08-01 スタンレー電気株式会社 照明装置及び車両用灯具
EP3650744B1 (de) 2018-11-07 2024-06-19 ZKW Group GmbH Kraftfahrzeugscheinwerferlichtmodul
EP3671017A1 (de) * 2018-12-18 2020-06-24 ZKW Group GmbH Beleuchtungssystem für ein kraftfahrzeug
CN113302430B (zh) * 2019-01-24 2023-06-02 松下知识产权经营株式会社 照明装置
DE102019111451A1 (de) * 2019-05-03 2020-11-05 Bayerische Motoren Werke Aktiengesellschaft Laserprojektor mit wenigstens einem Laser sowie Fluoreszenzschirm für einen Laserprojektor
WO2021203259A1 (zh) * 2020-04-08 2021-10-14 天勤光电股份有限公司 照明***
JP2021174739A (ja) * 2020-04-30 2021-11-01 船井電機株式会社 投光装置および車両用投光装置
RU202946U1 (ru) * 2020-12-01 2021-03-16 Общество с ограниченной ответственностью "Трансмаш Плюс" Источник белого света

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172900A (ja) * 2001-12-05 2003-06-20 Olympus Optical Co Ltd 画像投影表示装置、画像投影表示システム並びに画像投影表示方法
US20120106189A1 (en) * 2010-10-29 2012-05-03 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, and illumination device
EP2541129A2 (de) * 2011-06-28 2013-01-02 Sharp Kabushiki Kaisha Beleuchtungsvorrichtung und Fahrzeugscheinwerfer
US20130258689A1 (en) * 2012-04-03 2013-10-03 Sharp Kabushiki Kaisha Light-emitting device, floodlight, and vehicle headlight
DE102012205438A1 (de) * 2012-04-03 2013-10-10 Bayerische Motoren Werke Aktiengesellschaft Beleuchtungsvorrichtung für ein Kraftfahrzeug
WO2014121315A1 (de) * 2013-02-07 2014-08-14 Zizala Lichtsysteme Gmbh Scheinwerfer für ein kraftfahrzeug und verfahren zum erzeugen einer lichtverteilung
WO2014121314A1 (de) * 2013-02-07 2014-08-14 Zizala Lichtsysteme Gmbh Scheinwerfer für ein kraftfahrzeug und verfahren zum erzeugen einer lichtverteilung
WO2014192338A1 (ja) * 2013-05-29 2014-12-04 シャープ株式会社 発光装置および照明装置
WO2015111649A1 (ja) * 2014-01-24 2015-07-30 スタンレー電気株式会社 車両用灯具

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008022795B4 (de) * 2008-05-08 2020-01-09 Osram Opto Semiconductors Gmbh Kfz-Scheinwerfer
JP4991001B2 (ja) * 2009-12-28 2012-08-01 シャープ株式会社 照明装置
JP5232815B2 (ja) * 2010-02-10 2013-07-10 シャープ株式会社 車両用前照灯
JP5314094B2 (ja) * 2010-08-31 2013-10-16 シャープ株式会社 照明装置、前照灯および移動体
US8708537B2 (en) * 2010-08-31 2014-04-29 Sharp Kabushiki Kaisha Lighting apparatus, headlamp, and mobile body
US8833975B2 (en) * 2010-09-07 2014-09-16 Sharp Kabushiki Kaisha Light-emitting device, illuminating device, vehicle headlamp, and method for producing light-emitting device
JP5261543B2 (ja) * 2011-06-30 2013-08-14 シャープ株式会社 レーザ光利用装置および車両用前照灯
CN102563493A (zh) * 2012-01-16 2012-07-11 安徽师范大学 一种基于数字微镜元件的自适应汽车前照灯设计方法
JP5535252B2 (ja) * 2012-02-08 2014-07-02 シャープ株式会社 投光装置およびそれに用いられる導光部材
DE102012203929B3 (de) * 2012-03-13 2013-09-19 Automotive Lighting Reutlingen Gmbh Lichtmodul einer Beleuchtungseinrichtung einesKraftfahrzeugs
JP6072448B2 (ja) * 2012-04-03 2017-02-01 シャープ株式会社 発光装置、投光器、および車両用前照灯
JP6138420B2 (ja) * 2012-04-06 2017-05-31 シャープ株式会社 発光装置および車両用前照灯
JP2014010918A (ja) * 2012-06-27 2014-01-20 Sharp Corp 照明装置および車両用前照灯
JP6161877B2 (ja) * 2012-07-06 2017-07-12 シャープ株式会社 発光装置、車両用前照灯および照明装置
FR2993831B1 (fr) * 2012-07-27 2015-07-03 Valeo Vision Systeme d'eclairage adaptatif pour vehicule automobile
JP6258083B2 (ja) * 2013-08-28 2018-01-10 シャープ株式会社 発光ユニット、発光装置、照明装置および車両用前照灯
US9863595B2 (en) * 2013-08-28 2018-01-09 Sharp Kabushiki Kaisha Light-emitting unit with optical plate reflecting excitation light and transmitting fluorescent light, and light-emitting device, illumination device, and vehicle headlight including the unit
JP6354116B2 (ja) * 2014-07-18 2018-07-11 スタンレー電気株式会社 車両用灯具

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172900A (ja) * 2001-12-05 2003-06-20 Olympus Optical Co Ltd 画像投影表示装置、画像投影表示システム並びに画像投影表示方法
US20120106189A1 (en) * 2010-10-29 2012-05-03 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, and illumination device
EP2541129A2 (de) * 2011-06-28 2013-01-02 Sharp Kabushiki Kaisha Beleuchtungsvorrichtung und Fahrzeugscheinwerfer
US20130258689A1 (en) * 2012-04-03 2013-10-03 Sharp Kabushiki Kaisha Light-emitting device, floodlight, and vehicle headlight
DE102012205438A1 (de) * 2012-04-03 2013-10-10 Bayerische Motoren Werke Aktiengesellschaft Beleuchtungsvorrichtung für ein Kraftfahrzeug
WO2014121315A1 (de) * 2013-02-07 2014-08-14 Zizala Lichtsysteme Gmbh Scheinwerfer für ein kraftfahrzeug und verfahren zum erzeugen einer lichtverteilung
WO2014121314A1 (de) * 2013-02-07 2014-08-14 Zizala Lichtsysteme Gmbh Scheinwerfer für ein kraftfahrzeug und verfahren zum erzeugen einer lichtverteilung
WO2014192338A1 (ja) * 2013-05-29 2014-12-04 シャープ株式会社 発光装置および照明装置
WO2015111649A1 (ja) * 2014-01-24 2015-07-30 スタンレー電気株式会社 車両用灯具

Also Published As

Publication number Publication date
EP3332168A1 (de) 2018-06-13
US20180224080A1 (en) 2018-08-09
JP2018523897A (ja) 2018-08-23
CN107850281B (zh) 2020-05-29
AT517524A1 (de) 2017-02-15
WO2017020054A1 (de) 2017-02-09
CN107850281A (zh) 2018-03-27
JP6506881B2 (ja) 2019-04-24
US10288242B2 (en) 2019-05-14
AT517524B1 (de) 2017-10-15

Similar Documents

Publication Publication Date Title
EP3332168B1 (de) Laserbeleuchtungsvorrichtung für fahrzeugscheinwerfer
EP3209928B1 (de) Verfahren zum erzeugen einer lichtverteilung auf einer fahrbahn mit hilfe eines kfz-scheinwerfers
EP3158259B1 (de) Verfahren und scheinwerfer zum erzeugen einer lichtverteilung auf einer fahrbahn
EP2954257B1 (de) Scheinwerfer für ein kraftfahrzeug und verfahren zum erzeugen einer lichtverteilung
EP3289282B1 (de) Verfahren zum ansteuern eines lichtscanners in einem scheinwerfer für fahrzeuge
DE102008022795B4 (de) Kfz-Scheinwerfer
EP3332169B1 (de) Verfahren zum ansteuern einer laserbeleuchtungsvorrichtung für einen fahrzeugscheinwerfer
DE60314306T2 (de) Kompaktes Beleuchtungssystem und damit versehene Projektionsanzeigevorrichtung
DE102013215374A1 (de) Beleuchtungsanordnung
AT513916A2 (de) Scheinwerfer für ein Kraftfahrzeug und Verfahren zum Erzeugen einer Lichtverteilung
DE102013226624A1 (de) Beleuchtungseinrichtung
EP3184884A1 (de) Verfahren zur steuerung eines kraftfahrzeugscheinwerfers und kraftfahrzeugscheinwerfer
AT518094B1 (de) Scheinwerfer für Fahrzeuge
WO2016149717A1 (de) Scheinwerfer für fahrzeuge
EP3635472B1 (de) Head-up-display
DE102006004085A1 (de) Projektionsanordnung für ein Head Up Display und Verfahren zu deren Steuerung
WO2018095746A1 (de) Beleuchtungsvorrichtung für fahrzeuge
WO2017211647A1 (de) Vorrichtung und verfahren zum projizieren eines lichtmusters
DE102020132020A1 (de) Beleuchtungseinrichtung eines Fahrzeuges mit einer Laserstrahlungsquelle
WO2018046319A1 (de) Beleuchtungseinrichtung
DE102016209946A1 (de) Vorrichtung und Verfahren zum Projizieren eines Lichtmusters
WO2013124256A2 (de) Projektionskopf für einen laserprojektor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016006317

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008120000

Ipc: F21S0041240000

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/176 20180101ALI20181212BHEP

Ipc: F21S 41/24 20180101AFI20181212BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190201

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20190624

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1172850

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016006317

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190828

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191230

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191129

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016006317

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200719

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200719

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200719

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1172850

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210719

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230726

Year of fee payment: 8

Ref country code: DE

Payment date: 20230719

Year of fee payment: 8