EP3321583B1 - Combustion chamber of a gas turbine with at least a tile - Google Patents

Combustion chamber of a gas turbine with at least a tile Download PDF

Info

Publication number
EP3321583B1
EP3321583B1 EP17200874.0A EP17200874A EP3321583B1 EP 3321583 B1 EP3321583 B1 EP 3321583B1 EP 17200874 A EP17200874 A EP 17200874A EP 3321583 B1 EP3321583 B1 EP 3321583B1
Authority
EP
European Patent Office
Prior art keywords
shingle
cooling holes
combustion chamber
edge
impingement cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17200874.0A
Other languages
German (de)
French (fr)
Other versions
EP3321583A1 (en
Inventor
Dr.-Ing. Miklós Gerendás
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP3321583A1 publication Critical patent/EP3321583A1/en
Application granted granted Critical
Publication of EP3321583B1 publication Critical patent/EP3321583B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a combustion chamber of a gas turbine according to the features of the preamble of claim 1.
  • the invention relates to a combustion chamber of a gas turbine, which is covered with shingles.
  • the at least one shingle comprises a plate-shaped shingle body which has a circumferential shingle edge. This extends from the cold side of the shingle body facing away from the combustion chamber interior to the combustion chamber wall and thus forms an intermediate space between the shingle body and the combustion chamber wall. Cooling air is introduced into this intermediate space through impingement cooling holes, which is subsequently discharged through effusion cooling holes on the surface of the shingle body.
  • the shingle body is provided with an arrangement of effusion cooling holes, which are for example in the form of rows or in a different arrangement relative to one another.
  • the impingement cooling holes in the shingle wall are also designed in a suitable arrangement.
  • a shingle 25 has an essentially plate-shaped shingle body 29, which is delimited by a shingle edge 31.
  • the shingle edge 31 extends from the shingle body 29 in the direction of the combustion chamber wall 32 to form an intermediate space 35.
  • the combustion chamber wall 32 is provided with impingement cooling holes 34 in order to introduce cooling air into the intermediate space 35. This cooling air flows through effusion cooling holes 33, which are formed in the shingle body 29, out of the space 35.
  • leakage air 36 Since the shingle edge 31 cannot be placed against the combustion chamber wall 32 in a sealing manner, there is always a leakage, which is shown as leakage air 36. Thus, part of the air volume which is supplied through the impingement cooling holes 34 flows out of the interspace 35 unused as leakage air 36 and cannot be used for a flow through the effusion cooling holes 33.
  • the Fig. 3 shows a similar structure, wherein the same parts are provided with the same reference numerals.
  • this construction differs from the construction principle according to the invention, it shows that either leakage air 36 can flow out of the intermediate space 35, which air cannot be used for the effusion cooling holes 33 or a seal 38 must be used.
  • the sealing of the impingement cooling cavity by an additional seal is also from the EP2354660 (rigid seal), EP1310735 (flexible elastic seal), US7140185 (Coating) known. All seal-based solutions have in common the higher costs due to the production of the seal, the greater installation effort due to the installation of the seal and the risk of failure of the seal.
  • DE 101 58 548 A1 also shows a combustion chamber tile for a gas turbine with several cooling holes with different angular orientations.
  • DE 10 2012 025 375 A1 a method for the arrangement of impingement cooling holes and effusion cooling holes in a combustion chamber wall of a gas turbine.
  • the invention is based on the object of creating a combustion chamber of a gas turbine which, with a simple structure and simple, cost-effective manufacturability, ensures effective use of the cooling air in the area of the shingle.
  • the arrangement of the impingement cooling holes to the shingle edge has a distance which is between 1.5 times and 2 times the The distance between the surface of the combustion chamber wall and the surface of the shingle body is and that in the corner areas of the shingle the distance between the arrangement of the impingement cooling holes is between 1.1 and 3 of the above-mentioned distance.
  • the invention is based on the basic principle of designing the flow of cooling air into the space formed by the shingle so that the cooling air is supplied through the impingement cooling holes in the middle area of the shingle body, ie up to a distance from the edge of the shingle. Since the effusion cooling holes extend over the entire surface of the shingle body, the cooling air can flow out through the adequately dimensioned effusion cooling holes. This flow of air is resulting from the Caused pressure difference across the clapboard. If the edge of the shingle is completely sealed, the air flows through all of the effusion holes without creating any dead zones in the flow. In the event of an incomplete seal, the pressure gradient in the space causes only very small amounts of air to flow over the edge of the shingle as leakage air. Overall, there is thus little reason for the cooling air flowing in through the impingement cooling holes to exit as leakage air over the edge of the shingle.
  • the solution according to the invention makes it possible to use essentially the entire volume of the cooling air for cooling the shingles, on the one hand to cool the cold surface of the shingle facing away from the combustion chamber interior by impingement cooling, and on the other hand by film cooling by means of the exiting through the effusion cooling holes Air. Since according to the invention there is a considerable or complete reduction in the leakage flow, the present invention results in a considerable increase in the effectiveness of the shingle cooling.
  • the impingement cooling holes are not formed up to the edge of the shingle, but rather that the arrangement of the impingement cooling holes is selected so that each impingement cooling hole is at a distance from each shingle edge through which a leak could occur. This distance is chosen so that it is defined on the basis of the free jet length of the impingement cooling jet.
  • the free jet length is the path length between the exit of the cooling air from the impingement cooling hole and the impact on the cold surface of the shingle body facing away from the combustion chamber interior. This free jet length also defines the volume of the space between the combustion chamber wall and the shingle body.
  • the distance between the impingement cooling holes and the edge of the shingle is preferably such that it corresponds to at least 1.5 times the free jet length of the impingement cooling jet.
  • the distance can be up to twice the free jet length, this value is a preferred value.
  • Combustion chamber shingles are usually rectangular, more rarely triangular or diamond-shaped. This results in a corner area of the shingle edges in which the two adjacent edge areas which meet in the corner area and in which there are no impact cooling holes meet. In order to ensure that a sufficient outflow of the impingement cooling air through the effusion cooling holes is also ensured in the corner areas, it must be ensured that the edge distances between the shingle edge and the arrangement of the impingement cooling holes preferably add up linearly.
  • a bevel or rounding is preferably formed in the arrangement of the impingement cooling holes. In an advantageous embodiment, this beveled or rounded area is defined by a factor which can be referred to as the superposition constant. This superposition constant has a value of 1.1 to 3, preferably 1.5 to 2.5, ideally 2. The distance in the corner area is increased by this factor of the superimposition constant in order to ensure the desired flow through the space between the shingle body and the combustion chamber wall.
  • the projected area for the arrangement of the impingement cooling holes is smaller than that for the arrangement of the effusion cooling holes.
  • the arrangement of the impingement cooling holes is thus moved away from the edge of the shingle and maintains a distance therefrom.
  • the impingement cooling holes can be placed closer to one another in the area of the arrangement of the impingement cooling holes in order to avoid impingement cooling holes close to the edge within the distance from the shingle edge.
  • the gas turbine engine 10 is a generally illustrated example of a turbomachine in which the invention may be used.
  • the engine 10 is designed in a conventional manner and comprises, one behind the other in the flow direction, an air inlet 11, a fan 12 rotating in a housing, a medium pressure compressor 13, a high pressure compressor 14, a combustion chamber 15, a high pressure turbine 16, a medium pressure turbine 17 and a low pressure turbine 18 as well as a Exhaust nozzle 19, all of which are arranged around a central engine axis 1.
  • the medium pressure compressor 13 and the high pressure compressor 14 each comprise a plurality of stages, each of which has a circumferential arrangement of fixed stationary guide vanes 20, which are generally referred to as stator vanes and which are radially inward from the core engine casing 21 into an annular flow channel through the compressors 13, 14 protrude.
  • the compressors also have an arrangement of compressor rotor blades 22 which protrude radially outward from a rotatable drum or disk 26 which are coupled to hubs 27 of the high pressure turbine 16 and the medium pressure turbine 17, respectively.
  • the turbine sections 16, 17, 18 have similar stages, including an array of fixed guide vanes 23 protruding radially inward from the housing 21 into the annular flow passage through the turbines 16, 17, 18, and a subsequent array of turbine rotor blades 24, the protrude outward from a rotatable hub 27.
  • the compressor drum or compressor disk 26 and the blades 22 arranged thereon as well as the turbine rotor hub 27 and the turbine rotor blades 24 arranged thereon rotate about the engine axis 1 during operation.
  • FIGS. 4 to 6 each show simplified sectional views in a sectional plane encompassing the central axis, not shown, of a combustion chamber 15.
  • a combustion chamber wall 32 is shown schematically, which is provided with an arrangement of impingement cooling holes 34.
  • the impingement cooling holes 34, as well as the effusion cooling holes 33 to be described below, are only shown by the flow direction as a flow arrow.
  • shingles 25 are arranged, which can be screwed, for example, as shown in FIG Fig. 2 is shown.
  • the shingles have a plate-shaped, essentially flat shingle body 29, which is provided with the effusion cooling holes 33.
  • a circumferential shingle edge 31 is formed, which rests against the combustion chamber wall 32.
  • the height of the shingle edge 31 defines the volume of an intermediate space 35 into which impingement cooling air flows, which is subsequently discharged through the effusion cooling holes 33.
  • the height of the space 35 and thus the volume of the space 35 is determined by the in the Figures 4 and 5
  • the free jet length L of the impingement cooling air or the impingement cooling jet shown is defined.
  • the arrangement of the impingement cooling holes 34 is spaced from the shingle edge 31 by a distance A.
  • the effusion cooling holes 33 are distributed over the entire surface of the shingle body 29.
  • the Fig. 4 shows an embodiment in which the ratio of the number of impingement cooling holes to effusion cooling holes is 1: 1.
  • the distance A is selected such that there is a row of effusion cooling holes between the edge of the next impingement cooling hole 34 and the shingle edge 31, as is the case in the right half of FIG Fig. 4 is shown.
  • the ratio of impingement cooling holes to effusion cooling holes is 1: 2. Consequently, two rows of effusion cooling holes 33 are provided in the spacing area A between the shingle edge 31 and the arrangement of impingement cooling holes 34.
  • the Fig. 6 shows a representation analog Fig. 5 , from which it follows that in the worst case only a very small leakage air flow 36 would flow out of the intermediate space 35 via the shingle edge 31 if the shingle edge 31 were very inadequately sealed against the combustion chamber wall 32.
  • the Fig. 7 and 8th each show a simplified plan view of the embodiment according to the invention in a schematic representation.
  • the shingle edge 31 is shown, which provides a support surface for the shingle, as is the case Figures 4 to 6 demonstrate.
  • a field of the impingement cooling holes is shown with the reference numeral 37 without describing the individual impingement cooling holes and their arrangement. These can be arranged in a suitable manner; the special arrangement of the impingement cooling holes does not play an essential role for the invention. Rather, it is important that there is a distance A between the side of the shingle edge 31 facing the arrangement of the impingement cooling holes 34, at which there is no impingement cooling holes and thus no impingement perforation.
  • the Fig. 7 and 8th show the inside of the shingle edge 31 as edge R1 or R2. Furthermore show the Fig. 7 and 8th in each case the distance A between the edge R1 or R2 and a boundary G of the field 37 of the impingement cooling holes.
  • the distances A add up at the corners of the field 37, so that the field 37 is beveled.
  • the edge distances A thus add up in such a way that a value A results at a distance from the first edge R1 of the bearing surface of the shingle edge 31 of the shingle 25.
  • a value also results from the second edge R2 of the contact surface of the shingle edge 31 of the shingle.
  • the field 37 of the impingement cooling holes thus ends along a line L1 parallel to the edge R1 and at a distance along a line L2 parallel to the edge R2. This defines the distance A.
  • the boundary of the field 37 of the impingement cooling holes is shown with G as a dashed line.
  • the field 37 of the impingement cooling pattern on the line L1 along the edge R1 has a distance C x A.
  • a distance of C x A results with regard to the edge R2 and the line of the boundary G of the impingement cooling pattern.
  • the factor C is defined as an overlay constant and is generally between 1.1 and 3, preferably between 1.5 and 2.5, ideally 2.
  • the impact perforation would extend along the line L1 to the intersection with the line L2 at the edge R2.
  • the ideal state with a distance of 2 x A from the impingement cooling perforation along the line L1 to the edge R2 is in Fig. 7 shown. It thus follows, as in Fig. 7 shown, an additional corner area in the form of an equilateral triangle, in which no impingement cooling holes are provided.
  • the Fig. 8 shows a variant in which the field 37 of the impingement cooling holes is rounded in the corner area, so that the boundary G there runs in the form of an arc of a circle.
  • the openings for impingement cooling are placed at a distance A from the edge of the shingle, so that effusion cooling holes can be arranged between the impingement cooling opening closest to the edge and the inside of the edge of the shingle to prevent the cooling air from flowing out ensure the impingement cooling holes through the effusion cooling holes and avoid edge leakage.
  • the distance from the edge of the shingle, in which no impingement cooling holes are provided, is at least 2 x the free path of the impingement cooling jet within the space formed by the shingle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung bezieht sich auf eine Brennkammer einer Gasturbine gemäß den Merkmalen des Oberbegriffs des Anspruchs 1.The invention relates to a combustion chamber of a gas turbine according to the features of the preamble of claim 1.

Im Einzelnen bezieht sich die Erfindung auf eine Brennkammer einer Gasturbine, welche mit Schindeln belegt ist. Die zumindest eine Schindel umfasst einen plattenförmigen Schindelkörper, welcher einen umlaufenden Schindelrand aufweist. Dieser erstreckt sich von der kalten, dem Brennkammerinnenraum abgewandten Seite des Schindelkörpers aus zur Brennkammerwand und bildet somit zwischen dem Schindelkörper und der Brennkammerwand einen Zwischenraum. In diesen Zwischenraum wird Kühlluft durch Prallkühllöcher eingeleitet, welche nachfolgend durch Effusionskühllöcher des Schindelkörpers an dessen Oberfläche ausgeleitet wird. Zu diesem Zwecke ist der Schindelkörper mit einer Anordnung von Effusionskühllöchern versehen, welche beispielsweise reihenförmig oder in anderer Anordnung zueinander ausgebildet sind. Auch die Prallkühllöcher der Schindelwand sind in einer geeigneten Anordnung ausgebildet.In detail, the invention relates to a combustion chamber of a gas turbine, which is covered with shingles. The at least one shingle comprises a plate-shaped shingle body which has a circumferential shingle edge. This extends from the cold side of the shingle body facing away from the combustion chamber interior to the combustion chamber wall and thus forms an intermediate space between the shingle body and the combustion chamber wall. Cooling air is introduced into this intermediate space through impingement cooling holes, which is subsequently discharged through effusion cooling holes on the surface of the shingle body. For this purpose, the shingle body is provided with an arrangement of effusion cooling holes, which are for example in the form of rows or in a different arrangement relative to one another. The impingement cooling holes in the shingle wall are also designed in a suitable arrangement.

Zum Stand der Technik wird zunächst auf die EP 0 576 435 B1 verwiesen. Diese zeigt einen in Fig. 2 dargestellten Aufbau. Dabei ist ersichtlich, dass eine Schindel 25 einen im Wesentlichen plattenförmigen Schindelkörper 29 aufweist, welcher von einem Schindelrand 31 begrenzt wird. Der Schindelrand 31 erstreckt sich zur Bildung eines Zwischenraums 35 von dem Schindelkörper 29 aus in Richtung auf die Brennkammerwand 32. Die Brennkammerwand 32 ist mit Prallkühllöchern 34 versehen, um Kühlluft in den Zwischenraum 35 einzuführen. Diese Kühlluft strömt durch Effusionskühllöcher 33, welche in dem Schindelkörper 29 ausgebildet sind, aus dem Zwischenraum 35. Da der Schindelrand 31 nicht dichtend gegen die Brennkammerwand 32 angelegt werden kann, ergibt sich stets eine Leckage, welche als Leckageluft 36 dargestellt ist. Somit strömt ein Teil des Luftvolumens, welches durch die Prallkühllöcher 34 zugeführt wird, ungenutzt als Leckageluft 36 aus dem Zwischenraum 35 aus und kann nicht für eine Durchströmung der Effusionskühllöcher 33 verwendet werden.For the prior art, reference is first made to the EP 0 576 435 B1 referenced. This shows an in Fig. 2 illustrated structure. It can be seen that a shingle 25 has an essentially plate-shaped shingle body 29, which is delimited by a shingle edge 31. The shingle edge 31 extends from the shingle body 29 in the direction of the combustion chamber wall 32 to form an intermediate space 35. The combustion chamber wall 32 is provided with impingement cooling holes 34 in order to introduce cooling air into the intermediate space 35. This cooling air flows through effusion cooling holes 33, which are formed in the shingle body 29, out of the space 35. Since the shingle edge 31 cannot be placed against the combustion chamber wall 32 in a sealing manner, there is always a leakage, which is shown as leakage air 36. Thus, part of the air volume which is supplied through the impingement cooling holes 34 flows out of the interspace 35 unused as leakage air 36 and cannot be used for a flow through the effusion cooling holes 33.

Die Fig. 3 zeigt einen ähnlichen Aufbau, wobei gleiche Teile mit gleichen Bezugsziffern versehen sind. Hierzu wird auf die US 5,598,697 A verwiesen. Diese Konstruktion unterscheidet sich zwar von dem erfindungsgemäßen Konstruktionsprinzip, sie zeigt jedoch, dass aus dem Zwischenraum 35 entweder Leckageluft 36 abströmen kann, welche nicht für die Effusionskühllöcher 33 genutzt werden kann oder eine Dichtung 38 eingesetzt werden muss.The Fig. 3 shows a similar structure, wherein the same parts are provided with the same reference numerals. For this purpose, the U.S. 5,598,697 A referenced. Although this construction differs from the construction principle according to the invention, it shows that either leakage air 36 can flow out of the intermediate space 35, which air cannot be used for the effusion cooling holes 33 or a seal 38 must be used.

Die Abdichtung der Prallkühlkavität durch eine zusätzliche Dichtung ist auch aus der EP2354660 (starre Dichtung), EP1310735 (biege-elastische Dichtung), US7140185 (Beschichtung) bekannt. Allen dichtungsbasierten Lösungen sind gemeinsam die höheren Kosten durch die Herstellung der Dichtung, der größere Montageaufwand durch die Montage der Dichtung und das Risiko des Ausfalls der Dichtung.The sealing of the impingement cooling cavity by an additional seal is also from the EP2354660 (rigid seal), EP1310735 (flexible elastic seal), US7140185 (Coating) known. All seal-based solutions have in common the higher costs due to the production of the seal, the greater installation effort due to the installation of the seal and the risk of failure of the seal.

Es zeigt sich somit im Stand der Technik das Problem, dass eine Abdichtung des Zwischenraums zwischen der Schindel und der Brennkammerwand nicht ohne zusätzlichen Aufwand oder nur bedingt möglich ist. Hierdurch ergibt sich eine Leckageluft oder Leckageströmung, durch welche Kühlluft aus dem Zwischenraum zwischen der Brennkammerwand und dem Schindelkörper ungenutzt ausströmt und nicht zur Kühlung durch die Effusionskühllöcher zur Verfügung steht.The problem arises in the prior art that sealing of the space between the shingle and the combustion chamber wall is not possible without additional effort or only to a limited extent. This results in leakage air or leakage flow through which cooling air flows out of the space between the combustion chamber wall and the shingle body unused and is not available for cooling through the effusion cooling holes.

Weiterhin wird als Stand der Technik die EP 1 351 022 B1 genannt.Furthermore, the prior art is the EP 1 351 022 B1 called.

Ferner ist aus GB 2 160 964 A eine Gasturbinenbrennkammer mit Prallluftkühlung von Auskleidungsplatten, welche zusammen mit einem Strukturrahmen die Brennkammer ausbilden, bekannt.It is also off GB 2 160 964 A a gas turbine combustion chamber with impingement air cooling of lining plates, which together with a structural frame form the combustion chamber, is known.

DE 101 58 548 A1 zeigt weiterhin eine Brennkammerschindel für eine Gasturbine mit mehreren Kühllöchern mit unterschiedlicher Winkelausrichtung. DE 101 58 548 A1 also shows a combustion chamber tile for a gas turbine with several cooling holes with different angular orientations.

Ferner zeigt DE 10 2012 025 375 A1 ein Verfahren zur Anordnung von Prallkühllöchern und Effusionskühllöchern in einer Brennkammerwand einer Gasturbine.Also shows DE 10 2012 025 375 A1 a method for the arrangement of impingement cooling holes and effusion cooling holes in a combustion chamber wall of a gas turbine.

Der Erfindung liegt die Aufgabe zugrunde, eine Brennkammer einer Gasturbine zu schaffen, welche bei einfachem Aufbau und einfacher, kostengünstiger Herstellbarkeit eine effektive Nutzung der Kühlluft im Bereich der Schindel sicherstellt.The invention is based on the object of creating a combustion chamber of a gas turbine which, with a simple structure and simple, cost-effective manufacturability, ensures effective use of the cooling air in the area of the shingle.

Erfindungsgemäß wird die Aufgabe durch die Merkmalskombination des Anspruchs 1 gelöst, die Unteransprüche zeigen weitere vorteilhafte Ausgestaltungen der Erfindung.According to the invention, the object is achieved by the combination of features of claim 1; the subclaims show further advantageous embodiments of the invention.

Erfindungsgemäß ist somit vorgesehen, dass die Anordnung der Prallkühllöcher zum Schindelrand einen Abstand aufweist, welcher zwischen dem 1,5-fachen und 2-fachen des Abstands der Oberfläche der Brennkammerwand zur Oberfläche des Schindelkörpers beträgt und dass in den Eckbereichen der Schindel der Abstand der Anordnung der Prallkühllöcher zwischen 1,1 und 3 des oben genannten Abstands beträgt.According to the invention it is thus provided that the arrangement of the impingement cooling holes to the shingle edge has a distance which is between 1.5 times and 2 times the The distance between the surface of the combustion chamber wall and the surface of the shingle body is and that in the corner areas of the shingle the distance between the arrangement of the impingement cooling holes is between 1.1 and 3 of the above-mentioned distance.

Der Erfindung liegt das Grundprinzip zugrunde, die Einströmung der Kühlluft in den durch die Schindel gebildeten Zwischenraum so zu gestalten, dass die Zuführung der Kühlluft durch die Prallkühllöcher im mittleren Bereich des Schindelkörpers, d.h., bis zu einem Abstand vom Schindelrand erfolgt. Da die Effusionskühllöcher sich über die gesamte Fläche des Schindelkörpers erstrecken, kann die Kühlluft durch die ausreichend dimensionierten Effusionskühllöcher abströmen. Diese Strömung der Luft wird durch die sich ergebende Druckdifferenz über die Schindel hervorgerufen. Bei einem vollständig abgedichteten Schindelrand durchströmt die Luft sämtliche der Effusionsbohrungen, ohne dass Totzonen der Strömung gebildet werden. Bei einer unvollständigen Abdichtung bewirkt der Druckgradient in dem Zwischenraum, dass nur sehr geringe Luftmengen als Leckageluft über den Schindelrand strömen. Insgesamt ergibt sich somit für die durch die Prallkühllöcher einströmende Kühlluft wenig Veranlassung, als Leckageluft über den Schindelrand auszutreten.The invention is based on the basic principle of designing the flow of cooling air into the space formed by the shingle so that the cooling air is supplied through the impingement cooling holes in the middle area of the shingle body, ie up to a distance from the edge of the shingle. Since the effusion cooling holes extend over the entire surface of the shingle body, the cooling air can flow out through the adequately dimensioned effusion cooling holes. This flow of air is resulting from the Caused pressure difference across the clapboard. If the edge of the shingle is completely sealed, the air flows through all of the effusion holes without creating any dead zones in the flow. In the event of an incomplete seal, the pressure gradient in the space causes only very small amounts of air to flow over the edge of the shingle as leakage air. Overall, there is thus little reason for the cooling air flowing in through the impingement cooling holes to exit as leakage air over the edge of the shingle.

Bei den aus dem Stand der Technik vorbekannten Konstruktionen von doppelwandigen Brennkammern wird die Schindel üblicherweise ohne Dichtungen auf die Brennkammerwand aufgeschraubt. Derartige Dichtungen wären aufwendig und kostenintensiv. Zudem führen thermische Expansionen und Kontraktionen stets zu einer geringfügigen Spaltbildung. Hinzu kommen Fertigungstoleranzen, welche ebenfalls eine vollständig dichtende Anlage des Schindelrandes an der Brennkammerwand ausschließen. Weiterhin ist zu beachten, dass die Geometrie von Brennkammern von Gasturbinen sehr komplex ist und nicht immer eine vollständige Abdichtung des Schindelrandes ermöglicht. In diesem Zusammenhang ist darauf hinzuweisen, dass der Fachmann versteht, was unter dem Begriff "Gasturbine" zu verstehen ist, nämlich eine Fluggasturbine oder eine stationäre Gasturbine. Bei beiden ist die Erfindung einsetzbar. Durch die erfindungsgemäße Lösung ist es somit möglich, im Wesentlichen das gesamte Volumen der Kühlluft für die Kühlung der Schindeln zu verwenden, einerseits zur Kühlung der kalten, dem Brennkammerinnenraum abgewandten Oberfläche der Schindel durch Prallkühlung, und zum anderen durch Filmkühlung mittels der durch die Effusionskühllöcher austretenden Luft. Da sich erfindungsgemäß eine erhebliche oder vollständige Verminderung der Leckageströmung ergibt, resultiert die vorliegende Erfindung in einer erheblichen Steigerung der Effektivität der Schindelkühlung.In the designs of double-walled combustion chambers known from the prior art, the shingle is usually screwed onto the combustion chamber wall without seals. Such seals would be complex and costly. In addition, thermal expansions and contractions always lead to a slight gap formation. In addition, there are manufacturing tolerances, which also rule out a completely sealing contact between the shingle edge and the combustion chamber wall. It should also be noted that the geometry of the combustion chambers of gas turbines is very complex and does not always allow the edge of the shingle to be completely sealed. In this context, it should be pointed out that the person skilled in the art understands what is to be understood by the term “gas turbine”, namely an aircraft gas turbine or a stationary gas turbine. The invention can be used with both. The solution according to the invention makes it possible to use essentially the entire volume of the cooling air for cooling the shingles, on the one hand to cool the cold surface of the shingle facing away from the combustion chamber interior by impingement cooling, and on the other hand by film cooling by means of the exiting through the effusion cooling holes Air. Since according to the invention there is a considerable or complete reduction in the leakage flow, the present invention results in a considerable increase in the effectiveness of the shingle cooling.

Erfindungsgemäß ist somit vorgesehen, die Prallkühllöcher nicht bis zum Schindelrand auszubilden, sondern die Anordnung der Prallkühllöcher so zu wählen, dass jedes Prallkühlloch von jedem Schindelrand, durch welchen eine Leckage auftreten könnte, einen Abstand aufweist. Dieser Abstand ist so gewählt, dass er sich auf der Basis der freien Strahllänge des Prallkühlstrahls definiert. Die freie Strahllänge ist die Weglänge zwischen dem Austritt der Kühlluft aus dem Prallkühlloch und dem Auftreffen auf die dem Brennkammerinnenraum abgewandte kalte Oberfläche des Schindelkörpers. Durch diese freie Strahllänge ist auch das Volumen des Zwischenraums zwischen der Brennkammerwand und dem Schindelkörper definiert. Bevorzugt wird der Abstand der Prallkühllöcher vom Schindelrand so bemessen, dass er mindestens dem 1,5-fachen der freien Strahllänge des Prallkühlstrahls entspricht. Der Abstand kann bis zum 2-fachen der freien Strahllänge betragen, dieser Wert ist ein bevorzugter Wert. Durch die Definition des Abstandes ist somit sichergestellt, dass zwischen dem Randbereich der Anordnung mit Prallkühllöchern oder des Feldes, welches durch die Prallkühllöcher gebildet wird und dem Schindelrand eine ausreichende Anzahl an Effusionslöchern vorhanden sind. Die Kühlluft, welche durch die randseitigen Prallkühllöcher austritt und sich in Richtung zum Schindelrand bewegen möchte, trifft somit auf eine ausreichende Anzahl an Effusionslöchern und kann durch diese abgeführt werden. Ein Austritt dieser Luftströmung als Leckageluft wird somit verhindert.According to the invention it is thus provided that the impingement cooling holes are not formed up to the edge of the shingle, but rather that the arrangement of the impingement cooling holes is selected so that each impingement cooling hole is at a distance from each shingle edge through which a leak could occur. This distance is chosen so that it is defined on the basis of the free jet length of the impingement cooling jet. The free jet length is the path length between the exit of the cooling air from the impingement cooling hole and the impact on the cold surface of the shingle body facing away from the combustion chamber interior. This free jet length also defines the volume of the space between the combustion chamber wall and the shingle body. The distance between the impingement cooling holes and the edge of the shingle is preferably such that it corresponds to at least 1.5 times the free jet length of the impingement cooling jet. The distance can be up to twice the free jet length, this value is a preferred value. By defining the distance is thus ensures that a sufficient number of effusion holes are present between the edge region of the arrangement with impingement cooling holes or the field which is formed by the impingement cooling holes and the shingle edge. The cooling air, which exits through the edge-side impact cooling holes and would like to move in the direction of the shingle edge, thus meets a sufficient number of effusion holes and can be discharged through them. This prevents this air flow from escaping as leakage air.

Brennkammerschindeln sind üblicherweise rechteckig, seltener dreieckig oder rautenförmig, ausgebildet. Somit ergibt sich ein Eckbereich der Schindelränder, in welchem die beiden benachbarten, sich im Eckbereich treffenden Randbereiche, in denen keine Prallkühllöcher vorhanden sind, treffen. Um sicherzustellen, dass auch in den Eckbereichen eine ausreichende Abströmung der Prallkühlluft durch die Effusionskühllöcher sichergestellt wird, ist zu beachten, dass sich vorzugsweise die Randabstände zwischen dem Schindelrand und der Anordnung der Prallkühllöcher linear addieren. Bevorzugt wird dabei in der Anordnung der Prallkühllöcher eine Abschrägung oder Abrundung gebildet. Dieser abgeschrägte oder abgerundete Bereich wird in günstiger Ausgestaltung durch einen Faktor definiert, welcher als Überlagerungskonstante bezeichnet werden kann. Diese Überlagerungskonstante weist einen Wert von 1,1 bis 3, bevorzugt von 1,5 bis 2,5, idealerweise von 2, auf. Um diesen Faktor der Überlagerungskonstante wird im Eckbereich der Abstand vergrößert, um die gewünschte Durchströmung des Zwischenraums zwischen dem Schindelkörper und der Brennkammerwand sicherzustellen.Combustion chamber shingles are usually rectangular, more rarely triangular or diamond-shaped. This results in a corner area of the shingle edges in which the two adjacent edge areas which meet in the corner area and in which there are no impact cooling holes meet. In order to ensure that a sufficient outflow of the impingement cooling air through the effusion cooling holes is also ensured in the corner areas, it must be ensured that the edge distances between the shingle edge and the arrangement of the impingement cooling holes preferably add up linearly. A bevel or rounding is preferably formed in the arrangement of the impingement cooling holes. In an advantageous embodiment, this beveled or rounded area is defined by a factor which can be referred to as the superposition constant. This superposition constant has a value of 1.1 to 3, preferably 1.5 to 2.5, ideally 2. The distance in the corner area is increased by this factor of the superimposition constant in order to ensure the desired flow through the space between the shingle body and the combustion chamber wall.

Erfindungsgemäß ergibt sich somit für die Anordnung der Prallkühllöcher eine geringere projizierte Fläche, als für die Anordnung der Effusionskühllöcher. Die Anordnung der Prallkühllöcher ist somit von dem Schindelrand abgerückt und hält zu diesem einen Abstand ein. Um bei dieser Ausgestaltung eine zuverlässige Durchströmung mit Kühlluft und den Aufbau eines geeigneten Druckgradienten zu gewährleisten, ist es vorzugsweise möglich, die Prallkühllöcher jeweils mit einem vergrößerten Durchmesser auszubilden, verglichen mit der Ausgestaltung gemäß dem Stand der Technik, bei welchem sich die Anordnung der Prallkühllöcher über die gesamte Fläche der Schindel erstreckt. Alternativ hierzu ist es auch möglich, eine größere Anzahl an Prallkühllöchern, verglichen mit dem Stand der Technik, vorzusehen, um das Kühlluftvolumen zuzuführen. Hierbei können die Prallkühllöcher im Bereich der Anordnung der Prallkühllöcher dichter aneinander gesetzt werden, um randnahe Prallkühllöcher innerhalb des Abstands zum Schindelrand zu vermeiden.According to the invention, the projected area for the arrangement of the impingement cooling holes is smaller than that for the arrangement of the effusion cooling holes. The arrangement of the impingement cooling holes is thus moved away from the edge of the shingle and maintains a distance therefrom. In order to ensure a reliable flow of cooling air and the build-up of a suitable pressure gradient in this embodiment, it is preferably possible to design the impingement cooling holes each with an enlarged diameter compared to the embodiment according to the prior art, in which the arrangement of the impingement cooling holes overlaps covers the entire surface of the clapboard. As an alternative to this, it is also possible to provide a larger number of impingement cooling holes, compared to the prior art, in order to supply the volume of cooling air. Here, the impingement cooling holes can be placed closer to one another in the area of the arrangement of the impingement cooling holes in order to avoid impingement cooling holes close to the edge within the distance from the shingle edge.

Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung beschrieben. Dabei zeigt:

Fig. 1
eine schematische Darstellung eines Gasturbinentriebwerks gemäß der vorliegenden Erfindung,
Fig. 2
eine Darstellung zum Stand der Technik,
Fig. 3
eine Darstellung zum Stand der Technik,
Fig. 4
eine schematische Seitenansicht eines ersten Ausführungsbeispiels der Erfindung,
Fig. 5
eine Darstellung, analog Fig. 4, eines weiteren Ausführungsbeispiels der Erfindung,
Fig. 6
eine vereinfachte Darstellung, analog Fig. 5, mit Darstellung möglicher Leckageströmungen,
Fig. 7
eine Draufsicht auf ein erstes Ausführungsbeispiel der Eckgestaltung, und
Fig. 8
eine Ansicht, analog Fig. 7, eines weiteren Ausführungsbeispiels.
The invention is described below using exemplary embodiments in conjunction with the drawing. It shows:
Fig. 1
a schematic representation of a gas turbine engine according to the present invention,
Fig. 2
a presentation of the state of the art,
Fig. 3
a presentation of the state of the art,
Fig. 4
a schematic side view of a first embodiment of the invention,
Fig. 5
a representation, analog Fig. 4 , another embodiment of the invention,
Fig. 6
a simplified representation, analog Fig. 5 , with representation of possible leakage flows,
Fig. 7
a plan view of a first embodiment of the corner design, and
Fig. 8
a view, analog Fig. 7 , of a further embodiment.

Das Gasturbinentriebwerk 10 gemäß Fig. 1 ist ein allgemein dargestelltes Beispiel einer Turbomaschine, bei der die Erfindung Anwendung finden kann. Das Triebwerk 10 ist in herkömmlicher Weise ausgebildet und umfasst in Strömungsrichtung hintereinander einen Lufteinlass 11, einen in einem Gehäuse umlaufenden Fan 12, einen Mitteldruckkompressor 13, einen Hochdruckkompressor 14, eine Brennkammer 15, eine Hochdruckturbine 16, eine Mitteldruckturbine 17 und eine Niederdruckturbine 18 sowie eine Abgasdüse 19, die sämtlich um eine zentrale Triebwerksachse 1 angeordnet sind.The gas turbine engine 10 according to FIG Fig. 1 Figure 3 is a generally illustrated example of a turbomachine in which the invention may be used. The engine 10 is designed in a conventional manner and comprises, one behind the other in the flow direction, an air inlet 11, a fan 12 rotating in a housing, a medium pressure compressor 13, a high pressure compressor 14, a combustion chamber 15, a high pressure turbine 16, a medium pressure turbine 17 and a low pressure turbine 18 as well as a Exhaust nozzle 19, all of which are arranged around a central engine axis 1.

Der Mitteldruckkompressor 13 und der Hochdruckkompressor 14 umfassen jeweils mehrere Stufen, von denen jede eine in Umfangsrichtung verlaufende Anordnung fester stationärer Leitschaufeln 20 aufweist, die allgemein als Statorschaufeln bezeichnet werden und die radial nach innen vom Kerntriebwerksgehäuse 21 in einen ringförmigen Strömungskanal durch die Kompressoren 13, 14 vorstehen. Die Kompressoren weisen weiter eine Anordnung von Kompressorlaufschaufeln 22 auf, die radial nach außen von einer drehbaren Trommel oder Scheibe 26 vorstehen, die mit Naben 27 der Hochdruckturbine 16 bzw. der Mitteldruckturbine 17 gekoppelt sind.The medium pressure compressor 13 and the high pressure compressor 14 each comprise a plurality of stages, each of which has a circumferential arrangement of fixed stationary guide vanes 20, which are generally referred to as stator vanes and which are radially inward from the core engine casing 21 into an annular flow channel through the compressors 13, 14 protrude. The compressors also have an arrangement of compressor rotor blades 22 which protrude radially outward from a rotatable drum or disk 26 which are coupled to hubs 27 of the high pressure turbine 16 and the medium pressure turbine 17, respectively.

Die Turbinenabschnitte 16, 17, 18 weisen ähnliche Stufen auf, umfassend eine Anordnung von festen Leitschaufeln 23, die radial nach innen vom Gehäuse 21 in den ringförmigen Strömungskanal durch die Turbinen 16, 17, 18 vorstehen, und eine nachfolgende Anordnung von Turbinenrotorschaufeln 24, die nach außen von einer drehbaren Nabe 27 vorstehen. Die Kompressortrommel oder Kompressorscheibe 26 und die darauf angeordneten Schaufeln 22 sowie die Turbinenrotornabe 27 und die darauf angeordneten Turbinenrotorschaufeln 24 drehen sich im Betrieb um die Triebwerksachse 1.The turbine sections 16, 17, 18 have similar stages, including an array of fixed guide vanes 23 protruding radially inward from the housing 21 into the annular flow passage through the turbines 16, 17, 18, and a subsequent array of turbine rotor blades 24, the protrude outward from a rotatable hub 27. The compressor drum or compressor disk 26 and the blades 22 arranged thereon as well as the turbine rotor hub 27 and the turbine rotor blades 24 arranged thereon rotate about the engine axis 1 during operation.

Die Fig. 4 bis 6 zeigen jeweils vereinfachte Schnittansichten in einer die nicht dargestellte Mittelachse einer Brennkammer 15 umfassenden Schnittebene. Dabei ist schematisch eine Brennkammerwand 32 dargestellt, welche mit einer Anordnung von Prallkühllöchern 34 versehen ist. Zur Vereinfachung der Darstellung sind die Prallkühllöcher 34, ebenso wie die nachfolgend zu beschreibenden Effusionskühllöcher 33, nur durch die Strömungsrichtung als Strömungspfeil gezeigt.The Figures 4 to 6 each show simplified sectional views in a sectional plane encompassing the central axis, not shown, of a combustion chamber 15. A combustion chamber wall 32 is shown schematically, which is provided with an arrangement of impingement cooling holes 34. To simplify the illustration, the impingement cooling holes 34, as well as the effusion cooling holes 33 to be described below, are only shown by the flow direction as a flow arrow.

An der einem Brennkammerinnenraum 30 zugewandten Seite der Brennkammerwand 32 sind Schindeln 25 angeordnet, welche beispielsweise verschraubt werden können, so wie dies in Fig. 2 gezeigt ist. Die Schindeln weisen einen plattenförmigen, im Wesentlichen flachen Schindelkörper 29 auf, welcher mit den Effusionskühllöchern 33 versehen ist. Am Randbereich des Schindelkörpers 29 ist ein umlaufender Schindelrand 31 ausgebildet, welcher gegen die Brennkammerwand 32 anliegt. Die Höhe des Schindelrands 31 definiert das Volumen eines Zwischenraums 35, in welchen Prallkühlluft einströmt, welche nachfolgend durch die Effusionskühllöcher 33 abgeleitet wird. Die Höhe des Zwischenraums 35 und damit das Volumen des Zwischenraums 35 wird durch die in den Fig. 4 und 5 dargestellte freie Strahllänge L der Prallkühlluft oder des Prallkühlstrahls definiert.On the side of the combustion chamber wall 32 facing a combustion chamber interior 30, shingles 25 are arranged, which can be screwed, for example, as shown in FIG Fig. 2 is shown. The shingles have a plate-shaped, essentially flat shingle body 29, which is provided with the effusion cooling holes 33. At the edge area of the shingle body 29, a circumferential shingle edge 31 is formed, which rests against the combustion chamber wall 32. The height of the shingle edge 31 defines the volume of an intermediate space 35 into which impingement cooling air flows, which is subsequently discharged through the effusion cooling holes 33. The height of the space 35 and thus the volume of the space 35 is determined by the in the Figures 4 and 5 The free jet length L of the impingement cooling air or the impingement cooling jet shown is defined.

Wie in den Fig. 4 bis 6 dargestellt, ist die Anordnung der Prallkühllöcher 34 von dem Schindelrand 31 um einen Abstand A beabstandet. Die Effusionskühllöcher 33 sind über die gesamte Fläche des Schindelkörpers 29 verteilt.As in the Figures 4 to 6 shown, the arrangement of the impingement cooling holes 34 is spaced from the shingle edge 31 by a distance A. The effusion cooling holes 33 are distributed over the entire surface of the shingle body 29.

Die Fig. 4 zeigt ein Ausführungsbeispiel, bei welchem das Verhältnis der Anzahl von Prallkühllöchern zu Effusionskühllöchern 1:1 beträgt. Erfindungsgemäß ist bei diesem Ausführungsbeispiel der Abstand A so gewählt, dass sich zwischen dem Rand des nächsten Prallkühllochs 34 und dem Schindelrand 31 eine Reihe von Effusionskühllöchern befindet, so wie dies in der rechten Hälfte der Fig. 4 dargestellt ist.The Fig. 4 shows an embodiment in which the ratio of the number of impingement cooling holes to effusion cooling holes is 1: 1. According to the invention, in this exemplary embodiment, the distance A is selected such that there is a row of effusion cooling holes between the edge of the next impingement cooling hole 34 and the shingle edge 31, as is the case in the right half of FIG Fig. 4 is shown.

Bei dem in Fig. 5 gezeigten Ausführungsbeispiel beträgt das Verhältnis von Prallkühllöchern zu Effusionskühllöchern 1:2. Folglich sind in dem Abstandsbereich A zwischen dem Schindelrand 31 und der Anordnung von Prallkühllöchern 34 zwei Reihen von Effusionskühllöchern 33 vorgesehen.The in Fig. 5 The embodiment shown, the ratio of impingement cooling holes to effusion cooling holes is 1: 2. Consequently, two rows of effusion cooling holes 33 are provided in the spacing area A between the shingle edge 31 and the arrangement of impingement cooling holes 34.

Bei einem Verhältnis von Prallkühllöchern zu Effusionskühllöchern von 1:3 würden sich dann drei Reihen von Effusionslöchern in dem Abstandsbereich A befinden. Diese Ausgestaltung ist nicht gezeigt.With a ratio of impingement cooling holes to effusion cooling holes of 1: 3, there would then be three rows of effusion holes in the spacing area A. This configuration is not shown.

Die Fig. 6 zeigt eine Darstellung analog Fig. 5, aus welcher sich ergibt, dass im ungünstigsten Fall eine nur sehr geringe Leckageluftströmung 36 über den Schindelrand 31 aus dem Zwischenraum 35 ausströmen würde, wenn der Schindelrand 31 sehr ungenügend gegen die Brennkammerwand 32 abgedichtet wäre.The Fig. 6 shows a representation analog Fig. 5 , from which it follows that in the worst case only a very small leakage air flow 36 would flow out of the intermediate space 35 via the shingle edge 31 if the shingle edge 31 were very inadequately sealed against the combustion chamber wall 32.

Die Fig. 7 und 8 zeigen jeweils eine vereinfachte Draufsicht auf die erfindungsgemäße Ausgestaltung in schematischer Darstellung. Dabei ist insbesondere der Schindelrand 31 dargestellt, welcher eine Auflagefläche der Schindel ergibt, so wie dies die Fig. 4 bis 6 zeigen. Mit dem Bezugszeichen 37 ist ein Feld der Prallkühllöcher gezeigt, ohne die einzelnen Prallkühllöcher und deren Anordnung zu beschreiben. Diese können in geeigneter Weise angeordnet sein, die spezielle Anordnung der Prallkühllöcher spielt für die Erfindung keine wesentliche Rolle. Wichtig ist vielmehr, dass sich zwischen der der Anordnung der Prallkühllöcher 34 zugewandten Seite des Schindelrands 31 ein Abstand A ergibt, in welchem keine Prallkühllöcher und somit keine Prallbelochung vorliegt. Die Fig. 7 und 8 zeigen die Innenseite des Schindelrands 31 als Rand R1 bzw. R2. Weiterhin zeigen die Fig. 7 und 8 jeweils den Abstand A zwischen dem Rand R1 bzw. R2 und einer Grenze G des Felds 37 der Prallkühllöcher.The Fig. 7 and 8th each show a simplified plan view of the embodiment according to the invention in a schematic representation. In particular, the shingle edge 31 is shown, which provides a support surface for the shingle, as is the case Figures 4 to 6 demonstrate. A field of the impingement cooling holes is shown with the reference numeral 37 without describing the individual impingement cooling holes and their arrangement. These can be arranged in a suitable manner; the special arrangement of the impingement cooling holes does not play an essential role for the invention. Rather, it is important that there is a distance A between the side of the shingle edge 31 facing the arrangement of the impingement cooling holes 34, at which there is no impingement cooling holes and thus no impingement perforation. The Fig. 7 and 8th show the inside of the shingle edge 31 as edge R1 or R2. Furthermore show the Fig. 7 and 8th in each case the distance A between the edge R1 or R2 and a boundary G of the field 37 of the impingement cooling holes.

Wie die Fig. 7 zeigt, addieren sich erfindungsgemäß die Abstände A an den Ecken des Feldes 37, so dass es zu einer Abschrägung des Feldes 37 kommt. In den Ecken der Schindel 25 addieren sich somit die Randabstände A so, dass sich bei einem Abstand vom ersten Rand R1 der Auflagefläche des Schindelrandes 31 der Schindel 25 ein Wert A ergibt. Vom zweiten Rand R2 der Auflagefläche des Schindelrands 31 der Schindel ergibt sich ebenfalls ein Wert A. Das Feld 37 der Prallkühllöcher (Prallkühlmuster) endet somit entlang einer Linie L1 parallel zum Rand R1 und in einem Abstand entlang einer Linie L2 parallel zum Rand R2. Hierdurch wird der Abstand A definiert. Die Grenze des Feldes 37 der Prallkühllöcher ist mit G als gestrichelte Linie eingezeichnet. In den Ecken weist das Feld 37 des Prallkühlmusters auf der Linie L1 entlang des Randes R1 einen Abstand C x A auf. Analog ergibt sich hinsichtlich des Randes R2 und der Linie der Grenze G des Prallkühlmusters ein Abstand von C x A. Der Faktor C ist als Überlagerungskonstante definiert und beträgt im Allgemeinen zwischen 1,1 und 3, bevorzugterweise zwischen 1,5 und 2,5, idealerweise 2. Mit C=1 (Stand der Technik) würde die Prallbelochung entlang der Linie L1 bis zur Kreuzung mit der Linie L2 an den Rand R2 reichen. Der Idealzustand mit einem Abstand von 2 x A von der Prallkühlbelochung entlang der Linie L1 zum Rand R2 ist in Fig. 7 dargestellt. Es ergibt sich somit, wie in Fig. 7 gezeigt, ein zusätzlicher Eckbereich in Form eines gleichseitigen Dreiecks, in welchem keine Prallkühllöcher vorgesehen sind.As the Fig. 7 shows, according to the invention, the distances A add up at the corners of the field 37, so that the field 37 is beveled. In the corners of the shingle 25, the edge distances A thus add up in such a way that a value A results at a distance from the first edge R1 of the bearing surface of the shingle edge 31 of the shingle 25. A value also results from the second edge R2 of the contact surface of the shingle edge 31 of the shingle. The field 37 of the impingement cooling holes (impingement cooling pattern) thus ends along a line L1 parallel to the edge R1 and at a distance along a line L2 parallel to the edge R2. This defines the distance A. The boundary of the field 37 of the impingement cooling holes is shown with G as a dashed line. In the corners, the field 37 of the impingement cooling pattern on the line L1 along the edge R1 has a distance C x A. Analogously, a distance of C x A results with regard to the edge R2 and the line of the boundary G of the impingement cooling pattern. The factor C is defined as an overlay constant and is generally between 1.1 and 3, preferably between 1.5 and 2.5, ideally 2. With C = 1 (prior art) the impact perforation would extend along the line L1 to the intersection with the line L2 at the edge R2. The ideal state with a distance of 2 x A from the impingement cooling perforation along the line L1 to the edge R2 is in Fig. 7 shown. It thus follows, as in Fig. 7 shown, an additional corner area in the form of an equilateral triangle, in which no impingement cooling holes are provided.

Die Fig. 8 zeigt eine Variante, bei welcher das Feld 37 der Prallkühllöcher im Eckbereich abgerundet ist, so dass die Grenze G dort in Form eines Kreisbogens verläuft.The Fig. 8 shows a variant in which the field 37 of the impingement cooling holes is rounded in the corner area, so that the boundary G there runs in the form of an arc of a circle.

Somit sind erfindungsgemäß zur Verminderung von Randleckagen aus einer pralleffusionsgekühlten Schindel die Öffnungen für die Prallkühlung in einem Abstand A vom Rand der Schindel platziert, so dass zwischen der randnächsten Prallkühlöffnung und der Innenseite des Randes der Schindel Effusionskühllöcher angeordnet werden können, um eine Ausströmung der Kühlluft aus den Prallkühllöchern durch die Effusionskühllöcher sicherzustellen und eine Randleckage zu vermeiden. Der Abstand vom Rand der Schindel, in welchem keine Prallkühllöcher vorgesehen sind, beträgt mindestens 2 x die freie Weglänge des Prallkühlstrahls innerhalb des durch die Schindel gebildeten Zwischenraums.Thus, according to the invention, in order to reduce edge leakage from an impingement-cooled shingle, the openings for impingement cooling are placed at a distance A from the edge of the shingle, so that effusion cooling holes can be arranged between the impingement cooling opening closest to the edge and the inside of the edge of the shingle to prevent the cooling air from flowing out ensure the impingement cooling holes through the effusion cooling holes and avoid edge leakage. The distance from the edge of the shingle, in which no impingement cooling holes are provided, is at least 2 x the free path of the impingement cooling jet within the space formed by the shingle.

Bezuaszeichenliste:Reference list:

11
TriebwerksachseEngine axis
1010
Gasturbinentriebwerk / KerntriebwerkGas turbine engine / core engine
1111
LufteinlassAir inlet
1212th
Fanfan
1313th
Mitteldruckkompressor (Verdichter)Medium pressure compressor
1414th
HochdruckkompressorHigh pressure compressor
1515th
BrennkammerCombustion chamber
1616
HochdruckturbineHigh pressure turbine
1717th
MitteldruckturbineMedium pressure turbine
1818th
NiederdruckturbineLow pressure turbine
1919th
AbgasdüseExhaust nozzle
2020th
LeitschaufelnGuide vanes
2121
KerntriebwerksgehäuseCore engine casing
2222nd
KompressorlaufschaufelnCompressor blades
2323
LeitschaufelnGuide vanes
2424
TurbinenrotorschaufelnTurbine rotor blades
2525th
Schindelshingle
2626th
Kompressortrommel oder -scheibeCompressor drum or disk
2727
TurbinenrotornabeTurbine rotor hub
2828
AuslasskonusOutlet cone
2929
SchindelkörperClapboard body
3030th
BrennkammerinnenraumCombustion chamber interior
3131
SchindelrandClapboard edge
3232
BrennkammerwandCombustion chamber wall
3333
EffusionskühllochEffusion cooling hole
3434
PrallkühllochImpingement cooling hole
3535
ZwischenraumSpace
3636
LeckageluftLeakage air
3737
Feld der PrallkühllöcherField of impingement cooling holes
3838
Dichtungpoetry
AA.
Abstanddistance
GG
Grenzeborder
LL.
freie Strahllängefree beam length
R1R1
Randedge
R2R2
Randedge

Claims (6)

  1. Combustion chamber of a gas turbine, with a combustion chamber wall (32) and with at least one shingle (25) which comprises a plate-shaped shingle body (29) which has a peripheral shingle edge (31) which is elevated from the side which faces away from the combustion chamber interior (30), which shingle edge (31) bears against the combustion chamber wall (32) in the mounted state of the shingle (25), the shingle body (29) being provided with an arrangement of effusion cooling holes (33), and the combustion chamber wall (32) being provided with an arrangement of impingement cooling holes (34) in the region of the shingle (25), the arrangement of effusion cooling holes (33) comprising the entire shingle body (29), and effusion cooling holes (33) being arranged within the spacing (A), and the arrangement of impingement cooling holes (34) being at a lateral spacing (A) from the shingle edge (31), which lateral spacing (A) is between 1.5 and 2 times the spacing of the surface of the combustion chamber wall (32) from the surface of the shingle body (29), characterized in that the spacing of the arrangement of the impingement cooling holes (34) is between 1.1 and 3 times the lateral spacing (A) in those corner regions of the shingle (25), in which mutually adjoining shingle edges (31) meet.
  2. Combustion chamber according to Claim 1, characterized in that the spacing in the corner regions is between 1.5 and 2.5 times the spacing (A).
  3. Combustion chamber according to Claim 1 or 2, characterized in that the corner region of the arrangement of impingement cooling holes (34) is of rectilinear configuration.
  4. Combustion chamber according to Claim 1 or 2, characterized in that the corner region of the arrangement of impingement cooling holes (34) is of rounded configuration.
  5. Combustion chamber according to Claim 1, characterized in that the ratio of the number of impingement cooling holes (34) and the number of effusion cooling holes (33) is from 1:1 to 1:3.
  6. Combustion chamber according to Claim 5, characterized in that in each case at least one row of effusion cooling holes (33) is arranged within the spacing (A), the number of rows of effusion cooling holes (33) within the spacing (A) being identical to the ratio of the number of impingement cooling holes (34) and the number of effusion cooling holes (33).
EP17200874.0A 2016-11-10 2017-11-09 Combustion chamber of a gas turbine with at least a tile Active EP3321583B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016222099.3A DE102016222099A1 (en) 2016-11-10 2016-11-10 Combustion chamber of a gas turbine

Publications (2)

Publication Number Publication Date
EP3321583A1 EP3321583A1 (en) 2018-05-16
EP3321583B1 true EP3321583B1 (en) 2021-03-17

Family

ID=60301838

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17200874.0A Active EP3321583B1 (en) 2016-11-10 2017-11-09 Combustion chamber of a gas turbine with at least a tile

Country Status (3)

Country Link
US (1) US20180128487A1 (en)
EP (1) EP3321583B1 (en)
DE (1) DE102016222099A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180299126A1 (en) * 2017-04-18 2018-10-18 United Technologies Corporation Combustor liner panel end rail
US20180306113A1 (en) * 2017-04-19 2018-10-25 United Technologies Corporation Combustor liner panel end rail matching heat transfer features
DE102020203017A1 (en) 2020-03-10 2021-09-16 Siemens Aktiengesellschaft Combustion chamber with ceramic heat shield and seal

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2160964B (en) * 1984-06-25 1988-04-07 Gen Electric Combustion chamber construction
GB9106085D0 (en) 1991-03-22 1991-05-08 Rolls Royce Plc Gas turbine engine combustor
FR2723177B1 (en) 1994-07-27 1996-09-06 Snecma COMBUSTION CHAMBER COMPRISING A DOUBLE WALL
DE10155420A1 (en) 2001-11-12 2003-05-22 Rolls Royce Deutschland Heat shield arrangement with sealing element
DE10158548A1 (en) * 2001-11-29 2003-06-12 Rolls Royce Deutschland Combustor lining with cooling holes for gas turbine, has cooling hole angle decreasing in air flow direction from lining edge region
US6701714B2 (en) * 2001-12-05 2004-03-09 United Technologies Corporation Gas turbine combustor
DE10214570A1 (en) 2002-04-02 2004-01-15 Rolls-Royce Deutschland Ltd & Co Kg Mixed air hole in gas turbine combustion chamber with combustion chamber shingles
US7363763B2 (en) * 2003-10-23 2008-04-29 United Technologies Corporation Combustor
US7140185B2 (en) 2004-07-12 2006-11-28 United Technologies Corporation Heatshielded article
US7219498B2 (en) * 2004-09-10 2007-05-22 Honeywell International, Inc. Waffled impingement effusion method
US9587832B2 (en) * 2008-10-01 2017-03-07 United Technologies Corporation Structures with adaptive cooling
US8359865B2 (en) 2010-02-04 2013-01-29 United Technologies Corporation Combustor liner segment seal member
US8997495B2 (en) * 2011-06-24 2015-04-07 United Technologies Corporation Strain tolerant combustor panel for gas turbine engine
US20130000309A1 (en) * 2011-06-30 2013-01-03 United Technologies Corporation System and method for adaptive impingement cooling
DE102012025375A1 (en) * 2012-12-27 2014-07-17 Rolls-Royce Deutschland Ltd & Co Kg Method for arranging impingement cooling holes and effusion holes in a combustion chamber wall of a gas turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3321583A1 (en) 2018-05-16
DE102016222099A1 (en) 2018-05-17
US20180128487A1 (en) 2018-05-10

Similar Documents

Publication Publication Date Title
EP3056813B1 (en) Seal of an edge gap between effusion shingle of a gas turbine combustor
EP2829804B1 (en) Combustion chamber shingle of a gas turbine and method for their preparation
EP2770260B1 (en) Gas turbine combustion chamber with impingement effusion cooled shingle
EP3239612B1 (en) Gas turbine combustor
EP2300686B1 (en) Gas turbine comprising a guide vane
EP3321583B1 (en) Combustion chamber of a gas turbine with at least a tile
EP2132414B1 (en) Shiplap arrangement
CH708795A2 (en) Segment for an annular rotary machine Leitradbauteil.
DE1476795A1 (en) Intermediate nozzle floor, especially for gas turbines
DE102018212394B4 (en) Combustion chamber assembly with a wall element having a flow guide device
WO2003054360A1 (en) Hot gas path subassembly of a gas turbine
EP3409897B1 (en) Seal assembly for a turbomachine, method for producing a seal assembly and turbomachine
EP3409899B1 (en) Sealing arrangement with a welded seal sheet, turbo-machine and production method
EP2921778A1 (en) Combustion chamber of a gas turbine
DE102014204482A1 (en) Combustion chamber of a gas turbine
DE69812837T2 (en) Double cross seal for gas turbine guide vanes
EP1073827B1 (en) Turbine blade
DE1287857B (en)
EP3196427B1 (en) Turbomachine with a panel in a recess of a wall
EP3159487B1 (en) Stator of a turbine of a gas turbine with improved cooling air conduction
EP2980481A1 (en) Aircraft gas turbine having a seal for sealing a spark plug to the combustor chamber wall of a gas turbine
EP2860356A1 (en) Flow engine
DE102016206188A1 (en) Combustor shingle of a gas turbine
DE112016006520T5 (en) Storage device and rotary machine
WO2018041555A1 (en) Seal segment for a turbine, assembly for externally delimiting a flow path of a turbine, and stator/rotor seal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181022

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190726

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTG Intention to grant announced

Effective date: 20200619

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200929

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GERENDAS, DR.-ING. MIKLOS

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017009729

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1372587

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210618

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017009729

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

26N No opposition filed

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211109

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211109

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1372587

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 7

Ref country code: DE

Payment date: 20231127

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317