EP3329115B1 - Verfahren zum herstellen eines düsenkörpers für ein fluideinspritzventil und fluideinspritzventil - Google Patents

Verfahren zum herstellen eines düsenkörpers für ein fluideinspritzventil und fluideinspritzventil Download PDF

Info

Publication number
EP3329115B1
EP3329115B1 EP16734610.5A EP16734610A EP3329115B1 EP 3329115 B1 EP3329115 B1 EP 3329115B1 EP 16734610 A EP16734610 A EP 16734610A EP 3329115 B1 EP3329115 B1 EP 3329115B1
Authority
EP
European Patent Office
Prior art keywords
nozzle body
blind hole
wall
injection hole
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16734610.5A
Other languages
English (en)
French (fr)
Other versions
EP3329115B8 (de
EP3329115A1 (de
Inventor
Dejan Jovovic
Hong Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP3329115A1 publication Critical patent/EP3329115A1/de
Application granted granted Critical
Publication of EP3329115B1 publication Critical patent/EP3329115B1/de
Publication of EP3329115B8 publication Critical patent/EP3329115B8/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1833Discharge orifices having changing cross sections, e.g. being divergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1846Dimensional characteristics of discharge orifices

Definitions

  • the invention relates to a method for producing a nozzle body for a fluid injection valve and a fluid injection valve for a motor vehicle, which are suitable for metering fluid, in particular of fuel.
  • fluid injection valves are often formed with a plurality of injection holes to generate a fluid spray and feed it into a combustion chamber of an internal combustion engine.
  • An important parameter is a fluid penetration of the fluid spray within the combustion chamber, so Among other things, to control a combustion process in the internal combustion engine and the emission of pollutants.
  • the fluid penetration is given by a distribution of the fluid spray after a predetermined delay time, starting from a start time of the injection into the combustion chamber.
  • the fluid penetration is dimensioned along an associated axis of the respective injection hole and represents a distance from an outer mouth of the injection hole, which faces the combustion chamber of the internal combustion engine, for example up to a predetermined deceleration point.
  • fluid injection valves In general, it is a concern to keep the penetration of the fluid spray low, for example, to prevent an impact of fluid spray on the inner walls of the combustion chamber.
  • fluid injection valves Depending on the application and the geometry of the respective combustion chamber, fluid injection valves must be precisely positioned in order to ensure appropriate specifications of the fluid penetration.
  • a method for producing a nozzle body for a fluid injection valve comprises providing a raw nozzle body having a longitudinal axis and, with respect to the longitudinal axis, a first axial end and a second axial end.
  • the second axial end has a nozzle body tip.
  • the method further comprises introducing a nozzle body recess into the raw nozzle body from the first axial end and thereby forming a wall between the nozzle body recess and an outer surface of the raw nozzle body. Furthermore, the method comprises providing geometry data of at least one injection hole to be provided, which is intended to penetrate the wall outwardly from the nozzle body recess, with an inner orifice facing the nozzle body recess and an outer orifice facing the outer surface.
  • the method comprises determining a height of a blind hole stage of a blind hole to be formed as a function of a predetermined fluid penetration starting from the outer mouth of the respective injection hole, the surroundings of the nozzle body.
  • the shape of a spray cone of the fluid delivered by means of the injection hole is predetermined, and the height of the blind hole stage is determined as a function of the shape of the spray cone.
  • the "environment" of the nozzle body is, in particular, the space which adjoins the outer surface of the wall and faces away from the nozzle body recess.
  • the method comprises adapting a part of the shape of an inner surface of the wall and thereby forming the blind hole with the blind hole stage with the determined height with respect to the longitudinal axis in a region of the second axial end of the Rohdüsen stressess.
  • the method comprises introducing the at least one injection hole with the provided geometry data in a region of the blind hole between a blind hole end that faces the second axial end and the nozzle body tip such that the at least one injection hole penetrates the wall.
  • the fluid penetration can advantageously be influenced in a targeted manner.
  • the fluid penetration for example, represents a propagation of a fluid spray in the flow direction at a downstream end of the respective injection hole relative to a flowing fluid flowing in operation from the first axial end toward the second axial end.
  • an inner and / or outer contour of the nozzle body is first produced, for example.
  • the raw nozzle body already has a prefabricated inner and / or outer contour of the nozzle body.
  • the trainee blind hole stage of the associated blind hole is not yet introduced as desired.
  • the height of the blind hole stage is determined prior to introduction into the provided and optionally prefabricated Rohdüsenharm depending on a predetermined fluid penetration for the nozzle body or an associated fluid injection valve and is subsequently, for example by means of drilling or milling, formed a blind hole contour of the blind hole.
  • the introduction of the blind hole contour with the determined height of the blind hole stage on an inner side of the raw nozzle body takes place, for example, prior to the introduction of the at least one injection hole, which for example is also drilled and / or milled into the nozzle body to be manufactured.
  • blind hole contour is at least a part of the shape of an inner surface of the wall.
  • the fluid penetration can be controlled without, for example, promoting sooting of the nozzle body tip.
  • Forming the sack stage having the detected height may affect the fluid penetration for all injection holes to be formed, for example, because the blind hole stage is located in front of the inner mouth of the respective injection hole with respect to a flow direction of a flowing fluid.
  • An individual adaptation of the fluid penetration of a respective injection hole can be realized, for example, by adjusting the diameter and / or a cone-shaped formation of the injection hole.
  • the blind hole stage is formed, for example, substantially parallel to the longitudinal axis of the nozzle body.
  • the blind hole stage can also have a predetermined inclination to the longitudinal axis and thereby influence the fluid penetration.
  • the height of the blind hole stage then refers, for example, to a projection of its geometric length parallel to the longitudinal axis.
  • blind hole stage refers to a blind hole portion in which the inner surface of the wall is cylindrical.
  • the fluid penetration is selectively controlled by geometry data, which are designed to be controlled substantially within the nozzle body.
  • geometry data are possibly abbreviated with the term "geometry".
  • it is not necessary to adjust a geometry of the outer orifice of the respective injection hole to influence the fluid penetration for example, by forming a stepped hole at the downstream end of the injection hole.
  • a stepped hole there is a risk of increased deposits of carbon, which are due to remaining fuel on the surface of the step hole and the nozzle tip. This leads to the formation of honeycomb-shaped carbon structures, which can adversely affect both the function of the nozzle body or of an associated fluid injection valve and lead to increased pollutant emissions.
  • the injection hole is formed so as to penetrate the wall from the nozzle body recess to the outer surface of the nozzle body unthreatened.
  • the surface of the injection hole is free from steps and kinks, in particular from the inner surface to the outer surface of the nozzle body. Thus, the risk of coking in the injection hole is particularly low.
  • a nozzle body and a fluid injection valve can be realized, which counteract an increased deposition of carbon and help to keep pollutant emissions low in an associated internal combustion engine.
  • a length and a diameter are determined as the geometry of the at least one injection hole as a function of the predetermined fluid penetration.
  • the height of the blind hole stage is determined as a function of the fluid penetration, but also a length and a diameter of at least one cylindrical injection hole.
  • a desired fluid penetration can be specifically achieved by forming and interacting with multiple geometric parameters and optimized depending on the application and combustion chamber.
  • such a fluid penetration for each injection hole can be adjusted individually and / or specifications for a fluid penetration can be met, which would not be achieved by the geometry of the blind hole stage alone.
  • the height of the blind hole stage is determined as a function of the determined length and the determined diameter of the at least one injection hole.
  • Such a method takes into account that the fluid penetration is dependent on an interaction of the length and the diameter of the respective injection hole and the height of the blind hole stage. Depending on each other, these parameters can be coordinated so that a desired fluid penetration is achieved. For example, the requirements of the fluid penetration should preferably be achieved by forming the blind hole stage. Optionally, however, a value for the height of the blind hole stage is determined, which can be realized only with difficulty in the context of a manufacturing process. It is then useful, for example, to additionally determine a value for the height of the blind hole stage as a function of the geometry of the injection hole in order to achieve the desired fluid penetration and to enable a simple production process.
  • adjusting the part of the shape of the inner surface of the wall and thereby forming the blind hole with the blind hole stage with the determined height by the wall thickness of a portion of the wall between the nozzle body and the outer surface is reduced.
  • the wall thickness is reduced by means of a material-removing method, such as drilling or milling.
  • a length and a diameter are specified as geometric data of the at least one injection hole in order to achieve the predetermined fluid penetration.
  • the invention makes use of the idea that the fluid penetration can be largely determined by the ratio of length to diameter of the injection hole.
  • the height of the blind hole stage is expediently chosen such that when forming the blind hole, the blind hole stage reduces the wall thickness between the inner surface and the outer surface to such an extent that when inserting the injection hole with the determined length and the outer mouth in the outer surface inner mouth is positioned in the inner surface.
  • the method comprises providing a cone-shaped geometry of the at least one injection hole, the geometry data comprising a first and a second diameter.
  • the method further includes Determining the first diameter and the second diameter of the at least one injection hole in dependence on the predetermined fluid penetration, wherein the first diameter of the inner orifice and the second diameter of the outer orifice is associated.
  • a cone-shaped injection hole has a truncated cone shape. This can have an advantageous effect on fluid penetration. Depending on the particular application and the respective combustion chamber of the associated internal combustion engine, a cone-shaped injection hole or a cylindrical injection hole may be advantageous for achieving the specifications for a desired fluid penetration.
  • a value for the height of the blind hole stage is determined, which can only be realized with difficulty in the context of a production method and in combination with a cylindrical injection hole. Then it may be useful to provide a cone-shaped geometry of the injection hole and to determine the length and the first and second diameter of the at least one injection hole depending on the desired fluid penetration.
  • the first diameter and the second diameter of the at least one injection hole are additionally determined as a function of the determined height.
  • the fluid penetration is dependent on an interaction of the length and the two diameter of the cone-shaped injection hole. It can also be dependent on the height of the blind hole stage. Depending on each other, these parameters can be coordinated so that a desired fluid penetration is achieved.
  • the height of the blind hole stage is determined depending on the cone-shaped geometry of the injection hole, since the dependence exists on both sides.
  • adjusting a part of the shape of the inner surface of the wall comprises forming a seat region for a nozzle needle adjacent to the blind hole step in the direction of the first axial end.
  • One such method includes forming a seat area for a nozzle needle that prevents or otherwise releases fluid flow in a fluid injection valve in a closed position in contact with the seating area.
  • adjusting a part of the shape of the inner surface of the wall comprises forming a guide region for guiding a nozzle needle in the region of the first axial end in the direction of the second axial end.
  • This method step also permits a further embodiment of the nozzle body for use in a fluid injection valve, in order to enable a controlled metering of fluid by means of the nozzle body and the associated fluid injection valve.
  • the adaptation of a part of the shape of the inner surface of the wall to form the seat region and / or the guide region can be timed before or during the process after or at the same time as adjusting a part of the shape of the inner surface of the wall to form the blind hole.
  • an apparatus for a fluid injection valve includes a nozzle body made according to any of the methods of manufacturing the nozzle body described above, and a valve body coupled to the nozzle body.
  • a device realizes a possible intermediate stage between the production of the nozzle body and a fluid injection valve which comprises an embodiment of the nozzle body.
  • the above-described objective properties and functions of the method for producing the nozzle body also apply to the device.
  • the nozzle body is positively and / or positively and / or materially coupled to the valve body.
  • Such a device realizes possible types of coupling of the nozzle body with the valve body, in which the nozzle body produced as described is connected, for example in a further method step with the valve body conclusive.
  • the valve body may be formed integrally with the nozzle body.
  • a valve body is also formed, which is suitable, for example, for receiving further components of the fluid injection valve.
  • the raw nozzle body provided in the method for manufacturing a nozzle body also includes the valve body to be formed, and the described nozzle body substantially forms the tip of the valve body.
  • a fluid injection valve for a motor vehicle is specified.
  • This can have a nozzle body or the device with the nozzle body.
  • it has a nozzle needle, which is arranged at least partially axially movable in the nozzle body recess with respect to the longitudinal axis and which is designed to prevent a fluid flow in a closed position in cooperation with a seating area and otherwise release it.
  • a fluid injection valve has in particular the previously described properties of the device or of the nozzle body, which is produced according to one of the methods described above.
  • FIG. 1 shows an example of a flowchart for a method for manufacturing a nozzle body 1 for a fluid injection valve, which is started in a step S1 and in which a Rohdüsen redesign is provided, which has a longitudinal axis A and a first axial end 3 and a second axial end 5 with a nozzle body tip 20 with respect to the longitudinal axis A.
  • a nozzle body recess 7 is introduced into the raw nozzle body starting from the first axial end 3, thereby forming a wall 9 between the nozzle body recess 7 and an outer surface 11 of the nozzle body Rohdüsen emotionss trained.
  • the nozzle body recess 7 is drilled and / or rotated, for example, in the Rohdüsen redesign.
  • a geometry of at least one injection hole 17 to be provided is provided, which is to penetrate the wall 9, starting from the nozzle body 7 to the outside, with an inner mouth 18, which faces the Düsen redesignaus PrincipleEnglishung 7, and an outer mouth 19, the Exterior surface 11 faces.
  • the provided geometry includes, for example, a diameter and a length L and a diameter for a cylindrical injection hole 17 to be formed.
  • the geometry provided includes a first diameter D1, a second diameter D2, and a length L for a tapered injection hole 17 to be formed 17 provided for the nozzle body 1, if necessary, some injection holes 17 are cylindrical and some conical.
  • the provided geometry data for each injection hole 17 additionally comprises at least one element from the following group: distance from the longitudinal axis A, axial position with respect to the longitudinal axis A, angular position with respect to the longitudinal axis A, inclination with respect to the longitudinal axis A.
  • the geometry to be provided is determined as a function of a predetermined fluid penetration from the outer orifice 19 of the respective injection hole 17 to the outside of the nozzle body 1. For example, values for diameters D1 and D2 and length L of a cone-shaped injection hole 17 are determined in this way. which contribute to achieve a desired fluid penetration.
  • a height H of a blind hole 15 of a blind hole 13 to be formed is determined as a function of the predetermined fluid penetration starting from the outer mouth 19 of the respective injection hole 17 to the outside of the nozzle body 1.
  • a nozzle body 1 which has a blind hole contour determined as a function of a desired fluid penetration, thus enables reliable operation of a fluid injection valve, which comprises the nozzle body 1 to be manufactured, and contributes to an increased service life.
  • the formation of the sack stage 15 with the determined height H affects the fluid penetration for all injection holes 17 to be introduced, since the blind hole stage 15 is arranged with respect to a flow direction of a flowing fluid in front of the inner mouth 18 of the respective injection hole 17 still to be introduced.
  • the respective injection hole 17 is then arranged downstream of the blind hole stage 15 with respect to the direction of flow of a fluid.
  • the at least one intended injection hole 17 is formed between a blind hole end 16 of the blind hole 15 and the nozzle body tip 20.
  • the height H of the blind hole stage 15 is additionally determined as a function of the provided and optionally determined geometry of the at least one injection hole 17 to be formed.
  • the fluid penetration is dependent on an interaction, for example, the length L and the diameter of a cylindrical injection hole 17 and the height H of the blind hole stage 15.
  • these parameters can be coordinated so that a desired fluid penetration is achieved.
  • requirements for the fluid penetration can thus be met, which are only difficult to realize by means of forming the blind hole 15 alone.
  • a part of the shape of an inner surface of the wall 9 is adapted and thereby formed the blind hole 13 with the blind hole stage 15 with the determined height H with respect to the longitudinal axis A in a region of the second axial end 5 of the Rohdüsen stressess.
  • the blind hole stage 15 is formed substantially parallel to the longitudinal axis A of the nozzle body 1.
  • the blind hole 15 but also have a tendency to the longitudinal axis A and thereby affect the fluid penetration.
  • the height H refers to the Blind hole stage 15 then, for example, to a projection of their geometric length parallel to the longitudinal axis A.
  • the adaptation of a part of the shape of the inner surface of the wall 9, for example, also comprises forming a seat region 21 for a nozzle needle adjacent to the blind hole 15 in the direction of the first axial end 3 and thus away from the nozzle body tip 20. In a closed position, the seat 21 prevents Cooperation with a sealing seat of the nozzle needle fluid flow and otherwise releases it in an open position.
  • fitting a part of the shape of the inner surface of the wall 9 also comprises forming a guide region 23 for guiding the nozzle needle in the region of the first axial end 3 in the direction of the second axial end 5.
  • the at least one injection hole 17 with the provided geometry data and optionally in response to the predetermined fluid penetration and / or the determined height H of the blind hole 15 in an area of the blind hole 13 between the blind hole end 16, which faces the second axial end 15 is, and the nozzle body tip 20 introduced.
  • the at least one injection hole 17 is introduced by drilling and / or turning in the Rohdüsenanalysis and so the nozzle body 1 is formed.
  • a step S13 the method for manufacturing the nozzle body for a fluid injection valve is ended.
  • the height H is selected such that the blind hole 15 reduces the wall thickness of the wall 9 such that the introduced according to the geometry data provided in the wall 9 injection hole 17, the wall downstream of the blind hole 15 from its inner surface 10 to the outer surface 11 of the nozzle body 1 - in particular stepless - penetrates.
  • FIG. 2 shows a sectional view of an embodiment of the nozzle body 1, for example by means of in FIG. 1 described method was prepared.
  • the nozzle body 1 has the first axial end 3, the second axial end 5 and the longitudinal axis A and is formed substantially rotationally symmetrical.
  • the wall 9 forms the nozzle body recess 7 and comprises the guide region 23, the seating area 21 and a blind hole contour of the blind hole 13 with the blind hole stage 15, which is formed with the height H determined as a function of the predetermined fluid penetration.
  • the blind hole 15 is formed cylinder jacket coaxial with the longitudinal axis A.
  • the blind hole 15 optionally has an inclination to the longitudinal axis A, so that the nozzle body 1 comprises a frustoconical blind hole stage 15.
  • the first diameter D1 is associated with the inner mouth 18 and is smaller than the second diameter D2, which is associated with the outer mouth 19 of the injection hole 17.
  • the injection hole 17 has a cone angle K, which can affect the fluid penetration.
  • the cone angle K is determined by the two diameters D1 and D2 and the length L of the injection hole 17 and has been provided as a geometry of the injection hole 17 in the course of producing the nozzle body 1 and optionally determined as a function of a desired fluid penetration.
  • the nozzle body 1 allows in a simple manner by means of the controlled trained blind hole 15 with the determined height H a desired fluid penetration and thus a reliable operation of an associated fluid injection valve. It helps to keep pollutant emissions low in an internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Nozzles (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen eines Düsenkörpers für ein Fluideinspritzventil und ein Fluideinspritzventil für ein Kraftfahrzeug, die zum Zumessen von Fluid, insbesondere von Kraftstoff, geeignet sind.
  • Brennkraftmaschinen sind häufig dazu ausgelegt, hohe Drehmomente zu erzeugen, welche große Einspritzmengen erfordern. Andererseits erfordern gesetzliche Vorschriften bezüglich der zulässigen Schadstoffemissionen von Brennkraftmaschinen, die in Kraftfahrzeugen angeordnet sind, diverse Maßnahmen vorzunehmen, durch die die Schadstoffemissionen gesenkt werden. Ein Ansatzpunkt hierbei ist, die von der Brennkraftmaschine erzeugten Schadstoffemissionen zu senken.
  • Die Dokumente DE 10 2011 089 512 A1 , US 2015/0198127 A1 und DE 10 2010 032 050 A1 befassen sich mit dem Problem, die Form einer Einspritzdüse und insbesondere eines Sacklochs der Einspritzdüse derart zu optimieren, dass der Schadstoffausstoß verringert werden kann.
  • Die Verringerung von Schadstoffemissionen von Brennkraftmaschinen und eine genaue Dosierung des zuzumessenden Fluids sind bei der Konstruktion von Fluidinjektoren eine große Herausforderung. In diesem Zusammenhang sind Fluideinspritzventile oft mit mehreren Einspritzlöchern ausgebildet, um ein Fluidspray zu erzeugen und in eine Brennkammer einer Brennkraftmaschine einzuspeisen. Ein wichtiger Parameter dabei ist eine Fluidpenetration des Fluidsprays innerhalb der Brennkammer, um so unter anderem einen Verbrennungsprozess in der Brennkraftmaschine und die Emission von Schadstoffen zu kontrollieren.
  • Die Fluidpenetration ist gegeben durch eine Verteilung des Fluidsprays nach einer vorgegebenen Verzögerungszeit, ausgehend von einem Startzeitpunkt der Injektion in den Brennraum. Beispielsweise wird die Fluidpenetration entlang einer zugehörigen Achse des jeweiligen Einspritzlochs bemessen und repräsentiert einen Abstand ausgehend von einer äußeren Mündung des Einspritzlochs, die dem Brennraum der Brennkraftmaschine zugewandt ist, beispielsweise bis hin zu einem vorgegebenen Verzögerungspunkt.
  • In der Regel ist es ein Anliegen, die Penetration des Fluidsprays gering zu halten, um zum Beispiel einen Einschlag von Fluidspray auf Innenwände der Brennkammer zu verhindern. Abhängig von der Applikation und der Geometrie des jeweiligen Brennraums müssen Fluideinspritzventile präzise positioniert werden, um entsprechende Vorgaben der Fluidpenetration zu gewährleisten.
  • Es ist eine Aufgabe, die der Erfindung zugrunde liegt, ein Verfahren zum Herstellen eines Düsenkörpers für ein Fluideinspritzventil, eine Vorrichtung für ein Fluideinspritzventil und ein Fluideinspritzventil für ein Kraftfahrzeug zu schaffen, die dazu geeignet sind, auf einfache Weise eine gewünschte Fluidpenetration zu erzielen und Schadstoffemissionen in Brennkraftmaschinen gering zu halten.
  • Die Aufgabe wird durch ein Verfahren und ein Fluideinspritzventil mit den Merkmalen der unabhängigen Ansprüche gelöst. Vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen, in der nachfolgenden Beschreibung und in den Zeichnungen angegeben. Es wird ein Verfahren zum Herstellen eines Düsenkörpers für ein Fluideinspritzventil angegeben. Das Verfahren umfasst ein Bereitstellen eines Rohdüsenkörpers, der eine Längsachse sowie, bezogen auf die Längsachse, ein erstes axiales Ende und ein zweites axiales Ende aufweist. Das zweite axiale Ende hat eine Düsenkörperspitze.
  • Das Verfahren umfasst weiter ein Einbringen einer Düsenkörperausnehmung ausgehend von dem ersten axialen Ende in den Rohdüsenkörper und dadurch Ausbilden einer Wandung zwischen der Düsenkörperausnehmung und einer Außenfläche des Rohdüsenkörpers. Des Weiteren umfasst das Verfahren ein Bereitstellen von Geometriedaten mindestens eines vorzusehenden Einspritzlochs, das die Wandung ausgehend von der Düsenkörperausnehmung nach außen durchdringen soll, mit einer inneren Mündung, die der Düsenkörperausnehmung zugewandt ist, und einer äußeren Mündung, die der Außenfläche zugewandt ist.
  • Außerdem umfasst das Verfahren ein Ermitteln einer Höhe einer Sacklochstufe eines auszubildenden Sacklochs in Abhängigkeit von einer vorgegebenen Fluidpenetration ausgehend von der äußeren Mündung des jeweiligen Einspritzlochs die Umgebung des Düsenkörpers. Mit anderen Worten wird insbesondere die Form eines mittels des Einspritzlochs abgegebenen Sprühkegels des Fluids vorgegeben, und die Höhe der Sacklochstufe in Abhängigkeit von der Form des Sprühkegels ermittelt. Die "Umgebung" des Düsenkörpers ist insbesondere der an die Außenfläche der Wandung grenzende, von der Düsenkörperausnehmung abgewandte Raum.
  • Darüber hinaus umfasst das Verfahren ein Anpassen eines Teils der Form einer Innenfläche der Wandung und dadurch Ausbilden des Sacklochs mit der Sacklochstufe mit der ermittelten Höhe in Bezug auf die Längsachse in einem Bereich des zweiten axialen Endes des Rohdüsenkörpers.
  • Zudem umfasst das Verfahren ein Einbringen des mindestens einen Einspritzlochs mit den bereitgestellten Geometriedaten in einem Bereich des Sacklochs zwischen einem Sacklochstufenende, das dem zweiten axialen Ende zugewandt ist, und der Düsenkörperspitze derart, dass das mindestens eine Einspritzloch die Wandung durchdringt.
  • Mittels des beschriebenen Verfahrens ist es auf einfache Weise möglich, einen Düsenkörper für ein Fluideinspritzventil zu realisieren, der eine gewünschte Fluidpenetration ermöglicht und dadurch dazu beiträgt, Schadstoffemissionen in einer Brennkraftmaschine gering zu halten. Mittels Variation der Höhe der Sacklochstufe kann mit Vorteil die Fluidpenetration gezielt beeinflusst sein. Die Fluidpenetration repräsentiert zum Beispiel eine Ausbreitung eines Fluidsprays in Strömungsrichtung an einem stromabwärtigen Ende des jeweiligen Einspritzlochs bezogen auf ein strömendes Fluid, welches in einem Betrieb von dem ersten axialen Ende in Richtung des zweiten axialen Endes fließt.
  • Bei einem Herstellungsverfahren des Düsenkörpers wird ausgehend von dem Rohdüsenkörper zum Beispiel zuerst eine Innen- und/oder Außenkontur des Düsenkörpers hergestellt. Alternativ weist der Rohdüsenkörper bereits eine vorgefertigte Innen- und/oder Außenkontur des Düsenkörpers auf. Dabei ist die auszubildende Sacklochstufe des zugehörigen Sacklochs noch nicht wie gewünscht eingebracht.
  • Die Höhe der Sacklochstufe wird vor einem Einbringen in den bereitgestellten und gegebenenfalls vorgefertigten Rohdüsenkörper in Abhängigkeit einer vorgegebenen Fluidpenetration für den Düsenkörper oder ein zugehöriges Fluideinspritzventil ermittelt und darauf folgend wird, beispielsweise mittels Bohren oder Fräsen, eine Sacklochkontur des Sacklochs ausgebildet. Das Einbringen der Sacklochkontur mit der ermittelten Höhe der Sacklochstufe an einer Innenseite des Rohdüsenkörpers erfolgt zum Beispiel vor dem Einbringen des mindestens einen Einspritzlochs, welches beispielsweise ebenfalls in den zu fertigenden Düsenkörper gebohrt und/oder gefräst wird. Mit dem Begriff "Sacklochkontur" ist zumindest ein Teil der Form einer Innenfläche der Wandung bezeichnet.
  • Auf diese Weise kann die Fluidpenetration gesteuert werden, ohne beispielsweise ein Verrußen der Düsenkörperspitze zu fördern. Das Ausbilden der Sackstufe mit der ermittelten Höhe kann sich auf die Fluidpenetration für alle einzubringen Einspritzlöcher auswirken, zum Beispiel da die Sacklochstufe in Bezug auf eine Strömungsrichtung eines strömenden Fluids vor der inneren Mündung des jeweiligen Einspritzlochs angeordnet ist. Eine individuelle Anpassung der Fluidpenetration eines jeweiligen Einspritzlochs kann beispielsweise mittels Anpassen des Durchmessers und/oder eines konusförmigen Ausbildens des Einspritzlochs realisiert werden.
  • In Bezug auf ein vorteilhaftes symmetrisches Ausbilden des Düsenkörpers und einer Anordnung in einem Fluideinspritzventil ist die Sacklochstufe zum Beispiel im Wesentlichen parallel zu der Längsachse des Düsenkörpers ausgebildet. In anderen Ausgestaltung kann die Sacklochstufe aber auch eine vorgegebene Neigung zu der Längsachse aufweisen und dadurch die Fluidpenetration beeinflussen. In einem solchen Fall bezieht sich die Höhe der Sacklochstufe dann zum Beispiel auf eine Projektion ihrer geometrischen Länge parallel zu der Längsachse. Mit dem Begriff "Sacklochstufe" ist ein Sacklochabschnitt bezeichnet, bei dem die Innenfläche der Wandung zylinderförmig ist.
  • Mittels des beschriebenen Verfahrens wird die Fluidpenetration durch Geometriedaten gezielt gesteuert, die im Wesentlichen innerhalb des Düsenkörpers kontrolliert ausgebildet sind. Im Rahmen der weiteren Beschreibung werden die Geometriedaten gegebenenfalls auch mit dem Begriff "Geometrie" abgekürzt. Somit ist es zum Beispiel nicht notwendig, eine Geometrie der äußeren Mündung des jeweiligen Einspritzlochs anzupassen, um die Fluidpenetration zu beeinflussen, indem beispielsweise ein Stufenloch an dem stromabwärtigen Ende des Einspritzlochs ausgebildet wird. Bei einem solchen Stufenloch besteht die Gefahr von erhöhten Ablagerungen von Kohlenstoff, die durch verbleibenden Kraftstoff an der Oberfläche des Stufenlochs und der Düsenspitze begründet sind. Dies führt zu einem Ausbilden von wabenförmigen Kohlenstoffstrukturen, die sowohl die Funktion des Düsenkörpers oder eines zugehörigen Fluideinspritzventils nachteilig beeinflussen können und zu erhöhten Schadstoffemissionen führen.
  • Das Einspritzloch wird derart geformt, dass es die Wandung von der Düsenkörperausnehmung bis zur Außenfläche des Düsenkörpers ungestuft durchdringt. Die Oberfläche des Einspritzlochs ist insbesondere von der Innenfläche bis zur Außenfläche des Düsenkörpers frei von Stufen und Knicken. So ist die Gefahr einer Verkokung im Bereich des Einspritzlochs besonders gering.
  • Somit wird mittels des beschriebenen Verfahrens ein Düsenkörper und ein Fluideinspritzventil realisierbar, die einer erhöhten Ablagerung von Kohlenstoff entgegenwirken und dazu beitragen, Schadstoffemissionen in einer zugehörigen Brennkraftmaschine gering zu halten.
  • Es werden eine Länge und ein Durchmesser als Geometrie des mindestens einen Einspritzlochs in Abhängigkeit von der vorgegebenen Fluidpenetration ermittelt.
  • Auf diese Weise wird in Abhängigkeit von der Fluidpenetration nicht nur die Höhe der Sacklochstufe ermittelt, sondern auch eine Länge und ein Durchmesser mindestens eines zylinderförmigen Einspritzlochs. So kann eine gewünschte Fluidpenetration gezielt mittels Ausbilden und Zusammenwirken mehrerer geometrischer Parameter erreicht werden und je nach Applikation und Brennraum optimiert werden. Unter anderem kann so eine Fluidpenetration für jedes Einspritzloch individuell angepasst werden und/oder es können Vorgaben für eine Fluidpenetration erfüllt werden, die mittels der Geometrie der Sacklochstufe alleine nicht erzielbar wären.
  • Dabei wird die Höhe der Sacklochstufe in Abhängigkeit von der ermittelten Länge und dem ermittelten Durchmesser des mindestens einen Einspritzlochs ermittelt.
  • Ein solches Verfahren berücksichtigt, dass die Fluidpenetration abhängig von einem Zusammenwirken der Länge und des Durchmessers des jeweiligen Einspritzlochs und der Höhe der Sacklochstufe ist. Abhängig voneinander können diese Parameter so aufeinander abgestimmt werden, dass eine gewünschte Fluidpenetration erreicht wird. Beispielsweise sollen die Anforderungen an die Fluidpenetration vorzugsweise mittels Ausbilden der Sacklochstufe erreicht werden. Gegebenenfalls wird aber ein Wert für die Höhe der Sacklochstufe ermittelt, der im Rahmen eines Herstellungsverfahrens nur schwierig realisiert werden kann. Dann ist es zum Beispiel nutzbringend, einen Wert für die Höhe der Sacklochstufe zusätzlich in Abhängigkeit der Geometrie des Einspritzlochs zu ermitteln, um so die gewünschte Fluidpenetration zu erreichen und einen einfachen Herstellungsprozess zu ermöglichen.
  • Bei einer Ausführungsform des Verfahrens erfolgt das Anpassen des Teils der Form der Innenfläche der Wandung und dadurch Ausbilden des Sacklochs mit der Sacklochstufe mit der ermittelten Höhe, indem die Wandungsdicke eines Teils der Wandung zwischen der Düsenkörperausnehmung und der Außenfläche reduziert wird. Insbesondere wird die Wandungsdicke mittels eines materialabtragenden Verfahrens wie Bohren oder Fräsen reduziert. Auf diese Weise sind aus gleichen Rohdüsenkörpern Düsenkörpern mit unterschiedlichen Sprühkegeln herstellbar, ohne dass Modifikationen der Außenfläche des Düsenkörpers - z.B. in Form von Stufenlöchern - erforderlich wären. Die Herstellung kann so besonders kostengünstig erfolgen.
  • Bei einer weiteren Ausführungsform des Verfahrens werden eine Länge und ein Durchmesser als Geometriedaten des mindestens einen Einspritzlochs vorgegeben, um die vorgegebene Fluidpenetration zu erzielen. Dabei macht sich die Erfindung die Idee zunutze, dass die Fluidpenetration weitgehend vom Verhältnis von Länge zu Durchmesser des Einspritzlochs bestimmt sein kann.
  • Bei dieser Ausführungsform wird zweckmäßigerweise die Höhe der Sacklochstufe derart gewählt, dass beim Ausbilden des Sacklochs die Sacklochstufe die Wandungsdicke zwischen der Innenfläche und der Außenfläche genau so weit reduziert, dass beim Einbringen des Einspritzloch mit der ermittelten Länge und der äußeren Mündung in der Außenfläche, die innere Mündung in der Innenfläche positioniert ist. Auf diese Weise können vorteilhafterweise gleiche Rohdüsenkörper verwendet werden, um Düsenkörper mit ungestuften Einspritzlöcher verschiedener Länge herzustellen.
  • Gemäß einer weiteren Ausgestaltung umfasst das Verfahren ein Bereitstellen einer konusförmigen Geometrie des mindestens einen Einspritzlochs, wobei die Geometriedaten einen ersten und einen zweiten Durchmesser umfassen. Das Verfahren umfasst weiter ein Ermitteln des ersten Durchmessers und des zweiten Durchmesser des mindestens einen Einspritzlochs in Abhängigkeit der vorgegebenen Fluidpenetration, wobei der erste Durchmesser der inneren Mündung und der zweite Durchmesser der äußeren Mündung zugeordnet ist.
  • Ein konusförmiges Einspritzloch hat eine Kegelstumpf-förmige Gestalt. Diese kann sich vorteilhaft auf Fluidpenetration auswirken. In Abhängigkeit der jeweiligen Applikation und des jeweiligen Brennraums der zugehörigen Brennkraftmaschine kann ein konusförmiges Einspritzloch oder ein zylinderförmiges Einspritzloch vorteilhaft zum Erreichen der Vorgaben für eine gewünschte Fluidpenetration sein.
  • Beispielsweise wird ein Wert für die Höhe der Sacklochstufe ermittelt, der im Rahmen eines Herstellungsverfahrens und in Kombination mit einem zylinderförmigen Einspritzloch nur schwierig realisiert werden kann. Dann ist es gegebenenfalls nutzbringend, eine konusförmige Geometrie des Einspritzlochs vorzusehen und die Länge sowie den ersten und zweiten Durchmesser des mindestens einen Einspritzlochs abhängig von der gewünschten Fluidpenetration zu ermitteln.
  • Darüber hinaus sind auch weitere Geometrien des Einspritzlochs möglich, die abhängig von Anforderungen an die Fluidpenetration ermittelt werden und im Zusammenwirken mit der vorgegeben ausgebildeten Sacklochstufe eine gewünschte Fluidpenetration ermöglichen.
  • Gemäß einer weiteren Ausgestaltung des Verfahrens werden der erste Durchmesser und der zweite Durchmesser des mindestens einen Einspritzlochs zusätzlich in Abhängigkeit von der ermittelten Höhe ermittelt.
  • In diesem Zusammenhang wird darauf hingewiesen, dass die Fluidpenetration abhängig von einem Zusammenwirken der Länge und der beiden Durchmesser des konusförmigen Einspritzlochs ist. Sie kann auch von der Höhe der Sacklochstufe abhängig sein. Abhängig voneinander können diese Parameter so aufeinander abgestimmt werden, dass eine gewünschte Fluidpenetration erreicht wird. So ist es auch möglich, dass die Höhe der Sacklochstufe abhängig von der konusförmigen Geometrie des Einspritzlochs ermittelt wird, da die Abhängigkeit beiderseits besteht.
  • Gemäß einer weiteren Ausgestaltung des Verfahrens umfasst das Anpassen eines Teils der Form der Innenfläche der Wandung ein Ausbilden eines Sitzbereichs für eine Düsennadel angrenzend zu der Sacklochstufe in Richtung des ersten axialen Endes.
  • Ein solches Verfahren umfasst das Ausbilden eines Sitzbereichs für eine Düsennadel, die in einem Fluideinspritzventil in einer Schließposition in Kontakt mit dem Sitzbereich einen Fluidfluss verhindert oder ansonsten freigibt.
  • Gemäß einer weiteren Ausgestaltung des Verfahrens umfasst das Anpassen eines Teils der Form der Innenfläche der Wandung ein Ausbilden eines Führungsbereichs zum Führen einer Düsennadel im Bereich des ersten axialen Endes in Richtung des zweiten axialen Endes.
  • Auch dieser Verfahrensschritt ermöglicht eine weitere Ausgestaltung des Düsenkörpers für einen Einsatz in einem Fluideinspritzventil, um ein kontrolliertes Zumessen von Fluid mittels des Düsenkörpers und des zugehörigen Fluideinspritzventils zu ermöglichen. Das Anpassen eines Teils der Form der Innenfläche der Wandung zum Ausbilden des Sitzbereichs und/oder des Führungsbereichs kann im Rahmen des Verfahrens zeitlich vor oder nach oder gleichzeitig mit dem Anpassen eines Teils der Form der Innenfläche der Wandung zum Ausbilden des Sacklochs erfolgen.
  • Eine Vorrichtung für ein Fluideinspritzventil umfasst zum Beispiel einen Düsenkörper, der nach einem der zuvor beschriebenen Verfahren zum Herstellen des Düsenkörpers hergestellt ist, und einen Ventilkörper, der mit dem Düsenkörper gekoppelt ist.
    Eine solche Vorrichtung realisiert eine mögliche Zwischenstufe zwischen dem Herstellen des Düsenkörpers und einem Fluideinspritzventil, welches eine Ausgestaltung des Düsenkörpers umfasst. Die zuvor beschriebenen gegenständlichen Eigenschaften und Funktionen des Verfahrens zum Herstellen des Düsenkörpers gelten auch für die Vorrichtung.
  • Der Düsenkörper ist form- und/oder kraft- und/oder stoffschlüssig mit dem Ventilkörper gekoppelt.
  • Eine solche Vorrichtung realisiert mögliche Arten der Kopplung des Düsenkörpers mit dem Ventilkörper, bei denen der wie beschrieben hergestellte Düsenkörper beispielsweise in einem weiteren Verfahrensschritt mit dem Ventilkörper schlüssig verbunden wird. Alternativ kann der Ventilkörper einstückig mit dem Düsenkörper ausgebildet sein.
  • Beispielsweise wird im Rahmen des Verfahrens zum Herstellen eines Düsenkörpers auch ein Ventilkörper ausgebildet, der für zum Beispiel für eine Aufnahme weiterer Komponenten des Fluideinspritzventils geeignet ist. So umfasst der in dem Verfahren zum Herstellen eines Düsenkörpers bereitgestellte Rohdüsenkörper beispielsweise auch den auszubildenden Ventilkörper und der beschriebene Düsenkörper bildet im Wesentlichen die Spitze des Ventilkörpers.
  • Gemäß einem zweiten Aspekt der Erfindung wird ein Fluideinspritzventil für ein Kraftfahrzeug angegeben. Dieses kann einen Düsenkörper oder die Vorrichtung mit dem Düsenkörper aufweisen. Zudem weist es eine Düsennadel auf, die zumindest teilweise in der Düsenkörperausnehmung in Bezug auf die Längsachse axial beweglich angeordnet ist und die dazu ausgebildet ist, in einer Schließposition in einem Zusammenwirken mit einem Sitzbereich einen Fluidfluss zu unterbinden und ansonsten freizugeben. Ein solches Fluideinspritzventil hat insbesondere die zuvor beschriebenen Eigenschaften der Vorrichtung bzw. des Düsenkörpers, welcher nach einem der zuvor beschriebenen Verfahren hergestellt ist.
  • Ausführungsbeispiele der Erfindung sind im Folgenden anhand der schematischen Zeichnungen näher erläutert. Es zeigen:
  • Figur 1
    ein Ablaufdiagramm für ein Verfahren zum Herstellen eines Düsenkörpers,
    Figur 2
    ein Ausführungsbeispiel eines Düsenkörpers in einem schematischen Längsschnitt.
  • Figur 1 zeigt ein Beispiel für ein Ablaufdiagramm für ein Verfahren zum Herstellen eines Düsenkörpers 1 für ein Fluideinspritzventil, das in einem Schritt S1 gestartet wird und in dem ein Rohdüsenkörper bereitgestellt wird, der eine Längsachse A sowie ein erstes axiales Ende 3 und ein zweites axiales Ende 5 mit einer Düsenkörperspitze 20 bezogen auf die Längsachse A aufweist.
  • In einem darauffolgenden weiteren Schritt S3 wird in den Rohdüsenkörper eine Düsenkörperausnehmung 7 ausgehend von dem ersten axialen Ende 3 eingebracht und dadurch eine Wandung 9 zwischen der Düsenkörperausnehmung 7 und einer Außenfläche 11 des Rohdüsenkörpers ausgebildet. Die Düsenkörperausnehmung 7 wird zum Beispiel in den Rohdüsenkörper gebohrt und/oder gedreht.
  • In einem weiteren Schritt S5 wird eine Geometrie mindestens eines vorzusehenden Einspritzlochs 17 bereitgestellt, das die Wandung 9 ausgehend von der Düsenkörper 7 nach außen durchdringen soll, mit einer inneren Mündung 18, die der Düsenkörperausnehmung 7 zugewandt ist, und einer äußeren Mündung 19, die dem Außenfläche 11 zugewandt ist.
  • Die bereitgestellte Geometrie umfasst zum Beispiel einen Durchmesser und eine Länge L und einen Durchmesser für ein auszubildendes zylinderförmiges Einspritzloch 17. Alternativ umfasst die bereitgestellte Geometrie einen ersten Durchmesser D1, einen zweiten Durchmesser D2 und eine Länge L für ein auszubildendes konusförmiges Einspritzloch 17. Werden mehrere Einspritzlöcher 17 für den Düsenkörper 1 vorgesehen, sind gegebenenfalls einige Einspritzlöcher 17 zylinderförmig und einige konusförmig. Darüber hinaus sind auch weitere Geometrien der Einspritzlöcher 17 möglich. Vorzugsweise umfassen die bereitgestellten Geometriedaten für jedes Einspritzloch 17 zusätzlich mindestens ein Element aus der folgenden Gruppe: Abstand von der Längsachse A, axiale Position bezüglich der Längsachse A, Winkelposition bezüglich der Längsachse A, Neigung gegenüber der Längsachse A.
  • In einem optionalen Schritt S6 wird die bereitzustellende Geometrie ermittelt in Abhängigkeit von einer vorgegebenen Fluidpenetration ausgehend von der äußeren Mündung 19 des jeweiligen Einspritzlochs 17 nach außerhalb des Düsenkörpers 1. Beispielsweise werden so Werte für Durchmesser D1 und D2 und Länge L eines konusförmigen Einspritzlochs 17 ermittelt, die einen Beitrag leisten, um eine gewünschte Fluidpenetration zu erreichen.
  • Auf diese Weise wird berücksichtigt, dass die Fluidpenetration aus einem Einspritzloch 17 in einen Brennraum einer Brennkraftmaschine unter anderem abhängig von der Geometrie des jeweiligen Einspritzlochs 17 ist. So kann eine Fluidpenetration in gewissem Rahmen für jedes Einspritzloch 17 individuell angepasst werden.
    In einem weiteren Schritt S7 wird eine Höhe H einer Sacklochstufe 15 eines auszubildenden Sacklochs 13 ermittelt in Abhängigkeit von der vorgegebenen Fluidpenetration ausgehend von der äußeren Mündung 19 des jeweiligen Einspritzlochs 17 nach außerhalb des Düsenkörpers 1.
  • Auf diese Weise kann mittels Ermitteln und späterem Ausbilden der Sacklochstufe 15 mit der Höhe H die Fluidpenetration gesteuert werden und unter anderem ein Beitrag gegen ein Verrußen der Düsenkörperspitze 20 geleistet werden. Ein Düsenkörper 1, welcher eine in Abhängigkeit einer gewünschten Fluidpenetration ermittelte Sacklochkontur aufweist, ermöglicht somit eine zuverlässige Funktion eines Fluideinspritzventils, welches den zu fertigenden Düsenkörper 1 umfasst, und trägt zu einer erhöhten Funktionsdauer bei.
  • Das Ausbilden der Sackstufe 15 mit der ermittelten Höhe H wirkt sich auf die Fluidpenetration für alle einzubringen Einspritzlöcher 17 aus, da die Sacklochstufe 15 in Bezug auf eine Strömungsrichtung eines strömenden Fluids vor der inneren Mündung 18 des jeweiligen noch einzubringenden Einspritzlochs 17 angeordnet ist. In Bezug auf einen fertiggestellten Düsenkörper 1 ist das jeweilige Einspritzloch 17 bezüglich der Strömungsrichtung eines Fluids dann nachfolgend zu der Sacklochstufe 15 angeordnet. Oder anders formuliert wird das mindestens eine vorgesehene Einspritzloch 17 zwischen einem Sacklochstufenende 16 der Sacklochstufe 15 und der Düsenkörperspitze 20 ausgebildet.
  • Optional wird die Höhe H der Sacklochstufe 15 zusätzlich in Abhängigkeit der bereitgestellten und gegebenenfalls ermittelten Geometrie des auszubildenden mindestens einen Einspritzlochs 17 ermittelt.
  • Dabei wird berücksichtigt, dass die Fluidpenetration abhängig von einem Zusammenwirken zum Beispiel der Länge L und des Durchmessers eines zylinderförmigen Einspritzlochs 17 und der Höhe H der Sacklochstufe 15 ist. Abhängig voneinander können diese Parameter so aufeinander abgestimmt werden, dass eine gewünschte Fluidpenetration erreicht wird. Beispielsweise können so Anforderungen an die Fluidpenetration erfüllt werden, die mittels Ausbilden der Sacklochstufe 15 alleine nur schwierig realisierbar sind. Dann ist es zum Beispiel nutzbringend, einen Wert für die Höhe H der Sacklochstufe 15 zusätzlich in Abhängigkeit der Geometrie des Einspritzlochs 17 zu ermitteln, um so die gewünschte Fluidpenetration zu erreichen und einen einfachen Herstellungsprozess zu ermöglichen.
  • In einem weiteren Schritt S9 wird ein Teil der Form einer Innenfläche der Wandung 9 angepasst und dadurch das Sackloch 13 mit der Sacklochstufe 15 mit der ermittelten Höhe H in Bezug auf die Längsachse A in einem Bereich des zweiten axialen Endes 5 des Rohdüsenkörpers ausgebildet.
  • In Bezug auf ein vorteilhaftes symmetrisches Ausbilden des Düsenkörpers 1 und einer Vorrichtung für Fluideinspritzventil ist die Sacklochstufe 15 im Wesentlichen parallel zu der longitudinalen Achse A des Düsenkörpers 1 ausgebildet. In anderen Ausgestaltung kann die Sacklochstufe 15 aber auch eine Neigung zu der Längsachse A aufweisen und dadurch die Fluidpenetration beeinflussen. In einem solchen Fall bezieht sich die Höhe H der Sacklochstufe 15 dann zum Beispiel auf eine Projektion ihrer geometrischen Länge parallel zu der Längsachse A.
  • Das Anpassen eines Teils der Form der Innenfläche der Wandung 9 umfasst beispielsweise auch ein Ausbilden eines Sitzbereichs 21 für eine Düsennadel angrenzend zu der Sacklochstufe 15 in Richtung des ersten axialen Endes 3 und somit abgewandt von der Düsenkörperspitze 20. In einer Schließposition verhindert der Sitzbereich 21 im Zusammenwirken mit einem Dichtsitz der Düsennadel einen Fluidfluss und gibt ihn ansonsten in einer Offenposition frei.
  • Optional umfasst das Anpassen eines Teils der Form der Innenfläche der Wandung 9 auch ein Ausbilden eines Führungsbereichs 23 zum Führen der Düsennadel im Bereich des ersten axialen Endes 3 in Richtung des zweiten axialen Endes 5.
  • In einem weiteren Schritt S11 wird das mindestens eine Einspritzloch 17 mit den bereitgestellten Geometriedaten und gegebenenfalls in Abhängigkeit der vorgegebenen Fluidpenetration und/oder der ermittelten Höhe H der Sacklochstufe 15 in einem Bereich des Sacklochs 13 zwischen dem Sacklochstufenende 16, das dem zweiten axialen Ende 15 zugewandt ist, und der Düsenkörperspitze 20 eingebracht. Beispielsweise wird das mindestens eine Einspritzloch 17 mittels Bohren und/oder Drehen in den Rohdüsenkörper eingebracht und so der Düsenkörper 1 ausgebildet.
  • In einem Schritt S13 wird das Verfahren zum Herstellen des Düsenkörpers für ein Fluideinspritzventil beendet.
  • Bei einer bevorzugten Weiterbildung erfolgt die Ermittlung der Höhe H in Abhängigkeit von den vorgegebenen Geometriedaten - beispielsweise in Abhängigkeit von Länge L, von der Neigung und vom Abstand von der Längsachse - und von der Form des Rohdüsenkörpers. Dabei wird insbesondere die Höhe H derart gewählt, dass die Sacklochstufe 15 die Wandungsdicke der Wandung 9 derart reduziert, dass das gemäß den bereitgestellten Geometriedaten in die Wandung 9 eingebrachte Einspritzloch 17 die Wandung stromabwärts der Sacklochstufe 15 von ihrer Innenfläche 10 bis zur Außenfläche 11 des Düsenkörpers 1 - insbesondere stufenlos - durchdringt.
  • Figur 2 zeigt in einer Schnittdarstellung ein Ausführungsbeispiel für den Düsenkörper 1, der beispielsweise mittels des in Figur 1 beschriebenen Verfahrens hergestellt wurde. Der Düsenkörper 1 weist das erste axiale Ende 3, das zweite axiale Ende 5 sowie die Längsachse A auf und ist im Wesentlichen rotationssymmetrisch ausgebildet.
  • Die Wandung 9 formt die Düsenkörperausnehmung 7 und umfasst den Führungsbereich 23, den Sitzbereich 21 und eine Sacklochkontur des Sacklochs 13 mit der Sacklochstufe 15, welche mit der in Abhängigkeit von der vorgegebenen Fluidpenetration ermittelten Höhe H ausgebildet ist. Die Sacklochstufe 15 ist zylindermantelförmig koaxial zu der Längsachse A ausgebildet. In weiteren Ausgestaltungen weist die Sacklochstufe 15 gegebenenfalls eine Neigung zu der Längsachse A auf, sodass der Düsenkörper 1 eine kegelstumpfförmige Sacklochstufe 15 umfasst.
  • In diesem Ausführungsbeispiel weist der Düsenkörper 1 unterhalb der Sacklochstufe 15, genauer zwischen dem Sacklochstufenende 16 und der Düsenkörperspitze 20, ein konusförmiges Einspritzloch 17 auf. Der erste Durchmesser D1 ist der inneren Mündung 18 zugeordnet und ist kleiner ausgebildet als der zweite Durchmesser D2, der der äußeren Mündung 19 des Einspritzlochs 17 zugeordnet ist.
  • Dementsprechend weist das Einspritzloch 17 einen Kegelwinkel K auf, welcher sich auf die Fluidpenetration auswirken kann. Der Kegelwinkel K ist durch die beiden Durchmesser D1 und D2 und die Länge L des Einspritzlochs 17 bestimmt und ist als Geometrie des Einspritzlochs 17 im Rahmen des Herstellens des Düsenkörpers 1 bereitgestellt und gegebenenfalls in Abhängigkeit einer gewünschten Fluidpenetration ermittelt worden.
  • Der Düsenkörper 1 ermöglicht auf einfache Weise mittels der der kontrolliert ausgebildeten Sacklochstufe 15 mit der ermittelten Höhe H eine gewünschte Fluidpenetration und dadurch ein zuverlässige Funktionsweise eines zugehörigen Fluideinspritzventils. Er trägt dazu bei, Schadstoffemissionen in einer Brennkraftmaschine gering zu halten.

Claims (7)

  1. Verfahren zum Herstellen eines Düsenkörpers (1) für ein Fluideinspritzventil, umfassend
    - Bereitstellen eines Rohdüsenkörpers, der eine Längsachse (A) sowie ein erstes axiales Ende (3) und ein zweites axiales Ende (5) mit einer Düsenkörperspitze (20) bezogen auf die Längsachse (A) aufweist,
    - Einbringen einer Düsenkörperausnehmung (7) ausgehend von dem ersten axialen Ende (3) in den Rohdüsenkörper und dadurch Ausbilden einer Wandung (9) zwischen der Düsenkörperausnehmung (7) und einer Außenfläche (11) des Rohdüsenkörpers,
    - Bereitstellen von Geometriedaten mindestens eines vorzusehenden Einspritzlochs (17), das die Wandung (9) ausgehend von der Düsenkörperausnehmung (7) zur Außenfläche (11) durchdringen soll, mit einer inneren Mündung (18), die der Düsenkörperausnehmung (7) zugewandt ist, und einer äußeren Mündung (19), die der Außenfläche (11) zugewandt ist, wobei das Einspritzloch (17) derart geformt wird, dass es die Wandung (9) ungestuft von der Innenfläche (10) bis zur Außenfläche (11) durchdringt,
    - Ermitteln einer Höhe (H) einer Sacklochstufe (15) eines auszubildenden Sacklochs (13) in Abhängigkeit von einer vorgegebenen Fluidpenetration ausgehend von der äußeren Mündung (19) des jeweiligen Einspritzlochs (17) in die Umgebung des Düsenkörpers (1),
    - Anpassen eines Teils der Form einer Innenfläche (10) der Wandung (9) und dadurch Ausbilden des Sacklochs (13) mit der Sacklochstufe (15) mit der ermittelten Höhe (H) in Bezug auf die Längsachse (A) in einem Bereich des zweiten axialen Endes (5) des Rohdüsenkörpers, und
    - Einbringen des mindestens einen Einspritzlochs (17) in die Wandung (9) mit den bereitgestellten Geometriedaten in einem Bereich des Sacklochs (13) zwischen einem Sacklochstufenende (16), das dem zweiten axialen Ende (5) zugewandt ist, und der Düsenkörperspitze (20) derart, dass das mindestens ein Einspritzloch (17) die Wandung (9) durchdringt,
    wobei eine Länge (L) und ein Durchmesser als Geometriedaten des mindestens einen Einspritzlochs (17) vorgegeben werden, um die vorgegebene Fluidpenetration zu erzielen, und die Höhe (H) der Sacklochstufe (15) so gewählt wird, dass die Sacklochstufe (15) eine Wandungsdicke zwischen der Innenfläche (10) und der Außenfläche (11) so weit reduziert, dass beim Einbringen des zumindest einen Einspritzlochs (17) mit der ermittelten Länge (L) und der äußeren Mündung (19) in der Außenfläche (11), die innere Mündung (18) in der Innenfläche (10) positioniert ist.
  2. Verfahren nach Anspruch 1, wobei das Anpassen eines Teils der Form einer Innenfläche (10) der Wandung (9) und dadurch Ausbilden des Sacklochs (13) mit der Sacklochstufe (15) mit der ermittelten Höhe (H) durch Reduzieren der Wandungsdicke eines Teils der Wandung (9) zwischen der Düsenkörperausnehmung (7) und der Außenfläche (11) erfolgt
  3. Verfahren Anspruch 1 oder 2,
    wobei
    - die bereitgestellten Geometriedaten einen ersten Durchmesser (D1) und einen zweiten Durchmesser (D2) des mindestens einen Einspritzlochs (17) umfassen, sodass das einzubringende Einspritzloch (17) konusförmig ist, und
    - der erste Durchmesser (D1) und der zweite Durchmesser (D2) in Abhängigkeit der vorgegebenen Fluidpenetration ermittelt werden, wobei der erste Durchmesser (D1) der inneren Mündung (18) und der zweite Durchmesser (D2) der äußeren Mündung (19) zugeordnet ist.
  4. Verfahren nach dem vorhergehenden Anspruch,
    wobei der erste Durchmesser (D1) und der zweite Durchmesser (D2) des mindestens einen Einspritzlochs (17) zusätzlich in Abhängigkeit von der ermittelten Höhe (H) ermittelt werden.
  5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Anpassen eines Teils der Form der Innenfläche der Wandung (9) umfasst:
    Ausbilden eines Sitzbereichs (21) für eine Düsennadel angrenzend zu der Sacklochstufe (15) in Richtung des ersten axialen Endes (3).
  6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Anpassen eines Teils der Form der Innenfläche der Wandung (9) umfasst:
    Ausbilden eines Führungsbereichs (23) zum Führen einer Düsennadel im Bereich des ersten axialen Endes (3) in Richtung des zweiten axialen Endes (5).
  7. Fluideinspritzventil für ein Kraftfahrzeug, umfassend
    - einen Düsenkörper (1), der nach einem Verfahren der vorhergehenden Ansprüche hergestellt ist, und
    - eine Düsennadel, die zumindest teilweise in der Düsenkörperausnehmung (7) in Bezug auf die Längsachse (A) axial beweglich angeordnet ist und die dazu ausgebildet ist, in einer Schließposition in einem Zusammenwirken mit einem Sitzbereich (21) einen Fluidfluss zu unterbinden und ansonsten freizugeben.
EP16734610.5A 2015-07-29 2016-06-29 Verfahren zum herstellen eines düsenkörpers für ein fluideinspritzventil und fluideinspritzventil Active EP3329115B8 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015214306.6A DE102015214306A1 (de) 2015-07-29 2015-07-29 Verfahren zum Herstellen eines Düsenkörpers für ein Fluideinspritzventil und Fluideinspritzventil
PCT/EP2016/065131 WO2017016778A1 (de) 2015-07-29 2016-06-29 Verfahren zum herstellen eines düsenkörpers für ein fluideinspritzventil und fluideinspritzventil

Publications (3)

Publication Number Publication Date
EP3329115A1 EP3329115A1 (de) 2018-06-06
EP3329115B1 true EP3329115B1 (de) 2019-08-07
EP3329115B8 EP3329115B8 (de) 2019-12-18

Family

ID=56345107

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16734610.5A Active EP3329115B8 (de) 2015-07-29 2016-06-29 Verfahren zum herstellen eines düsenkörpers für ein fluideinspritzventil und fluideinspritzventil

Country Status (6)

Country Link
US (1) US20180149128A1 (de)
EP (1) EP3329115B8 (de)
KR (1) KR102113932B1 (de)
CN (1) CN107850028B (de)
DE (1) DE102015214306A1 (de)
WO (1) WO2017016778A1 (de)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8817774D0 (en) * 1988-07-26 1988-09-01 Lucas Ind Plc Fuel injectors for i c engines
GB9203658D0 (en) * 1992-02-19 1992-04-08 Lucas Ind Plc Fuel injection nozzles
US6908049B2 (en) * 2003-11-14 2005-06-21 Alfred J. Buescher Diesel injection nozzle
DE102006013962A1 (de) * 2006-03-27 2007-10-04 Robert Bosch Gmbh Einspritzdüse mit Spritzkanälen sowie Verfahren zur Einbringung von Kanälen
DE102006043460A1 (de) * 2006-09-15 2008-03-27 Man Diesel Se Verfahren zur Optimierung einer Einspritzdüse für eine Brennkraftmaschine
GB0625770D0 (en) * 2006-12-22 2007-02-07 Delphi Tech Inc Fuel injector for an internal combustion engine
CN201007251Y (zh) * 2007-01-16 2008-01-16 郭义成 座面阶梯双锥结构的针阀体
DE102008039920A1 (de) * 2008-08-27 2010-03-04 Continental Automotive Gmbh Düsenkörper, Düsenbaugruppe und Kraftstoffinjektor, sowie Verfahren zum Herstellen eines Düsenkörpers
DE102008055069A1 (de) * 2008-12-22 2010-07-01 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
JP2011127487A (ja) * 2009-12-16 2011-06-30 Denso Corp 燃料噴射弁
DE102010032050B4 (de) * 2010-07-23 2017-12-21 Continental Automotive Gmbh Düsenkörper mit Sackloch
JP5537512B2 (ja) * 2011-07-25 2014-07-02 日立オートモティブシステムズ株式会社 燃料噴射弁
DE102011089512A1 (de) * 2011-12-22 2013-06-27 Continental Automotive Gmbh Verfahren zum Herstellen einer Düsenbaugruppe, Düsenbaugruppe für ein Einspritzventil und Einspritzventil
DE102012006127A1 (de) * 2012-03-20 2013-09-26 Sitec Automation Gmbh Verfahren und Anordnung zur elektrochemischen Bearbeitung von Bohrungen
US9151259B2 (en) * 2012-06-11 2015-10-06 Continental Automotive Systems, Inc. Stepped orifice hole
JP6166168B2 (ja) * 2013-12-11 2017-07-19 株式会社デンソー 燃料噴射弁
EP2905457B1 (de) 2014-01-15 2018-08-29 Continental Automotive GmbH Ventilanordnung und Flüssigkeitseinspritzdüse für eine Brennkraftmaschine
JP5943060B2 (ja) * 2014-12-18 2016-06-29 株式会社デンソー 燃料噴射装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102015214306A1 (de) 2017-02-02
KR102113932B1 (ko) 2020-05-21
EP3329115B8 (de) 2019-12-18
US20180149128A1 (en) 2018-05-31
KR20180034625A (ko) 2018-04-04
WO2017016778A1 (de) 2017-02-02
CN107850028B (zh) 2021-06-08
EP3329115A1 (de) 2018-06-06
CN107850028A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
WO2018184799A1 (de) Kraftstoff-hochdruckspeicher
DE102009047832B4 (de) Gesteuerte Zündkerzenausrichtung
EP2318688A1 (de) Düsenkörper, düsenbaugruppe und kraftstoffinjektor, sowie verfahren zum herstellen eines düsenkörpers
EP1277941A2 (de) Verfahren zum Betreiben einer Brennkraftmaschine, insbesondere mit Direkteinspritzung, sowie Computerprogramm und Steuer- und/oder Regelgerät
WO2017193224A1 (de) Hochdruckleitung
DE19843616B4 (de) Kraftstoffeinspritzdüse
DE102016004584B4 (de) Verfahren zur Bearbeitung eines Einspritzventils zum Einspritzen von Kraftstoff in einen Verbrennungsmotor
EP3329115B1 (de) Verfahren zum herstellen eines düsenkörpers für ein fluideinspritzventil und fluideinspritzventil
WO2005010349A1 (de) Kraftstoffeinspritzventil und ein verfahren zur herstellung desselben
WO2020020648A1 (de) Fluidverteiler, insbesondere kraftstoffverteiler für ein kraftstoffeinspritzsystem eines fahrzeuges, sowie verfahren zur herstellung eines fluidverteilers
EP3199794B1 (de) Kraftstoffverteilerleiste sowie verfahren zur herstellung derselben
DE202016002391U1 (de) Einspritzventil zum Einspritzen von Kraftstoff in einen Verbrennungsmotor
WO2012076415A1 (de) Düsenkörper mit konischem einspritzloch
DE102016122785B4 (de) Verfahren zum Herstellen einer Brennstoff- oder Hydraulikmittelleiteinheit mittels kombinatorischem ECM-Bearbeitens und Laserbohrens
WO2006111438A1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschine
DE102015211780A1 (de) Kraftstoffinjektor und Verfahren zur Montage eines Kraftstoffinjektors
WO2021063911A1 (de) Komponente für eine einspritzanlage, insbesondere brennstoffverteilerleiste, einspritzanlage und verfahren zur herstellung solch einer komponente
WO2018153741A1 (de) Düsenkörper für einen kraftstoffinjektor und kraftstoffinjektor
DE102019131723A1 (de) Zylinderkopfanordnung, Hubkolbenbrennkraftmaschine und Verfahren zum Herstellen eines Zylinderkopfs
DE102009000172A1 (de) Injektor-Bauteil, Kraftstoff-Injektor sowie Verfahren zum Herstellen eines Injektor-Bauteils
DE102018219947A1 (de) Brennstoffverteiler für Brennkraftmaschinen
EP1954937B1 (de) Zwischenplatte für einen kraftstoffinjektor und kraftstoffinjektor
DE102005029024A1 (de) Düsenbaugruppe
DE102019105537A1 (de) Hülse zum Durchleiten von Wasser um einen Injektor in einen Brennraum
DE102010030396A1 (de) Kraftstoffinjektor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 61/18 20060101ALI20190118BHEP

Ipc: F02M 61/10 20060101ALI20190118BHEP

Ipc: F02M 61/16 20060101AFI20190118BHEP

INTG Intention to grant announced

Effective date: 20190207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1164273

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016005985

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CPT GROUP GMBH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190807

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016005985

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016005985

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200629

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200629

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016005985

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1164273

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210629

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230427 AND 20230503

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230630

Year of fee payment: 8

Ref country code: DE

Payment date: 20230630

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 8

Ref country code: GB

Payment date: 20230622

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20240523 AND 20240529