EP3329172B1 - Device for operating a pumping device connected to a thermally insulating barrier of a tank used for storing a liquefied gas - Google Patents

Device for operating a pumping device connected to a thermally insulating barrier of a tank used for storing a liquefied gas Download PDF

Info

Publication number
EP3329172B1
EP3329172B1 EP16750984.3A EP16750984A EP3329172B1 EP 3329172 B1 EP3329172 B1 EP 3329172B1 EP 16750984 A EP16750984 A EP 16750984A EP 3329172 B1 EP3329172 B1 EP 3329172B1
Authority
EP
European Patent Office
Prior art keywords
liquefied gas
pressure
phase
thermally insulative
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16750984.3A
Other languages
German (de)
French (fr)
Other versions
EP3329172A2 (en
Inventor
Bruno Deletre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP3329172A2 publication Critical patent/EP3329172A2/en
Application granted granted Critical
Publication of EP3329172B1 publication Critical patent/EP3329172B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0169Liquefied gas, e.g. LPG, GPL subcooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0355Heat exchange with the fluid by cooling using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0374Localisation of heat exchange in or on a vessel in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0491Parameters measured at or inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • F17C2250/0694Methods for controlling or regulating with calculations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks with membranes for the storage of a liquefied gas.
  • Sealed and thermally insulating membrane tanks are used in particular for the storage of liquefied natural gas (LNG).
  • LNG liquefied natural gas
  • the multilayer structure comprises, from the outside to the inside of the tank, a secondary thermally insulating barrier comprising insulating elements resting against a supporting structure, a secondary waterproofing membrane resting against the secondary thermally insulating barrier, a thermally insulating barrier primary comprising insulating elements resting against the secondary waterproofing membrane and a primary waterproofing membrane intended to be in contact with the liquefied gas contained in the tank and resting against the primary thermally insulating barrier.
  • Such membrane tanks are sensitive to the pressure differences on either side of each of the membranes, and in particular to the pressure difference on either side of the primary waterproofing membrane.
  • an overpressure of the primary thermally insulating barrier relative to the interior of the tank is liable to lead to tearing of the primary waterproofing membrane. Therefore, to guarantee the integrity of the primary sealing barrier, it is preferable to maintain a pressure inside the primary thermally insulating barrier which is lower than that prevailing inside the tank so that the The pressure difference on either side of the primary waterproofing membrane tends to press the latter against the secondary thermally insulating barrier and not to tear it away from the secondary insulating barrier.
  • WO2014203530 and FR2781036 disclose a method for controlling a pumping device and an installation for storing a liquefied gas as defined in the preamble of claims 1 and 13.
  • An idea at the basis of the invention is to provide a method for controlling a pumping device connected to a thermally insulating barrier of a sealed and thermally insulating tank which makes it possible to effectively protect at least one sealing membrane of the tank. tank.
  • Such a method is particularly effective for protecting the waterproofing membrane when the vessel is placed under a pressure below atmospheric pressure (which was not hitherto provided for in the state of the art). This is particularly likely to occur when the liquefied gas is mainly stored in the vessel in a sub-cooled thermodynamic state, that is to say at a temperature which is lower than the liquid-vapor equilibrium temperature of the gas considered. to the gas storage pressure in the tank.
  • the Applicant has recently developed cooling devices making it possible to reduce the temperature of a portion of the liquefied gas stored in the vessel below its liquid-vapor equilibrium temperature so as to limit the natural evaporation of the liquefied gas and allow its sustainable storage. Such a method is therefore particularly suitable for meeting the specific needs of tanks equipped with such cooling devices.
  • the vapor phase in the gas overhead of the vessel and the liquid phase of the liquefied gas are not, at any point of the tank, at equilibrium.
  • the vapor phase is liable to heat up and tends to stratify inside the tank. It is thus possible to observe temperature gradients of the order of 100 ° C. in the vapor phase when the vessel is lightly filled and no stirring is carried out in the vessel to homogenize the temperature of the vapor phase.
  • the interface between the vapor phase and the liquid phase is in a stationary state, at equilibrium. It is at this interface that the vapor phase condenses or that the liquid phase evaporates depending on the local temperature and pressure conditions.
  • thermally insulating barrier it is possible to ensure that the pressure prevailing inside the thermally insulating barrier is low enough to remain lower than the pressure likely to be reached in the interior space in the event of instantaneous condensation of part of the vapor phase of the cargo, without incurring unnecessary energy expenditure.
  • Another idea at the basis of the invention is to propose a method for controlling a device for cooling a liquefied gas which makes it possible to effectively protect at least one sealing membrane of the tank.
  • Such an installation can be part of an onshore storage installation, for example to store LNG or be installed in a floating, coastal or deep water structure, in particular an LNG vessel, a floating storage and regasification unit (FSRU). , a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • a ship comprises a double hull and an abovementioned installation, the tank of the installation for storing a liquefied gas being arranged in the double hull.
  • the invention also provides a method for loading or unloading such a vessel, in which a fluid is conveyed through isolated pipes from or to a floating or terrestrial storage installation to or from the tank of the vessel. ship.
  • the invention also provides a transfer system for a fluid, the system comprising the aforementioned vessel, isolated pipes arranged so as to connect the tank installed in the hull of the vessel to a floating or land storage installation. and a pump for driving a fluid through insulated pipelines from or towards the floating or terrestrial storage facility to or from the vessel of the vessel.
  • gas is generic in nature and is equally intended for a gas consisting of a single pure substance or a gas mixture consisting of a plurality of components.
  • a liquefied gas thus designates a chemical body or a mixture of chemical bodies which has been placed in a liquid phase at low temperature and which would appear in a vapor phase under normal temperature and pressure conditions.
  • an installation 1 for storing and cooling a liquefied gas according to a first embodiment is shown.
  • Such an installation 1 can be installed on a floating structure such as an LNG carrier, a liquefaction or regasification barge.
  • the installation 1 comprises a sealed and thermally insulating tank 2 with membranes.
  • the tank 2 comprises walls having a multilayer structure comprising, from the outside towards the inside of the tank 2, a secondary thermally insulating barrier 3 comprising a gas phase and insulating elements resting against a supporting structure 4, a secondary waterproofing membrane 5 resting against the secondary thermally insulating barrier 3, a primary thermally insulating barrier 6 comprising insulating elements resting against the secondary waterproofing membrane 5 and a gas phase and a primary waterproofing membrane 7 intended to be in contact with the liquefied gas 8 contained in the tank.
  • such membrane tanks 2 are described in patent applications. WO14057221 , FR2691520 and FR2877638 .
  • the tank is equipped with a vapor collection device, not illustrated, passing through a ceiling wall of the tank and opening out into the upper part of the internal space of the tank.
  • a vapor collection device is equipped with a valve arranged to allow evacuation of the steam from the inside to the outside of the tank when the pressure inside the internal space of the tank 2 is greater than a threshold.
  • the valve is further configured so as to prevent a flow of gas from flowing, in the collection device. steam, from the outside to the inside of the tank 2 and thus allows a depressurization of the internal space of the tank 2.
  • a device for collecting steam is described in the document WO2013093261 .
  • Liquefied gas 8 is a combustible gas.
  • the liquefied gas 8 can in particular be a liquefied natural gas (LNG), that is to say a gas mixture mainly comprising methane as well as one or more other hydrocarbons, such as ethane, propane, n- butane, i-butane, n-pentane, i-pentane, neopentane, and nitrogen in small proportions.
  • the fuel gas can also be ethane or a liquefied petroleum gas (LPG), that is to say a mixture of hydrocarbons obtained from the refining of petroleum comprising essentially propane and butane.
  • LPG liquefied petroleum gas
  • the liquefied gas 8 is stored in the interior space of the tank 2 in a two-phase liquid-vapor state.
  • the liquefied gas 8 is therefore present in the vapor phase in the upper part of the tank 2 and in the liquid phase in the lower part of the tank 2.
  • the installation 1 further comprises a device for cooling the liquefied gas stored in the tank 2 arranged to lower the temperature of a portion of the liquid phase of the liquefied gas 8 below the liquid-vapor equilibrium temperature of said gas.
  • a device for cooling the liquefied gas stored in the tank 2 arranged to lower the temperature of a portion of the liquid phase of the liquefied gas 8 below the liquid-vapor equilibrium temperature of said gas.
  • a portion of the liquefied gas is placed in a sub-cooled thermodynamic state.
  • the installation comprises a vaporization device 20 intended to take a flow of gas in liquid phase from the tank 2 and to expand it in order to vaporize it by using the latent heat of vaporization of the gas to cool the liquefied gas 8 remaining in the tank. tank 2.
  • FIG. 5 represents a liquid-vapor equilibrium diagram of methane.
  • This diagram represents the domain, denoted L, in which the methane occurs in liquid phase and the domain, denoted by V, in which the methane occurs in the vapor phase, as a function of the pressure represented on the abscissa and the temperature represented on the ordinate .
  • Point P1 represents a two-phase equilibrium state corresponding to the state of the methane stored in tank 2 at atmospheric pressure and at a temperature of approximately -162 ° C.
  • the equilibrium of the expanded methane shifts to the left up to at point P2.
  • the methane thus expanded therefore undergoes a temperature reduction of approximately 7 ° C.
  • the methane withdrawn being placed in thermal contact via the vaporization device 20 with the methane remaining in the tank 2, it vaporizes at least partially and, by vaporizing, subtracts from the liquid methane stored in the tank 2 the necessary calories vaporization, which allows the liquid methane remaining in tank 2 to be cooled.
  • the methane remaining in the tank 2 is therefore placed at a temperature below its equilibrium temperature at the storage pressure of the methane in the tank 2.
  • the inlet circuit is equipped with one or more pressure drop members, not shown, making it possible to create a pressure drop and opening inside the vaporization chamber 22 so as to relax the flow of liquefied gas. taken.
  • the vaporization device is also equipped with a vacuum pump 24, arranged outside the tank and associated with the outlet circuit 23.
  • the vacuum pump 24 makes it possible to suck a flow of liquefied gas stored in the tank 2 towards the. vaporization chamber 22 and to deliver it in the vapor phase to a circuit for using gas in the vapor phase 25.
  • the absolute working pressure prevailing inside the vaporization chamber 22 is between 120 and 950 mbar, advantageously between 650 and 850 mbar, and for example of the order of 750 mbar.
  • the circuit for using the gas in the vapor phase 25 may in particular be connected to an energy production equipment of the powertrain, not shown, making it possible to propel the ship.
  • energy production equipment is in particular chosen from heat engines, combustion cells and gas turbines.
  • the installation 1 is equipped with another device for cooling the liquefied gas making it possible to place the liquefied gas 8 in a sub-cooled thermodynamic state.
  • the installation 1 here comprises a gas sampling circuit in the vapor phase 9.
  • the gas sampling circuit in the vapor phase 9 comprises a duct 10 passing through a wall of the vessel 2 in order to define a passage for evacuation of the vapor phase, from the inside to the outside of the tank 2.
  • the duct 10 comprises an inlet 11 opening out inside the interior space of the vessel 2 in a vacuum bell 31.
  • the vacuum bell 31 is a hollow body arranged in the upper part of the interior space of the vessel 2 such that its upper portion is in contact and filled with the vapor phase liquefied gas 8 stored in tank 2 and that its lower portion is immersed in the liquid phase of liquefied gas 8 stored in tank 2.
  • the inlet 11 of the vapor phase gas sampling circuit 9 opens into the upper portion of the vacuum bell 20.
  • the sampling circuit 9 also comprises a vacuum pump 12 which is connected, upstream, to the pipe and, downstream, to a circuit for using gas in the vapor phase 13.
  • the vacuum pump 12 is thus able to suck. , through the pipe 10, a flow of gas in the vapor phase present in the vacuum chamber 31 and to deliver it to the circuit for using gas in the vapor phase 13.
  • the sampling circuit 9 here comprises a valve 19 or a non-return valve, arranged upstream or downstream of the vacuum pump 12 and thus making it possible to avoid a return of the gas flow in vapor phase towards the interior space of the tank 2.
  • the vacuum pump 12 is able to generate in the upper portion of the vacuum chamber 31 a pressure lower than atmospheric pressure which makes it possible to promote vaporization of the liquefied gas inside the vacuum chamber 20. Therefore, the vapor phase inside the vacuum bell 31 being placed at a pressure lower than atmospheric pressure, the vaporization of the liquefied gas 8 is promoted at the liquid / vapor interface inside the vacuum bell 31 while that the liquefied gas 8 stored in the tank 2 is placed in a two-phase liquid-vapor equilibrium state in which the liquefied gas 8 has a temperature below the liquid-vapor equilibrium temperature of said liquefied gas at atmospheric pressure.
  • the cooling device comprises a liquefaction device comprising a first circuit 34 comprising an inlet 32 capable of collecting liquefied gas in the vapor phase in the interior space of the tank 2 and an outlet 33 capable of returning liquefied gas in the liquid phase in the interior space of the tank 2.
  • the liquefaction device further comprises a refrigeration circuit 35 in which a refrigerant circulates.
  • the refrigeration circuit 35 comprises a compressor 36, a condenser 37, a pressure reducer 38 and an evaporator 39 in which the refrigerant evaporates taking calories from the liquefied gas circulating in the first circuit 34.
  • a cooling device is in particular disclosed in the document EP2853479 .
  • the cooling device comprises a refrigeration unit 40 which circulates liquid nitrogen at approximately -196 ° C in a pin tube 41, which has the effect of refrigerating the liquefied gas around the tube 41. Since the Refrigerated liquefied gas becomes more dense, it undergoes a downward movement in the tank 2 and the not yet refrigerated liquefied gas conversely undergoes an upward movement. This convection movement is channeled through the convection well 42 in order to create this convection movement throughout the tank 2. During its circulation, the liquid nitrogen undergoes evaporation, which makes it possible to benefit from the latent heat of evaporation. nitrogen to cool the liquefied gas. At the outlet of the tube 23, the nitrogen is re-liquefied in the refrigeration unit 41.
  • a cooling device is in particular described in the application. FR2785034 .
  • the installation 1 comprises, in the embodiment shown, a pumping device which comprises a vacuum pump 16 which is connected to a pipe 17 opening into the internal space of the primary thermally insulating barrier 6 and a vacuum pump 14 which is connected to a pipe 15 opening into the internal space of the secondary thermally insulating barrier 3.
  • a pumping device aims to maintain the gaseous phases inside the primary 6 and secondary 3 thermally insulating barriers under pressures lower than the pressure prevailing in the interior space of the tank 2.
  • the pressure differences between the membranes tend to press them towards the outside and not to tear them towards the inside of the tank 2 .
  • the vacuum pumps 14, 16 are cryogenic pumps, that is to say pumps capable of withstanding cryogenic temperatures below -150 ° C. They also comply with ATEX regulations, i.e. designed to avoid any risk of explosion.
  • the vacuum pumps 14, 16 can be made from various ways, for example Roots type (i.e. rotary lobes), paddle type, liquid ring, screw type, with a venturi type effector.
  • the installation 1 further comprises a control module 26 making it possible to control the vacuum pump 14 and the vacuum pump 16 so as to regulate the pressures prevailing in the primary thermally insulating barrier 6 and in the secondary thermally insulating barrier 3.
  • the control module 26 may have a single element, as in the embodiment shown, or two elements; these can be respectively associated with the control of one and the other of the two vacuum pumps 14, 16.
  • the control module 26 is connected to at least one temperature sensor 27 which is immersed in the liquid phase of the liquefied gas 8 stored in the tank 2 and thus makes it possible to deliver a measurement of the temperature of the liquid phase of the liquefied gas 8 stored. in the tank 2.
  • the temperature sensor 27 is placed near the bottom of the tank 2.
  • the temperature sensor. temperature 27 is also positioned close to the heat exchange walls of the vaporization chamber 22.
  • the temperature sensor 27 can be produced by any means such as a thermocouple or a platinum resistance thermometer, for example.
  • the installation 1 further comprises at least one pressure sensor 28 making it possible to deliver a measurement of the pressure P1 of the gas phase inside the primary thermally insulating barrier 6 and a pressure sensor 29 making it possible to deliver a measurement of the pressure P2 of the gas phase inside the secondary thermally insulating barrier 3.
  • the control module 26 is arranged to generate a control value of the vacuum pump 16 as a function of a setpoint pressure P c1 and of the measurement of the pressure P1 of the gas phase inside the thermally insulating barrier. primary 6 so as to control the pressure P1 to the setpoint pressure P c1 .
  • the control module 26 is arranged to generate a control value for the vacuum pump 14 as a function of a setpoint pressure P c 2 and of the measurement of the pressure P2 of the gas phase inside. of the primary thermally insulating barrier 6 so as to control the pressure P2 to the setpoint pressure P c 2.
  • the function g makes it possible to determine the saturated vapor pressure associated with the temperature of the liquid phase measured in the tank 2 and thus makes it possible to determine a pressure value lowering the absolute pressure likely to be reached in the event of condensation of the vapor phase liquefied gas stored in the tank.
  • the function g is representative of the liquid vapor equilibrium curve of the component which, among the components present in non-negligible quantities, is the most volatile.
  • the function g used is representative of the liquid vapor equilibrium curve of pure methane. Therefore, taking as a reference the liquid-vapor equilibrium curve of the most volatile component, a pressure of saturated vapor lowering the saturated vapor pressure of the gas mixture. This approach is simple and robust and does not require determining in real time the composition of the liquefied gas, the latter being liable to vary over time.
  • the image of such a temperature by the aforementioned function g is 565 millibars.
  • the pressure in the tank is theoretically not liable to drop below an absolute pressure of 565 millibars.
  • the setpoint pressure P c1 is then 545 millibars.
  • control module 26 is also arranged to determine the setpoint pressure P c2 for the secondary thermally insulating barrier 6.
  • ⁇ ' 2 is a positive constant, for example between 10 and 30 mbar.
  • ⁇ ' 2 is a negative constant, for example between -10 and -30 mbar.
  • the setpoint pressure P c1 for the primary thermally insulating barrier 6 and / or the setpoint pressure P c2 is not determined as a function of a measurement of the temperature of the liquefied gas 8 but by taking as variable T in the aforementioned equations, a variable corresponding to a minimum threshold likely to be reached by the liquid phase of the liquefied gas, for a determined operating state of the device for cooling the liquefied gas.
  • the installation comprises a temperature sensor arranged at the outlet of the vaporization chamber 22 and measuring either the temperature of the gas flow in the vapor phase circulating inside the vaporization chamber 22 or the temperature of a wall of the vaporization chamber 22.
  • the temperature thus measured is representative of the minimum temperature likely to be reached by the liquid phase of the liquefied gas 8 stored inside the tank 2.
  • the method for controlling the vacuum pump 16 and the vacuum pump 14 also makes it possible to guarantee that the pressures of the gaseous phases inside the primary 6 and secondary 3 thermally insulating barriers are at all times lower than the pressure in the interior space of the tank 2.
  • the installation may include a temperature sensor arranged in the refrigeration circuit and measuring the return temperature of the refrigerant fluid at the outlet of the evaporator 39.
  • the temperature thus measured is also representative. of the minimum temperature likely to be reached by the liquid phase of the liquefied gas 8 stored inside the tank 2 and can therefore also be used for determining the setpoint pressure P c1 , and optionally for determining the setpoint pressure P c2 .
  • the device for cooling the liquefied gas is designed to comply with a minimum temperature threshold T min for the liquid phase of the liquefied gas.
  • the device for cooling the liquefied gas is controlled such that the temperature of the liquid phase of the liquefied gas does not drop below said temperature threshold T min .
  • the operating parameters of the cooling device are therefore set so that the temperature of the liquid phase of the liquefied gas does not drop below the aforementioned threshold.
  • the minimum temperature threshold can be guaranteed by setting a corresponding threshold pressure inside the vaporization chamber 22.
  • the minimum temperature threshold can be guaranteed by setting a corresponding threshold pressure inside the vacuum chamber 31.
  • the liquefied gas cooling device is a liquefaction device comprising a gas circulation circuit cooperating with a refrigerating circuit
  • compliance with the minimum temperature threshold can be ensured by setting a flow rate or a threshold pressure for the refrigerant in the refrigeration circuit.
  • the temperature can be measured on the fins of the refrigeration circuit evaporator and the capacity of the refrigeration circuit can be regulated, with an appropriate safety coefficient, as a function of the temperature measured so as to respect the aforementioned minimum temperature threshold. .
  • the temperature threshold T min is set beforehand and then communicated to the control module 26.
  • a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the vessel 71 comprises a primary watertight barrier intended to be in contact with the LNG contained in the vessel, a secondary watertight barrier arranged between the primary watertight barrier and the double hull 72 of the vessel, and two insulating barriers arranged respectively between the vessel. primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double shell 72.
  • loading / unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of suitable connectors, to a maritime or port terminal for transferring a cargo of LNG from or to the tank 71.
  • the figure 6 shows an example of a marine terminal comprising a loading and unloading station 75, an underwater pipeline 76 and a shore installation 77.
  • the loading and unloading station 75 is a off-shore fixed installation comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73.
  • the movable arm 74 can be oriented. 'suitable for all LNG tankers.
  • a connecting pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77.
  • the latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and / or pumps fitted to the shore installation 77 and / or pumps fitted to the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

Domaine techniqueTechnical area

L'invention se rapporte au domaine des cuves, étanches et thermiquement isolantes, à membranes, pour le stockage d'un gaz liquéfié.The invention relates to the field of sealed and thermally insulating tanks with membranes for the storage of a liquefied gas.

Des cuves étanches et thermiquement isolantes à membranes sont notamment employées pour le stockage de gaz naturel liquéfié (GNL).Sealed and thermally insulating membrane tanks are used in particular for the storage of liquefied natural gas (LNG).

Arrière-plan technologiqueTechnological background

Dans l'état de la technique, on connait des cuves étanches et thermiquement isolantes à membranes dont les parois présentent une structure multicouche. La structure multicouche comporte, depuis l'extérieur vers l'intérieur de la cuve, une barrière thermiquement isolante secondaire comportant des éléments isolants reposant contre une structure porteuse, une membrane d'étanchéité secondaire reposant contre la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire comportant des éléments isolants reposant contre la membrane d'étanchéité secondaire et une membrane d'étanchéité primaire destinée à être en contact avec le gaz liquéfié contenu dans la cuve et reposant contre la barrière thermiquement isolante primaire.In the state of the art, sealed and thermally insulating tanks with membranes are known, the walls of which have a multilayer structure. The multilayer structure comprises, from the outside to the inside of the tank, a secondary thermally insulating barrier comprising insulating elements resting against a supporting structure, a secondary waterproofing membrane resting against the secondary thermally insulating barrier, a thermally insulating barrier primary comprising insulating elements resting against the secondary waterproofing membrane and a primary waterproofing membrane intended to be in contact with the liquefied gas contained in the tank and resting against the primary thermally insulating barrier.

De telles cuves à membranes sont sensibles aux différences de pression de part et d'autre de chacune des membranes, et en particulier à la différence de pression de part et d'autre de la membrane d'étanchéité primaire. En effet, une surpression de la barrière thermiquement isolante primaire par rapport à l'intérieur de la cuve est susceptible d'entraîner un arrachage de la membrane d'étanchéité primaire. Dès lors, pour garantir l'intégrité de la barrière d'étanchéité primaire, il est préférable de maintenir une pression à l'intérieur de la barrière thermiquement isolante primaire qui soit inférieure à celle régnant à l'intérieur de la cuve de sorte que l'écart de pression de part et d'autre de la membrane d'étanchéité primaire tend à plaquer celle-ci contre la barrière thermiquement isolante secondaire et non à l'arracher de la barrière isolante secondaire.Such membrane tanks are sensitive to the pressure differences on either side of each of the membranes, and in particular to the pressure difference on either side of the primary waterproofing membrane. In fact, an overpressure of the primary thermally insulating barrier relative to the interior of the tank is liable to lead to tearing of the primary waterproofing membrane. Therefore, to guarantee the integrity of the primary sealing barrier, it is preferable to maintain a pressure inside the primary thermally insulating barrier which is lower than that prevailing inside the tank so that the The pressure difference on either side of the primary waterproofing membrane tends to press the latter against the secondary thermally insulating barrier and not to tear it away from the secondary insulating barrier.

Les documents WO2014203530 et FR2781036 divulguent un procédé de pilotage d'un dispositif de pompage et une installation de stockage d'un gaz liquéfié tels que définis dans le préambule des revendications 1 et 13.The documents WO2014203530 and FR2781036 disclose a method for controlling a pumping device and an installation for storing a liquefied gas as defined in the preamble of claims 1 and 13.

RésuméSummary

Une idée à la base de l'invention est de proposer un procédé de pilotage d'un dispositif de pompage connecté à une barrière thermiquement isolante d'une cuve étanche et thermiquement isolante qui permette de protéger efficacement au moins une membrane d'étanchéité de la cuve.An idea at the basis of the invention is to provide a method for controlling a pumping device connected to a thermally insulating barrier of a sealed and thermally insulating tank which makes it possible to effectively protect at least one sealing membrane of the tank. tank.

Selon un mode de réalisation, l'invention fournit un procédé de pilotage d'un dispositif de pompage associé à une cuve étanche et thermiquement isolante ; ladite cuve contenant un gaz liquéfié présentant une phase liquide et une phase vapeur et comportant des parois présentant une structure multicouche comprenant une membrane d'étanchéité en contact avec le gaz liquéfié et une barrière thermiquement isolante disposée entre la membrane d'étanchéité et une structure porteuse, ladite barrière thermiquement isolante comportant des matières solides et une phase gazeuse ; ledit dispositif de pompage comportant une pompe à vide connectée à la barrière thermiquement isolante afin de placer la phase gazeuse sous une pression relative négative ; ledit procédé comprenant les étapes de :

  • mesurer une pression P1 de la phase gazeuse de la barrière thermiquement isolante ;
  • déterminer une pression de consigne Pc1 au moyen d'une relation Pc1 = f1(T) ; f1 étant une fonction monotone croissante et T étant une variable représentative d'une température mesurée de la phase liquide du gaz liquéfié ou d'un seuil minimum de température susceptible d'être atteint par la phase liquide du gaz liquéfié et correspondant à un état de fonctionnement d'un dispositif de refroidissement du gaz liquéfié ;
  • commander la pompe à vide de manière à asservir la pression P1 de la phase gazeuse de la barrière thermiquement isolante à la pression de consigne Pc1.
According to one embodiment, the invention provides a method for controlling a pumping device associated with a sealed and thermally insulating tank; said vessel containing a liquefied gas having a liquid phase and a vapor phase and comprising walls having a multilayer structure comprising a waterproofing membrane in contact with the liquefied gas and a thermally insulating barrier arranged between the waterproofing membrane and a supporting structure , said thermally insulating barrier comprising solids and a gas phase; said pumping device comprising a vacuum pump connected to the thermally insulating barrier in order to place the gas phase under a negative relative pressure; said method comprising the steps of:
  • measuring a pressure P1 of the gas phase of the thermally insulating barrier;
  • determine a setpoint pressure P c1 by means of a relation P c1 = f 1 (T); f 1 being an increasing monotonic function and T being a variable representative of a measured temperature of the liquid phase of the liquefied gas or of a minimum temperature threshold likely to be reached by the liquid phase of the liquefied gas and corresponding to a state operating a device for cooling the liquefied gas;
  • control the vacuum pump so as to control the pressure P 1 of the gas phase of the thermally insulating barrier to the setpoint pressure P c1 .

Un tel procédé est particulièrement efficace pour protéger la membrane d'étanchéité lorsque la cuve est placée sous une pression inférieure à la pression atmosphérique (ce qui n'était pas jusqu'alors prévu dans l'état de la technique). Ceci est notamment susceptible de se réaliser lorsque le gaz liquéfié est principalement stocké dans la cuve dans un état thermodynamique sous-refroidi, c'est-à-dire à une température qui est inférieure à la température d'équilibre liquide-vapeur du gaz considéré à la pression de stockage du gaz dans la cuve.Such a method is particularly effective for protecting the waterproofing membrane when the vessel is placed under a pressure below atmospheric pressure (which was not hitherto provided for in the state of the art). This is particularly likely to occur when the liquefied gas is mainly stored in the vessel in a sub-cooled thermodynamic state, that is to say at a temperature which is lower than the liquid-vapor equilibrium temperature of the gas considered. to the gas storage pressure in the tank.

Or, la demanderesse a récemment développé des dispositifs de refroidissement permettant de diminuer la température d'une portion du gaz liquéfié stocké dans la cuve en dessous de sa température d'équilibre liquide-vapeur de manière à limiter l'évaporation naturelle du gaz liquéfié et permettre son stockage durable. Un tel procédé est donc particulièrement adapté pour répondre aux besoins spécifiques des cuves équipées de tels dispositifs de refroidissement.However, the Applicant has recently developed cooling devices making it possible to reduce the temperature of a portion of the liquefied gas stored in the vessel below its liquid-vapor equilibrium temperature so as to limit the natural evaporation of the liquefied gas and allow its sustainable storage. Such a method is therefore particularly suitable for meeting the specific needs of tanks equipped with such cooling devices.

En effet, dans les applications de stockage de gaz liquéfié dans lesquelles un sous-refroidissement du gaz liquéfié est mis en œuvre, la phase vapeur dans le ciel gazeux de la cuve et la phase liquide du gaz liquéfié ne sont pas, en tout point de la cuve, à l'équilibre. La phase vapeur est susceptible de se réchauffer et a tendance à se stratifier à l'intérieur de la cuve. Il peut ainsi être constaté des gradients de température de l'ordre de 100°C dans la phase vapeur lorsque la cuve est peu remplie et qu'aucun brassage n'est mis en œuvre dans la cuve pour homogénéiser la température de la phase vapeur.In fact, in liquefied gas storage applications in which a sub-cooling of the liquefied gas is implemented, the vapor phase in the gas overhead of the vessel and the liquid phase of the liquefied gas are not, at any point of the tank, at equilibrium. The vapor phase is liable to heat up and tends to stratify inside the tank. It is thus possible to observe temperature gradients of the order of 100 ° C. in the vapor phase when the vessel is lightly filled and no stirring is carried out in the vessel to homogenize the temperature of the vapor phase.

L'interface entre la phase vapeur et la phase liquide est à l'état stationnaire, à l'équilibre. C'est à cette interface que la phase vapeur se condense ou que la phase liquide s'évapore en fonction des conditions de température et de pression locales.The interface between the vapor phase and the liquid phase is in a stationary state, at equilibrium. It is at this interface that the vapor phase condenses or that the liquid phase evaporates depending on the local temperature and pressure conditions.

Aussi, lorsque la cuve est disposée dans un navire et que celui-ci est soumis à la houle, l'interface entre la phase vapeur et la phase liquide est susceptible de changer brusquement de géométrie, de position et de constitution. Ainsi, un brusque mouvement de la cargaison dans la cuve est susceptible d'entraîner une condensation instantanée d'une quantité importante de phase gazeuse et, par conséquent, de provoquer une brusque mise en dépression de l'espace interne de la cuve.Also, when the tank is placed in a ship and the latter is subjected to the swell, the interface between the vapor phase and the liquid phase is liable to suddenly change its geometry, position and constitution. Thus, a sudden movement of the cargo in the tank is likely to cause instant condensation of a large quantity of gas phase and, consequently, to cause a sudden depressurization of the internal space of the tank.

Or, pour garantir l'intégrité de la membrane d'étanchéité, il convient de s'assurer que la pression régnant dans l'espace intérieur de la cuve ne soit jamais largement inférieure à la pression dans la barrière thermiquement isolante, à défaut de quoi une telle dépression dans l'espace interne de la cuve serait susceptible d'endommager la membrane d'étanchéité en provoquant son arrachage.However, to guarantee the integrity of the waterproofing membrane, it is necessary to ensure that the pressure prevailing in the interior space of the tank is never much lower than the pressure in the thermally insulating barrier, otherwise such a depression in the internal space of the tank would be liable to damage the sealing membrane by causing it to be torn off.

Dès lors, en prenant en compte soit la température de la phase liquide stockée dans la cuve soit le seuil minimum de température susceptible d'être atteint par la phase liquide du gaz liquéfié, pour établir la pression cible à l'intérieur de la barrière thermiquement isolante, il est possible de s'assurer que la pression régnant à l'intérieur de la barrière thermiquement isolante soit suffisamment faible pour rester inférieure à la pression susceptible d'être atteinte dans l'espace intérieure en cas de condensation instantanée d'une partie de la phase vapeur de la cargaison, et cela sans entraîner des dépenses énergétiques superflues.Therefore, by taking into account either the temperature of the liquid phase stored in the tank or the minimum temperature threshold likely to be reached by the liquid phase of the liquefied gas, to establish the target pressure inside the tank. thermally insulating barrier, it is possible to ensure that the pressure prevailing inside the thermally insulating barrier is low enough to remain lower than the pressure likely to be reached in the interior space in the event of instantaneous condensation of part of the vapor phase of the cargo, without incurring unnecessary energy expenditure.

Selon d'autres modes de réalisation avantageux, un tel procédé peut présenter une ou plusieurs des caractéristiques suivantes :

  • L'on obtient la variable T par mesure de la température de la phase liquide du gaz liquéfié ou par mesure d'un paramètre de fonctionnement du dispositif de refroidissement du gaz liquéfié représentatif du seuil minimum de température susceptible d'être atteint par la phase liquide du gaz liquéfié.
  • La variable T est obtenue par réception d'un paramètre de fonctionnement du dispositif de refroidissement du gaz liquéfié représentatif du seuil de température minimum susceptible d'être atteint par la phase liquide du gaz liquéfié.
  • La fonction f1 est une transformation affine d'une fonction représentative d'une courbe d'équilibre liquide-vapeur dans un diagramme température pression du gaz liquéfié ou d'un composant du gaz liquéfié qui, parmi les composants constituant le gaz liquéfié qui sont présents dans un proportion en mole supérieure à 5 %, présente la température de vaporisation la plus faible.
  • La fonction f1 est de la forme f1(T) = g(T) - ε1 ; g étant une fonction représentative d'une courbe d'équilibre liquide-vapeur dans un diagramme température pression du gaz liquéfié ou d'un composant du gaz liquéfié qui, parmi les composants constituant le gaz liquéfié qui sont présents dans une proportion en mole supérieure à 5 %, présente la température de vaporisation la plus faible et ε1 étant une constante positive.
  • La constante ε1 est, par exemple, comprise entre 10 et 30 mbars.
  • La membrane d'étanchéité est une membrane d'étanchéité primaire et la barrière thermiquement isolante est une barrière thermiquement isolante primaire, la structure multicouche comportant en outre une barrière thermiquement isolante secondaire qui repose contre la structure porteuse et comporte des matières solides et une phase gazeuse et une membrane d'étanchéité secondaire disposée entre la barrière thermiquement isolante secondaire et la barrière thermiquement isolante primaire.
  • Le dispositif de pompage comporte une seconde pompe à vide connectée à la barrière thermiquement isolante secondaire afin de placer la phase gazeuse de la barrière thermiquement isolante secondaire sous une pression relative négative ; le procédé comportant les étapes de :
    • mesurer une pression P2 de la phase gazeuse de la barrière thermiquement isolante secondaire ; et
    • commander la seconde pompe à vide de manière à asservir la pression P2 de la phase gazeuse de la barrière thermiquement isolante à une pression de consigne Pc2.
  • Selon un mode de réalisation, l'on détermine la seconde pression de consigne Pc2 au moyen de la relation Pc2 = f2(T) ; f2 étant une fonction monotone croissante.
  • La fonction f2 est une transformation affine d'une fonction représentative d'une courbe d'équilibre liquide-vapeur dans un diagramme température pression du gaz liquéfié ou d'un composant du gaz liquéfié qui, parmi les composants constituant le gaz liquéfié qui sont présents dans une proportion en mole supérieure à 5 %, présente la température de vaporisation la plus faible d'une courbe d'équilibre liquide-vapeur du gaz liquéfié ou d'un composant majoritaire du gaz liquéfié dans un diagramme température pression.
  • La fonction f2 est de la forme f2(T) = g(T) - ε2 ; g étant une fonction représentative d'une courbe d'équilibre liquide-vapeur dans un diagramme température pression du gaz liquéfié ou d'un composant du gaz liquéfié qui, parmi les composants constituant le gaz liquéfié qui sont présents dans un proportion en mole supérieure à 5 %, présente la température de vaporisation la plus faible et ε2 étant une constante positive.
  • La constante ε2 est par exemple comprise entre 10 et 30 mbars.
  • Selon un autre mode de réalisation, l'on établit la seconde pression de consigne Pc2 au moyen de la relation Pc2 = h (P1) avec h une fonction monotone croissante.
  • La fonction h est de la forme h (P1) = P1- ε'2 ; ε'2 étant une constante.
  • La constante ε'2 est par exemple comprise entre 10 et 30 mbars.
According to other advantageous embodiments, such a method can have one or more of the following characteristics:
  • The variable T is obtained by measuring the temperature of the liquid phase of the liquefied gas or by measuring an operating parameter of the liquefied gas cooling device representative of the minimum temperature threshold likely to be reached by the liquid phase liquefied gas.
  • The variable T is obtained by receiving an operating parameter of the liquefied gas cooling device representative of the minimum temperature threshold likely to be reached by the liquid phase of the liquefied gas.
  • The function f 1 is an affine transformation of a function representative of a liquid-vapor equilibrium curve in a temperature-pressure diagram of liquefied gas or of a component of liquefied gas which, among the components constituting the liquefied gas which are present in a molar proportion greater than 5%, has the lowest vaporization temperature.
  • The function f 1 has the form f 1 (T) = g (T) - ε 1 ; g being a function representative of a liquid-vapor equilibrium curve in a temperature-pressure diagram of the liquefied gas or of a component of the liquefied gas which, among the components constituting the liquefied gas which are present in a proportion in mole greater than 5%, has the lowest vaporization temperature and ε 1 being a positive constant.
  • The constant ε 1 is, for example, between 10 and 30 mbar.
  • The waterproofing membrane is a primary waterproofing membrane and the thermally insulating barrier is a primary thermally insulating barrier, the multilayer structure further comprising a secondary thermally insulating barrier which rests against the supporting structure and comprises solids and a gas phase. and a membrane secondary seal disposed between the secondary thermally insulating barrier and the primary thermally insulating barrier.
  • The pumping device comprises a second vacuum pump connected to the secondary thermally insulating barrier in order to place the gas phase of the secondary thermally insulating barrier under negative relative pressure; the process comprising the steps of:
    • measuring a pressure P2 of the gas phase of the secondary thermally insulating barrier; and
    • control the second vacuum pump so as to control the pressure P 2 of the gas phase of the thermally insulating barrier to a setpoint pressure P c2 .
  • According to one embodiment, the second setpoint pressure P c2 is determined by means of the relationship P c2 = f 2 (T); f 2 being an increasing monotonic function.
  • The function f 2 is an affine transformation of a function representative of a liquid-vapor equilibrium curve in a temperature-pressure diagram of liquefied gas or of a component of liquefied gas which, among the components constituting the liquefied gas which are present in a molar proportion greater than 5%, exhibits the lowest vaporization temperature of a liquid-vapor equilibrium curve of liquefied gas or of a major component of liquefied gas in a temperature-pressure diagram.
  • The function f 2 has the form f 2 (T) = g (T) - ε 2 ; g being a function representative of a liquid-vapor equilibrium curve in a temperature-pressure diagram of the liquefied gas or of a component of the liquefied gas which, among the components constituting the liquefied gas which are present in a molar proportion greater than 5%, has the lowest vaporization temperature and ε 2 being a positive constant.
  • The constant ε 2 is for example between 10 and 30 mbar.
  • According to another embodiment, the second setpoint pressure P c2 is established by means of the relationship P c2 = h (P1) with h an increasing monotonic function.
  • The function h has the form h (P1) = P1- ε '2; ε ' 2 being a constant.
  • The constant ε ' 2 is for example between 10 and 30 mbar.

Selon un mode de réalisation, l'invention concerne un procédé de pilotage comportant :

  • commander la pompe à vide en fonction d'une pression de consigne Pc1 et d'une mesure de la pression P1 de la phase gazeuse de la barrière thermiquement isolante ;
  • mesurer la température T de la phase liquide du gaz liquéfié ; et
  • déterminer la pression de consigne Pc1 au moyen d'une relation Pc1 = f1(T) ; f1 étant une fonction monotone croissante.
According to one embodiment, the invention relates to a control method comprising:
  • controlling the vacuum pump as a function of a setpoint pressure P c1 and of a measurement of the pressure P 1 of the gas phase of the thermally insulating barrier;
  • measuring the temperature T of the liquid phase of the liquefied gas; and
  • determine the setpoint pressure P c1 by means of a relation P c1 = f 1 (T); f 1 being an increasing monotonic function.

Une autre idée à la base de l'invention est de proposer un procédé de pilotage d'un dispositif de refroidissement d'un gaz liquéfié qui permette de protéger efficacement au moins une membrane d'étanchéité de la cuve.Another idea at the basis of the invention is to propose a method for controlling a device for cooling a liquefied gas which makes it possible to effectively protect at least one sealing membrane of the tank.

Selon un exemple ne faisant pas partie de l'invention, l'exemple concerne un procédé de pilotage d'un dispositif de refroidissement d'un gaz liquéfié associé à une installation de stockage d'un gaz liquéfié ; ladite installation comportant :

  • une cuve étanche et thermiquement isolante destinée à contenir un gaz liquéfié sous une forme diphasique avec une phase liquide et une phase vapeur ; la cuve comportant des parois présentant une structure multicouche comprenant une membrane d'étanchéité en contact avec le gaz liquéfié et une barrière thermiquement isolante disposée entre la membrane d'étanchéité et une structure porteuse, ladite barrière thermiquement isolante comportant des matières solides et une phase gazeuse ;
  • un capteur de pression apte à mesurer une pression P1 de la phase gazeuse dans la barrière thermiquement isolante ; et
  • un dispositif de pompage comportant une pompe à vide connectée à la barrière thermiquement isolante et agencée pour placer la phase gazeuse de la barrière thermiquement isolante sous une pression relative négative et un module de commande qui est agencé pour commander la pompe à vide de manière à asservir la pression P1 de la phase gazeuse de la barrière thermiquement isolante à une pression de consigne Pc1 ;
  • le dispositif de refroidissement étant agencé pour abaisser la température d'une portion du gaz liquéfié en dessous de la température d'équilibre liquide-vapeur du gaz liquéfié à la pression de stockage du gaz liquéfié dans la cuve ; ledit procédé de pilotage du dispositif de refroidissement du gaz liquéfié comportant :
    • déterminer un seuil minimum de température Tmin du gaz liquéfié au moyen d'une relation Tmin = f3(Pc1), f3 étant une fonction monotone croissante ;
    • piloter le dispositif de refroidissement en fonction du seuil minimum de température Tmin de telle sorte que la température du gaz liquéfié ne descende pas en dessous dudit seuil minimum de température Tmin.
According to an example not forming part of the invention, the example relates to a method for controlling a device for cooling a liquefied gas associated with an installation for storing a liquefied gas; said installation comprising:
  • a sealed and thermally insulating tank intended to contain a liquefied gas in a two-phase form with a liquid phase and a vapor phase; the vessel comprising walls having a multilayer structure comprising a waterproofing membrane in contact with the liquefied gas and a thermally insulating barrier disposed between the waterproofing membrane and a supporting structure, said thermally insulating barrier comprising solids and a gas phase ;
  • a pressure sensor capable of measuring a pressure P 1 of the gas phase in the thermally insulating barrier; and
  • a pumping device comprising a vacuum pump connected to the thermally insulating barrier and arranged to place the gas phase of the thermally insulating barrier under a negative relative pressure and a control module which is arranged to control the vacuum pump so as to control the pressure P1 of the gas phase of the thermally insulating barrier at a setpoint pressure P c1 ;
  • the cooling device being arranged to lower the temperature of a portion of the liquefied gas below the liquid-vapor equilibrium temperature of the liquefied gas at the storage pressure of the liquefied gas in the vessel; said process of control of the liquefied gas cooling device comprising:
    • determining a minimum temperature threshold T min of the liquefied gas by means of a relation T min = f 3 (P c1 ), f 3 being an increasing monotonic function;
    • controlling the cooling device as a function of the minimum temperature threshold T min so that the temperature of the liquefied gas does not drop below said minimum temperature threshold T min .

Selon d'autres modes de réalisation avantageux, un tel procédé peut présenter une ou plusieurs des caractéristiques suivantes :

  • La fonction f3 est une fonction représentative d'une courbe d'équilibre liquide-vapeur dans un diagramme température pression du gaz liquéfié ou d'un composant du gaz liquéfié qui, parmi les composants constituant le gaz liquéfié qui sont présents dans une proportion en mole supérieure à 5 %, présente la température de vaporisation la plus faible.
  • En d'autres termes, l'on détermine un seuil minimum de température Tmin qui correspond à la température d'équilibre liquide-vapeur du gaz liquéfié ou d'un composant majoritaire du gaz liquéfié à la pression de consigne Pc1 de telle sorte que la phase liquide du gaz liquéfié contenu dans la cuve ne pourra atteindre une température suffisamment basse pour qu'un brusque mouvement de la cargaison entraîne une dépression dans l'espace intérieur de la cuve qui soit supérieure à la dépression régnant dans la barrière thermiquement isolante.
According to other advantageous embodiments, such a method can have one or more of the following characteristics:
  • The function f 3 is a function representative of a liquid-vapor equilibrium curve in a temperature-pressure diagram of the liquefied gas or of a component of the liquefied gas which, among the components constituting the liquefied gas which are present in a proportion in mole greater than 5%, has the lowest vaporization temperature.
  • In other words, a minimum temperature threshold T min is determined which corresponds to the liquid-vapor equilibrium temperature of the liquefied gas or of a major component of the liquefied gas at the setpoint pressure P c1 in such a way that the liquid phase of the liquefied gas contained in the tank cannot reach a temperature sufficiently low for a sudden movement of the cargo to cause a vacuum in the interior of the tank which is greater than the vacuum prevailing in the thermally insulating barrier .

Selon un mode de réalisation, l'invention fournit également une installation de stockage d'un gaz liquéfié comportant :

  • une cuve étanche et thermiquement isolante destinée à contenir un gaz liquéfié sous une forme diphasique avec une phase liquide et une phase vapeur ; la cuve comportant des parois présentant une structure multicouche comprenant une membrane d'étanchéité en contact avec le gaz liquéfié et une barrière thermiquement isolante disposée entre la membrane d'étanchéité et une structure porteuse, ladite barrière thermiquement isolante comportant des matières solides et une phase gazeuse ;
  • un capteur de pression apte à mesurer la pression P1 de la phase gazeuse dans la barrière thermiquement isolante ; et
  • un dispositif de pompage comportant une pompe à vide connectée à la barrière thermiquement isolante et agencée pour placer la phase gazeuse de la barrière thermiquement isolante sous une pression relative négative et un module de commande qui est agencé pour :
  • déterminer une pression de consigne Pc1 au moyen d'une relation Pc1 = f1(T) ; f1 étant une fonction monotone croissante et T étant une variable représentative de la température réelle de la phase liquide du gaz liquéfié ou de la température minimum susceptible d'être atteinte par la phase liquide du gaz liquéfié pour un fonctionnement déterminé d'un dispositif de refroidissement du gaz liquéfié ; et
  • commander la pompe à vide de manière à asservir la pression P1 de la phase gazeuse de la barrière thermiquement isolante à la pression de consigne Pc1.
According to one embodiment, the invention also provides an installation for storing a liquefied gas comprising:
  • a sealed and thermally insulating tank intended to contain a liquefied gas in a two-phase form with a liquid phase and a vapor phase; the vessel comprising walls having a multilayer structure comprising a waterproofing membrane in contact with the liquefied gas and a thermally insulating barrier disposed between the waterproofing membrane and a supporting structure, said thermally insulating barrier comprising solids and a gas phase ;
  • a pressure sensor capable of measuring the pressure P 1 of the gas phase in the thermally insulating barrier; and
  • a pumping device comprising a vacuum pump connected to the thermally insulating barrier and arranged to place the gas phase of the barrier thermally insulating under negative relative pressure and a control module which is arranged for:
  • determine a setpoint pressure P c1 by means of a relation P c1 = f 1 (T); f 1 being an increasing monotonic function and T being a variable representative of the real temperature of the liquid phase of the liquefied gas or of the minimum temperature likely to be reached by the liquid phase of the liquefied gas for a determined operation of a device of cooling of liquefied gas; and
  • control the vacuum pump so as to control the pressure P1 of the gas phase of the thermally insulating barrier to the setpoint pressure P c1 .

Selon d'autres modes de réalisation avantageux, une telle installation peut présenter une ou plusieurs des caractéristiques suivantes :

  • L'installation comporte en outre un capteur de température apte à mesurer la température T de la phase liquide du gaz liquéfié et à la délivrer au module de commande.
  • L'installation comporte en outre un dispositif de refroidissement du gaz liquéfié agencé pour abaisser la température d'une portion du gaz liquéfié en dessous de la température d'équilibre liquide-vapeur du gaz liquéfié à la pression de stockage du gaz liquéfié dans la cuve.
  • Le dispositif de refroidissement est agencé pour respecter un seuil de température minimum pour la phase liquide du gaz liquéfié et dans lequel le module de commande est raccordé au dispositif de refroidissement et est agencé pour déterminer la pression de consigne Pc1 en prenant comme variable T le seuil de température minimum.
  • L'installation comporte un capteur apte à mesurer un paramètre de fonctionnement du dispositif de refroidissement du gaz liquéfié représentatif du seuil minimum susceptible d'être atteint par la phase liquide du gaz liquéfié.
  • La membrane d'étanchéité est une membrane d'étanchéité primaire et la barrière thermiquement isolante est une barrière thermiquement isolante primaire, la structure multicouche comportant en outre une barrière thermiquement isolante secondaire qui repose contre la structure porteuse et comporte des matières solides et une phase gazeuse et une membrane d'étanchéité secondaire disposée entre la barrière thermiquement isolante secondaire et la barrière thermiquement isolante primaire.
  • L'installation comporte en outre un second capteur de pression apte à mesurer la pression P2 dans la barrière thermiquement isolante secondaire.
  • Le dispositif de pompage comporte en outre une seconde pompe à vide connectée à la barrière thermiquement isolante secondaire afin de placer la phase gazeuse de la barrière thermiquement isolante secondaire sous une pression relative négative.
  • Le module de commande est agencé pour commander la seconde pompe à vide de manière à asservir la pression P2 de la phase gazeuse de la barrière thermiquement isolante secondaire à une pression de consigne Pc2.
  • Selon un mode de réalisation, le dispositif de refroidissement du gaz liquéfié est un dispositif de vaporisation pour le refroidissement du gaz liquéfié; ledit dispositif de vaporisation comportant :
    • une enceinte de vaporisation agencée dans l'espace intérieur de la cuve, l'enceinte de vaporisation comportant des parois d'échange de chaleur permettant un échange de chaleur entre un espace intérieur de l'enceinte de vaporisation et le gaz liquéfié présent dans l'espace intérieur de la cuve ;
    • un circuit d'entrée comportant une admission débouchant dans l'espace intérieur de la cuve pour prélever un flux de gaz liquéfié en phase liquide dans la cuve et un organe de perte de charge débouchant dans l'espace intérieur de l'enceinte de vaporisation afin de détendre le flux de gaz prélevé ;
    • un circuit de sortie agencé pour évacuer le flux de gaz prélevé, en phase gazeuse depuis l'enceinte de vaporisation vers un circuit d'utilisation de gaz en phase vapeur ; ledit circuit de sortie comportant une pompe à vide apte à aspirer le flux de gaz dans l'enceinte de vaporisation, à le refouler vers le circuit d'utilisation de gaz en phase vapeur et à maintenir dans l'enceinte de vaporisation une pression absolue inférieure à la pression atmosphérique.
  • Selon un autre mode de réalisation, le dispositif de refroidissement du gaz liquéfié comporte un circuit de prélèvement de gaz en phase vapeur comportant :
    • une admission débouchant dans l'espace intérieur de la cuve au-dessus d'une hauteur maximale de remplissage de la cuve de manière à déboucher, lorsque la cuve est remplie, dans une zone de la phase vapeur en contact avec une zone de l'interface séparant la phase liquide inférieure et la phase vapeur supérieure ; et
    • une pompe à vide apte à aspirer à travers l'admission un flux de gaz en phase vapeur présent dans la zone de la phase vapeur, à le refouler vers un circuit d'utilisation de gaz en phase vapeur et à maintenir dans la zone de la phase vapeur une pression inférieure à la pression atmosphérique de telle sorte qu'une vaporisation de la phase liquide soit favorisée au niveau de la zone d'interface et que le gaz liquéfié en contact avec la zone de l'interface soit placé dans un état d'équilibre diphasique liquide-vapeur dans lequel le gaz liquéfié présente une température inférieure à la température d'équilibre liquide-vapeur dudit gaz liquéfié à pression atmosphérique.
According to other advantageous embodiments, such an installation may have one or more of the following characteristics:
  • The installation further comprises a temperature sensor capable of measuring the temperature T of the liquid phase of the liquefied gas and of delivering it to the control module.
  • The installation further comprises a device for cooling the liquefied gas designed to lower the temperature of a portion of the liquefied gas below the liquid-vapor equilibrium temperature of the liquefied gas at the storage pressure of the liquefied gas in the vessel. .
  • The cooling device is arranged to comply with a minimum temperature threshold for the liquid phase of the liquefied gas and in which the control module is connected to the cooling device and is arranged to determine the setpoint pressure P c1 by taking as variable T the minimum temperature threshold.
  • The installation comprises a sensor capable of measuring an operating parameter of the liquefied gas cooling device representative of the minimum threshold likely to be reached by the liquid phase of the liquefied gas.
  • The waterproofing membrane is a primary waterproofing membrane and the thermally insulating barrier is a primary thermally insulating barrier, the multilayer structure further comprising a secondary thermally insulating barrier which rests against the supporting structure and comprises solids and a gas phase and a secondary waterproofing membrane disposed between the secondary thermally insulating barrier and the primary thermally insulating barrier.
  • The installation further comprises a second pressure sensor capable of measuring the pressure P 2 in the secondary thermally insulating barrier.
  • The pumping device further comprises a second vacuum pump connected to the secondary thermally insulating barrier in order to place the gas phase of the secondary thermally insulating barrier under negative relative pressure.
  • The control module is arranged to control the second vacuum pump so as to control the pressure P2 of the gas phase of the secondary thermally insulating barrier to a setpoint pressure P c2 .
  • According to one embodiment, the device for cooling the liquefied gas is a vaporization device for cooling the liquefied gas; said vaporization device comprising:
    • a vaporization enclosure arranged in the interior space of the tank, the vaporization enclosure comprising heat exchange walls allowing heat exchange between an interior space of the vaporization enclosure and the liquefied gas present in the interior space of the tank;
    • an inlet circuit comprising an inlet opening into the interior space of the vessel to take a flow of liquefied gas in liquid phase in the vessel and a pressure drop member opening into the interior space of the vaporization chamber in order to to relax the flow of gas sampled;
    • an outlet circuit arranged to evacuate the flow of gas withdrawn, in the gaseous phase from the vaporization chamber to a circuit for using gas in the vapor phase; said outlet circuit comprising a vacuum pump capable of sucking the flow of gas in the vaporization chamber, of delivering it to the gas utilization circuit in the vapor phase and of maintaining a lower absolute pressure in the vaporization chamber at atmospheric pressure.
  • According to another embodiment, the device for cooling the liquefied gas comprises a gas sampling circuit in the vapor phase comprising:
    • an inlet opening into the interior space of the vessel above a maximum filling height of the vessel so as to open, when the vessel is filled, into a zone of the vapor phase in contact with a zone of the interface separating the lower liquid phase and the upper vapor phase; and
    • a vacuum pump able to suck through the inlet a flow of gas in the vapor phase present in the zone of the vapor phase, to deliver it to a circuit for using gas in the vapor phase and to maintain in the zone of the vapor phase vapor phase a pressure lower than atmospheric pressure so that vaporization of the liquid phase is promoted at the interface zone and the liquefied gas in contact with the interface zone is placed in a state of 'two-phase liquid-vapor equilibrium in which the liquefied gas has a temperature below the liquid-vapor equilibrium temperature of said liquefied gas at atmospheric pressure.

Une telle installation peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.Such an installation can be part of an onshore storage installation, for example to store LNG or be installed in a floating, coastal or deep water structure, in particular an LNG vessel, a floating storage and regasification unit (FSRU). , a floating production and remote storage unit (FPSO) and others.

Selon un mode de réalisation, un navire comporte une double coque et une installation précitée, la cuve de l'installation de stockage d'un gaz liquéfié étant disposée dans la double coque.According to one embodiment, a ship comprises a double hull and an abovementioned installation, the tank of the installation for storing a liquefied gas being arranged in the double hull.

Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un fluide à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.According to one embodiment, the invention also provides a method for loading or unloading such a vessel, in which a fluid is conveyed through isolated pipes from or to a floating or terrestrial storage installation to or from the tank of the vessel. ship.

Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un fluide, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entrainer un fluide à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.According to one embodiment, the invention also provides a transfer system for a fluid, the system comprising the aforementioned vessel, isolated pipes arranged so as to connect the tank installed in the hull of the vessel to a floating or land storage installation. and a pump for driving a fluid through insulated pipelines from or towards the floating or terrestrial storage facility to or from the vessel of the vessel.

Brève description des figuresBrief description of the figures

L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.

  • La figure 1 illustre schématiquement une installation de stockage et de refroidissement d'un gaz liquéfié selon un premier mode de réalisation.
  • La figure 2 illustre schématiquement une installation de stockage et de refroidissement d'un gaz liquéfié selon un second mode de réalisation.
  • La figure 3 illustre schématiquement une installation de stockage et de refroidissement d'un gaz liquéfié selon un troisième mode de réalisation.
  • La figure 4 illustre schématiquement une installation de stockage et de refroidissement d'un gaz liquéfié selon un quatrième mode de réalisation.
  • La figure 5 est un diagramme d'équilibre liquide-vapeur du méthane.
  • La figure 6 est une représentation schématique écorchée d'un navire méthanier équipé d'une cuve et d'un terminal de chargement/déchargement de cette cuve.
The invention will be better understood, and other aims, details, characteristics and advantages thereof will emerge more clearly during the following description of several particular embodiments of the invention, given solely by way of illustration and not by way of limitation. , with reference to the accompanying drawings.
  • The figure 1 schematically illustrates an installation for storing and cooling a liquefied gas according to a first embodiment.
  • The figure 2 schematically illustrates an installation for storing and cooling a liquefied gas according to a second embodiment.
  • The figure 3 schematically illustrates an installation for storing and cooling a liquefied gas according to a third embodiment.
  • The figure 4 schematically illustrates an installation for storing and cooling a liquefied gas according to a fourth embodiment.
  • The figure 5 is a liquid-vapor equilibrium diagram of methane.
  • The figure 6 is a cut-away schematic representation of an LNG carrier equipped with a tank and a terminal for loading / unloading this tank.

Description détaillée de modes de réalisationDetailed description of embodiments

Dans la description et les revendications, le terme « gaz » présente un caractère générique et vise indifféremment un gaz constitué d'un seul corps pur ou un mélange gazeux constitué d'une pluralité de composants. Un gaz liquéfié désigne ainsi un corps chimique ou un mélange de corps chimiques qui a été placé dans une phase liquide à basse température et qui se présenterait dans une phase vapeur dans les conditions normales de température et de pression.In the description and the claims, the term “gas” is generic in nature and is equally intended for a gas consisting of a single pure substance or a gas mixture consisting of a plurality of components. A liquefied gas thus designates a chemical body or a mixture of chemical bodies which has been placed in a liquid phase at low temperature and which would appear in a vapor phase under normal temperature and pressure conditions.

Sur la figure 1, une installation 1 de stockage et de refroidissement d'un gaz liquéfié selon un premier mode de réalisation est représentée. Une telle installation 1 peut être installée sur un ouvrage flottant comme un méthanier, une barge de liquéfaction ou de regazéification.On the figure 1 , an installation 1 for storing and cooling a liquefied gas according to a first embodiment is shown. Such an installation 1 can be installed on a floating structure such as an LNG carrier, a liquefaction or regasification barge.

L'installation 1 comporte une cuve 2 étanche et thermiquement isolante à membranes. La cuve 2 comporte des parois présentant une structure multicouche comportant, depuis l'extérieur vers l'intérieur de la cuve 2, une barrière thermiquement isolante secondaire 3 comportant une phase gazeuse et des éléments isolants reposant contre une structure porteuse 4, une membrane d'étanchéité secondaire 5 reposant contre la barrière thermiquement isolante secondaire 3, une barrière thermiquement isolante primaire 6 comportant des éléments isolants reposant contre la membrane d'étanchéité secondaire 5 et une phase gazeuse et une membrane d'étanchéité primaire 7 destinée à être en contact avec le gaz liquéfié 8 contenu dans la cuve. A titre d'exemple, de telles cuves 2 à membranes sont décrites dans les demandes de brevet WO14057221 , FR2691520 et FR2877638 .The installation 1 comprises a sealed and thermally insulating tank 2 with membranes. The tank 2 comprises walls having a multilayer structure comprising, from the outside towards the inside of the tank 2, a secondary thermally insulating barrier 3 comprising a gas phase and insulating elements resting against a supporting structure 4, a secondary waterproofing membrane 5 resting against the secondary thermally insulating barrier 3, a primary thermally insulating barrier 6 comprising insulating elements resting against the secondary waterproofing membrane 5 and a gas phase and a primary waterproofing membrane 7 intended to be in contact with the liquefied gas 8 contained in the tank. By way of example, such membrane tanks 2 are described in patent applications. WO14057221 , FR2691520 and FR2877638 .

Selon un mode de réalisation, la cuve est équipée d'un dispositif de collecte de vapeur, non illustré, traversant une paroi de plafond de la cuve et débouchant en partie supérieure de l'espace interne de la cuve. Un tel dispositif est équipé d'une soupape agencée pour permettre une évacuation de la vapeur de l'intérieur vers l'extérieur de la cuve lorsque la pression à l'intérieur de l'espace interne de la cuve 2 est supérieure à un seuil. Un tel dispositif de collecte de vapeur permet ainsi d'éviter de générer des surpressions à l'intérieur de la cuve 2. La soupape est en outre configurée de sorte à interdire à un flux de gaz de s'écouler, dans le dispositif de collecte de vapeur, de l'extérieur vers l'intérieur de la cuve 2 et permet ainsi une mise en dépression de l'espace interne de la cuve 2. A titre d'exemple, un tel dispositif de collecte de vapeur est décrit dans le document WO2013093261 .According to one embodiment, the tank is equipped with a vapor collection device, not illustrated, passing through a ceiling wall of the tank and opening out into the upper part of the internal space of the tank. Such a device is equipped with a valve arranged to allow evacuation of the steam from the inside to the outside of the tank when the pressure inside the internal space of the tank 2 is greater than a threshold. Such a vapor collection device thus makes it possible to avoid generating overpressures inside the tank 2. The valve is further configured so as to prevent a flow of gas from flowing, in the collection device. steam, from the outside to the inside of the tank 2 and thus allows a depressurization of the internal space of the tank 2. By way of example, such a device for collecting steam is described in the document WO2013093261 .

Le gaz liquéfié 8 est un gaz combustible. Le gaz liquéfié 8 peut notamment être un gaz naturel liquéfié (GNL), c'est-à-dire un mélange gazeux comportant majoritairement du méthane ainsi qu'un ou plusieurs autres hydrocarbures, tels que l'éthane, le propane, le n-butane, le i-butane, le n-pentane le i-pentane, le néopentane, et de l'azote en faible proportion. Le gaz combustible peut également être de l'éthane ou un gaz de pétrole liquéfié (GPL), c'est-à-dire un mélange d'hydrocarbures issu du raffinage du pétrole comportant essentiellement du propane et du butane.Liquefied gas 8 is a combustible gas. The liquefied gas 8 can in particular be a liquefied natural gas (LNG), that is to say a gas mixture mainly comprising methane as well as one or more other hydrocarbons, such as ethane, propane, n- butane, i-butane, n-pentane, i-pentane, neopentane, and nitrogen in small proportions. The fuel gas can also be ethane or a liquefied petroleum gas (LPG), that is to say a mixture of hydrocarbons obtained from the refining of petroleum comprising essentially propane and butane.

Le gaz liquéfié 8 est stocké dans l'espace intérieur de la cuve 2 dans un état diphasique liquide-vapeur. Le gaz liquéfié 8 est donc présent en phase vapeur dans la partie supérieure de la cuve 2 et en phase liquide dans la partie inférieure de la cuve 2.The liquefied gas 8 is stored in the interior space of the tank 2 in a two-phase liquid-vapor state. The liquefied gas 8 is therefore present in the vapor phase in the upper part of the tank 2 and in the liquid phase in the lower part of the tank 2.

L'installation 1 comporte en outre un dispositif de refroidissement du gaz liquéfié stocké dans la cuve 2 agencé pour faire baisser la température d'une portion de la phase liquide du gaz liquéfié 8 en dessous de la température d'équilibre liquide-vapeur dudit gaz liquéfié 7, à la pression de stockage du gaz liquéfié 8 dans la cuve 2. Ainsi, une portion du gaz liquéfié est placée dans un état thermodynamique sous-refroidi.The installation 1 further comprises a device for cooling the liquefied gas stored in the tank 2 arranged to lower the temperature of a portion of the liquid phase of the liquefied gas 8 below the liquid-vapor equilibrium temperature of said gas. liquefied gas 7, at the storage pressure of the liquefied gas 8 in the tank 2. Thus, a portion of the liquefied gas is placed in a sub-cooled thermodynamic state.

Pour ce faire, dans le mode de réalisation représenté sur la figure 1, l'installation comporte un dispositif de vaporisation 20 destiné à prélever un flux de gaz en phase liquide de la cuve 2 et à le détendre afin de le vaporiser en utilisant la chaleur latente de vaporisation du gaz pour refroidir le gaz liquéfié 8 resté dans la cuve 2.To do this, in the embodiment shown in figure 1 , the installation comprises a vaporization device 20 intended to take a flow of gas in liquid phase from the tank 2 and to expand it in order to vaporize it by using the latent heat of vaporization of the gas to cool the liquefied gas 8 remaining in the tank. tank 2.

Le principe de fonctionnement d'un tel dispositif de vaporisation 20 est mentionné en relation avec la figure 5 qui représente un diagramme d'équilibre liquide-vapeur du méthane. Ce diagramme représente le domaine, noté L, dans lequel le méthane se présente en phase liquide et le domaine, noté V, dans lequel le méthane se présente en phase vapeur, en fonction de la pression représentée en abscisse et de la température représentée en ordonnée.The principle of operation of such a vaporization device 20 is mentioned in relation to the figure 5 which represents a liquid-vapor equilibrium diagram of methane. This diagram represents the domain, denoted L, in which the methane occurs in liquid phase and the domain, denoted by V, in which the methane occurs in the vapor phase, as a function of the pressure represented on the abscissa and the temperature represented on the ordinate .

Le point P1 représente un état d'équilibre diphasique correspondant à l'état du méthane stocké dans la cuve 2 à la pression atmosphérique et à une température d'environ -162°C. Lorsque du méthane dans un tel état d'équilibre est prélevé de la cuve 2 puis détendu dans le dispositif de vaporisation 20, par exemple à une pression absolue d'environ 500 mbars, l'équilibre du méthane détendu se déplace vers la gauche jusqu'au point P2. Le méthane ainsi détendu subit donc une diminution de température d'environ 7 °C. Dès lors, le méthane prélevé étant mis en contact thermique via le dispositif de vaporisation 20 avec le méthane resté dans la cuve 2, il se vaporise au moins partiellement et, en se vaporisant, soustrait au méthane liquide stocké dans la cuve 2 les calories nécessaires à sa vaporisation ce qui permet de refroidir le méthane liquide restant dans la cuve 2.Point P1 represents a two-phase equilibrium state corresponding to the state of the methane stored in tank 2 at atmospheric pressure and at a temperature of approximately -162 ° C. When methane in such a state of equilibrium is taken from the tank 2 and then expanded in the vaporization device 20, for example at an absolute pressure of about 500 mbar, the equilibrium of the expanded methane shifts to the left up to at point P2. The methane thus expanded therefore undergoes a temperature reduction of approximately 7 ° C. Therefore, the methane withdrawn being placed in thermal contact via the vaporization device 20 with the methane remaining in the tank 2, it vaporizes at least partially and, by vaporizing, subtracts from the liquid methane stored in the tank 2 the necessary calories vaporization, which allows the liquid methane remaining in tank 2 to be cooled.

Le méthane restant dans la cuve 2 se trouve par conséquent placé à une température inférieure à sa température d'équilibre à la pression de stockage du méthane dans la cuve 2.The methane remaining in the tank 2 is therefore placed at a temperature below its equilibrium temperature at the storage pressure of the methane in the tank 2.

En revenant à la figure 1, l'on observe que le dispositif de vaporisation 20 comporte :

  • un circuit d'entrée comportant une admission 21 immergée dans la phase liquide du gaz liquéfié 8 stocké dans le cuve 2 ;
  • une ou plusieurs enceintes de vaporisation 22 immergées dans la phase liquide et/ou la phase vapeur du gaz liquéfié 8 et comportant des parois d'échange de chaleur, immergées dans le gaz liquéfié stocké dans le cuve 2, de manière à mettre en contact thermique le flux de gaz prélevé avec le gaz liquéfié restant dans la cuve 2 ; et
  • un circuit de sortie 23 pour évacuer le flux de gaz en phase vapeur vers un circuit d'utilisation de gaz en phase vapeur 25.
Returning to the figure 1 , it is observed that the vaporization device 20 comprises:
  • an inlet circuit comprising an inlet 21 immersed in the liquid phase of the liquefied gas 8 stored in the tank 2;
  • one or more vaporization chambers 22 immersed in the liquid phase and / or the vapor phase of the liquefied gas 8 and comprising heat exchange walls, immersed in the liquefied gas stored in the tank 2, so as to bring into thermal contact the gas flow taken with the liquefied gas remaining in the tank 2; and
  • an outlet circuit 23 for discharging the flow of gas in the vapor phase to a circuit for using gas in the vapor phase 25.

Le circuit d'entrée est équipé d'un ou plusieurs organes de perte de charge, non illustrés, permettant de créer une perte de charge et débouchant à l'intérieur de l'enceinte de vaporisation 22 de manière à détendre le flux de gaz liquéfié prélevé.The inlet circuit is equipped with one or more pressure drop members, not shown, making it possible to create a pressure drop and opening inside the vaporization chamber 22 so as to relax the flow of liquefied gas. taken.

Le dispositif de vaporisation est également équipé d'une pompe à vide 24, disposée hors de la cuve et associée au circuit de sortie 23. La pompe à vide 24 permet d'aspirer un flux de gaz liquéfié stocké dans la cuve 2 vers l'enceinte de vaporisation 22 et de le refouler en phase vapeur vers un circuit d'utilisation de gaz en phase vapeur 25. Pour le gaz naturel liquéfié, la pression absolue de travail régnant à l'intérieur de l'enceinte de vaporisation 22 est comprise entre 120 et 950 mbars, avantageusement entre 650 et 850 mbars, et par exemple de l'ordre de 750 mbars.The vaporization device is also equipped with a vacuum pump 24, arranged outside the tank and associated with the outlet circuit 23. The vacuum pump 24 makes it possible to suck a flow of liquefied gas stored in the tank 2 towards the. vaporization chamber 22 and to deliver it in the vapor phase to a circuit for using gas in the vapor phase 25. For liquefied natural gas, the absolute working pressure prevailing inside the vaporization chamber 22 is between 120 and 950 mbar, advantageously between 650 and 850 mbar, and for example of the order of 750 mbar.

Dans le cas d'une installation embarquée sur un navire, le circuit d'utilisation du gaz en phase vapeur 25 peut notamment être relié à un équipement de production d'énergie du groupe motopropulseur, non représenté, permettant de propulser le navire. Un tel équipement de production d'énergie est notamment choisi parmi les moteurs thermiques, les piles à combustion et les turbines à gaz.In the case of an installation on board a ship, the circuit for using the gas in the vapor phase 25 may in particular be connected to an energy production equipment of the powertrain, not shown, making it possible to propel the ship. Such energy production equipment is in particular chosen from heat engines, combustion cells and gas turbines.

Sur la figure 2, l'installation 1 est équipée d'un autre dispositif de refroidissement du gaz liquéfié permettant de placer le gaz liquéfié 8 dans un état thermodynamique sous-refroidi.On the figure 2 , the installation 1 is equipped with another device for cooling the liquefied gas making it possible to place the liquefied gas 8 in a sub-cooled thermodynamic state.

Pour ce faire, l'installation 1 comporte ici un circuit de prélèvement de gaz en phase vapeur 9. Le circuit de prélèvement de gaz en phase vapeur 9 comporte un conduit 10 passant au travers d'une paroi de la cuve 2 afin de définir un passage d'évacuation de la phase vapeur, de l'intérieur vers l'extérieur de la cuve 2. Le conduit 10 comporte une admission 11 débouchant à l'intérieur de l'espace intérieur de la cuve 2 dans une cloche à dépression 31. La cloche à dépression 31 est un corps creux disposé dans la partie supérieure de l'espace intérieur de la cuve 2 de telle sorte que sa portion supérieure soit en contact et remplie avec la phase vapeur du gaz liquéfié 8 stocké dans la cuve 2 et que sa portion inférieure soit immergée dans la phase liquide du gaz liquéfie 8 stocké dans la cuve 2. L'admission 11 du circuit de prélèvement de gaz en phase vapeur 9 débouche dans la portion supérieure de la cloche à dépression 20.To do this, the installation 1 here comprises a gas sampling circuit in the vapor phase 9. The gas sampling circuit in the vapor phase 9 comprises a duct 10 passing through a wall of the vessel 2 in order to define a passage for evacuation of the vapor phase, from the inside to the outside of the tank 2. The duct 10 comprises an inlet 11 opening out inside the interior space of the vessel 2 in a vacuum bell 31. The vacuum bell 31 is a hollow body arranged in the upper part of the interior space of the vessel 2 such that its upper portion is in contact and filled with the vapor phase liquefied gas 8 stored in tank 2 and that its lower portion is immersed in the liquid phase of liquefied gas 8 stored in tank 2. The inlet 11 of the vapor phase gas sampling circuit 9 opens into the upper portion of the vacuum bell 20.

Le circuit de prélèvement 9 comporte également une pompe à vide 12 qui est raccordée, en amont, à la conduite et, en aval, à un circuit d'utilisation de gaz en phase vapeur 13. La pompe à vide 12 est ainsi apte à aspirer, à travers la conduite 10, un flux de gaz en phase vapeur présent dans la cloche à dépression 31 et à le refouler vers le circuit d'utilisation de gaz en phase vapeur 13. Le circuit de prélèvement 9 comporte ici un clapet 19 ou une vanne anti-retour, disposé en amont ou en aval de la pompe à vide 12 et permettant ainsi d'éviter un retour du flux de gaz en phase vapeur vers l'espace intérieur de la cuve 2.The sampling circuit 9 also comprises a vacuum pump 12 which is connected, upstream, to the pipe and, downstream, to a circuit for using gas in the vapor phase 13. The vacuum pump 12 is thus able to suck. , through the pipe 10, a flow of gas in the vapor phase present in the vacuum chamber 31 and to deliver it to the circuit for using gas in the vapor phase 13. The sampling circuit 9 here comprises a valve 19 or a non-return valve, arranged upstream or downstream of the vacuum pump 12 and thus making it possible to avoid a return of the gas flow in vapor phase towards the interior space of the tank 2.

La pompe à vide 12 est apte à générer dans la portion supérieure de la cloche à dépression 31 une pression inférieure à la pression atmosphérique ce qui permet de favoriser une vaporisation du gaz liquéfié à l'intérieur de la cloche à dépression 20. Dès lors, la phase vapeur à l'intérieur de la cloche à dépression 31 étant placée à une pression inférieure à la pression atmosphérique, la vaporisation du gaz liquéfié 8 est favorisée à l'interface liquide/vapeur à l'intérieur de la cloche à dépression 31 tandis que le gaz liquéfié 8 stocké dans la cuve 2 est placée dans un état d'équilibre diphasique liquide-vapeur dans lequel le gaz liquéfié 8 présente une température inférieure à la température d'équilibre liquide-vapeur dudit gaz liquéfié à pression atmosphérique.The vacuum pump 12 is able to generate in the upper portion of the vacuum chamber 31 a pressure lower than atmospheric pressure which makes it possible to promote vaporization of the liquefied gas inside the vacuum chamber 20. Therefore, the vapor phase inside the vacuum bell 31 being placed at a pressure lower than atmospheric pressure, the vaporization of the liquefied gas 8 is promoted at the liquid / vapor interface inside the vacuum bell 31 while that the liquefied gas 8 stored in the tank 2 is placed in a two-phase liquid-vapor equilibrium state in which the liquefied gas 8 has a temperature below the liquid-vapor equilibrium temperature of said liquefied gas at atmospheric pressure.

Dans un autre mode de réalisation représenté sur la figure 3, le dispositif de refroidissement comporte un dispositif de liquéfaction comportant un premier circuit 34 comportant une admission 32 apte à collecter du gaz liquéfié en phase vapeur dans l'espace intérieur de la cuve 2 et une sortie 33 apte à retourner du gaz liquéfié en phase liquide dans l'espace intérieur de la cuve 2. Le dispositif de liquéfaction comporte en outre un circuit frigorifique 35 dans lequel circule un fluide frigorigène. Le circuit frigorifique 35 comporte un compresseur 36, un condenseur 37, un réducteur de pression 38 et un évaporateur 39 dans lequel le fluide frigorigène s'évapore en prenant des calories au gaz liquéfié circulant dans le premier circuit 34. Un tel dispositif de refroidissement est notamment divulgué dans le document EP2853479 .In another embodiment shown in figure 3 , the cooling device comprises a liquefaction device comprising a first circuit 34 comprising an inlet 32 capable of collecting liquefied gas in the vapor phase in the interior space of the tank 2 and an outlet 33 capable of returning liquefied gas in the liquid phase in the interior space of the tank 2. The liquefaction device further comprises a refrigeration circuit 35 in which a refrigerant circulates. The refrigeration circuit 35 comprises a compressor 36, a condenser 37, a pressure reducer 38 and an evaporator 39 in which the refrigerant evaporates taking calories from the liquefied gas circulating in the first circuit 34. Such a cooling device is in particular disclosed in the document EP2853479 .

Dans un autre mode de réalisation représenté sur la figure 4, le dispositif de refroidissement comporte une unité frigorifique 40 qui fait circuler de l'azote liquide à environ -196°C dans un tube 41 à épingle, ce qui a pour effet de réfrigérer le gaz liquéfié autour du tube 41. Etant donné que le gaz liquéfié réfrigéré devient plus dense, il subit un mouvement descendant dans la cuve 2 et le gaz liquéfié non encore réfrigéré subit inversement un mouvement ascendant. Ce mouvement de convection est canalisé par le puits de convection 42 afin de créer ce mouvement de convection dans toute la cuve 2. Au cours de sa circulation l'azote liquide subit une évaporation, ce qui permet de bénéficier de la chaleur latente d'évaporation de l'azote pour refroidir le gaz liquéfié. A la sortie du tube 23, l'azote est re-liquéfié dans l'unité frigorifique 41. Un tel dispositif de refroidissement est notamment décrit dans la demande FR2785034 .In another embodiment shown in figure 4 , the cooling device comprises a refrigeration unit 40 which circulates liquid nitrogen at approximately -196 ° C in a pin tube 41, which has the effect of refrigerating the liquefied gas around the tube 41. Since the Refrigerated liquefied gas becomes more dense, it undergoes a downward movement in the tank 2 and the not yet refrigerated liquefied gas conversely undergoes an upward movement. This convection movement is channeled through the convection well 42 in order to create this convection movement throughout the tank 2. During its circulation, the liquid nitrogen undergoes evaporation, which makes it possible to benefit from the latent heat of evaporation. nitrogen to cool the liquefied gas. At the outlet of the tube 23, the nitrogen is re-liquefied in the refrigeration unit 41. Such a cooling device is in particular described in the application. FR2785034 .

Notons que si plusieurs dispositifs de refroidissement du gaz liquéfié sont décrits ci-dessus, l'invention n'est en aucun cas limitée à l'un de ces dispositifs de refroidissement et tout autre dispositif de refroidissement permettant de refroidir le gaz liquéfié en dessous de sa température d'équilibre liquide-vapeur pourra être utilisé.It should be noted that although several devices for cooling the liquefied gas are described above, the invention is in no way limited to one of these cooling devices and any other cooling device making it possible to cool the liquefied gas below its liquid-vapor equilibrium temperature can be used.

En revenant à la figure 1, on constate que l'installation 1 comporte, dans le mode de réalisation représenté, un dispositif de pompage qui comporte une pompe à vide 16 qui est raccordée à une canalisation 17 débouchant dans l'espace interne de la barrière thermiquement isolante primaire 6 et une pompe à vide 14 qui est raccordée à une canalisation 15 débouchant dans l'espace interne de de la barrière thermiquement isolante secondaire 3. Un tel dispositif de pompage vise à maintenir les phases gazeuses à l'intérieur des barrières thermiquement isolantes primaire 6 et secondaire 3 sous des pressions inférieures à la pression régnant dans l'espace intérieur de la cuve 2. Ainsi, les écarts de pression entre les membranes tendent à plaquer celles-ci vers l'extérieur et non à les arracher vers l'intérieur de la cuve 2.Returning to the figure 1 , it can be seen that the installation 1 comprises, in the embodiment shown, a pumping device which comprises a vacuum pump 16 which is connected to a pipe 17 opening into the internal space of the primary thermally insulating barrier 6 and a vacuum pump 14 which is connected to a pipe 15 opening into the internal space of the secondary thermally insulating barrier 3. Such a pumping device aims to maintain the gaseous phases inside the primary 6 and secondary 3 thermally insulating barriers under pressures lower than the pressure prevailing in the interior space of the tank 2. Thus, the pressure differences between the membranes tend to press them towards the outside and not to tear them towards the inside of the tank 2 .

Les pompes à vide 14, 16 sont des pompes cryogéniques, c'est-à-dire aptes à supporter des températures cryogéniques inférieures à -150 °C. Elles sont en outre conformes à la réglementation ATEX, c'est-à-dire conçues afin d'écarter tout risque d'explosion. Les pompes à vide 14, 16 peuvent être réalisées de diverses manières, par exemple de type Roots (c'est-à-dire à lobes rotatifs), à palettes, à anneau liquide, à vis, avec un effecteur de type venturi.The vacuum pumps 14, 16 are cryogenic pumps, that is to say pumps capable of withstanding cryogenic temperatures below -150 ° C. They also comply with ATEX regulations, i.e. designed to avoid any risk of explosion. The vacuum pumps 14, 16 can be made from various ways, for example Roots type (i.e. rotary lobes), paddle type, liquid ring, screw type, with a venturi type effector.

L'installation 1 comporte en outre un module de commande 26 permettant de commander la pompe à vide 14 et la pompe à vide 16 de manière à réguler les pressions régnant dans la barrière thermiquement isolante primaire 6 et dans la barrière thermiquement isolante secondaire 3. Le module de commande 26 peut comporter un seul élément, comme dans le mode de réalisation représenté, ou deux éléments ; ceux-ci pouvant être respectivement associés à la commande de l'une et l'autre des deux pompes à vide 14, 16.The installation 1 further comprises a control module 26 making it possible to control the vacuum pump 14 and the vacuum pump 16 so as to regulate the pressures prevailing in the primary thermally insulating barrier 6 and in the secondary thermally insulating barrier 3. The control module 26 may have a single element, as in the embodiment shown, or two elements; these can be respectively associated with the control of one and the other of the two vacuum pumps 14, 16.

Le module de commande 26 est connecté à au moins un capteur de température 27 qui est immergé dans la phase liquide du gaz liquéfié 8 stocké dans la cuve 2 et permet ainsi de délivrer une mesure de la température de la phase liquide du gaz liquéfié 8 stocké dans la cuve 2. De manière avantageuse, afin d'obtenir une mesure de température révélatrice des températures les plus basses dans la cuve 2, le capteur de température 27 est placé à proximité du fond de la cuve 2. De préférence, le capteur de température 27 est en outre positionné à proximité des parois d'échange de chaleur de l'enceinte de vaporisation 22. Le capteur de température 27 peut être réalisé par tout moyen tel qu'un thermocouple ou une sonde à résistance de platine, par exemple.The control module 26 is connected to at least one temperature sensor 27 which is immersed in the liquid phase of the liquefied gas 8 stored in the tank 2 and thus makes it possible to deliver a measurement of the temperature of the liquid phase of the liquefied gas 8 stored. in the tank 2. Advantageously, in order to obtain a temperature measurement revealing the lowest temperatures in the tank 2, the temperature sensor 27 is placed near the bottom of the tank 2. Preferably, the temperature sensor. temperature 27 is also positioned close to the heat exchange walls of the vaporization chamber 22. The temperature sensor 27 can be produced by any means such as a thermocouple or a platinum resistance thermometer, for example.

Par ailleurs, l'installation 1 comporte en outre au moins un capteur de pression 28 permettant de délivrer un mesure de la pression P1 de la phase gazeuse à l'intérieur de la barrière thermiquement isolante primaire 6 et un capteur de pression 29 permettant délivrer une mesure de la pression P2 de la phase gazeuse à l'intérieur de la barrière thermiquement isolante secondaire 3.Furthermore, the installation 1 further comprises at least one pressure sensor 28 making it possible to deliver a measurement of the pressure P1 of the gas phase inside the primary thermally insulating barrier 6 and a pressure sensor 29 making it possible to deliver a measurement of the pressure P2 of the gas phase inside the secondary thermally insulating barrier 3.

Le module de commande 26 est agencé pour générer une valeur de commande de la pompe à vide 16 en fonction d'une pression de consigne Pc1 et de la mesure de la pression P1 de la phase gazeuse à l'intérieur de la barrière thermiquement isolante primaire 6 de manière à asservir la pression P1 à la pression de consigne Pc1. De la même manière, le module de commande 26 est agencé pour générer une valeur de commande de la pompe à vide 14 en fonction d'une pression de consigne Pc2 et de la mesure de la pression P2 de la phase gazeuse l'intérieur de la barrière thermiquement isolante primaire 6 de manière à asservir la pression P2 à la pression de consigne Pc2.The control module 26 is arranged to generate a control value of the vacuum pump 16 as a function of a setpoint pressure P c1 and of the measurement of the pressure P1 of the gas phase inside the thermally insulating barrier. primary 6 so as to control the pressure P1 to the setpoint pressure P c1 . Likewise, the control module 26 is arranged to generate a control value for the vacuum pump 14 as a function of a setpoint pressure P c 2 and of the measurement of the pressure P2 of the gas phase inside. of the primary thermally insulating barrier 6 so as to control the pressure P2 to the setpoint pressure P c 2.

Par ailleurs, le module de commande 26 est également agencé pour déterminer, à tout moment, la pression de consigne Pc1 pour la barrière thermiquement isolante primaire 6, en fonction de la température mesurée par le capteur de température 27. En d'autres termes, la pression de consigne Pc1 est déterminée au moyen de la relation suivante : P c 1 = f 1 T ;

Figure imgb0001
avec :

  • f1 : une fonction monotone croissante ; et
  • T : la température de la phase liquide du gaz liquéfié 8, délivré par le capteur de température 27.
Furthermore, the control module 26 is also arranged to determine, at any time, the setpoint pressure P c1 for the primary thermally insulating barrier 6, as a function of the temperature measured by the temperature sensor 27. In other words , the setpoint pressure P c1 is determined using the following relation: P vs 1 = f 1 T ;
Figure imgb0001
with :
  • f 1 : an increasing monotonic function; and
  • T: the temperature of the liquid phase of the liquefied gas 8, delivered by the temperature sensor 27.

Plus particulièrement, la fonction f1 est une transformation affine d'une fonction g représentative de la courbe d'équilibre liquide-vapeur dans un diagramme température pression du gaz liquéfié ou du composant du gaz liquéfié qui, parmi les autres composants du gaz liquéfié qui sont présents dans une quantité non négligeable (c'est-à-dire dans une proportion en mole supérieure à 5 %) présente la température de vaporisation la plus faible à pression atmosphérique. Aussi, la fonction f1 est, par exemple, de la forme suivante : P c 1 = f 1 T = g T ε 1 ;

Figure imgb0002
avec :

  • g : une fonction représentative de la courbe d'équilibre liquide-vapeur du gaz liquéfié ou du composant en quantité non négligeable le plus volatil du gaz liquéfié dans un diagramme température pression; et
  • ε1 : une constante, par exemple de l'ordre de 10 à 30 mbars.
More particularly, the function f 1 is an affine transformation of a function g representative of the liquid-vapor equilibrium curve in a temperature-pressure diagram of the liquefied gas or of the component of the liquefied gas which, among the other components of the liquefied gas which are present in a non-negligible amount (that is to say in a proportion by mole greater than 5%) has the lowest vaporization temperature at atmospheric pressure. Also, the function f 1 is, for example, of the following form: P vs 1 = f 1 T = g T - ε 1 ;
Figure imgb0002
with :
  • g: a function representative of the liquid-vapor equilibrium curve of the liquefied gas or of the component in the most volatile non-negligible quantity of the liquefied gas in a temperature-pressure diagram; and
  • ε 1 : a constant, for example of the order of 10 to 30 mbar.

La fonction g permet de déterminer la pression de vapeur saturante associée à la température de la phase liquide mesurée dans la cuve 2 et permet ainsi de déterminer une valeur de pression minorant la pression absolue susceptible d'être atteinte en cas de condensation de la phase vapeur du gaz liquéfié stocké dans la cuve.The function g makes it possible to determine the saturated vapor pressure associated with the temperature of the liquid phase measured in the tank 2 and thus makes it possible to determine a pressure value lowering the absolute pressure likely to be reached in the event of condensation of the vapor phase liquefied gas stored in the tank.

Selon un mode de réalisation, lorsque le gaz liquéfié est un mélange gazeux constitué d'une pluralité de composants, la fonction g est représentative de la courbe d'équilibre liquide vapeur du composant qui parmi les composants présents dans des quantités non négligeables est le plus volatil. Pour du gaz naturel liquéfié par exemple, la fonction g utilisée est représentative de la courbe d'équilibre liquide vapeur du méthane pur. Dès lors, en prenant comme référence la courbe d'équilibre liquide-vapeur du composant le plus volatil, on détermine une pression de vapeur saturante minorant la pression de vapeur saturante du mélange gazeux. Cette approche est simple et robuste et ne nécessite pas de déterminer en temps réel la composition du gaz liquéfié, celle-ci étant susceptible de varier au cours du temps.According to one embodiment, when the liquefied gas is a gas mixture consisting of a plurality of components, the function g is representative of the liquid vapor equilibrium curve of the component which, among the components present in non-negligible quantities, is the most volatile. For liquefied natural gas for example, the function g used is representative of the liquid vapor equilibrium curve of pure methane. Therefore, taking as a reference the liquid-vapor equilibrium curve of the most volatile component, a pressure of saturated vapor lowering the saturated vapor pressure of the gas mixture. This approach is simple and robust and does not require determining in real time the composition of the liquefied gas, the latter being liable to vary over time.

Toutefois, dans un autre mode de réalisation, afin de déterminer plus précisément la pression de vapeur saturante associée à la température mesurée pour le gaz liquéfié stocké dans la cuve, il est également possible d'utiliser une fonction g qui soit représentative de la courbe d'équilibre liquide-vapeur du mélange gazeux réel.However, in another embodiment, in order to more precisely determine the saturated vapor pressure associated with the temperature measured for the liquefied gas stored in the tank, it is also possible to use a function g which is representative of the curve d liquid-vapor equilibrium of the actual gas mixture.

A titre d'exemple, la courbe d'équilibre du méthane dans un diagramme température pression peut être approximée par la fonction suivante : g T = 3.673876 × 10 2 T 3 9.597262 T 2 + 8.526565 × 10 2 T 2.568325 × 10 4

Figure imgb0003
avec :

  • T : en Kelvin ; et
  • g(T) : en millibars.
By way of example, the equilibrium curve of methane in a temperature-pressure diagram can be approximated by the following function: g T = 3.673876 × 10 - 2 T 3 - 9.597262 T 2 + 8.526565 × 10 2 T - 2.568325 × 10 4
Figure imgb0003
with :
  • T: in Kelvin; and
  • g (T): in millibars.

En considérant une température de la phase liquide du gaz liquéfié 8 stocké dans la cuve de 105 K, l'image d'une telle température par la fonction g précitée est de 565 millibars. Aussi, lorsque la température de la phase liquide du gaz liquéfié est de 105 Kelvin, la pression dans la cuve n'est théoriquement pas susceptible de descendre en dessous d'une pression absolue de 565 millibars. Dans un tel cas, dans l'hypothèse où la constante ε1, visant à prendre en compte les incertitudes de mesure de la température de la phase liquide et les phénomènes d'hétérogénéité de la température de la phase liquide à l'intérieur de la cuve, est égale à 20 millibars, la pression de consigne Pc1 est alors de 545 millibars.Considering a temperature of the liquid phase of the liquefied gas 8 stored in the tank of 105 K, the image of such a temperature by the aforementioned function g is 565 millibars. Also, when the temperature of the liquid phase of the liquefied gas is 105 Kelvin, the pressure in the tank is theoretically not liable to drop below an absolute pressure of 565 millibars. In such a case, on the assumption that the constant ε 1 , aiming to take into account the uncertainties of measurement of the temperature of the liquid phase and the phenomena of heterogeneity of the temperature of the liquid phase inside the tank, is equal to 20 millibars, the setpoint pressure P c1 is then 545 millibars.

On comprend ainsi qu'en plaçant la barrière thermiquement isolante primaire 6 sous une telle pression absolue de 545 millibars, la pression à l'intérieur de la cuve 2 sera toujours supérieure à la pression régnant à l'intérieur de la barrière thermiquement isolante primaire 6, ce qui permet de plaquer la membrane d'étanchéité primaire 7 contre la barrière thermiquement isolante secondaire 3 et évite son effondrement.It is thus understood that by placing the primary thermally insulating barrier 6 under such an absolute pressure of 545 millibars, the pressure inside the tank 2 will always be greater than the pressure prevailing inside the primary thermally insulating barrier 6. , which makes it possible to press the primary waterproofing membrane 7 against the secondary thermally insulating barrier 3 and prevents it from collapsing.

On remarquera que l'utilisation d'une fonction g représentative de la courbe d'équilibre liquide-vapeur du gaz liquéfié permet d'obtenir un compromis idéal entre sécurité de fonctionnement de l'installation et dépenses énergétiques nécessaires pour garantir cette sécurité de fonctionnement. Il est toutefois possible d'utiliser une fonction g sensiblement différente mais présentant un profil général équivalent si l'on accepte de diminuer la marge de sécurité ou d'augmenter les dépenses énergétiques.It will be noted that the use of a function g representative of the liquid-vapor equilibrium curve of the liquefied gas makes it possible to obtain an ideal compromise between operational safety of the installation and energy expenditure necessary to guarantee this operational safety. It is however possible to use a function g which is significantly different but which has an equivalent general profile if it is accepted to reduce the safety margin or to increase the energy expenditure.

Par ailleurs, le module de commande 26 est également agencé pour déterminer la pression de consigne Pc2 pour la barrière thermiquement isolante secondaire 6.Furthermore, the control module 26 is also arranged to determine the setpoint pressure P c2 for the secondary thermally insulating barrier 6.

Selon un mode de réalisation, la pression de consigne Pc2 est déterminée en fonction de la température T mesurée par le capteur de température 27 d'une manière similaire à la pression de consigne Pc2 La pression de consigne Pc2 est donc déterminée au moyen de la relation suivante : P c 2 = f 2 T ;

Figure imgb0004
avec :

  • f2 : une fonction monotone croissante; et
  • T : la température de la phase liquide du gaz liquéfié 8, délivré par le capteur de température 27.
According to one embodiment, the setpoint pressure P c2 is determined as a function of the temperature T measured by the temperature sensor 27 in a manner similar to the setpoint pressure P c2 The setpoint pressure P c2 is therefore determined by means of of the following relation: P vs 2 = f 2 T ;
Figure imgb0004
with :
  • f 2 : an increasing monotonic function; and
  • T: the temperature of the liquid phase of the liquefied gas 8, delivered by the temperature sensor 27.

Comme la fonction f1, la fonction f2 peut s'écrire sous la forme : P c 2 = f 2 T = g T ε 2 ;

Figure imgb0005
avec :

  • g : une fonction représentative de la courbe d'équilibre liquide-vapeur du gaz liquéfié ou du composant majoritaire du gaz liquéfié dans un diagramme température pression; et
  • ε2 : une constante, par exemple de l'ordre de 10 à 30 mbars.
Like the function f 1 , the function f 2 can be written in the form: P vs 2 = f 2 T = g T - ε 2 ;
Figure imgb0005
with :
  • g: a function representative of the liquid-vapor equilibrium curve of the liquefied gas or of the major component of the liquefied gas in a temperature-pressure diagram; and
  • ε 2 : a constant, for example of the order of 10 to 30 mbar.

Selon un autre mode de réalisation, la pression de consigne Pc2 n'est pas déterminée en fonction de la température mesurée par le capteur de température 27 mais est déterminée en fonction de la pression P1 de la phase gazeuse dans la barrière thermiquement isolante primaire 6 au moyen de la relation suivante : P c 2 = h P 1 ;

Figure imgb0006
avec

  • h : une fonction monotone croissante ; et
  • P1 : la pression mesurée dans la phase gazeuse de la barrière thermiquement isolante primaire 6.
According to another embodiment, the setpoint pressure P c2 is not determined as a function of the temperature measured by the temperature sensor 27 but is determined as a function of the pressure P1 of the gas phase in the primary thermally insulating barrier 6. by means of the following relation: P vs 2 = h P 1 ;
Figure imgb0006
with
  • h: an increasing monotonic function; and
  • P1: the pressure measured in the gas phase of the primary thermally insulating barrier 6.

La fonction h est par exemple de la forme : P c 2 = h P 1 = P 1 ε 2 ;

Figure imgb0007
avec ;

  • ε'2 : une constante.
The function h is for example of the form: P vs 2 = h P 1 = P 1 - ε 2 ;
Figure imgb0007
with ;
  • ε ' 2 : a constant.

Selon une variante de réalisation, ε'2 est une constante positive, par exemple comprise entre 10 et 30 mbars. Ainsi, le procédé garantit que, à tout moment, la pression de la phase gazeuse de la barrière thermiquement isolante secondaire 3 soit supérieure à celle de la barrière thermiquement isolante primaire 6 de telle sorte que la membrane d'étanchéité secondaire 5 est plaquée contre la barrière thermiquement isolante secondaire 3.According to an alternative embodiment, ε ' 2 is a positive constant, for example between 10 and 30 mbar. Thus, the method ensures that, at all times, the pressure of the gas phase of the secondary thermally insulating barrier 3 is greater than that of the primary thermally insulating barrier 6 so that the secondary waterproofing membrane 5 is pressed against the secondary thermally insulating barrier 3.

Selon une autre variante de réalisation, ε'2 est une constante négative, par exemple comprise entre - 10 et - 30 mbars. Ainsi, le procédé garantit que la pression de la phase gazeuse de la barrière thermiquement isolante secondaire 3 est à tout moment supérieure à celle de la barrière thermiquement isolante primaire 6, ce qui permet d'éviter qu'en cas de défaut d'étanchéité des membranes d'étanchéité 5, 7, le gaz liquéfié 8 ne soit aspiré vers la barrière thermiquement isolante secondaire 3.According to another variant embodiment, ε ' 2 is a negative constant, for example between -10 and -30 mbar. Thus, the method guarantees that the pressure of the gas phase of the secondary thermally insulating barrier 3 is at all times greater than that of the primary thermally insulating barrier 6, which makes it possible to avoid that, in the event of a leakage failure of the waterproofing membranes 5, 7, the liquefied gas 8 is sucked towards the secondary thermally insulating barrier 3.

Selon d'autres modes de réalisation alternatif, la pression de consigne Pc1 pour la barrière thermiquement isolante primaire 6 et/ou la pression de consigne Pc2 n'est pas déterminée en fonction d'une mesure de la température du gaz liquéfié 8 mais en prenant comme variable T dans les équations précitées, une variable correspondant à un seuil minimum susceptible d'être atteint par la phase liquide du gaz liquéfié, pour un état de fonctionnement déterminé du dispositif de refroidissement du gaz liquéfié.According to other alternative embodiments, the setpoint pressure P c1 for the primary thermally insulating barrier 6 and / or the setpoint pressure P c2 is not determined as a function of a measurement of the temperature of the liquefied gas 8 but by taking as variable T in the aforementioned equations, a variable corresponding to a minimum threshold likely to be reached by the liquid phase of the liquefied gas, for a determined operating state of the device for cooling the liquefied gas.

Ainsi, selon un mode de réalisation équipé d'un dispositif de refroidissement du gaz liquéfié tel que décrit et illustré en relation avec la figure 1, l'installation comporte un capteur de température disposé à la sortie de l'enceinte de vaporisation 22 et mesurant soit la température du flux de gaz en phase vapeur circulant à l'intérieur de l'enceinte de vaporisation 22 soit la température d'une paroi de l'enceinte de vaporisation 22. En régime permanent de fonctionnement du dispositif de refroidissement, la température ainsi mesurée est représentative de la température minimum susceptible d'être atteinte par la phase liquide du gaz liquéfié 8 stocké à l'intérieur de la cuve 2. Dès lors, en prenant une température ainsi mesurée comme valeur de T dans les équations précitées, le procédé de pilotage de la pompe à vide 16 et de la pompe à vide 14, permet également de garantir que les pressions des phases gazeuses à l'intérieur des barrières thermiquement isolantes primaires 6 et secondaires 3 soient à tout moment inférieures à la pression dans l'espace intérieur de la cuve 2.Thus, according to an embodiment equipped with a device for cooling the liquefied gas as described and illustrated in relation with the figure 1 , the installation comprises a temperature sensor arranged at the outlet of the vaporization chamber 22 and measuring either the temperature of the gas flow in the vapor phase circulating inside the vaporization chamber 22 or the temperature of a wall of the vaporization chamber 22. In the steady state of operation of the cooling device, the temperature thus measured is representative of the minimum temperature likely to be reached by the liquid phase of the liquefied gas 8 stored inside the tank 2. Consequently, by taking a temperature thus measured as the value of T in the aforementioned equations, the method for controlling the vacuum pump 16 and the vacuum pump 14 also makes it possible to guarantee that the pressures of the gaseous phases inside the primary 6 and secondary 3 thermally insulating barriers are at all times lower than the pressure in the interior space of the tank 2.

De la même manière, lorsque le dispositif de refroidissement du gaz liquéfié est un dispositif de liquéfaction comportant un circuit de circulation de gaz liquéfié coopérant avec un circuit frigorifique tel que représenté sur la figure 3, l'installation peut comporter un capteur de température disposé dans le circuit frigorifique et mesurant la température de retour du fluide frigorifique à la sortie de l'évaporateur 39. En régime permanent de fonctionnement du dispositif de refroidissement, la température ainsi mesurée est également représentative de la température minimum susceptible d'être atteinte par la phase liquide du gaz liquéfié 8 stocké à l'intérieur de la cuve 2 et peut donc également être utilisée pour la détermination de la pression de consigne Pc1, et optionnellement pour la détermination de la pression de consigne Pc2.Likewise, when the liquefied gas cooling device is a liquefaction device comprising a liquefied gas circulation circuit cooperating with a refrigerating circuit as shown in Figure figure 3 , the installation may include a temperature sensor arranged in the refrigeration circuit and measuring the return temperature of the refrigerant fluid at the outlet of the evaporator 39. In the steady state of operation of the cooling device, the temperature thus measured is also representative. of the minimum temperature likely to be reached by the liquid phase of the liquefied gas 8 stored inside the tank 2 and can therefore also be used for determining the setpoint pressure P c1 , and optionally for determining the setpoint pressure P c2 .

Selon un autre mode de réalisation, le dispositif de refroidissement du gaz liquéfié est agencé pour respecter un seuil de température minimum Tmin pour la phase liquide du gaz liquéfié. En d'autres termes, le dispositif de refroidissement du gaz liquéfié est piloté de telle sorte que la température de la phase liquide du gaz liquéfié ne descende pas en dessous dudit seuil de température Tmin. Les paramètres de fonctionnement du dispositif de refroidissement sont donc fixés de telle sorte que la température de la phase liquide du gaz liquéfié ne descende pas en dessous du seuil précité.According to another embodiment, the device for cooling the liquefied gas is designed to comply with a minimum temperature threshold T min for the liquid phase of the liquefied gas. In other words, the device for cooling the liquefied gas is controlled such that the temperature of the liquid phase of the liquefied gas does not drop below said temperature threshold T min . The operating parameters of the cooling device are therefore set so that the temperature of the liquid phase of the liquefied gas does not drop below the aforementioned threshold.

A titre d'exemple, pour une installation équipée d'un dispositif de refroidissement du gaz liquéfié, tel que décrit et illustré en relation avec la figure 1, le seuil de température minimum peut être garanti en fixant une pression seuil correspondante, à l'intérieur de l'enceinte de vaporisation 22.By way of example, for an installation equipped with a device for cooling the liquefied gas, as described and illustrated in relation to figure 1 , the minimum temperature threshold can be guaranteed by setting a corresponding threshold pressure inside the vaporization chamber 22.

De même, pour une installation équipée d'un dispositif de refroidissement du gaz liquéfié, tel que décrit et illustré en relation avec la figure 2, le seuil de température minimum peut être garanti en fixant une pression seuil correspondante à l'intérieur de la cloche à dépression 31.Likewise, for an installation equipped with a device for cooling the liquefied gas, as described and illustrated in relation to figure 2 , the minimum temperature threshold can be guaranteed by setting a corresponding threshold pressure inside the vacuum chamber 31.

Lorsque le dispositif de refroidissement du gaz liquéfié est un dispositif de liquéfaction comportant un circuit de circulation de gaz coopérant avec un circuit frigorifique, le respect du seuil de température minimum peut être assuré en fixant un débit ou une pression seuil pour le fluide frigorigène dans le circuit frigorifique. Alternativement, l'on peut mesurer la température sur les ailettes de l'évaporateur du circuit frigorifique et réguler la puissance du circuit frigorifique, avec un coefficient de sécurité adapté, en fonction de la température mesurée de manière à respecter le seuil de température minimum précité.When the liquefied gas cooling device is a liquefaction device comprising a gas circulation circuit cooperating with a refrigerating circuit, compliance with the minimum temperature threshold can be ensured by setting a flow rate or a threshold pressure for the refrigerant in the refrigeration circuit. Alternatively, the temperature can be measured on the fins of the refrigeration circuit evaporator and the capacity of the refrigeration circuit can be regulated, with an appropriate safety coefficient, as a function of the temperature measured so as to respect the aforementioned minimum temperature threshold. .

Selon une variante de réalisation, le seuil de température Tmin est préalablement fixé puis communiqué au module de commande 26. La pression de consigne Pc1 est alors déterminée par le module de commande 26 en prenant le seuil de température Tmin comme valeur de T dans l'équation Pc1 = f1(T) = g(T) - ε1.According to an alternative embodiment, the temperature threshold T min is set beforehand and then communicated to the control module 26. The setpoint pressure P c1 is then determined by the control module 26 by taking the temperature threshold T min as the value of T in the equation P c1 = f 1 (T) = g (T) - ε 1 .

Selon une variante de réalisation alternative, c'est la pression de consigne Pc1 qui est préalablement fixée puis communiquée au dispositif de refroidissement. Dans ce cas, le seuil de température Tmin est déterminé au moyen d'une relation Tmin = f3(Pc1) ; avec :

  • f3 : une fonction représentative de la courbe d'équilibre liquide-vapeur du gaz liquéfié ou d'un composant majoritaire du gaz liquéfié dans un diagramme pression température ; et
  • Pc1 : la pression de consigne dans la barrière thermiquement isolante primaire 6.
According to an alternative embodiment variant, it is the setpoint pressure P c1 which is set beforehand and then communicated to the cooling device. In this case, the temperature threshold T min is determined by means of a relation T min = f 3 (P c1 ); with :
  • f 3 : a function representative of the liquid-vapor equilibrium curve of the liquefied gas or of a major component of the liquefied gas in a pressure-temperature diagram; and
  • P c1 : the setpoint pressure in the primary thermally insulating barrier 6.

En référence à la figure 6, une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.With reference to the figure 6 , a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship. The wall of the vessel 71 comprises a primary watertight barrier intended to be in contact with the LNG contained in the vessel, a secondary watertight barrier arranged between the primary watertight barrier and the double hull 72 of the vessel, and two insulating barriers arranged respectively between the vessel. primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double shell 72.

De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.In a manner known per se, loading / unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of suitable connectors, to a maritime or port terminal for transferring a cargo of LNG from or to the tank 71.

La figure 6 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.The figure 6 shows an example of a marine terminal comprising a loading and unloading station 75, an underwater pipeline 76 and a shore installation 77. The loading and unloading station 75 is a off-shore fixed installation comprising a movable arm 74 and a tower 78 which supports the movable arm 74. The movable arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73. The movable arm 74 can be oriented. 'suitable for all LNG tankers. A connecting pipe (not shown) extends inside the tower 78. The loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77. The latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75. The underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.

Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.To generate the pressure necessary for the transfer of the liquefied gas, pumps on board the ship 70 and / or pumps fitted to the shore installation 77 and / or pumps fitted to the loading and unloading station 75 are used.

Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with several particular embodiments, it is obvious that it is in no way limited thereto and that it comprises all the technical equivalents of the means described as well as their combinations if these come within the scope of the invention.

L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.The use of the verb “comprise”, “understand” or “include” and its conjugated forms does not exclude the presence of other elements or other steps than those set out in a claim. The use of the indefinite article "a" or "a" for an element or a stage does not exclude, unless otherwise stated, the presence of a plurality of such elements or stages.

Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.In the claims, any reference sign in parentheses cannot be interpreted as a limitation of the claim.

Claims (22)

  1. A method of controlling a pumping device associated with a sealed and thermally insulative tank (2), said tank (2) containing a liquefied gas (8) having a liquid phase and a vapor phase and including walls having a multilayer structure comprising a sealing membrane (7) in contact with the liquefied gas (8) and a thermally insulative barrier (3, 6) disposed between the sealing membrane (7) and a supporting structure (4), said thermally insulative barrier (3, 6) including solid materials and a gas phase, said pumping device including a vacuum pump (14, 16) connected to the thermally insulative barrier (3, 6) in order to place the gas phase at a negative relative pressure, said method comprising the steps of:
    - measuring a pressure P1 of the gas phase of the thermally insulative barrier (3, 6);
    - determining a setpoint pressure Pc1;
    - controlling the vacuum pump (14, 16) so as to slave the pressure P1 of the gas phase of the thermally insulative barrier (3, 6) to the setpoint pressure Pc1, the said method being characterized in that the setpoint pressure Pc1 is determined by means of an equation Pc1 = f1(T), f1 being an increasing monotonous function and T being a variable representing a measured temperature of the liquid phase of the liquefied gas (8) or a minimum temperature threshold liable to be reached by the liquid phase of the liquefied gas (8) and corresponding to an operating state of a device for cooling the liquefied gas (8) .
  2. The method as claimed in claim 1, in which the variable T is obtained by measurement of the temperature of the liquid phase of the liquefied gas (8) or by measurement of an operating parameter of the device for cooling the liquefied gas representing the minimum temperature threshold liable to be reached by the liquid phase of the liquefied gas.
  3. The method as claimed in claim 1, in which the variable T is obtained by reception of an operating parameter of the device for cooling the liquefied gas representing the minimum temperature threshold liable to be reached by the liquid phase of the liquefied gas (8).
  4. The method as claimed in any one of claims 1 to 3, in which the function f1 is an affine transformation of a function representing a liquid-vapor equilibrium curve in a temperature-pressure diagram of the liquefied gas (8) or a component of the liquefied gas (8) which has the lowest evaporation temperature of the components constituting the liquefied gas that are present in a molar proportion greater than 5%.
  5. The method as claimed in claim 4, in which the function f1 is of the form f1(T) = g(T) - ε1, g being a function representing a liquid-vapor equilibrium curve in a temperature-pressure diagram of the liquefied gas (8) or a component of the liquefied gas (8) which has the lowest evaporation temperature of the components of the liquefied gas that are present in a molar proportion greater than 5%, and ε1 being a positive constant.
  6. The method as claimed in any one of claims 1 to 5, in which the sealing membrane is a primary sealing membrane (7) and the thermally insulative barrier is a primary thermally insulative barrier (6), the multilayer structure further including a secondary thermally insulative barrier (3) that rests against the supporting structure (4) and includes solid materials and a gas phase and a secondary sealing membrane (5) disposed between the secondary thermally insulative barrier (3) and the primary thermally insulative barrier (6).
  7. The method as claimed in claim 6, in which the pumping device includes a second vacuum pump (14) connected to the secondary thermally insulative barrier (3) in order to place the gas phase of the secondary thermally insulating barrier (3) at a negative relative pressure, the method including the steps of:
    - measuring a pressure P2 of the gas phase of the secondary thermally insulative barrier (3); and
    - controlling the second vacuum pump (14) so as to slave the pressure P2 of the gas phase of the thermally insulative barrier to a setpoint pressure Pc2.
  8. The method as claimed in claim 7, in which the second setpoint pressure Pc2 is determined by means of the equation Pc2 = f2(T), f2 being an increasing monotonous function.
  9. The method as claimed in claim 8, in which the function f2 is an affine transformation of a function representing a liquid-vapor equilibrium curve in a temperature-pressure diagram of the liquefied gas (8) or a component of the liquefied gas (8) which has the lowest evaporation temperature of the components constituting the liquefied gas that are present in a molar proportion greater than 5%.
  10. The method as claimed in claim 9, in which the function f2 is of the form f2(T) = g(T) - ε2, g being a function representing a liquid-vapor equilibrium curve in a temperature-pressure diagram of the liquefied gas (8) or a component of the liquefied gas (8) which has the lowest evaporation temperature of the components of the liquefied gas that are present in a molar proportion greater than 5%, and ε2 being a positive constant.
  11. The method as claimed in claim 7, in which the second setpoint pressure Pc2 is established by means of the equation Pc2 = h (P1) where h is an increasing monotonous function.
  12. The method as claimed in claim 11, in which the function h is of the form h (P1) = P1 - e, ε'2 being a constant.
  13. An installation (1) for storing a liquefied gas including:
    - a sealed and thermally insulative tank (2) intended to contain a liquefied gas (8) in a diphasic form with a liquid phase and a vapor phase, the tank (2) including walls having a multilayer structure comprising a sealing membrane (7) in contact with the liquefied gas and a thermally insulative barrier (3, 6) disposed between the sealing membrane (7) and a supporting structure (4), said thermally insulative barrier including solid materials and a gas phase;
    - a pressure sensor (28) adapted to measure the pressure P1 of the gas phase in the thermally insulative barrier (3, 6); and
    - a pumping device including a vacuum pump (14, 16) connected to the thermally insulative barrier (3, 6) and adapted to place the gas phase of the thermally insulative barrier (3, 6) at a negative relative pressure and a control module (26) that is adapted to:
    • determine a setpoint pressure Pc1; and
    • controlling the vacuum pump (16) so as to slave the pressure P1 of the gas phase of the thermally insulative barrier (3, 6) to the setpoint pressure Pc1, the said installation being characterized in that the control module (26) is adapted to determine the setpoint pressure Pc1 by means of an equation Pc1 = f1(T); f1 being an increasing monotonous function and T being a variable representing the real temperature of the liquid phase of the liquefied gas (8) or the minimum temperature liable to be reached by the liquid phase of the liquefied gas (8) for a particular operation of a device for cooling the liquefied gas (8).
  14. The installation as claimed in claim 13, further including a temperature sensor (27) adapted to measure the temperature T of the liquid phase of the liquefied gas (8) and to deliver it to the control module (26).
  15. The installation as claimed in claim 13 or 14, further including a device for cooling the liquefied gas adapted to lower the temperature of a portion of the liquefied gas below the liquid-vapor equilibrium temperature of the liquefied gas at the pressure at which the liquefied gas is stored in the tank.
  16. The installation as claimed in claim 15, in which the cooling device is adapted to conform to a minimum temperature threshold for the liquid phase of the liquefied gas and in which the control module (26) is connected to the cooling device and adapted to determine the setpoint pressure Pc1 taking as the variable T the minimum temperature threshold.
  17. The installation as claimed in claim 15, including a sensor adapted to measure an operating parameter of the device for cooling the liquefied gas representing the minimum threshold liable to be reached by the liquid phase of the liquefied gas.
  18. The installation as claimed in any one of claims 13 to 17, in which the sealing membrane is a primary sealing membrane (7) and the thermally insulative barrier is a primary thermally insulative barrier (6), the multilayer structure further including a secondary thermally insulative barrier (3) that rests against the supporting structure (4) and includes solid materials and a gas phase and a secondary sealing membrane (5) disposed between the secondary thermally insulative barrier (3) and the primary thermally insulative barrier (6).
  19. The installation as claimed in any one of claims 13 to 18, further including a second pressure sensor (29) adapted to measure the pressure P2 in the secondary thermally insulative barrier and in which a pumping device further includes a second vacuum pump (14) connected to the secondary thermally insulative barrier (3) in order to place the gas phase of the secondary thermally insulative barrier (3) at a negative relative pressure, the control module (26) that is adapted to control the second vacuum pump (14) as a function of a setpoint pressure Pc2 and the measurement of the pressure P2 of the gas phase of the secondary thermally insulative barrier (3).
  20. A ship (70) including a double hull and the installation as claimed in any one of claims 13 to 19 for storing a liquefied gas, the tank (2) of the liquefied gas storage installation being disposed in the double hull.
  21. A method of loading of offloading a ship (70) according to claim 20, in which a fluid is fed through insulated pipes (73, 79, 76, 81) from or to a floating or land storage installation (77) to or from the tank of the ship (71).
  22. A system for transferring a fluid, the system including a ship (70) according to claim 20, insulated pipes (73, 79, 76, 81) adapted to connect the tank (71) installed in the hull of the ship to a floating or land storage installation (77) and a pump for driving a fluid through the insulated pipes from or to the floating or land storage installation to or from the tank of the ship.
EP16750984.3A 2015-07-29 2016-07-22 Device for operating a pumping device connected to a thermally insulating barrier of a tank used for storing a liquefied gas Active EP3329172B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1557250A FR3039499B1 (en) 2015-07-29 2015-07-29 METHOD FOR CONTROLLING A PUMPING DEVICE CONNECTED TO A THERMALLY INSULATING BARRIER OF A STORAGE TANK OF A LIQUEFIED GAS
PCT/FR2016/051921 WO2017017364A2 (en) 2015-07-29 2016-07-22 Device for operating a pumping device connected to a thermally insulating barrier of a tank used for storing a liquefied gas

Publications (2)

Publication Number Publication Date
EP3329172A2 EP3329172A2 (en) 2018-06-06
EP3329172B1 true EP3329172B1 (en) 2021-08-04

Family

ID=54015117

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16750984.3A Active EP3329172B1 (en) 2015-07-29 2016-07-22 Device for operating a pumping device connected to a thermally insulating barrier of a tank used for storing a liquefied gas

Country Status (6)

Country Link
EP (1) EP3329172B1 (en)
JP (1) JP6605703B2 (en)
KR (2) KR102035643B1 (en)
CN (1) CN107850260B (en)
FR (1) FR3039499B1 (en)
WO (1) WO2017017364A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2017393B1 (en) * 2016-08-30 2018-03-08 Koole Eng B V Method for assembling a transport tank in a vessel and a corresponding vessel
FR3073602B1 (en) 2017-11-10 2019-11-22 Gaztransport Et Technigaz METHOD FOR DETERMINING AN OPTIMUM VALUE OF AT LEAST ONE PARAMETER FOR IMPLEMENTING A METHOD FOR COLDING A WATERPROOF AND THEMALLY INSULATING TANK
FR3087537B1 (en) * 2018-10-22 2021-01-29 Gaztransport Et Technigaz LEAKAGE TEST PROCEDURE OF A MEMBRANE AND ASSOCIATED LEAK DETECTION DEVICE
US11566753B2 (en) * 2018-12-27 2023-01-31 Chart Inc. Vapor pressure regulator for cryogenic liquid storage tanks and tanks including the same
KR102467833B1 (en) * 2019-06-25 2022-11-15 삼성중공업 주식회사 Liquefied gas storage tank structure
JP6595143B1 (en) * 2019-07-03 2019-10-23 株式会社神戸製鋼所 Compressor unit and control method of compressor unit
JP6716183B1 (en) * 2019-07-22 2020-07-01 株式会社神戸製鋼所 Control method of compressor unit, compressor unit and compression stage
FR3107941B1 (en) * 2020-03-09 2022-03-11 Gaztransport Et Technigaz INSULATING MODULAR BLOCK FOR WATERTIGHT AND THERMALLY INSULATING TANK
RU2743874C1 (en) * 2020-04-10 2021-03-01 Общество с ограниченной ответственностью "НПК Изотермик" Device for storage of liquefied gases
NO20201155A1 (en) * 2020-10-23 2022-04-25 Ic Tech As Improved cryogenic storage tank
CN112855515B (en) * 2021-03-12 2022-01-28 深圳市鑫路远电子设备有限公司 Vacuum pump safety monitoring method and device
JP2022157756A (en) * 2021-03-31 2022-10-14 川崎重工業株式会社 Multiple shell tank, ship, and gas pressure adjustment method
JP7038885B1 (en) * 2021-10-12 2022-03-18 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード A liquefied carbon dioxide storage tank equipped with a carbon dioxide gas and / or liquefied carbon dioxide cooling system, a cooling method, and the cooling system, and a ship equipped with the liquefied carbon dioxide storage tank.

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2781036B1 (en) * 1998-07-10 2000-09-08 Gaz Transport & Technigaz WATERPROOF AND THERMALLY INSULATING TANK WITH SIMPLIFIED INSULATING BARRIER, INTEGRATED INTO A VESSEL CARRIER STRUCTURE
JP2002147694A (en) * 2000-11-16 2002-05-22 Mitsubishi Heavy Ind Ltd Very low temperature fluid storing container
GB0320474D0 (en) * 2003-09-01 2003-10-01 Cryostar France Sa Controlled storage of liquefied gases
US9869429B2 (en) * 2010-08-25 2018-01-16 Chart Industries, Inc. Bulk cryogenic liquid pressurized dispensing system and method
FR2978748B1 (en) * 2011-08-01 2014-10-24 Gaztransp Et Technigaz SEALED AND THERMALLY INSULATED TANK
FR2991748B1 (en) * 2012-06-11 2015-02-20 Gaztransp Et Technigaz SEALED AND THERMALLY INSULATED TANK
FR2996625B1 (en) * 2012-10-09 2017-08-11 Gaztransport Et Technigaz WATERPROOF AND INSULATED TANK FOR CONTAINING COLD FLUID UNDER PRESSURE
JP6212553B2 (en) * 2013-06-21 2017-10-11 川崎重工業株式会社 Liquefied gas holding tank and liquefied gas carrier
FR3014197B1 (en) * 2013-11-29 2017-11-17 Gaztransport Et Technigaz MONITORING A SEALED AND THERMALLY INSULATING TANK
FR3018278B1 (en) * 2014-03-04 2020-02-14 Gaztransport Et Technigaz TREATMENT OF FORCED DIFFUSION OF AN INSULATING PART IN EXPANDED SYNTHETIC FOAM

Also Published As

Publication number Publication date
KR102079267B1 (en) 2020-02-19
CN107850260A (en) 2018-03-27
EP3329172A2 (en) 2018-06-06
CN107850260B (en) 2020-03-31
JP6605703B2 (en) 2019-11-13
KR20180017105A (en) 2018-02-20
KR20190119181A (en) 2019-10-21
FR3039499B1 (en) 2018-12-07
JP2018529049A (en) 2018-10-04
WO2017017364A3 (en) 2017-04-13
FR3039499A1 (en) 2017-02-03
WO2017017364A2 (en) 2017-02-02
KR102035643B1 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
EP3329172B1 (en) Device for operating a pumping device connected to a thermally insulating barrier of a tank used for storing a liquefied gas
EP3218639B1 (en) Device and method for cooling a liquefied gas
EP3271635B1 (en) Method for cooling a liquefied gas
EP2758302B1 (en) Sea platform having external containers
EP3433530B1 (en) Facility for feeding fuel gas to a member consuming gas and for liquefying said fuel gas
WO2017216477A1 (en) Gas dome structure for a sealed, thermally insulated vessel
WO2016128696A1 (en) Management of fluids in a sealed and thermally insulated tank
FR3017924A1 (en) METHOD AND SYSTEM FOR INERTING A WALL OF A STORAGE TANK OF A LIQUEFIED FUEL GAS
EP2984386B1 (en) Improved system for treating and supplying natural gas comprising a circuit for heating the tank
WO2019092331A1 (en) Method for determining an optimal value of at least one parameter for implementing a method for cooling a watertight and thermally insulating tank
WO2021053055A1 (en) Sealed and thermally insulating tank
EP4098539B1 (en) Vessel for transporting or using a cold fluid
WO2023198853A1 (en) Facility for storing and/or transporting liquefied gas
WO2022122982A1 (en) Methods for gassing up and for gas tests in a storage facility for liquefied gas
FR3135774A1 (en) Gas dome and sealed and thermally insulating tank comprising such a gas dome

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171215

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210316

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1417321

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016061612

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1417321

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016061612

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016061612

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220722

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220722

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220722

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230727

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240628

Year of fee payment: 9