EP3305710B1 - Procédé de commande de grue anti-ballant à filtre du troisième ordre - Google Patents

Procédé de commande de grue anti-ballant à filtre du troisième ordre Download PDF

Info

Publication number
EP3305710B1
EP3305710B1 EP17190875.9A EP17190875A EP3305710B1 EP 3305710 B1 EP3305710 B1 EP 3305710B1 EP 17190875 A EP17190875 A EP 17190875A EP 3305710 B1 EP3305710 B1 EP 3305710B1
Authority
EP
European Patent Office
Prior art keywords
max
load
setpoint
trol
pulsation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17190875.9A
Other languages
German (de)
English (en)
Other versions
EP3305710A1 (fr
Inventor
Xavier Claeys
Silvère BONNABEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manitowoc Crane Group France SAS
Original Assignee
Manitowoc Crane Group France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manitowoc Crane Group France SAS filed Critical Manitowoc Crane Group France SAS
Publication of EP3305710A1 publication Critical patent/EP3305710A1/fr
Application granted granted Critical
Publication of EP3305710B1 publication Critical patent/EP3305710B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/16Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes with jibs supported by columns, e.g. towers having their lower end mounted for slewing movements

Definitions

  • the present invention relates to the general field of lifting gear, of the crane type, and more particularly of the type tower cranes, which comprise a mobile attachment point, of the trolley type, which can be suspended a load to move, called " suspended load ", and which are equipped with a control system for carrying out the movement and control of the displacement of said suspended load.
  • the present invention relates more particularly to control methods for managing the steering system of such lifting gear.
  • control methods which are intended to provide assistance in the control of the machine, comprise a step of acquiring a control instruction, during which the speed instruction is collected which is expressed by the driver of the lifting machine and which corresponds to the speed that said driver wishes to give to the suspended load, then a processing step during which is developed from said driving instruction, a performance instruction which is applied to the drive motor (s) that move said suspended load.
  • the known control methods generally seek to control, and more particularly to limit, the amplitude of the oscillatory oscillations, or "swinging", to which the suspended load may be subject to carriage movement.
  • the piloting assistance thus offered may tend to excessively dampen the responses (reactions) of the hoist to the instructions of the driver (or "crane operator"), thereby distorting the intuitive perception of the behavior of the machine that can have said driver, and in particular by giving the driver the unpleasant impression that the machine lacks responsiveness and does not faithfully implement his instructions.
  • a method according to the preamble of claim 1 is known from FR 3 016 872 A1 .
  • the objects assigned to the invention therefore seek to overcome the aforementioned drawbacks and to propose a new method for controlling the movement of a suspended load which ensures a fast and gentle displacement of the suspended load, with effective control of the dangling, which gives the driver a loyal feeling allowing a very free, responsive and relatively intuitive control, and which is, despite these performances, particularly simple and economical to implement.
  • the objects assigned to the invention are achieved by means of a method of controlling the movement of a load suspended at a point of attachment of a hoist, said method comprising a step (a) of acquisition of instructions in the course of which is acquired a setpoint called “steering set” which is representative of a speed of movement that the driver of the hoist wishes to give to the suspended load, and then a step (b) of treatment during which a so-called “execution instruction” instruction, which is intended to be applied to at least one drive motor, is developed from said driving instruction in order to move the suspended load, the method being characterized in that the processing step (b) comprises a regulation sub-step (b4) C 3 during which the driving instruction is processed in such a way as to confer on said steering instruction drifting properties third unit with respect to time and continuity with respect to time, in order to generate, from said control setpoint, a so-called "filtered control setpoint” which is of class C 3 , then the execution instruction is defined from said filtered control setpoint.
  • the regulation sub-step (b4) C 3 may consist of a sub-step (a4) of third-order filtering during which a third-order filter is applied to the control setpoint in order to generate a setpoint filtered pilot which is class C 3 .
  • the regulation C 3 of the control setpoint (speed setpoint for the suspended load), and more particularly the use for this purpose of a third-order filter applied to said control setpoint, makes it possible to ensure that the filtered control setpoint, which will then be effectively used to define the execution setpoint applied to the drive motors, is class C 3 .
  • a filtered control setpoint thus regularized C 3 , has exceptional regularity conditions (in that it is here three times differentiable, and that its first, second and third time derivatives are continuous), and consequently mathematical properties of continuity and boundary that does not generally have the raw control setpoint, as defined and modified in real time by the driver of the machine.
  • control setpoint (which here takes the form of a speed reference for the suspended load) can therefore vary from one hand to another when the driver of the machine decides to change the direction of the movement (left / right, distance / approximation), and secondly in amplitude (intensity), when the driver goes from a movement that he wishes fast to a slower movement ( deceleration), or conversely (acceleration).
  • control setpoint changes can vary considerably, depending on the frequency and speed with which the driver of the machine actuates the commands to make changes or corrections of trajectory.
  • the gross piloting instruction can therefore present in practice some abrupt variations of ladder type that can be mathematically assimilated to discontinuities.
  • the time derivatives (typically of order one and of order two) of the control setpoint which will preferably be used in the modeling of the behavior of the suspended load and in the elaboration of the execution instruction, could present punctually, if they were calculated directly, without appropriate regularization (filtering), certain divergences or discontinuities, so that the resulting instruction of execution would be likely to cause jerky or unstable reactions of the suspended charge.
  • the method according to the invention advantageously smooths the control setpoint before it is actually applied to the (x) drive motor (s), which eliminates the control signal (instruction d). execution) instabilities, discontinuities and other divergences that would be likely to cause jolts and the appearance (or maintenance) of a ballant.
  • the regularity C 3 conferred on the control setpoint furthermore makes it possible to subsequently define the execution instruction, from said control instruction, by means of a simplified mathematical model. which not only is simple and quick to execute, but which, above all, produces an execution instruction which is inherently non-generating dangling, that is to say a performance instruction which, when it is applied to the engines actuation, does not cause (can not cause of itself) the appearance of a ballant.
  • the method according to the invention notably allows a free and precise adjustment of the coefficients, as well as the pulsation, of the third-order filter which is applied to the control setpoint, which makes it possible to maintain rapid convergence in all circumstances.
  • the method provides a dynamic and responsive control.
  • the method according to the invention advantageously makes it possible to optimize the use of the drive motor or motors, in that it makes it possible to derive the best possible performance from said motor or said motors, in particular by terms of speed or acceleration conferred to the point of attachment and the load, while respecting at all times the material limits of said engine (s).
  • the execution instruction being by definition calculated precisely to obtain (theoretically) a movement (desired movement) regular and without dangling, it will be understood that if, in practice, the drive motor does not execute correctly said instruction d ' execution, then the control system will not behave as desired, and that may result in the appearance of a ballant and some loss of control of the movements of the point of attachment and load.
  • the regularization C 3 it is possible to parameterize the regularization C 3 , and more particularly it is possible to parameterize the filtering of the third order, and if necessary to modify this parameterization of the regularization C 3 (or filtering, respectively) over time , so that the execution instruction, while promoting rapid response of the control system, does not exceed the actual capacity of the drive motors in terms of maximum speed and maximum acceleration.
  • the gross control setpoint (suspended load speed setpoint) expressed by the driver of the machine is advantageously carried out a planning of the profile of the speed reference that we will apply to the drive motors, that is to say that we plan the evolution over time (and more particularly the rate of change per unit of time) of the value of the instruction of execution (trolley speed reference value), according to an evolution profile which best reflects the desired control setpoint but which is also and above all compatible with the ability of the motors to provide a response that is at each moment up to said performance instruction.
  • the execution instruction is in practice always “realizable”, that is to say that said execution instruction is intrinsically such that said real control system is still capable of “realizing” (to achieve ) actually said performance instruction that is applied to him, and therefore to provide a real response that is consistent with the behavior expected of said steering system, and more particularly consistent with the behavior expected of the truck (such as said expected behavior is defined by the execution instruction).
  • the proposed third-order filter simplifies the implementation of appropriate saturations, during the processing of the control setpoint, and thus the implementation of "intelligent" dynamic limits of the execution instruction, which make it possible to draw the best of the drive motors while ensuring a permanent, precise and reliable control of the movements of the point of attachment and the suspended load.
  • control method according to the invention advantageously makes it possible to control the hoist by an open-loop servocontrol, simply by applying the execution instruction (speed reference) to the drive motor concerned, without Require no measurement of the effective dangling (that is, without the need for feedback on the actual angle of the balloon), which limits the number of sensors and the computing power necessary to control, and therefore reduces the complexity, congestion, and energy consumption of the steering system.
  • the present invention relates to a method for controlling the movement of a load 1 suspended at a point of attachment H of a hoist 2.
  • the hoist 2 is designed so as to be able to move the point of attachment H, and consequently the suspended load 1, according to a component of yaw rotation ⁇ about a first vertical axis (ZZ '), called “ axis of orientation ", and / or according to a radial component R, corresponding to a movement called" distribution ", here in translation along a second axis (DD ') said” distribution axis "intersecting said axis of orientation (ZZ '), as illustrated in the Figures 1 and 2 .
  • the hoist 2 may in particular form a tower crane, whose mast 3 materializes the axis of orientation (ZZ '), and whose arrow 4 materializes the axis of distribution (DD'), as it is illustrated on the figure 1 .
  • such a tower crane configuration will be considered in the following, and more particularly a configuration of a tower crane with horizontal boom 4, it being understood that it is perfectly possible to apply the principle of invention to other lifting gear, and in particular to mobile cranes or luffing jib cranes.
  • the point of attachment H is preferably formed by a carriage 5, which can advantageously be guided in translation along the distribution axis (DD '), along the arrow 4.
  • the orientation movement ⁇ , and, respectively, the dispensing movement R , and more particularly the drive movement of the carriage 5 in translation R along the arrow 4, can be provided by any drive motor 7, 8 suitable, preferably electric, and more particularly by at least one (electric) motor 8 and, respectively, a motor (electric) distribution 7.
  • the load 1 is suspended at the point of attachment H by a suspension device 6, such as a suspension cable.
  • a suspension device such as a suspension cable.
  • said suspension device will be assimilated to such a suspension cable 6, for convenience.
  • the suspended load 1 may also preferably be moved in a vertical component, called "lifting", so as to vary the height at which the suspended load 1 relative to the ground.
  • the length L of the suspension cable 6 typically by means of a winch driven by a motor (preferably electric) lifting, so as to change the distance of the suspended load 1 at the point of attachment H, and thus either raise the load 1 by shortening the length L (by winding the suspension cable 6), or on the contrary lower said load 1 by an elongation of said length L ( by unwinding the cable 6).
  • a winch driven by a motor (preferably electric) lifting
  • the term "steering system” may be used to designate the movement and the control of the displacement of the suspended load 1, said assembly typically comprising the module or modules (calculators) 10, 12, 13 , 14, 15, 16, 17 for carrying out the method according to the invention, as well as the driving motor or motors 7, 8 (Actuators), and if necessary the moving parts (effectors) of the machine driven by said drive motors 7, 8; said movable members here correspond on the one hand to the mast 3 and to the arrow 4, yawable according to the orientation movement ⁇ , and on the other hand to the carriage 5 providing the dispensing movement R along the arrow 4.
  • the method comprises a control instruction acquisition step (a) during which a setpoint known as a "control setpoint" V u is acquired that is representative of a traveling speed V load that the driver of the hoist 2 wishes to confer on the suspended load 1.
  • the method according to the invention then comprises a step (b) of processing during which is developed, from said control setpoint V u , here by means of a processing module 10, an instruction called "instruction d ' V trol , which is intended to be applied to at least one drive motor 7, 8 to move the suspended load 1, and, more particularly, to move the carriage 5 to which said load 1 is suspended.
  • the method makes it possible to control the speed, rather than the trajectory, and more particularly to control the speed of the carriage 5, from a speed reference V u which corresponds to the desired speed. for suspended load 1.
  • the execution instruction V trol will preferably express the speed setpoint that must reach the point of attachment H (that is to say, the speed setpoint that must reach the carriage 5).
  • the method preferably comprises a step (a) during which the driver defines (freely) and expresses (voluntarily) a driving instruction in the form of a speed instruction he wishes or even followed by the suspended load 1, then a processing step (b) during which said control setpoint (setpoint in suspended load speed) is processed, here more particularly filtered by a third order filter, to be converted into a corresponding instruction the speed of the carriage 5, forming the instruction of execution (in speed) V trol which is applied to the drive motor 7, 8 adequate.
  • the method offers the operator of the machine a great freedom of maneuver, since said driver can fix freely, at any moment, and according to the amplitude that he chooses, the control setpoint (speed setpoint) V u it wants to be executed by the load 1, and this without being forced, for example, to respect a predetermined fixed trajectory.
  • the method according to the invention is valid both for controlling the orientation movement ⁇ and for controlling the dispensing movement R, or for controlling any combination of these two movements simultaneously.
  • each mobile member considered a Frenet coordinate system making it possible to express the radial component V r (according to the distribution movement R ) and the orthoradial component V ⁇ (according to the tangent to the orientation movement ⁇ ) of the speed of the movable member in question, as shown in particular in FIG. figure 5 .
  • V load r and V load ⁇ represent the radial and respectively orthoradial components of the velocity vector V load of the load 1 suspended (that is to say in practice the radial and orthoradial components of the speed control setpoint V u )
  • V trol r and V trol ⁇ represent the radial and respectively orthoradial components of the velocity vector V trol of the carriage 5 (that is to say the radial and orthoradial components of the speed execution instruction V trol , which are respectively applied to the distribution motor 7 and the orientation motor 8).
  • the driving setpoint V u can be provided by the driver of the machine by means of any appropriate control member 11.
  • Said control member 11 may in particular take the form of a joystick, or a set of joysticks, which will allow the driver to express the orientation speed reference (yaw rate, orthoradial) V load ⁇ and the delivery speed setpoint (radial speed) V load r it wishes to print to the suspended load 1.
  • the driving instruction V u brute as expressed by the driver of the machine at the control member 11, that is to say the signal provided by the joystick at the input of the control system, will preferably refer to V JOY in the aforementioned figures.
  • the carriage 5 necessarily has a finite (bounded) acceleration.
  • V ⁇ load d 2 dt 2 V load the speed of the suspended load (driving speed) V load .
  • the treatment step (b) advantageously comprises a regulation sub-step (b4) C 3 during which the driving instruction V u is processed so as to confer on said control setpoint V u of the properties of differentiability third with respect to time and of continuity with respect to time, in order to generate, from said control setpoint V u , a filtered control setpoint V f which is of class C 3 , then the execution setpoint V trol is set from said filtered control setpoint V f .
  • the regularization C 3 can be carried out using interpolation polynomials.
  • control setpoint V u is interpolated, and more particularly several or all of the values considered among the succession of different values taken by the control setpoint V u during a given time interval, by means of a polynomial.
  • Said polynomial intrinsically possesses a class of regularity (at least) C 3 , and thus provides an accurate and class-specific approximation C 3 of the control setpoint, in the form of a filtered control setpoint V f of polynomial type.
  • Such a polynomial thus provides a class C 3 planning of the control set.
  • control setpoint V u is applied to regulate C 3 said control setpoint, a third order filter F3 in order to generate the filtered control setpoint V f which is of class C 3 .
  • the sub-step (b4) preferably constitutes a third-order filter sub-step in the course of which a third-order filter F3 is applied to the control setpoint V u in order to generate an instruction of filtered control V f which is three times differentiable (and more exactly regularity class C 3 ).
  • the regularization C3, and more particularly the third-order filtering is performed by means of a third-order filtering module 12, formed by a computer or electronic computer.
  • the filtered control setpoint V f is intrinsically defined, and more generally "planned", so as to gradually converge towards the control setpoint V u , without ever being too stiff.
  • This conversion formula simple and fast to execute, has the advantage of being intrinsically an anti-dangling function.
  • the above conversion formula comes from a simplified model of pendulum, in which it is considered that the swing angle ⁇ is almost zero, that is to say that the suspended load 1 is not balanced not (or almost no) with respect to the carriage 5.
  • V trol execution instruction developed from this model is such that, if said execution instruction is actually faithfully executed by the drive motors 7, 8, and therefore by the carriage 5, said V trol performance instruction can not, in itself, cause dangling.
  • the figure 7 shows a V trol execution instruction thus obtained by applying the conversion formula to a filtered control setpoint V f resulting from a control setpoint V u of the step type.
  • the conversion of the filtered setpoint V f to the execution setpoint V trol can be performed by any appropriate conversion module (computer) 13 of the electronic circuit type or computer programmed module.
  • the determination of the V trol execution instruction according to the invention can advantageously be carried out without it being necessary to know, and even more so without it being necessary to measure, the mass M of the load. suspended 1, insofar as this parameter (the mass M of the load 1) does not intervene in the formulas used during step (b) of treatment, and in particular does not intervene in the definition of the third order filter F3 or in the aforementioned conversion formula.
  • the anti-dangling effects intrinsically provided on the one hand by the C 3 regularization itself, and on the other hand by the use of a non-dangling conversion formula, will combine to offer optimized servocontrol of the movement of the suspended load 1, totally devoid of dangling.
  • the method according to the invention remains perfectly compatible, as an alternative embodiment, with a closed-loop servocontrol, according to which the execution instruction V trol is first determined in accordance with the invention, in particular by making intervening third-order filtering, then said V trol execution instruction is then applied to the drive motors 7, 8 while providing a closed-loop servocontrol (as described above) for actively reducing a possible dangling, to a case where such a ballant would appear despite being caused by disturbances external to the control system, such as gusts of wind, for example.
  • the determination of the execution instruction V trol according to the invention with regularization C 3 on the one hand and use of the anti-dangling conversion formula mentioned above on the other hand, however, it will be possible to generate an execution instruction (trolley speed reference) V trol already optimized, not generating a dangling (intrinsically), so that the dancer compensation task assigned to the closed loop of the servo will be greatly simplified. (since this will only reduce possible dangling caused by the only disturbances external to the control system).
  • drive motors 7, 8 have, by their nature, limited (finite) speed, acceleration, and torque capabilities.
  • V trol execution instruction is compatible with these capabilities, so that the motors 7, 8 can actually execute said V trol execution instruction , and thus generate, as a result of the application of said V trol performance instruction to said motors 7, 8, movements of the carriage 5 and the suspended load 1 without dangling, which are consistent with the movements that are expected with respect to said performance instruction.
  • V trol execution instruction which is feasible, that is to say coherent and compatible with the actual hardware capacities of the drive motors 7, 8, so not to seek to solicit the control system beyond its capabilities, and so as to avoid any situation in which a failure of a motor 7, 8 would lead the actual motion to differ from the expected ideal motion, and would cause, for example, the appearance or accentuation of a dangling.
  • the regularization C 3 makes it possible to satisfy the constraint n ° 1 (three-fold differentiable setpoint, and more particularly of class C 3 ).
  • said parameter chosen as representative of the maximum acceleration MAX admissible by the drive motor 7, 8 may be the pulsation ⁇ of the third order filter F3, in the form of a so-called "calculated pulsation" pulse ⁇ 0 which will be determined in particular according to said maximum acceleration value permissible at MAX .
  • the inventors have indeed established that there is a link between pulsation and maximum acceleration.
  • the processing step (b) may therefore preferably comprise a sub-step (b1) for adjusting the pulsation of the third-order filter F3, during which the pulsation ⁇ , ⁇ 0 of said filter of the filter is calculated.
  • third order F3 from a value a MAX which is representative of the maximum acceleration that the driving motor 7, 8 can give to the point of attachment H to which the load 1 is suspended.
  • the step (b) processing will preferably comprise a sub-step (b1) for adjusting the pulsation ⁇ of the third order filter F3, during which the third order filter's pulsation ⁇ is adjusted, and more particularly the calculated pulsation ⁇ 0 , depending on the value of the control setpoint V u , V JOY applied by the driver of the hoist at time t considered.
  • the value of the pulsation ⁇ of the third order filter F3 is modified according to whether the control set point V u , V JOY is lower or on the contrary higher than a reference speed V thresh which is defined from the value of maximum speed V MAX that the driving motor 7, 8 can give to the point of attachment H to which the load 1 is suspended.
  • the pulsation ⁇ will be varied so as to increase said pulsation ⁇ and thus use a pulsation considered as high, called "high value" ⁇ high , and therefore a more reactive filter F3, when the absolute value of the pilot setpoint (that is to say the amplitude of the speed reference) V u , V JOY is low compared to the maximum permissible speed V MAX , and decreasing on the contrary said pulsation ⁇ in favor of a lower pulsation so-called "low value” ⁇ low , when the absolute value of the driving setpoint V u , V JOY will increase to approach the maximum permissible speed V MAX .
  • the dual purpose of this adaptation (in real time) of the pulsation ⁇ is to optimize the reactivity of the third order filter 3 (constraint No. 2) by increasing said pulsation ⁇ when possible, because the response time of the filter F3 is inversely proportional to said pulsation ⁇ (with the coefficients c 1 , c 2 chosen as indicated above, the response time at 5% is of the order of 4 / ⁇ ), while respecting the constraint No. 3 related not exceeding the maximum acceleration capacity of the drive motor 7, 8, which sets an allowable upper limit for said pulsation ⁇ .
  • the adjustment of the pulsation ⁇ of the third order filter F3 can be achieved by any appropriate pulsation adjustment module 14, forming a computer comprising for example an electronic circuit or a suitable computer program.
  • the inventors have empirically found that, in order to avoid destabilizing the third order filter F3, especially during transitions between the high value ⁇ high and the low value ⁇ low , the (calculated) pulse ⁇ , ⁇ 0 should be two once differentiable (in relation to time).
  • the inventors have found that it was desirable to smooth the (calculated) pulsation ⁇ , ⁇ 0 , in particular to ensure that its evolutions over time, and in particular the high value transitions ⁇ high / low value ⁇ low mentioned above, be continuous and twice differentiable.
  • the filter of the third order F3 uses as pulsation ⁇ a filtered calculated pulse ⁇ F.
  • V u 0 m / s.
  • the pulse ⁇ , ⁇ F of the third order filter F3 is then close to, or equal to, its high value ⁇ high .
  • V u V MAX .
  • V u V MAX .
  • ⁇ F of the third order filter F3 to the new setpoint V u pilot can therefore temporarily be in a situation where coexist a steering setpoint close to its high value (V u being substantially equal to V MAX ) and a pulse ⁇ , ⁇ F also close to its high value ⁇ high because said pulsation "delays" to decrease to reach its low value ⁇ low .
  • the treatment step (b) preferably comprises, according to a feature which may constitute a complete invention, a sub-step (b2) of preliminary saturation, during which the driving instruction V u , V is applied to JOY a first saturation law SAT1 which is calculated as a function of the pulsation ⁇ , ⁇ F of the third order filter F3 (that is to say as a function of the instantaneous value taken by the pulsation ⁇ , ⁇ F of the filter of the third order at the moment considered).
  • this first saturation law SAT1 can be implemented by a suitable first saturation module 15, forming a computer comprising, for example, an electronic circuit or a suitable computer program.
  • the first saturation law SAT1 is applied to the raw setpoint (in speed) V JOY , before the third order filtering F3, so as to form (at the output of the first saturation module 15) the control setpoint V u which is then sent to the third order filter F3.
  • the solution proposed by the inventors consists in limiting the execution setpoint V trol when it reaches a predefined allowable limit (typically +/- V MAX ), by suitably saturating the driving setpoint V u .
  • the principle is to recalculate the control setpoint V u when the execution instruction (and therefore the speed of the carriage 5) V trol reaches the maximum permissible speed V MAX , so that the absolute value of said execution instruction
  • the processing step (b) preferably comprises a sub-step (b3) of secondary saturation, which is intended to keep the execution instruction (ie the setpoint of speed of the point of attachment H ) V trol when said performance instruction V trol reaches substantially the maximum speed V MAX that the drive motor 7, 8 can give to the point of attachment H (that is to say say in practice to the carriage 5).
  • V trol performance set constant As indicated above, it is sought to keep the constant V trol performance set constant or to decrease it when it reaches the maximum permissible speed V max .
  • V u the driving setpoint
  • this second saturation law SAT2 may be implemented by a suitable second saturation module 16, forming a computer comprising, for example, an electronic circuit or a suitable computer program.
  • the second saturation law SAT2 being initially inactive, it will be activated when the execution instruction V trol will reach and exceed a threshold of engagement, slightly higher than V MAX , and for example set at 1.04 * V MAX (which reinforces the interest of choosing V MAX slightly below the true physical speed limit of the driving motor 7, 8 concerned, typically between 95% and 98% of said physical limit), and being of again deactivated when the execution setpoint V trol falls below an extinction threshold strictly below the switch-on threshold, and equal for example 1.01 * V MAX .
  • V trol performance instruction which does not respect the material limits, in particular the acceleration capacity, of the drive motors 7, 8, could lead to the execution of a motion not in accordance with the expected movement, and consequently the appearance of a dangling.
  • the step (b) of treatment preferably comprises, according to a characteristic which can constitute an invention in its own right. but which will preferably be implemented in addition to the first saturation law SAT1, a substep (b5) of saturation of the third derivative of the filtered control setpoint during which the third (temporal) derivative is applied V ⁇ f the filtered control set V f a third saturation law SAT3 whose saturation thresholds depend on the maximum acceleration a MAX (typically as defined above) that the drive motor 7, 8 can confer at the point of hook H on which the load is suspended 1.
  • a MAX typically as defined above
  • this third saturation law SAT3 may advantageously add an additional precaution to that provided by the first saturation law SAT1, in order to optimize the security of the open-loop control according to the invention.
  • the third saturation law SAT3 may be implemented by a third appropriate saturation module 17, forming a computer comprising for example an electronic circuit or a suitable computer program.
  • the method according to the invention is particularly versatile since it can be applied to any type of hoist 2, whatever the configuration of said hoist 2, insofar as said method advantageously allows in any case, to calculate the execution instruction V trol in a simple way in a cartesian coordinate system, regardless of the coordinate system (Cartesian, cylindrical or spherical) specific to the hoist 2, in which is first expressed the driving instruction V u , V JOY when it is fixed by the driver of the machine, then in which the instruction V trol must be expressed so that said execution instruction can be properly applied to driving motors 7, 8 concerned.
  • the most appropriate coordinate system of the machine 2 will be a cylindrical coordinate system in which the position of the considered object is marked by a radius r (along the arrow) and an azimuth angle ⁇ (angle of lace around the axis of orientation), as shown on the figures 1 and 5 .
  • the control of the crane is carried out - in a fairly intuitive way for the driver - in distribution (modification of the radius r) and in orientation (modification of the azimuth ⁇ ), the driving setpoint V u , V JOY , as well as the execution instruction V trol , will each comprise a distribution component, intended for the engine 7 distribution (which allows to act on the spoke) and an orientation component, for the motor 8 orientation (which allows to to act on the azimuth).
  • the first conversion (of the control setpoint V u , V JOY ) from the cylindrical system to the Cartesian system can be performed by means of a rotation matrix R ⁇
  • the second conversion (of the execution instruction V trol ) from the Cartesian system to the cylindrical system can be operated by means of an inverse rotation matrix R- ⁇ .
  • the most appropriate coordinate system will be the spherical coordinate system, in which the position of the carriage 5 is located (and driven) by its azimuth (orientation of the luffing arrow in yaw), its declination (orientation of the luffing arrow in pitch) and its radius (distance from the carriage relative to the articulated base of the luffing jib).
  • the cylindrical coordinates of the carriage 5 can be easily known (in real time), for example by means of a part of an angular position sensor which provides information on the angular position in yaw of the arrow 4 with respect to the mast 3, that is to say on the angular position yaw ⁇ trol of the carriage 5, and secondly by means of a position sensor, for example associated with the engine d distribution drive 7, which makes it possible to know the position of the carriage 5 (in translation) along the arrow 4, and consequently the radial distance r trol at which said carriage 5 is located on the vertical axis of rotation (ZZ ').
  • the length L of the suspension cable 6 can be known in real time by means of a sensor measuring the absolute rotation of the winch or the hoisting motor which generates the winding of said suspension cable 6.
  • the angular position in yaw ⁇ load of the suspended load 1, as well as the (radial) distance r load of said suspended load with respect to the vertical axis of gyration (ZZ ') can be estimated by integration (over time) of the components of the filtered control setpoint V f , since said components respectively correspond to the filtered load radial velocity V load rf and the filtered load angular velocity V load ⁇ f .
  • r load (0) r trol (0), where "0" corresponds to an initial moment when the system is at rest .
  • the regularization C 3 and more particularly the third-order filtering F3, can be applied to a (single) characteristic movement of the hoist 2 (typically the gyration movement in orientation or the translation movement in distribution in the preferred example illustrated on the figures 1 and 6 ), that is to say to only one of the components of the control set V u , V JOY , or to several of said characteristic movements (that is to say to several of said components), or, preferably , all of said characteristic movements (that is to say all the components of the control set).
  • a (single) characteristic movement of the hoist 2 typically the gyration movement in orientation or the translation movement in distribution in the preferred example illustrated on the figures 1 and 6
  • a characteristic movement of the hoist 2 typically the gyration movement in orientation or the translation movement in distribution in the preferred example illustrated on the figures 1 and 6
  • the regularization C 3 can be applied to a (single) characteristic movement of the hoist 2 (typically the gyration movement in orientation or the translation movement in distribution in the
  • the invention furthermore relates, of course, as such to the use of a C 3 regularization, and more particularly to the use of a third order filter F 3 , and where appropriate, the use of one and / or the other saturation laws SAT1, SAT2, SAT3, in the determination of a V trol execution setpoint intended to be applied to a drive motor 7, 8 to move a load suspended 1 to a hoist 2, according to one or the other of the methods described in the foregoing.
  • the invention as such relates to the implementation of a regularization C 3 , and more particularly to the implementation of the third order filter F 3 , respectively of all or some of the laws of saturation, regardless of the type of calculation used to determine the components of the V trol execution instruction .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)
  • Control Of Electric Motors In General (AREA)

Description

  • La présente invention se rapporte au domaine général des engins de levage, du genre grues, et plus particulièrement du genre grues à tour, qui comportent un point d'accroche mobile, du genre chariot, auquel on peut suspendre une charge à déplacer, dite « charge suspendue », et qui sont équipés d'un système de pilotage permettant de réaliser la mise en mouvement et le contrôle du déplacement de ladite charge suspendue.
  • La présente invention se rapport plus particulièrement aux procédés de commande destinés à gérer le système de pilotage de tels engins de levage.
  • Généralement, de tels procédés de commande, qui sont destinés à fournir une assistance au pilotage de l'engin, comprennent une étape d'acquisition d'une consigne de pilotage, au cours de laquelle on recueille la consigne de vitesse qui est exprimée par le conducteur de l'engin de levage et qui correspond à la vitesse que ledit conducteur souhaite conférer à la charge suspendue, puis une étape de traitement au cours de laquelle on élabore, à partir de ladite consigne de pilotage, une consigne d'exécution qui est appliquée au(x) moteurs(s) d'entraînement qui permettent de déplacer ladite charge suspendue.
  • En outre, afin d'assurer la précision et la sécurité des opérations de transport de la charge suspendue, les procédés de commande connus cherchent généralement à contrôler, et plus particulièrement à limiter, l'amplitude des oscillations pendulaires, ou « ballant », auxquelles la charge suspendue peut être sujette lors des mouvements du chariot.
  • A cet effet, il est en particulier connu de combattre le ballant par un asservissement en boucle fermée, dans lequel on mesure les valeurs réelles de position et de vitesse du chariot, ainsi que la valeur de l'angle de ballant de la charge, pour pouvoir générer une correction de la consigne qui est appliquée aux moteurs qui actionnent le chariot et qui vise à réduire ledit ballant.
  • Si un tel système permet effectivement d'atténuer le ballant, il peut toutefois présenter certains inconvénients.
  • En effet, un tel asservissement en boucle fermée impose la mise en oeuvre de nombreux capteurs, destinés par exemple à mesurer l'angle réel de ballant, ce qui accroît la complexité, et par conséquent le coût, ainsi que le risque de défaillance, du système de pilotage, et plus globalement de l'engin de levage équipé dudit système de pilotage.
  • En outre, la complexité du modèle mathématique utilisé par un tel système de pilotage, ainsi que la quantité des données à mesurer et à traiter, tendent à mobiliser des ressources relativement importantes et coûteuses en termes de puissance de calcul, de mémoire, et d'énergie.
  • Par ailleurs, l'assistance au pilotage ainsi offerte peut avoir tendance à amortir excessivement les réponses (réactions) de l'engin de levage aux consignes du conducteur (ou « grutier »), en faussant ainsi la perception intuitive du comportement de l'engin que peut avoir ledit conducteur, et notamment en donnant audit conducteur la désagréable impression que l'engin manque de réactivité et n'exécute pas fidèlement ses consignes.
  • Un procédé selon le préambule de la revendication 1 est connu du FR 3 016 872 A1 .
  • Les objets assignés à l'invention visent par conséquent à remédier aux inconvénients susmentionnés et à proposer un nouveau procédé de commande du déplacement d'une charge suspendue qui assure un déplacement à la fois rapide et doux de la charge suspendue, avec une maîtrise efficace du ballant, qui procure au conducteur un ressenti fidèle permettant un pilotage très libre, réactif et relativement intuitif, et qui soit, malgré ces performances, particulièrement simple et économe à mettre en oeuvre.
  • Les objets assignés à l'invention sont atteints au moyen d'un procédé de commande du déplacement d'une charge suspendue à un point d'accroche d'un engin de levage, ledit procédé comprenant une étape (a) d'acquisition de consigne de pilotage, au cours de laquelle on acquiert une consigne dite « consigne de pilotage » qui est représentative d'une vitesse de déplacement que le conducteur de l'engin de levage souhaite conférer à la charge suspendue, puis une étape (b) de traitement au cours de laquelle on élabore, à partir de ladite consigne de pilotage, une consigne dite « consigne d'exécution » qui est destinée à être appliquée à au moins un moteur d'entraînement afin de déplacer la charge suspendue, le procédé étant caractérisé en ce que l'étape (b) de traitement comporte une sous-étape (b4) de régularisation C3 au cours de laquelle on traite la consigne de pilotage de manière à conférer à ladite consigne de pilotage des propriétés de dérivabilité troisième par rapport au temps et de continuité par rapport au temps, afin de générer à partir de ladite consigne de pilotage une consigne dite « consigne de pilotage filtrée » qui est de classe C3, puis l'on définit la consigne d'exécution à partir de ladite consigne de pilotage filtrée.
  • Plus préférentiellement, la sous-étape (b4) de régularisation C3 peut consister en une sous-étape (a4) de filtrage du troisième ordre au cours de laquelle on applique à la consigne de pilotage un filtre du troisième ordre afin de générer une consigne de pilotage filtrée qui est de classe C3.
  • Par « être de classe C3 », on indique, au sens mathématique du terme, que le paramètre considéré, ici la consigne de pilotage filtrée, ou plus précisément la fonction qui représente l'évolution dudit paramètre considéré en fonction du temps, c'est-à-dire ici la fonction représentant l'évolution de la consigne de pilotage filtrée en fonction du temps, est trois fois dérivable (différentiable) par rapport au temps, et que ladite fonction, ainsi que ses dérivées temporelles première, seconde et troisième sont continues.
  • Avantageusement, la régularisation C3 de la consigne de pilotage (consigne de vitesse pour la charge suspendue), et plus particulièrement l'utilisation à cet effet d'un filtre du troisième ordre appliqué à ladite consigne de pilotage, permet de s'assurer que la consigne de pilotage filtrée, qui sera ensuite effectivement utilisée pour définir la consigne d'exécution appliquée aux moteurs d'entraînement, est de classe C3.
  • Avantageusement, une consigne de pilotage filtrée, ainsi régularisée C3, présente des conditions de régularité exceptionnelles (en ce sens qu'elle est ici trois fois dérivable, et que ses dérivées temporelles première, seconde et troisième sont continues), et par conséquent des propriétés mathématiques de continuité et de bornage que ne possède généralement pas la consigne de pilotage brute, telle qu'elle est définie et modifiée en temps réel par le conducteur de l'engin.
  • En effet, on rappellera que le conducteur de l'engin est susceptible de faire varier la consigne de pilotage à tout instant, de manière imprévisible.
  • En fonction des différentes situations auxquelles ledit conducteur de l'engin doit réagir, la consigne de pilotage (qui prend ici la forme d'une consigne de vitesse pour la charge suspendue) peut donc varier d'une part en signe, lorsque le conducteur de l'engin décide de changer le sens du mouvement (gauche/droite, éloignement/rapprochement), et d'autre part en amplitude (intensité), lorsque le conducteur passe d'un mouvement qu'il souhaite rapide à un mouvement plus lent (décélération), ou inversement (accélération).
  • En outre, la vitesse de ces changements de consigne de pilotage peut considérablement varier, selon la fréquence et la rapidité avec laquelle le conducteur de l'engin actionne les commandes pour opérer des changements ou des corrections de trajectoire.
  • La consigne de pilotage brute peut donc présenter en pratique certaines variations brusques, de type échelons, assimilables mathématiquement à des discontinuités.
  • De même, en raison notamment de ces discontinuités, les dérivées temporelles (typiquement d'ordre un et d'ordre deux) de la consigne de pilotage, qui seront de préférence utilisées dans la modélisation du comportement de la charge suspendue et dans l'élaboration de la consigne d'exécution, pourraient présenter ponctuellement, si elles étaient calculées directement, sans régularisation (filtrage) appropriée, certaines divergences ou certaines discontinuités, si bien que la consigne d'exécution résultante serait de nature à provoquer des réactions saccadées ou instables de la charge suspendue.
  • C'est pourquoi le procédé selon l'invention lisse avantageusement la consigne de pilotage avant que celle-ci ne soit effectivement appliquée au(x) moteur(s) d'entraînement, ce qui permet d'éliminer du signal de commande (consigne d'exécution) les instabilités, discontinuités et autres divergences qui seraient de nature à provoquer des à-coups et l'apparition (ou l'entretien) d'un ballant.
  • On peut ainsi obtenir un mouvement de la charge suspendue qui est particulièrement régulier et stable, quelle que soit la nature dudit mouvement (c'est-à-dire quelle que soit la forme de la trajectoire voulue par le conducteur de l'engin), et quelles que soient la vitesse et l'amplitude dudit mouvement voulues par le conducteur de l'engin.
  • Avantageusement, et tel que cela sera détaillé ci-après, la régularité C3 conférée à la consigne de pilotage permet en outre de définir ensuite la consigne d'exécution, à partir de ladite consigne de pilotage, au moyen d'un modèle mathématique simplifié qui non seulement est simple et rapide à exécuter, mais qui, surtout, produit une consigne d'exécution qui est intrinsèquement non génératrice de ballant, c'est-à-dire une consigne d'exécution qui, lorsqu'elle est appliquée aux moteurs d'actionnement, ne provoque pas (ne peut pas provoquer d'elle-même) l'apparition d'un ballant.
  • Par ailleurs, le procédé selon l'invention autorise notamment un réglage libre et précis des coefficients, ainsi que de la pulsation, du filtre du troisième ordre qui est appliqué à la consigne de pilotage, ce qui permet de conserver en toutes circonstances une convergence rapide de la vitesse de la charge suspendue vers la consigne de vitesse exprimée par le conducteur de l'engin.
  • En d'autres termes, le procédé procure un pilotage dynamique et réactif.
  • Ensuite, le procédé selon l'invention permet avantageusement d'optimiser l'utilisation du ou des moteurs d'entraînement, en ceci qu'il permet de tirer les meilleures performances possibles dudit ou desdits moteurs, notamment en termes de vitesse ou d'accélération conférée au point d'accroche et à la charge, tout en respectant à tout moment les limites matérielles dudit ou desdits moteurs.
  • On comprend en effet que si un moteur ne peut pas atteindre la consigne qui lui est fixée parce que ladite consigne est trop élevée au regard des capacités dudit moteur, alors l'entraînement réel du point d'accroche souffrira d'une insuffisance par rapport à l'entraînement souhaité, si bien que le mouvement dudit point d'accroche (et donc le mouvement de la charge suspendue) qui sera effectivement obtenu ne correspondra pas au mouvement voulu.
  • Or, la consigne d'exécution étant par définition calculée justement pour obtenir (théoriquement) un mouvement (mouvement voulu) régulier et sans ballant, on comprendra que si, en pratique, le moteur d'entraînement n'exécute pas correctement ladite consigne d'exécution, alors le système de pilotage ne se comportera pas comme souhaité, et qu'il pourra en résulter l'apparition d'un ballant et une certaine perte de contrôle des mouvements du point d'accroche et de la charge.
  • Ici, grâce à l'invention, on peut paramétrer la régularisation C3, et plus particulièrement on peut paramétrer le filtrage du troisième ordre, et le cas échéant faire évoluer ce paramétrage de la régularisation C3 (respectivement du filtrage) au fil du temps, de manière à ce que la consigne d'exécution, tout en favorisant une réponse rapide du système de pilotage, n'excède pas les capacités effectives des moteurs d'entraînement en matière de vitesse maximale et d'accélération maximale.
  • A ce titre, on notera notamment que d'une part l'accélération maximale que l'on peut conférer au point d'accroche (chariot) est directement dépendante de la capacité d'accélération maximale des moteurs d'entraînement qui servent à déplacer ledit point d'accroche, et que d'autre part il existe mathématiquement, du fait des lois physiques de la dynamique, une relation entre l'accélération du point d'accroche (accélération du chariot) et la dérivée troisième de la vitesse de la charge suspendue.
  • Par conséquent, lorsque l'on régularise C3 la consigne de pilotage brute (consigne de vitesse de charge suspendue) exprimée par le conducteur de l'engin, conformément à l'invention, on réalise avantageusement une planification du profil de la consigne de vitesse que l'on va appliquer aux moteurs d'entraînement, c'est-à-dire que l'on planifie l'évolution dans le temps (et plus particulièrement les taux d'évolution par unité de temps) de la valeur de la consigne d'exécution (valeur de consigne de vitesse de chariot), selon un profil d'évolution qui reflète au mieux la consigne de pilotage souhaitée mais qui est également et surtout compatible avec la capacité des moteurs à fournir une réponse qui soit à chaque instant à la hauteur de ladite consigne d'exécution.
  • De la sorte, la consigne d'exécution est en pratique toujours "réalisable", c'est-à-dire que ladite consigne d'exécution est intrinsèquement telle que ledit système de pilotage réel est toujours capable de "réaliser" (d'atteindre) effectivement ladite consigne d'exécution qu'on lui applique, et donc de fournir une réponse réelle qui est conforme au comportement qu'on attend dudit système de pilotage, et plus particulièrement conforme au comportement que l'on attend du chariot (tel que ledit comportement attendu est défini par la consigne d'exécution).
  • Ainsi, la consigne d'exécution ne prend jamais le système de pilotage réel en défaut.
  • Plus particulièrement, le filtre du troisième ordre proposé simplifie la mise en oeuvre de saturations appropriées, lors du traitement de la consigne de pilotage, et donc la mise en oeuvre de limitations dynamiques "intelligentes" de la consigne d'exécution, qui permettent de tirer le meilleur parti des moteurs d'entraînement tout en garantissant un contrôle permanent, précis et fiable, des mouvements du point d'accroche et de la charge suspendue.
  • Enfin, on notera que le procédé de commande selon l'invention permet avantageusement de piloter l'engin de levage par un asservissement en boucle ouverte, simplement en appliquant la consigne d'exécution (consigne de vitesse) au moteur d'entraînement concerné, sans requérir aucune mesure du ballant effectif (c'est-à-dire sans qu'il soit nécessaire d'obtenir un retour d'information sur l'angle réel du ballant), ce qui limite le nombre de capteurs ainsi que la puissance de calcul nécessaires au pilotage, et par conséquent réduit la complexité, l'encombrement, et la consommation d'énergie du système de pilotage.
  • D'autres objets, caractéristiques et avantages de l'invention apparaîtront plus en détail à la lecture de la description qui suit, ainsi qu'à l'aide des dessins annexés, fournis à titre purement illustratif et non limitatif, parmi lesquels :
    • La figure 1 illustre, selon une vue schématique en perspective, l'agencement général d'un exemple d'engin de levage piloté par un procédé selon l'invention.
    • La figure 2 illustre, selon une vue schématique de côté, le principe général d'un modèle mécanique de pendule qui sous-tend le procédé selon l'invention.
    • La figure 3 illustre, sous forme d'un schéma-bloc, le calcul de la pulsation applicable au filtre du troisième ordre ainsi que la saturation préliminaire de la consigne de pilotage, qui précède le filtrage du troisième ordre.
    • La figure 4 illustre, sous forme d'un schéma-bloc, le principe de mise en oeuvre d'une étape (b) de traitement selon l'invention, et plus particulièrement le détail d'un filtre du troisième ordre selon l'invention.
    • La figure 5 illustre, selon une vue schématique de dessus, la correspondance entre les systèmes de coordonnées cartésiennes et de coordonnées cylindriques permettant d'exprimer les consignes de pilotage, puis les consignes d'exécution, dans des repères appropriés.
    • La figure 6 illustre, sous forme d'un schéma-bloc, la mise en oeuvre du procédé selon l'invention pour commander d'une part un moteur d'orientation (l'« orientation » désignant la composante de giration en lacet, autour d'un axe (ZZ') dit « axe d'orientation ») et d'autre part un moteur de distribution (la « distribution » désignant la composante radiale d'éloignement ou de rapprochement par rapport à l'axe (ZZ') d'orientation), à partir d'une consigne de pilotage exprimée en coordonnées cylindriques, comprenant une composante radiale et une composante angulaire.
    • La figure 7 illustre, de façon schématique, une consigne de pilotage filtrée obtenue en réponse à une consigne de pilotage brute de type échelon, ainsi qu'une consigne d'exécution qui est déterminée à partir de ladite consigne de pilotage filtrée, tel que cela est illustré sur la figure 6, au moyen d'une formule de conversion issue du modèle mécanique de la figure 2.
  • La présente invention concerne un procédé de commande du déplacement d'une charge 1 suspendue à un point d'accroche H d'un engin de levage 2.
  • L'engin de levage 2 est conçu de manière à pouvoir déplacer le point d'accroche H, et par conséquent la charge suspendue 1, selon une composante de rotation en lacet Θ autour d'un premier axe vertical (ZZ'), dit « axe d'orientation », et/ou selon une composante radiale R, correspondant à un mouvement dit « de distribution », ici en translation le long d'un second axe (DD') dit « axe de distribution » sécant audit axe d'orientation (ZZ'), tel que cela est illustré sur les figures 1 et 2.
  • L'engin de levage 2 pourra notamment former une grue à tour, dont le mât 3 matérialise l'axe d'orientation (ZZ'), et dont la flèche 4 matérialise l'axe de distribution (DD'), tel que cela est illustré sur la figure 1.
  • Par simple commodité de description, on considérera une telle configuration de grue à tour dans ce qui suit, et plus particulièrement une configuration de grue à tour à flèche 4 horizontale, étant bien entendu qu'il est parfaitement envisageable d'appliquer le principe de l'invention à d'autres engins de levage, et notamment à des grues mobiles ou à des grues à flèche relevable.
  • On notera O l'intersection de l'axe de distribution (DD') et de l'axe d'orientation (ZZ').
  • Le point d'accroche H est de préférence formé par un chariot 5, qui pourra avantageusement être guidé en translation selon l'axe de distribution (DD'), le long de la flèche 4.
  • Par commodité, on pourra assimiler le chariot 5 et le point d'accroche H dans ce qui suit.
  • Le mouvement d'orientation Θ, et, respectivement, le mouvement de distribution R, et plus particulièrement le mouvement d'entraînement du chariot 5 en translation R le long de la flèche 4, pourront être assurés par tout moteur d'entraînement 7, 8 approprié, de préférence électrique, et plus particulièrement par au moins un moteur (électrique) d'orientation 8 et, respectivement, un moteur (électrique) de distribution 7.
  • La charge 1 est suspendue au point d'accroche H par un dispositif de suspension 6, tel qu'un câble de suspension. Dans ce qui suit, ledit dispositif de suspension sera donc assimilé à un tel câble de suspension 6, par commodité.
  • La charge 1 suspendue pourra de préférence également être déplacée selon une composante verticale, dite « de levage », de sorte à pouvoir faire varier la hauteur à laquelle se trouve la charge suspendue 1 par rapport au sol.
  • De préférence, on pourra à cet effet faire varier la longueur L du câble de suspension 6, typiquement au moyen d'un treuil entraîné par un moteur (de préférence électrique) de levage, de manière à pouvoir modifier la distance de la charge suspendue 1 au point d'accroche H, et ainsi soit faire s'élever la charge 1 par un raccourcissement de la longueur L (par enroulement du câble de suspension 6), soit au contraire faire descendre ladite charge 1 par un allongement de ladite longueur L (par déroulement du câble 6).
  • Par commodité, on pourra désigner par « système de pilotage » l'ensemble permettant d'assurer la mise en mouvement et le contrôle du déplacement de la charge suspendue 1, ledit ensemble comprenant typiquement le ou les modules (calculateurs) 10, 12, 13, 14, 15, 16, 17 permettant la mise en oeuvre du procédé selon l'invention, ainsi que le ou les moteurs d'entraînement 7, 8 (actionneurs), et le cas échéant les organes mobiles (effecteurs) de l'engin entraînés par lesdits moteurs d'entraînement 7, 8 ; lesdits organes mobiles correspondront ici d'une part au mât 3 et à la flèche 4, orientables en lacet selon le mouvement d'orientation Θ, et d'autre part au chariot 5 assurant le mouvement de distribution R le long de la flèche 4.
  • Selon l'invention, le procédé comprend une étape (a) d'acquisition de consigne de pilotage au cours de laquelle on acquiert une consigne dite « consigne de pilotage » Vu qui est représentative d'une vitesse de déplacement Vload que le conducteur de l'engin de levage 2 souhaite conférer à la charge suspendue 1.
  • Le procédé selon l'invention comprend ensuite une étape (b) de traitement au cours de laquelle on élabore, à partir de ladite consigne de pilotage Vu, ici au moyen d'un module de traitement 10, une consigne dite « consigne d'exécution » Vtrol, qui est destinée à être appliquée à au moins un moteur d'entraînement 7, 8 afin de déplacer la charge suspendue 1, et, plus particulièrement, afin de déplacer le chariot 5 auquel est suspendu ladite charge 1.
  • On notera que, avantageusement, le procédé permet de réaliser un asservissement en vitesse, plutôt qu'en trajectoire, et plus particulièrement un asservissement de la vitesse du chariot 5, à partir d'une consigne de vitesse Vu qui correspond à la vitesse souhaitée pour la charge suspendue 1.
  • A ce titre, la consigne d'exécution Vtrol exprimera donc de préférence la consigne de vitesse que doit atteindre le point d'accroche H (c'est-à-dire la consigne de vitesse que doit atteindre le chariot 5).
  • En d'autres termes, le procédé comprend de préférence une étape (a) au cours de laquelle le conducteur définit (librement) et exprime (volontairement) une consigne de pilotage sous forme d'une consigne de vitesse qu'il souhaite voire suivie par la charge suspendue 1, puis une étape (b) de traitement au cours de laquelle ladite consigne de pilotage (consigne en vitesse de charge suspendue) est traitée, ici plus particulièrement filtrée par un filtre du troisième ordre, pour être convertie en une consigne correspondante de vitesse du chariot 5, formant la consigne d'exécution (en vitesse) Vtrol qui est appliquée au moteur d'entraînement 7, 8 adéquat.
  • On notera du reste que le procédé offre au conducteur de l'engin une grande liberté de manoeuvre, puisque ledit conducteur peut fixer librement, à tout instant, et selon l'amplitude qu'il choisit, la consigne de pilotage (consigne de vitesse) Vu qu'il désire voir exécutée par la charge 1, et ce sans être par exemple contraint de respecter une trajectoire fixe prédéterminée.
  • On notera par ailleurs que le procédé selon l'invention est valable aussi bien pour le pilotage du mouvement d'orientation Θ que pour le pilotage du mouvement de distribution R, ou pour le pilotage d'une combinaison simultanée quelconque de ces deux mouvements.
  • Du point de vue formel, on remarquera que l'on peut avantageusement repérer la position des organes mobiles, à savoir le point d'accroche H/chariot 5 d'une part, la charge 1 suspendue d'autre part, et exprimer les mouvements desdits organes mobiles, soit dans un repère cartésien (O, X, Y, Z) associé à la base (considérée fixe) de l'engin de levage 2, soit dans un repère de type "polaire" (O, r, θ) utilisant des coordonnées cylindriques, voire sphériques.
  • Par convention, on pourra ainsi noter, dans ledit repère cartésien :
    • Ptrol x et Ptrol y les positions en X (premier axe horizontal), respectivement en Y (second axe horizontal, perpendiculaire au premier axe horizontal X), du chariot 5 (l'indice « trol » désignant le chariot ou « trolley ») ;
    • Vtrol x et Vtrol y les composantes de vitesse en X, respectivement en Y, dudit chariot 5 ;
    • Pload x et Pload y les positions en X, respectivement en Y, de la charge 1 suspendue (l'indice « load » désignant la charge suspendue 1) ;
    • Vload x et Vload y les composantes de vitesse en X, respectivement en Y, de ladite charge suspendue 1, qui correspondent aux composantes de la vitesse (voulue) de la charge suspendue 1, et donc, en pratique, aux composantes de la consigne de pilotage Vu.
  • Lorsque l'on utilisera les coordonnées cylindriques (r, θ), on pourra plus particulièrement attacher à chaque organe mobile considéré un repère de Frénet permettant d'exprimer la composante radiale Vr (selon le mouvement de distribution R) et la composante orthoradiale Vθ (selon la tangente au mouvement d'orientation Θ) de la vitesse de l'organe mobile considéré, tel que cela est notamment illustré sur la figure 5.
  • Ainsi, sur ladite figure 5, de même que sur la figure 6, Vload r et Vload θ représentent les composantes radiale et respectivement orthoradiale du vecteur vitesse Vload de la charge 1 suspendue (c'est-à-dire en pratique les composantes radiale et orthoradiale de la consigne de pilotage en vitesse Vu), tandis que Vtrol r et Vtrolθ représentent les composantes radiale et respectivement orthoradiale du vecteur vitesse Vtrol du chariot 5 (c'est-à-dire les composantes radiale et orthoradiale de la consigne d'exécution en vitesse Vtrol, qui sont appliquées respectivement au moteur de distribution 7 et au moteur d'orientation 8).
  • Tel que cela est illustré sur les figures 3, 4 et 6, la consigne de pilotage Vu peut être fournie par le conducteur de l'engin au moyen de tout organe de commande 11 approprié.
  • Ledit organe de commande 11 pourra notamment prendre la forme d'un joystick, ou bien d'un ensemble de manettes, qui permettra au conducteur d'exprimer la consigne de vitesse d'orientation (vitesse de lacet, orthoradiale) Vload θ et la consigne de vitesse de distribution (vitesse radiale) Vload r qu'il souhaite imprimer à la charge suspendue 1.
  • Par simple commodité de notation, la consigne de pilotage Vu brute, telle qu'elle est exprimée par le conducteur de l'engin au niveau de l'organe de commande 11, c'est-à-dire le signal fourni par le joystick en entrée du système de pilotage, sera de préférence référencée VJOY sur les figures susmentionnées.
  • Afin de mieux expliquer l'invention, quelques éléments de mécanique théorique permettant de modéliser un système pendulaire vont maintenant être exposés, en référence à la figure 2.
  • On notera que l'explication donnée ici dans un plan, en référence à une seule dimension de déplacement, selon l'axe X, que l'on considère parallèle à la flèche 4 et à l'axe de distribution (DD'), reste valable en trois dimensions.
  • D'après le principe fondamental de la dynamique (loi de Newton), et en négligeant d'éventuels efforts externes tels que le vent, on a : M a load = T + M g
    Figure imgb0001
    • M représente la masse de la charge suspendue 1 ;
    • a load représente l'accélération de la charge suspendue 1 (que l'on considère ici portée par la direction horizontale X) ;
    • T représente la tension du câble de suspension 6 ;
    • g représente la gravité (accélération de pesanteur).
  • L'équation ci-dessus implique que le vecteur M a load - Mg est colinéaire (parallèle) au vecteur T . De ce fait, on a : tan β = Ma load Mg = a load g
    Figure imgb0002
    avec β l'angle (angle de ballant) que forme le câble de suspension 6 avec la verticale Z.
  • En faisant l'hypothèse des petits angles, on peut également écrire : sin β tan β = P trol P load L
    Figure imgb0003
    avec
    • Ptrol la position (ici en X) du chariot 5,
    • Pload la position (ici en X) de la charge 1, et
    • L la longueur du câble de suspension 6.
  • On en déduit la relation suivante entre la position Ptrol du chariot d'une part, et la position Pload de la charge suspendue et la vitesse Vload de la charge d'autre part : P trol = P load + L g a load = P load + L g d dt V load
    Figure imgb0004
    et, en dérivant l'expression ci-dessus par rapport au temps, on obtient une équation différentielle du second degré, dite « formule de conversion », qui exprime la vitesse Vtrol du chariot 5 en fonction de la vitesse Vload de la charge suspendue 1 : V trol = V load + L g d 2 dt 2 V load
    Figure imgb0005
    ce qui peut également s'exprimer par la transformée de Laplace : V trol p = 1 + L g p 2 V load
    Figure imgb0006
  • En pratique, grâce à la formule de conversion ci-dessus, on peut donc calculer la consigne de vitesse du chariot Vtrol, c'est-à-dire concrètement la consigne d'exécution Vtrol, à partir de la valeur de la vitesse Vload que l'on souhaite conférer à la charge suspendue, c'est-à-dire à partir de la consigne de pilotage Vu.
  • Toutefois, il est également nécessaire de prendre en considération le fait que, dans le système de pilotage réel, le chariot 5 a nécessairement une accélération finie (bornée). Cette condition matérielle impose que, d'un point de vue mathématique, l'accélération du chariot, c'est-à-dire la dérivée temporelle de la vitesse du chariot, V ˙ trol = d dt V trol
    Figure imgb0007
    doit d'une part exister, et d'autre part être bornée (c'est-à-dire être majorée par une valeur fixe finie).
  • Or, le calcul de la vitesse du chariot (consigne d'exécution) Vtrol selon la formule de conversion ci-dessus fait intervenir la dérivée temporelle seconde V ¨ load = d 2 dt 2 V load
    Figure imgb0008
    de la vitesse de la charge suspendue (vitesse de pilotage) Vload.
  • Au regard de cette formule de conversion, l'accélération du chariot V ˙ trol = d dt V trol
    Figure imgb0009
    peut donc s'exprimer sous forme d'une fonction de la dérivée temporelle troisième V load = d dt V ¨ load = d 3 dt 3 V load
    Figure imgb0010
    de la vitesse de la charge Vload.
  • Il s'ensuit que la condition d'existence et de bornage de l'accélération du chariot trol impose que la dérivée temporelle troisième V load
    Figure imgb0011
    de la vitesse de la charge Vload existe et soit bornée, c'est-à-dire que la vitesse de la charge suspendue Vload (et par conséquent la consigne de pilotage Vu qui va servir à fixer ladite vitesse de la charge suspendue) soit trois fois dérivable, et que sa dérivée troisième soit continue (et bornée).
  • En d'autres termes, on doit s'assurer que la consigne de pilotage Vu effectivement utilisée pour calculer (selon la formule de conversion ci-dessus) la consigne d'exécution Vtrol est (à tout moment, et en toutes circonstances) de classe C3, et ce alors même que ladite consigne de pilotage Vu est initialement exprimée par le conducteur de l'engin, et acquise sensiblement en temps réel, sous une forme brute VJOY qui est susceptible de varier de façon imprévisible au fil du temps, au libre choix du conducteur, et qui ne possède donc pas nécessairement ces propriétés de régularité C3.
  • C'est notamment pourquoi, selon l'invention, l'étape (b) de traitement comporte avantageusement une sous-étape (b4) de régularisation C3 au cours de laquelle on traite la consigne de pilotage Vu de manière à conférer à ladite consigne de pilotage Vu des propriétés de dérivabilité troisième par rapport au temps et de continuité par rapport au temps, afin de générer, à partir de ladite consigne de pilotage Vu, une consigne de pilotage filtrée Vf qui est de classe C3, puis l'on définit la consigne d'exécution Vtrol à partir de ladite consigne de pilotage filtrée Vf.
  • Selon une variante possible de mise en oeuvre, la régularisation C3 peut être réalisée en utilisant des polynômes d'interpolation.
  • Selon cette variante, on interpole la consigne de pilotage Vu, et plus particulièrement plusieurs voire la totalité des valeurs considérées parmi la succession des différentes valeurs prises par la consigne de pilotage Vu au cours d'un intervalle de temps donné, au moyen d'un polynôme.
  • Ledit polynôme possède intrinsèquement une classe de régularité (au moins) C3, et fournit donc une approximation à la fois précise et de classe C3 de la consigne de pilotage, sous forme d'une consigne de pilotage filtrée Vf de type polynomial.
  • Un tel polynôme procure donc une planification de classe C3 de la consigne de pilotage.
  • Toutefois, selon une autre variante particulièrement préférentielle et plus simple à mettre en oeuvre que la variante par interpolation polynomiale, lors de la sous-étape (b4) de régularisation C3, on applique à la consigne de pilotage Vu, pour régulariser C3 ladite consigne de pilotage, un filtre du troisième ordre F3 afin de générer la consigne de pilotage filtrée Vf qui est de classe C3.
  • En d'autres termes, la sous-étape (b4) constitue de préférence une sous-étape de filtrage du troisième ordre au cours de laquelle on applique à la consigne de pilotage Vu un filtre du troisième ordre F3 afin de générer une consigne de pilotage filtrée Vf qui est trois fois dérivable (et plus exactement de classe de régularité C3).
  • De préférence, la régularisation C3, et plus particulièrement le filtrage du troisième ordre, s'effectue au moyen d'un module de filtrage du troisième ordre 12, formé par un calculateur, électronique ou informatique.
  • Le filtrage du troisième ordre F3 peut s'écrire sous forme d'une fonction de transfert : V f p = F 3 V u p = 1 p 3 ω 3 + c 2 p 2 ω 2 + c 1 p ω + 1 V u p
    Figure imgb0012
    avec :
    • ω la pulsation du filtre du troisième ordre F3 ;
    • C1, C2 les coefficients, respectivement du premier ordre et du second ordre, utilisés par ledit filtre du troisième ordre F3.
  • Dans le domaine temporel, le filtre du troisième ordre F3 se traduit par l'équation différentielle suivante : V f + c 1 ω V ˙ f + c 2 ω 2 V ¨ f + 1 ω 3 V f = V u
    Figure imgb0013
  • Afin d'optimiser le filtre du troisième ordre F3, on choisira de préférence : c1 = 2,15 et c2 = 1,75, tel que cela apparaît sur la figure 4.
  • Ces valeurs permettent en effet d'optimiser la réactivité du filtre F3, en minimisant son temps réponse à 5% (c'est-à-dire le temps nécessaire pour faire converger la réponse vers une consigne de type échelon avec une erreur inférieure à 5% de la valeur dudit échelon), tout en limitant le dépassement (« overshoot »).
  • On notera que, selon une variante possible de mise en oeuvre de l'invention, on pourrait utiliser directement la consigne de pilotage filtrée Vf en tant que consigne d'exécution Vtrol appliquée aux moteurs d'entraînement 7, 8, c'est-à-dire que l'on pourrait poser : Vtrol = Vf.
  • En effet, grâce à la régularisation C3, obtenue ici par le filtrage du troisième ordre, la consigne de pilotage filtrée Vf est intrinsèquement définie, et plus globalement « planifiée », de sorte à converger progressivement vers la consigne de pilotage Vu, sans jamais être « trop raide ».
  • De la sorte, ladite consigne de pilotage filtrée Vf, régularisé C3, est effectivement réalisable, les moteurs d'entraînement 7, 8 étant capables de suivre ladite consigne de pilotage filtrée Vf.
  • Ainsi, dans l'exemple illustré sur la figure 7, où le conducteur de l'engin applique une consigne de pilotage Vu de type échelon, on constate que la consigne de pilotage filtrée Vf évolue effectivement selon une pente plus progressive que celle dudit échelon, et sans discontinuité.
  • Toutefois, selon une autre variante particulièrement préférentielle de mise en oeuvre de l'invention, après avoir déterminé la consigne de pilotage filtrée Vf, la consigne d'exécution peut ensuite être définie (et calculée) comme suit, en appliquant la formule de conversion mentionnée plus haut : V trol = V f + L g V ¨ f
    Figure imgb0014
    avec :
    • Vf la consigne de pilotage filtrée (régularisée C3), ici plus préférentiellement issue du filtre du troisième ordre F3,
    • L la longueur du câble de suspension 6 qui relie la charge suspendue au point d'accroche,
    • g la gravité.
  • Cette formule de conversion, simple et rapide à exécuter, présente l'avantage d'être intrinsèquement une fonction anti-ballant.
  • Ainsi, utiliser la formule de conversion ci-dessus est avantageusement équivalent à appliquer à la consigne de pilotage filtrée Vf une fonction (supplémentaire) anti-ballant, qui permet de produire une consigne d'exécution Vtrol non génératrice de ballant.
  • En effet, la formule de conversion ci-dessus provient d'un modèle de pendule simplifié, dans lequel on considère que l'angle de ballant β est quasi-nul, c'est-à-dire que la charge suspendue 1 ne se balance pas (ou quasiment pas) par rapport au chariot 5.
  • Avantageusement, cela signifie, de manière réciproque, qu'une consigne d'exécution Vtrol élaborée à partir de ce modèle est telle que, si ladite consigne d'exécution est effectivement exécutée fidèlement par les moteurs d'entraînement 7, 8, et donc par le chariot 5, ladite consigne d'exécution Vtrol ne peut pas, en elle-même, provoquer de ballant.
  • La figure 7 montre une consigne d'exécution Vtrol ainsi obtenue en appliquant la formule de conversion à une consigne de pilotage filtrée Vf issue d'une consigne de pilotage Vu de type échelon.
  • La conversion de la consigne filtrée Vf en consigne d'exécution Vtrol pourra être opérée par tout module de conversion (calculateur) 13 approprié, du genre circuit électronique ou module programmé informatiquement.
  • On remarquera par ailleurs que la détermination de la consigne d'exécution Vtrol selon l'invention peut avantageusement être réalisée sans qu'il soit nécessaire de connaître, et a fortiori sans qu'il soit nécessaire de mesurer, la masse M de la charge suspendue 1, dans la mesure où ce paramètre (la masse M de la charge 1) n'intervient pas dans les formules employées pendant l'étape (b) de traitement, et notamment n'intervient pas dans la définition du filtre du troisième ordre F3 ou dans la formule de conversion susmentionnée.
  • On peut donc faire l'économie d'une mesure de la masse M de la charge suspendue 1 ou d'un traitement de ce paramètre de masse M, ce qui permet, ici encore, de simplifier la structure de l'engin de levage 2, et de simplifier et d'accélérer l'exécution du procédé.
  • Avantageusement, les effets anti-ballant intrinsèquement procurés d'une part par la régularisation C3 elle-même, et d'autre part par l'utilisation d'une formule de conversion non génératrice de ballant, se combineront pour offrir un asservissement optimisé du mouvement de la charge suspendue 1, totalement dépourvu de ballant.
  • Compte tenu des aptitudes du procédé à générer une consigne d'exécution qui ne provoque pas de ballant, on pourra, de façon particulièrement préférentielle, mettre en oeuvre l'asservissement selon l'invention en boucle ouverte.
  • Ainsi, on pourra notamment piloter l'engin de levage 2, et plus particulièrement les déplacements du chariot 5 (ici typiquement en orientation Θ et en distribution R), en appliquant "en aveugle" la consigne d'exécution (ici de préférence une consigne de vitesse) Vtrol au(x) moteur(s) d'entraînement 7, 8, sans prévoir d'asservissement qui viserait à réduire ensuite le ballant réel qui résulterait éventuellement de l'application de cette consigne d'exécution ou bien encore qui résulterait de perturbations extérieures.
  • En particulier, on pourra ainsi piloter l'engin de levage 2 sans avoir à utiliser de retour (« feedback ») mesuré ou calculé de l'angle de ballant effectif (réel) de la charge suspendue 1, ni de retour mesuré ou calculé de la vitesse angulaire du ballant effectif de ladite charge suspendue 1 et, de préférence, sans avoir à utiliser de retour mesuré de la vitesse effective (réelle) du déplacement du point d'accroche H.
  • En utilisant en boucle ouverte le procédé selon l'invention, on peut donc avantageusement obtenir un excellent contrôle du déplacement de la charge suspendue 1, et plus particulièrement offrir au conducteur de l'engin d'excellentes possibilités de contrôle manuel du déplacement de la charge suspendue, au moyen d'un procédé qui allie simplicité et rapidité d'exécution, tout en simplifiant la structure de l'engin de levage 2, et notamment en faisant l'économie de capteurs destinés à mesurer le ballant.
  • Ceci étant, le procédé selon l'invention reste toutefois parfaitement compatible, en variante de réalisation, avec un asservissement en boucle fermée, selon lequel on détermine tout d'abord la consigne d'exécution Vtrol conformément à l'invention, en faisant notamment intervenir le filtrage du troisième ordre, puis on applique ensuite ladite consigne d'exécution Vtrol aux moteurs d'entraînement 7, 8 tout en prévoyant un asservissement en boucle fermée (tel que décrit plus haut) destiné à réduire activement un éventuel ballant, au cas où un tel ballant apparaîtrait malgré tout, en étant provoqué par des perturbations externes au système de pilotage, telles que des rafales de vent, par exemple.
  • Avantageusement, selon une pareille variante de réalisation, la détermination de la consigne d'exécution Vtrol selon l'invention, avec régularisation C3 d'une part et utilisation de la formule de conversion anti-ballant mentionnée plus haut d'autre part, permettra toutefois de générer une consigne d'exécution (consigne de vitesse de chariot) Vtrol déjà optimisée, non génératrice de ballant (intrinsèquement), si bien que la tâche de compensation de ballant affectée à la boucle fermée de l'asservissement sera grandement simplifiée (puisqu'il s'agira seulement de réduire d'éventuels ballants provoqués par les seules perturbations externes au système de pilotage).
  • On rappellera par ailleurs que les moteurs d'entraînement 7, 8 présentent, par nature, des capacités de vitesse, d'accélération, et de couple limitées (finies).
  • Par conséquent, il est nécessaire que la consigne d'exécution Vtrol soit compatible avec ces capacités, afin que les moteurs 7, 8 puissent effectivement exécuter ladite consigne d'exécution Vtrol, et ainsi générer, comme résultat de l'application de ladite consigne d'exécution Vtrol auxdits moteurs 7, 8, des mouvements du chariot 5 et de la charge suspendue 1 sans ballant, qui soient conformes aux mouvements qui sont attendus au regard de ladite consigne d'exécution.
  • En d'autres termes, il est nécessaire de veiller à générer une consigne d'exécution Vtrol qui soit réalisable, c'est-à-dire cohérente et compatible avec les capacités matérielles effectives des moteurs d'entraînement 7, 8, de manière à ne pas chercher à solliciter le système de pilotage au-delà de ses capacités, et ainsi de manière à éviter toute situation dans laquelle une insuffisance d'un moteur 7, 8 conduirait le mouvement réel à différer du mouvement idéal attendu, et provoquerait par exemple l'apparition ou l'accentuation d'un ballant.
  • En définitive, au regard des critères de stabilité, de rapidité de convergence, et de respect des capacités matérielles des moteurs d'entraînement 7, 8, on peut considérer que, globalement, la consigne de pilotage filtrée (consigne de vitesse filtrée) Vf doit répondre (simultanément) à quatre contraintes cumulées :
    • Contrainte n°1 : la consigne de vitesse filtrée Vf(t) doit être trois fois dérivable, et plus particulièrement de classe C3 ;
    • Contrainte n°2 : la consigne de vitesse filtrée Vf doit converger le plus rapidement possible vers la consigne de pilotage Vu (en réponse typiquement à une consigne de pilotage Vu formant un échelon constant) ;
    • Contrainte n°3 : l'accélération du chariot 5 ne doit jamais dépasser la capacité d'accélération intrinsèque maximale du moteur d'entraînement 7, 8 correspondant, c'est-à-dire que l'on a en permanence : |trol | ≤ aMAX, soit | V ˙ f + L g V f | a MAX
      Figure imgb0015
      où aMAX est une valeur représentative de l'accélération maximale que le moteur d'entraînement 7, 8 peut conférer au point d'accroche H auquel est suspendue la charge 1 (c'est-à-dire ici au chariot 5) ;
    • Contrainte n°4 : la consigne de vitesse du chariot (consigne d'exécution) Vtrol ne doit jamais dépasser la vitesse maximale que le moteur d'entraînement 7, 8 peut conférer au chariot 5, c'est-à-dire que l'on a en permanence: |Vtrol |≤ VMAX soit: | V f + L g V ¨ f |
      Figure imgb0016
      VMAX où VMAX est une valeur représentative de la vitesse maximale que le moteur d'entraînement 7, 8 peut conférer au point d'accroche H auquel est suspendue la charge 1 (c'est-à-dire ici au chariot 5).
  • La régularisation C3, et plus particulièrement l'application du filtre du troisième ordre F3, permet de satisfaire à la contrainte n°1 (consigne trois fois dérivable, et plus particulièrement de classe C3).
  • On peut satisfaire à la contrainte n°2 (convergence rapide) en choisissant convenablement les coefficients c1, c2 dudit filtre du troisième ordre F3, comme indiqué ci-dessus, et d'autre part en adaptant la pulsation ω dudit filtre du troisième ordre F3 selon les circonstances, tel que cela sera détaillé ci-après.
  • On peut enfin satisfaire aux contraintes n°3 (limite d'accélération) et n°4 (limite de vitesse), c'est-à-dire s'assurer que la consigne d'exécution (consigne de vitesse du chariot) Vtrol est réalisable, en appliquant des fonctions de saturation SAT1, SAT2, SAT3 appropriées, qui seront détaillées dans ce qui suit.
  • Ainsi, selon une caractéristique préférentielle qui peut constituer une invention à part entière, lors de la sous-étape (b4) de régularisation C3, on pourra faire intervenir, pour générer la consigne de pilotage filtrée Vf, un paramètre qui est représentatif de l'accélération maximale aMAX que le moteur d'entraînement 7, 8 peut conférer au point d'accroche H auquel est suspendue la charge 1, afin que la consigne d'exécution Vtrol qui découle de ladite consigne de pilotage filtrée Vf dépende de ladite accélération maximale de manière à être réalisable par ledit moteur d'entraînement 7,8.
  • Plus particulièrement, ledit paramètre choisi comme représentatif de l'accélération maximale aMAX admissible par le moteur d'entraînement 7, 8 pourra être la pulsation ω du filtre du troisième ordre F3, sous forme d'une pulsation dite « pulsation calculée » ω0 qui sera déterminée en fonction notamment de ladite valeur d'accélération maximale admissible aMAX.
  • Les inventeurs ont en effet établi qu'il existait un lien entre pulsation et accélération maximale admissible.
  • En effet, on a vu que l'accélération du chariot vaut V ˙ trol = V ˙ f + L g V f .
    Figure imgb0017
  • Supposons que l'on applique à l'instant t = 0 (instant initial), à une charge suspendue 1 au repos, c'est-à-dire à un système initialement à l'équilibre, une consigne Vu de type échelon.
  • Le système étant initialement à l'équilibre, on peut alors considérer que l'accélération de la charge suspendue 1 est initialement nulle, c'est-à-dire que l'on a, à l'instant t=0 : f (0) ≈ 0, du fait de l'inertie, tandis que l'accélération trol du chariot 5 est maximale à ce même instant t=0, et vaut alors L g V f 0 = L g ω 3 V u .
    Figure imgb0018
  • La contrainte n°3 (limite d'accélération) impose donc : L g ω 3 V u a MAX
    Figure imgb0019
    c'est-à-dire : ω a MAX × g V u × L 1 3
    Figure imgb0020
  • Par conséquent, l'étape (b) de traitement peut donc comprendre de préférence une sous-étape (b1) de réglage de la pulsation du filtre du troisième ordre F3, au cours de laquelle on calcule la pulsation ω, ω0 dudit filtre du troisième ordre F3 à partir d'une valeur aMAX qui est représentative de l'accélération maximale que le moteur d'entraînement 7, 8 peut conférer au point d'accroche H auquel est suspendue la charge 1.
  • Par ailleurs, et dans la mesure où l'équation ci-dessus fait également apparaître, en conséquence de la contrainte n°3 (limite d'accélération), un lien entre la pulsation ω et la consigne de vitesse Vu, l'étape (b) de traitement comprendra de préférence une sous-étape (b1) de réglage de la pulsation ω du filtre du troisième ordre F3, au cours de laquelle on adapte la pulsation ω du filtre du troisième ordre, et plus particulièrement la pulsation calculée ω0, en fonction de la valeur de la consigne de pilotage Vu, VJOY appliquée par le conducteur de l'engin de levage à l'instant t considéré.
  • Plus préférentiellement, on modifie la valeur de la pulsation ω du filtre du troisième ordre F3 selon que la consigne de pilotage Vu, VJOY est inférieure ou au contraire supérieure à une vitesse de référence Vthresh qui est définie à partir de la valeur de vitesse maximale VMAX que le moteur d'entraînement 7, 8 peut conférer au point d'accroche H auquel est suspendue la charge 1.
  • En pratique, on fera varier la pulsation ω de sorte à augmenter ladite pulsation ω et ainsi utiliser une pulsation considérée comme grande, dite « valeur haute » ωhigh, et donc un filtre F3 plus réactif, lorsque la valeur absolue de la consigne de pilotage (c'est-à-dire l'amplitude de la consigne de vitesse) Vu, VJOY est faible au regard de la vitesse maximale admissible VMAX, et en diminuant au contraire ladite pulsation ω au profit d'une pulsation plus faible, dite « valeur basse » ωlow, lorsque la valeur absolue de la consigne de pilotage Vu, VJOY augmentera pour se rapprocher de la vitesse maximale admissible VMAX.
  • En particulier, lorsque la consigne de vitesse correspond à la vitesse maximale admissible : Vu = VMAX, la contrainte n°3 (limite d'accélération) imposera en effet : ω a MAX × g V MAX × L 1 3
    Figure imgb0021
  • En pratique, compte-tenu de ce qui précède, et tel que cela est illustré sur la figure 3, on pourra donc par exemple calculer la pulsation ω du filtre du troisième ordre F3, lors de la sous-étape (b1) de réglage de la pulsation du filtre du troisième ordre, à partir d'une pulsation calculée ω0 déterminée comme suit :
    • on choisit Vthresh = k*VMAX, avec 0 < k <1, par exemple k = 0,5 ;
    • si Vu ≤ Vthresh, alors on définit la pulsation calculée ω0 comme ω 0 = ω high = a MAX × g V thresh × L 1 3 ,
      Figure imgb0022
      formant ici une valeur haute ;
    • si Vu > Vthresh, alors on définit la pulsation calculée ω0 comme ω 0 = ω low = a MAX × g V MAX × L 1 3 ,
      Figure imgb0023
      formant ici une valeur basse, car VMAX > Vthresh, si bien que ωlow < ωhigh ; avec :
      • Vu la consigne de pilotage (ici égale à la consigne de pilotage brute VJOY), k un facteur de réglage choisi, compris entre 0 et 1,
      • L la longueur du câble de suspension 6 qui relie la charge suspendue 1 au point d'accroche H,
      • g la gravité (accélération de pesanteur),
      • VMAX une valeur arbitraire (de réglage) que l'on considère comme représentative de la vitesse maximale que le moteur d'entraînement 7, 8 peut conférer au point d'accroche H auquel est suspendue la charge 1 ; en pratique VMAX sera arbitrairement choisie en fonction des caractéristiques de l'engin de levage 2, de la charge 1 prévue, et du moteur d'entraînement 7, 8 concerné, et pourra par exemple être égale à la valeur de vitesse maximale effective que le moteur d'entraînement 7, 8 est effectivement capable, d'après des essais, de conférer au chariot 5, ou bien, de préférence, être égale à une fraction (strictement inférieure à 100%, mais non nulle) de cette valeur de vitesse maximale effective ;
      • aMAX une valeur arbitraire (de réglage) que l'on considère comme représentative de l'accélération maximale que le moteur d'entraînement 7, 8 peut conférer au point d'accroche H auquel est suspendue la charge 1 ; aMAX pourra par exemple être égale à la valeur maximale effective d'accélération du moteur, déterminée par des essais, ou bien, de préférence, être égale à une fraction (strictement inférieure à 100%, mais non nulle) de cette valeur maximale effective d'accélération.
  • Le double objectif de cette adaptation (en temps réel) de la pulsation ω est d'optimiser la réactivité du filtre du troisième ordre 3 (contrainte n°2) en augmentant ladite pulsation ω lorsque cela est possible, car le temps de réponse du filtre F3 est inversement proportionnel à ladite pulsation ω (avec les coefficients c1, c2 choisis comme indiqué plus haut, le temps de réponse à 5% est de l'ordre de 4/ω), tout en respectant la contrainte n°3 liée au non-dépassement de la capacité maximale d'accélération du moteur d'entraînement 7, 8, qui fixe une limite supérieure admissible pour ladite pulsation ω.
  • On notera du reste que quelle que soit la loi retenue pour déterminer la pulsation ω, l'utilisation d'une pulsation ajustable permet de régler dynamiquement le filtre du troisième ordre F3, et d'intégrer directement et intrinsèquement au sein dudit filtre F3, de façon particulièrement simple, une partie des contraintes liées notamment aux capacités matérielles de vitesse et d'accélération des moteurs d'entraînement 7, 8.
  • L'ajustement de la pulsation ω du filtre du troisième ordre F3 pourra être réalisé par tout module d'ajustement de pulsation 14 approprié, formant un calculateur comprenant par exemple un circuit électronique ou un programme informatique adapté.
  • Par ailleurs, les inventeurs ont constaté empiriquement que, pour éviter de déstabiliser le filtre du troisième ordre F3, notamment lors des transitions entre la valeur haute ωhigh et la valeur basse ωlow,la pulsation (calculée) ω, ω0 devait être deux fois dérivable (par rapport au temps).
  • A ce titre, les inventeurs ont constaté qu'il était souhaitable de lisser la pulsation (calculée) ω, ω0, afin en particulier de garantir que ses évolutions dans le temps, et en particulier les transitions valeur haute ωhigh/valeur basse ωlow susmentionnées, soient continues et deux fois dérivables.
  • C'est pourquoi, selon une caractéristique préférentielle qui peut constituer une invention à part entière, lors de la sous-étape (b1) de réglage de la pulsation ω du filtre du troisième ordre F3, on applique lors de la détermination de la pulsation ω, et plus particulièrement on applique à la pulsation calculée ω0, un filtre du second ordre F2, de manière à ce que le filtre du troisième ordre F3 utilise comme pulsation ω une pulsation calculée filtrée ωF.
  • Ladite pulsation calculée filtrée ωF est ainsi préférentiellement définie comme : ω F p = 1 1 + 2 m p ω X + p 2 ω X 2 ω 0 p
    Figure imgb0024
    avec :
    • ω0 la pulsation calculée (dite aussi « pulsation-cible »), obtenue comme indiqué plus haut, avant filtrage du second ordre F2,
    • ωx la pulsation propre du filtre du second ordre F2, par exemple égale à 4 rad/s,
    • m le coefficient d'amortissement du filtre du second ordre F2, de préférence égal à 0,7 (ce choix de valeur permettant d'obtenir un bon compromis entre temps de réponse faible et dépassement limité du filtre du second ordre).
  • Par ailleurs, on constatera que si la pulsation ω du filtre du troisième ordre F3, et plus particulièrement la pulsation filtrée ω = ωF dudit filtre du troisième ordre F3, calculée comme décrit ci-dessus, varie continûment (c'est-à-dire régulièrement, sans discontinuité au sens mathématique du terme) pour converger vers la pulsation-cible calculée ω0, et plus particulièrement varie pour passer continûment de la valeur haute ωhigh à la valeur basse ωlow ou inversement, alors, dans l'absolu, pourraient se présenter certaines situations dans lesquelles l'inégalité L g ω 3 V u a MAX ,
    Figure imgb0025
    c'est-à-dire ω a MAX × g V u × L 1 3
    Figure imgb0026
    qui résulte de la contrainte n°3 (capacité limitée d'accélération) pourrait temporairement être violée.
  • En effet, supposons par exemple que l'on se trouve initialement dans une situation dans laquelle le conducteur de l'engin sollicite peu ou pas le déplacement de la charge suspendue 1, de telle sorte que la consigne de pilotage (en vitesse) Vu est faible, voire nulle, si bien qu'elle est inférieure à la vitesse de référence : Vu < Vthresh, par exemple avec Vu = 0 m/s.
  • La pulsation ω, ωF du filtre du troisième ordre F3 est alors proche de, voire égale à, sa valeur haute ωhigh.
  • Supposons maintenant que le conducteur de l'engin applique soudainement une consigne de vitesse Vu de forte amplitude, supérieure à la vitesse de référence Vthresh, et par exemple voisine de la vitesse maximale admissible : Vu = VMAX. En pratique, cela revient à appliquer au système de pilotage un échelon selon lequel le conducteur fait passer quasi-instantanément la consigne de pilotage Vu de sa valeur initiale faible, voire nulle (typiquement 0 m/s) à une valeur haute, typiquement VMAX.
  • Comme la consigne Vu = VMAX dépasse désormais la vitesse de référence Vthresh, le réglage automatique de la pulsation du filtre du troisième ordre, selon la sous-étape (b1), redéfinit la valeur de pulsation cible w0, et en l'occurrence l'abaisse pour la fixer à la valeur basse : ω0 = ωlow.
  • Cependant, en raison du filtrage du second ordre F2 qui est appliqué pour obtenir la pulsation filtrée ωF, telle qu'elle est effectivement utilisée par le filtre du troisième ordre F3, la transition de ladite pulsation filtrée ωF depuis sa valeur haute ωhigh initiale jusqu'à sa (nouvelle) valeur-cible basse ω0 = ωlow n'est pas instantanée, mais au contraire relativement progressive, en ceci que ladite transition (en l'espèce, la diminution) de la pulsation, c'est-à-dire la convergence de la pulsation filtrée ωF vers la valeur basse ωlow, peut s'opérer plus lentement que le changement (ici l'augmentation) de la consigne de pilotage Vu, c'est-à-dire plus lentement que la convergence de la consigne de pilotage Vu vers sa valeur haute VMAX.
  • On comprendra donc que, pendant la brève durée qui est nécessaire pour adapter la pulsation ω, ωF du filtre du troisième ordre F3 à la nouvelle consigne de pilotage Vu, on peut donc temporairement se trouver dans une situation où coexistent une consigne de pilotage proche de sa valeur haute (Vu étant sensiblement égale à VMAX) et une pulsation ω, ωF également proche de sa valeur haute ωhigh, du fait que ladite pulsation "tarde" à diminuer pour atteindre sa valeur basse ωlow.
  • En pareil cas, l'accélération demandée au chariot 5 serait alors provisoirement sensiblement égale à L g ω high 3 V MAX ,
    Figure imgb0027
    et pourrait ainsi temporairement excéder la capacité maximale d'accélération a MAX = L g ω low 3 V MAX
    Figure imgb0028
    du moteur 7, 8, puisque ωhigh > ωlow.
  • C'est notamment pourquoi, afin d'éviter une telle situation, et plus particulièrement afin de garantir que l'on satisfait en permanence à l'inégalité (posée par la contrainte n°3) : | V u | g 3 a MAX ,
    Figure imgb0029
    l'étape (b) de traitement comprend de préférence, selon une caractéristique qui peut constituer une invention à part entière, une sous-étape (b2) de saturation préliminaire, au cours de laquelle on applique à la consigne de pilotage Vu, VJOY une première loi de saturation SAT1 qui est calculée en fonction de la pulsation ω, ωF du filtre du troisième ordre F3 (c'est-à-dire en fonction de la valeur instantanée prise par la pulsation ω, ωF du filtre du troisième ordre à l'instant considéré).
  • Tel que cela est notamment illustré sur les figures 3 et 4, cette première loi de saturation SAT1 pourra être mise en oeuvre par un premier module de saturation 15 approprié, formant un calculateur comprenant par exemple un circuit électronique ou un programme informatique adapté.
  • De préférence, la première loi de saturation SAT1 s'exprimera par : SAT 1 V u = V u si g F 3 a MAX V u g F 3 a MAX
    Figure imgb0030
    SAT 1 V u = g F 3 a MAX si V u < g F 3 a MAX
    Figure imgb0031
    SAT 1 V u = + g F 3 a MAX si V u > g F 3 a MAX
    Figure imgb0032
    avec
    • Vu la consigne de pilotage (ici égale à la consigne de pilotage brute VJOY),
    • ωF la pulsation (et plus particulièrement la pulsation filtrée) du filtre du troisième ordre F3,
    • L la longueur du câble de suspension 6,
    • g la gravité et
    • aMAX une valeur représentative de l'accélération maximale que le moteur d'entraînement 7, 8 peut conférer au point d'accroche H auquel est suspendue la charge 1 (ladite valeur d'accélération maximale étant de préférence définie comme indiqué plus haut).
  • De préférence, tel que cela est illustré sur les figures 3 et 4, la première loi de saturation SAT1 est appliquée à la consigne (en vitesse) brute VJOY, avant le filtrage du troisième ordre F3, de sorte à former (en sortie du premier module de saturation 15) la consigne de pilotage Vu qui est alors envoyée vers le filtre du troisième ordre F3.
  • Par ailleurs, dans certaines situations, lorsque la longueur L du câble de suspension 6 est importante, la consigne d'exécution Vtrol, et donc la vitesse du chariot 5, qui est donnée par la formule de conversion V trol = V f + L g V ¨ f ,
    Figure imgb0033
    peut dépasser la vitesse maximale admissible VMAX, c'est-à-dire violer la contrainte n°4 (qui pose : |Vtrol | ≤ VMAX ), notamment si la consigne de pilotage Vu, et par conséquent la consigne de pilotage filtrée Vf qui en résulte, connaît des variations rapides, rapprochées dans le temps, et de forte amplitude.
  • La solution proposée par les inventeurs consiste à limiter la consigne d'exécution Vtrol lorsque celle-ci atteint une limite admissible prédéfinie (typiquement +/- VMAX), en saturant de manière adéquate la consigne de pilotage Vu.
  • Le principe est de recalculer la consigne de pilotage Vu lorsque la consigne d'exécution (et donc la vitesse du chariot 5) Vtrol atteint la vitesse maximale admissible VMAX, de manière à ce que la valeur absolue de ladite consigne d'exécution |Vtrol| reste (au plus) constante, voire diminue; en d'autres termes, on modifie la consigne de pilotage Vu afin de plafonner la consigne d'exécution Vtrol à sa valeur maximale admissible VMAX.
  • C'est pourquoi l'étape (b) de traitement comprend de préférence une sous-étape (b3) de saturation secondaire, qui est destinée à maintenir constante ou à faire décroître la consigne d'exécution (c'est-à-dire la consigne de vitesse du point d'accroche H) Vtrol lorsque ladite consigne d'exécution Vtrol atteint sensiblement la vitesse maximale VMAX que le moteur d'entraînement 7, 8 peut conférer au point d'accroche H (c'est-à-dire en pratique au chariot 5).
  • Mathématiquement, si l'on souhaite maintenir la consigne d'exécution Vtrol constante, cela revient à poser Vtrol = 0, donc 0 = V ˙ trol = V ˙ f + L g V f ,
    Figure imgb0034
    et par conséquent V f = g L V ˙ f .
    Figure imgb0035
  • Comme, en application du filtre du troisième ordre F3, on a : V f + c 1 ω F V ˙ f + c 2 ω F 2 V ¨ f + 1 ω F 3 V f = V u
    Figure imgb0036
    • donc V f = ω F 3 V u V f c 1 ω F V ˙ f c 2 ω F 2 V ¨ f
      Figure imgb0037
    • alors V ˙ trol = 0 V u = V f + c 1 ω F V ˙ f + c 2 ω F 2 V ¨ f g F 3 V ˙ f
      Figure imgb0038
    • le second membre de la dernière équation étant noté, par commodité, E t : E t = V f + c 1 ω F V ˙ f + c 2 ω F 2 V ¨ f g F 3 V ˙ f
      Figure imgb0039
  • Comme indiqué plus haut, on cherche à maintenir la consigne d'exécution Vtrol constante ou à la faire décroître, lorsqu'elle atteint la vitesse maximale admissible Vmax. En outre, en pratique, si la consigne de pilotage Vu est petite, cela indique en principe que l'on recherche une vitesse de chariot, donc une consigne d'exécution Vtrol, basse, c'est-à-dire qu'il n'y a alors pas de raison de conserver ladite consigne d'exécution Vtrol constante à sa valeur maximale VMAX, mais plutôt de la faire décroître.
  • C'est pourquoi, au cours de la sous-étape (b3) de saturation secondaire, on applique donc de préférence à la consigne de pilotage Vu, selon une caractéristique qui peut constituer une invention à part entière, une seconde loi de saturation SAT2 qui est exprimée par : SAT 2 V u = MIN E t , V u si V trol > 0
    Figure imgb0040
    et SAT 2 V u = MAX E t , V u si V trol < 0 ,
    Figure imgb0041
    avec :
    • Vu la consigne de pilotage (laquelle est de préférence issue du premier module de saturation 15, après avoir subi la première loi de saturation SAT1, comme indiqué sur la figure 4),
    • Vtrol la consigne d'exécution (vitesse de chariot), estimée ici par la formule de conversion : V trol = V f + L g V ¨ f
      Figure imgb0042
      Vf la consigne de pilotage filtrée issue du filtre du troisième ordre F3,
      et E t = V f + c 1 ω F V ˙ f + c 2 ω F 2 V ¨ f g F 3 V ˙ f
      Figure imgb0043
      avec
      • c1, c2 les coefficients, respectivement du premier ordre et du second ordre, utilisés par le filtre du troisième ordre F3 (typiquement, on aura c1 = 2,15 et c2 = 1,75),
      • ωF la pulsation (ici plus particulièrement la pulsation filtrée) du filtre du troisième ordre F3,
      • L la longueur du câble de suspension 6 qui relie la charge suspendue 1 au point d'accroche H,
      • g la gravité.
  • Tel que cela est notamment illustré sur la figure 4, cette seconde loi de saturation SAT2 pourra être mise en oeuvre par un second module de saturation 16 approprié, formant un calculateur comprenant par exemple un circuit électronique ou un programme informatique adapté.
  • On notera que, par souci de stabilité, l'activation et la désactivation de cette seconde loi de saturation SAT2, au voisinage de la vitesse maximale admissible VMAX, pourront s'opérer de préférence par une commutation à hystérésis.
  • Plus particulièrement, la seconde loi de saturation SAT2 étant initialement inactive, celle-ci sera activée lorsque la consigne d'exécution Vtrol atteindra et dépassera un seuil d'enclenchement, légèrement supérieur à VMAX, et par exemple fixé à 1,04*VMAX (ce qui renforce l'intérêt de choisir VMAX légèrement en-deçà de la limite de vitesse physique véritable du moteur d'entraînement 7, 8 concerné, typiquement entre 95% et 98% de ladite limite physique), et être de nouveau désactivée lorsque la consigne d'exécution Vtrol redescendra sous un seuil d'extinction strictement inférieur au seuil d'enclenchement, et valant par exemple 1,01*VMAX.
  • Par ailleurs, les inventeurs ont constaté que, même si la mise en oeuvre de la première loi de saturation SAT1 décrite plus haut permettait globalement de satisfaire à la contrainte n°3 (accélération du chariot devant rester inférieure à l'accélération maximale admissible aMAX), certaines combinaisons très particulières de consignes de pilotage pouvaient malgré tout prendre cette contrainte n°3 en défaut.
  • Or, comme indiqué plus haut, l'application d'une consigne d'exécution Vtrol qui ne respecterait les limites matérielles, notamment la capacité d'accélération, des moteurs d'entraînement 7, 8, risquerait de conduire à l'exécution d'un mouvement non conforme au mouvement attendu, et par conséquent à l'apparition d'un ballant.
  • C'est notamment pourquoi, afin de sécuriser le mouvement de la charge suspendue 1 et de garantir le contrôle et la précision dudit mouvement, l'étape (b) de traitement comprend de préférence, selon une caractéristique qui peut constituer une invention à part entière mais qui sera préférentiellement mise en oeuvre en complément de la première loi de saturation SAT1, une sous-étape (b5) de saturation de la dérivée troisième de la consigne de pilotage filtrée au cours de laquelle on applique à la dérivée (temporelle) troisième V f
    Figure imgb0044
    de la consigne de pilotage filtrée Vf une troisième loi de saturation SAT3 dont les seuils de saturation dépendent de l'accélération maximale aMAX (typiquement telle que définie plus haut) que le moteur d'entraînement 7, 8 peut conférer au point d'accroche H auquel est suspendue la charge 1.
  • La mise en oeuvre de cette troisième loi de saturation SAT3 peut avantageusement ajouter une précaution supplémentaire à celle procurée par la première loi de saturation SAT1, afin d'optimiser la sécurité de la commande en boucle ouverte selon l'invention.
  • Plus préférentiellement, la troisième loi de saturation SAT3 pourra s'exprimer par : SAT 3 V f = ω F 3 × V u V f c 1 ω F V ˙ f c 2 ω F 2 V ¨ f
    Figure imgb0045
    si g L V ˙ f a MAX V f g L V ˙ f + a MAX ,
    Figure imgb0046
    SAT 3 V f = g L V ˙ f a MAX si V f < g L V ˙ f a MAX
    Figure imgb0047
    et SAT 3 V f = g L V ˙ f + a MAX si V f > g L V ˙ f + a MAX
    Figure imgb0048
    avec :
    • Vf la consigne de pilotage filtrée issue du filtre du troisième ordre F3,
    • ωF la pulsation (ici plus particulièrement la pulsation filtrée) du filtre du troisième ordre F3,
    • c1, c2 les coefficients, respectivement du premier ordre et du second ordre, utilisés par le filtre du troisième ordre F3,
    • L la longueur du câble de suspension 6 qui relie la charge suspendue 1 au point d'accroche H,
    • g la gravité et
    • aMAX une valeur représentative de l'accélération maximale que le moteur d'entraînement 7, 8 peut conférer au point d'accroche H auquel est suspendue la charge 1, ladite valeur d'accélération maximale étant typiquement définie comme cela a été décrit plus haut.
  • Tel que cela est notamment illustré sur la figure 4, la troisième loi de saturation SAT3 pourra être mise en oeuvre par un troisième module de saturation 17 approprié, formant un calculateur comprenant par exemple un circuit électronique ou un programme informatique adapté.
  • On notera que, avantageusement, le raisonnement et les équations proposées ci-dessus trouvent à s'appliquer si l'on considère la situation réelle, en trois dimensions.
  • En effet, si l'on considère la grue dans un repère cartésien tridimensionnel (X, Y, Z), où Z représente l'axe vertical, ici confondu avec le mât 3, on peut toujours écrire la loi de Newton : Ma load = T + Mg
  • En faisant l'hypothèse des petits angles de ballant, on a, en projection respectivement sur l'axe X et sur l'axe Y : P trol X P load X L = a X g a Z
    Figure imgb0049
    et P trol Y P load Y L = a Y g a Z
    Figure imgb0050
    avec aX, aY et aZ les L g-az L g-az composantes respectives en X, en Y et en Z de l'accélération de la charge suspendue 1.
  • Selon une première possibilité de mise en oeuvre du procédé selon l'invention, on pourrait, dans l'absolu, conserver, pour le calcul de la consigne d'exécution Vtrol, et plus particulièrement pour le calcul des composantes cartésiennes Vtrol X et Vtrol Y de ladite consigne d'exécution, des expressions qui font apparaître l'accélération verticale aZ de la charge suspendue 1, de manière à pouvoir compenser également les effets potentiels de ladite accélération verticale de la charge suspendue 1 sur la génération de ballant.
  • Toutefois, selon une seconde possibilité préférentielle de mise en oeuvre du procédé selon l'invention, on pourra en pratique considérer, à titre d'hypothèse simplificatrice, que l'accélération de la charge suspendue aZ est négligeable au regard de la pesanteur g.
  • En simplifiant en conséquence les expressions ci-dessus, on retrouve : P trol X P load X L a X g et P trol Y P load Y L a Y g .
    Figure imgb0051
  • En dérivant (différentiant) ensuite ces expressions par rapport au temps, et en considérant, par simplification réaliste, que la vitesse de variation dL/dt de la longueur L du câble de suspension 6 est négligeable, on obtient : V trol X = V load X + L g d 2 dt 2 V load X et V trol Y = V load Y + L g d 2 dt 2 V load Y
    Figure imgb0052
  • Par ailleurs, on notera que le procédé selon l'invention est particulièrement polyvalent car il peut s'appliquer à tout type d'engin de levage 2, quelle que soit la configuration dudit engin de levage 2, dans la mesure où ledit procédé permet avantageusement de calculer de toute manière la consigne d'exécution Vtrol de manière simple dans un repère cartésien, quel que soit par ailleurs le système de coordonnées (cartésiennes, cylindriques ou sphériques), propre à l'engin de levage 2, dans lequel est d'abord exprimée la consigne de pilotage Vu, VJOY lorsqu'elle est fixée par le conducteur de l'engin, puis dans lequel la consigne d'exécution Vtrol doit être exprimée pour que ladite consigne d'exécution puisse être convenablement appliquée aux moteurs d'entraînement 7, 8 concernés.
  • En effet, il suffit tout d'abord de convertir en coordonnées cartésiennes, au moyen d'une matrice de transformation géométrique (du genre matrice de rotation), caractéristique de l'engin de levage 2 utilisé, et que l'on notera Rθ, les composantes de la consigne de pilotage Vu, VJOY initialement exprimées dans le système de coordonnées propre à l'engin de levage 2, puis de calculer la consigne d'exécution Vtrol dans ledit repère cartésien, et enfin de convertir à nouveau, au moyen d'une matrice de transformation inverse, que l'on notera R-θ, les composantes cartésiennes de ladite consigne d'exécution Vtrol en composantes exprimées dans le système de coordonnées propre à l'engin de levage 2, applicables aux moteurs d'entraînement 7, 8 qui gèrent respectivement le déplacement dudit engin 2 (et plus particulièrement du chariot 5) selon chacune desdites composantes.
  • Ainsi, dans le cas d'un engin de levage 2 formé par une grue à flèche horizontale (grue à tour à flèche horizontale), le système de coordonnées le plus approprié audit engin 2 sera un système de coordonnées cylindriques dans lequel la position de l'objet considéré est repérée par un rayon r (le long de la flèche) et un angle d'azimut θ (angle de lacer autour de l'axe d'orientation), tel que cela est illustré sur les figures 1 et 5.
  • Le pilotage de la grue s'effectuant - de manière assez intuitive pour le conducteur - en distribution (modification du rayon r) et en orientation (modification de l'azimut θ), la consigne de pilotage Vu, VJOY, de même que la consigne d'exécution Vtrol, comprendront donc chacune une composante de distribution, destinée au moteur 7 de distribution (qui permet d'agir sur le rayon) et une composante d'orientation, destinée au moteur 8 d'orientation (qui permet de d'agir sur l'azimut).
  • La première conversion (de la consigne de pilotage Vu, VJOY) depuis le système cylindrique vers le système cartésien pourra s'opérer au moyen d'une matrice de rotation Rθ, tandis que la seconde conversion (de la consigne d'exécution Vtrol) depuis le système cartésien vers le système cylindrique pourra s'opérer au moyen d'une matrice de rotation inverse R-θ.
  • De manière analogue, dans le cas d'un engin de levage 2 formé par une grue à flèche relevable, le système de coordonnées le plus approprié sera le système de coordonnées sphériques, dans lequel la position du chariot 5 est repérée (et pilotée) par son azimut (orientation de la flèche relevable en lacet), sa déclinaison (orientation de la flèche relevable en tangage) et par son rayon (distance du chariot par rapport à la base articulée de la flèche relevable).
  • Ici encore, les conversions vers et depuis le système cartésien seront opérées par des matrices de transformation géométrique appropriées, de manière à pouvoir gérer le moteur d'entraînement en azimut (lacet) de la flèche, le moteur d'entraînement en déclinaison (tangage) de la flèche, et le moteur d'entraînement en rayon (translation le long de la flèche).
  • Dans le cas d'un engin de levage 2 de type pont roulant, conçu pour réaliser des mouvements linéaires de translation selon un axe (X), ou selon deux axes perpendiculaires l'un à l'autre (X et Y), la consigne de pilotage pourra être directement exprimée dans un repère cartésien (X, Y), et ne nécessitera donc aucune conversion de coordonnées.
  • En pratique, et tel que cela est illustré sur la figure 6, le procédé selon l'invention pourra donc comporter successivement les opérations suivantes :
    • la position de la charge suspendue 1 est donnée dans un système de coordonnées adapté à l'engin de levage 2, ici préférentiellement en coordonnées cylindriques : rload, θload ;
    • la consigne de pilotage (brute) VJOY est exprimée par le conducteur de l'engin (via le joystick 11) sous forme d'une consigne de vitesse de charge suspendue Vload, dont les composantes correspondent au système de coordonnées considéré ; ici ladite consigne de vitesse de charge suspendue Vload, comprend (est décomposée en) une composante de vitesse de charge radiale souhaitée Vload r et une composante de vitesse de charge angulaire souhaitée Vload θ ;
    • les composantes de la consigne de vitesse de charge suspendue Vload sont alors régularisées C3, et plus particulièrement filtrées à cet effet par le filtre du troisième ordre F3 ;
    • ainsi, la première composante de la consigne de vitesse de charge suspendue, ici la composante de vitesse de charge radiale souhaitée Vload r, est régularisée C3, et plus particulièrement filtrée par le filtre du troisième ordre F3 (module de filtrage 12), pour obtenir une consigne de vitesse de charge radiale filtrée Vload rf (c'est-à-dire la première composante de la consigne de pilotage filtrée Vf) ;
    • de même, la seconde composante de la consigne de vitesse de charge suspendue, ici la composante de vitesse de charge angulaire souhaitée Vload θ, est régularisée C3, et plus particulièrement est filtrée par le filtre du troisième ordre F3 (module de filtrage 12), pour obtenir une consigne de vitesse de charge angulaire filtrée, puis elle est multipliée par le rayon rload, qui correspond à la distance à laquelle la charge suspendue 1 se trouve de l'axe de rotation vertical (ZZ'), de manière à obtenir une consigne de vitesse tangentielle (orthoradiale) filtrée Vload θf (c'est-à-dire la seconde composante de la consigne de pilotage filtrée Vf) ;
    • la consigne de vitesse de charge filtrée (consigne de pilotage filtrée Vf), dont les composantes, ici radiale et tangentielle, sont désormais connues, est alors exprimée dans un repère cartésien en appliquant une matrice de transformation géométrique, ici la matrice de rotation Rθload qui correspond à la position angulaire en lacet θload de la charge suspendue 1 : (Vload Xf, Vload Yf) = Rθload (Vload rf, Vload θf) ;
    • sur chaque axe X et Y dudit repère cartésien, on peut alors déterminer, grâce à la formule de conversion (module de conversion 13), la composante correspondante de la consigne d'exécution (consigne de vitesse de chariot) Vtrol : Vtrol X = Vload Xf + L g V ¨ load Xf
      Figure imgb0053
      et V trol Y = V load Yf + L g V ¨ load Yf ;
      Figure imgb0054
    • la consigne d'exécution (consigne de vitesse de chariot) Vtrol, disponible en coordonnées cartésiennes est alors exprimée dans le système de coordonnées adapté à l'engin de levage, en l'espèce en coordonnées cylindriques, en appliquant une matrice de transformation géométrique inverse, ici une matrice de rotation inverse R-θtrol qui correspond à la position angulaire en lacet θtrol du chariot 5 : (Vtrol r, Vtrol θ) = R-θtrol (Vtrol X, Vtrol Y) ;
    • les composantes de la consigne d'exécution Vtrol sont alors appliquées chacune à leur moteur d'entraînement 7, 8 respectif; ainsi, la composante radiale Vtrol r de la consigne d'exécution Vtrol est alors appliquée au moteur de distribution 7,
    • tandis que la composante tangentielle Vtrol θ de ladite consigne d'exécution Vtrol est convertie en consigne de vitesse angulaire de chariot, par multiplication par 1/rtrol, où rtrol représente la distance du chariot 5 à l'axe de rotation vertical (ZZ'), puis appliquée au moteur d'orientation (giration en lacet) 8.
  • On notera par ailleurs que les coordonnées cylindriques du chariot 5 (point d'accroche H) peuvent être aisément connues (en temps réel), par exemple au moyen d'une part d'un capteur de position angulaire qui renseigne sur la position angulaire en lacet de la flèche 4 par rapport au mât 3, c'est-à-dire sur la position angulaire en lacet θtrol du chariot 5, et d'autre part au moyen d'un capteur de position, par exemple associé au moteur d'entraînement en distribution 7, qui permet de connaître la position du chariot 5 (en translation) le long de la flèche 4, et par conséquent la distance radiale rtrol à laquelle ledit chariot 5 se trouve de l'axe vertical de rotation (ZZ').
  • De même, la longueur L du câble de suspension 6 pourra être connue en temps réel au moyen d'un capteur mesurant la rotation absolue du treuil ou du moteur de levage qui génère l'enroulement dudit câble de suspension 6.
  • La position angulaire en lacet θload de la charge suspendue 1, ainsi que la distance (radiale) rload de ladite charge suspendue par rapport à l'axe vertical de giration (ZZ') pourront être estimées par intégration (sur le temps) des composantes de la consigne de pilotage filtrée Vf, puisque lesdites composantes correspondent ici respectivement à la vitesse radiale de charge filtrée Vload rf et à la vitesse angulaire de charge filtrée Vload θf.
  • Ainsi, plus particulièrement, on pourra évaluer une position radiale estimée rload_estim de la charge suspendue 1 comme : r load _ estim t = 0 t V load rf dt + r load 0
    Figure imgb0055
  • On notera à ce titre que, lorsque l'engin de levage 2, et plus particulièrement la charge suspendue 1, se trouve au repos, de telle sorte que ladite charge suspendue 1 pend sensiblement à la verticale du chariot 5, la position angulaire en lacet et la distance à l'axe de giration de la charge suspendue 1 sont identiques respectivement à la position angulaire en lacet et à la distance à l'axe de giration du chariot 5, elles-mêmes mesurées comme indiqué ci-dessus.
  • On pourra donc poser, comme condition initiale (et donc comme paramètre d'étalonnage) du calcul intégral susmentionné : rload (0) = rtrol(0), où « 0 » correspond à un instant initial où le système se trouve au repos.
  • Le cas échéant, pour améliorer la précision de l'estimation de la position radiale de la charge suspendue 1, on pourra utiliser un observateur (matrice d'observation) faisant intervenir une mesure supplémentaire de la position radiale du chariot 5.
  • Par ailleurs, on notera que la régularisation C3, et plus particulièrement le filtrage du troisième ordre F3, pourra être appliqué(e) à un (seul) mouvement caractéristique de l'engin de levage 2 (typiquement le mouvement de giration en orientation ou bien le mouvement de translation en distribution dans l'exemple préféré illustré sur les figures 1 et 6), c'est-à-dire à une seule des composantes de la consigne de pilotage Vu, VJOY, ou bien à plusieurs desdits mouvements caractéristiques (c'est-à-dire à plusieurs desdites composantes), ou, de préférence, à l'ensemble desdits mouvements caractéristiques (c'est-à-dire à l'ensemble des composantes de la consigne de pilotage).
  • L'invention concerne par ailleurs bien entendu en tant que telle l'utilisation d'une régularisation C3, et plus particulièrement l'utilisation d'un filtre du troisième ordre F3, et le cas échéant, l'utilisation de l'une et/ou l'autre des lois de saturation SAT1, SAT2, SAT3, dans la détermination d'une consigne d'exécution Vtrol destinée à être appliquée à un moteur d'entraînement 7, 8 permettant de déplacer une charge suspendue 1 à un engin de levage 2, selon l'une ou l'autre des modalités décrites dans ce qui précède.
  • A ce titre, on notera que l'invention porte en tant que telle sur la mise en oeuvre d'une régularisation C3, et plus particulièrement sur la mise en oeuvre du filtre du troisième ordre F3, respectivement de tout ou partie des lois de saturation, quelle que soit par ailleurs le type de calcul employé pour déterminer ensuite les composantes de la consigne d'exécution Vtrol.

Claims (14)

  1. Procédé de commande du déplacement d'une charge (1) suspendue à un point d'accroche (H) d'un engin de levage (2), ledit procédé comprenant une étape (a) d'acquisition de consigne de pilotage, au cours de laquelle on acquiert une consigne dite « consigne de pilotage » (Vu) qui est représentative d'une vitesse de déplacement (Vload) que le conducteur de l'engin de levage souhaite conférer à la charge (1) suspendue, puis une étape (b) de traitement au cours de laquelle on élabore, à partir de ladite consigne de pilotage (Vu), une consigne dite « consigne d'exécution » (Vtrol) qui est destinée à être appliquée à au moins un moteur d'entraînement (7, 8) afin de déplacer la charge suspendue (1), le procédé étant caractérisé en ce que l'étape (b) de traitement comporte une sous-étape (b4) de régularisation C3 au cours de laquelle on traite la consigne de pilotage (Vu) de manière à conférer à ladite consigne de pilotage (Vu) des propriétés de dérivabilité troisième par rapport au temps et de continuité par rapport au temps, afin de générer, à partir de ladite consigne de pilotage (Vu), une consigne de pilotage filtrée (Vf) qui est de classe C3, puis l'on définit la consigne d'exécution (Vtrol) à partir de ladite consigne de pilotage filtrée (Vf).
  2. Procédé selon la revendication 1 caractérisé en ce que la consigne d'exécution (Vtrol) exprime la consigne de vitesse que doit atteindre le point d'accroche (H), et est définie comme suit : V trol = V f + L g V ¨ f
    Figure imgb0056
    avec :
    Vf la consigne de pilotage filtrée,
    L la longueur du câble de suspension (6) qui relie la charge suspendue (1) au point d'accroche (H),
    g la gravité.
  3. Procédé selon la revendication 1 ou 2 caractérisé en ce que, lors de la sous-étape (b4) de régularisation C3, on fait intervenir, pour générer la consigne de pilotage filtrée (Vf), un paramètre (ω, ω0) qui est représentatif de l'accélération maximale (aMAX) que le moteur d'entraînement (7, 8) peut conférer au point d'accroche (H) auquel est suspendue la charge (1), afin que la consigne d'exécution (Vtrol) qui découle de ladite consigne de pilotage filtrée (Vf) dépende de ladite accélération maximale de manière à être réalisable par ledit moteur d'entraînement (7, 8).
  4. Procédé selon l'une des revendications précédentes caractérisé en ce que, lors de la sous-étape (b4) de régularisation C3, on applique à la consigne de pilotage (Vu) un filtre du troisième ordre (F3) afin de générer la consigne de pilotage filtrée (Vf) qui est de classe C3.
  5. Procédé selon les revendications 3 et 4 caractérisé en ce que l'étape (b) de traitement comprend une sous-étape (b1) de réglage de la pulsation du filtre du troisième ordre (F3), au cours de laquelle on calcule la pulsation (ω, w0) dudit filtre du troisième ordre (F3) à partir d'une valeur (aMAx) qui est représentative de l'accélération maximale que le moteur d'entraînement (7, 8) peut conférer au point d'accroche (H) auquel est suspendue la charge (1).
  6. Procédé selon la revendication 4 ou 5 caractérisé en ce que l'étape (b) de traitement comprend une sous-étape (b1) de réglage de la pulsation (ω, ω0, ωF) du filtre du troisième ordre (F3), au cours de laquelle on adapte la pulsation (ω, ω0, ωF) du filtre du troisième ordre (F3) en fonction de la valeur de la consigne de pilotage (Vu) appliquée par le conducteur de l'engin de levage à l'instant considéré, et plus préférentiellement on modifie la valeur de la pulsation (ω ω0, ωF) du filtre du troisième ordre (F3) selon que la consigne de pilotage (Vu) est inférieure ou au contraire supérieure à une vitesse de référence (Vthresh) qui est définie à partir de la valeur de vitesse maximale (VMAX) que le moteur d'entraînement (7, 8) peut conférer au point d'accroche (H) auquel est suspendue la charge (1).
  7. Procédé selon l'une des revendications 4 à 6 caractérisé en ce que l'étape (b) de traitement comprend une sous-étape (b1) de réglage de la pulsation du filtre du troisième ordre, au cours de laquelle on calcule la pulsation (ω) du filtre du troisième ordre (F3) à partir d'une pulsation calculée (ω0) déterminée comme suit :
    on choisit Vthresh = k*VMAX, avec 0 < k <1, par exemple k = 0,5 ;
    si Vu ≤ Vthresh, alors on définit la pulsation calculée (ω0) à une valeur haute valant ω 0 = ω high = a MAX × g V thresh × L 1 3
    Figure imgb0057
    si Vu > Vthresh, alors on définit la pulsation calculée (ω0) à une valeur basse valant ω 0 = ω low = a MAX × g V MAX × L 1 3
    Figure imgb0058
    avec :
    Vu la consigne de pilotage,
    L la longueur du câble de suspension (6) qui relie la charge suspendue (1) au point d'accroche (H),
    g la gravité
    VMAX une valeur représentative de la vitesse maximale que le moteur d'entraînement (7, 8) peut conférer au point d'accroche (H) auquel est suspendue la charge (1) et
    aMAX une valeur représentative de l'accélération maximale que le moteur d'entraînement (7, 8) peut conférer au point d'accroche (H) auquel est suspendue la charge (1).
  8. Procédé selon la revendication 7 caractérisé en ce que, lors de la sous-étape (b1) de réglage de la pulsation du filtre du troisième ordre (F3), on applique à la pulsation calculée (ω, ω0) un filtre du second ordre (F2), de manière à ce que le filtre du troisième ordre utilise une pulsation calculée filtrée (ωF), ladite pulsation calculée filtrée (ωF) étant ainsi préférentiellement définie comme : ω F p = 1 1 + 2 m p ω X + p 2 ω X 2 ω 0 p
    Figure imgb0059
    avec :
    ω0 la pulsation calculée, avant filtrage du second ordre (F2),
    ωX la pulsation propre du filtre du second ordre (F2), par exemple égale à 4 rad/s,
    m le coefficient d'amortissement du filtre du second ordre (F2), de préférence égal à 0,7.
  9. Procédé selon l'une des revendications 4 à 8 caractérisé en ce que l'étape (b) de traitement comprend une sous-étape (b2) de saturation préliminaire, au cours de laquelle on applique à la consigne de pilotage (Vu) une première loi de saturation (SAT1) qui est calculée en fonction de la pulsation (ω, ωF) du filtre du troisième ordre (F3).
  10. Procédé selon la revendication 9 caractérisé en ce que la première loi de saturation (SAT1) s'exprime par : SAT 1 V u = V u si g F 3 a MAX V u g F 3 a MAX
    Figure imgb0060
    SAT 1 V u = g F 3 a MAX si V u < g F 3 a MAX
    Figure imgb0061
    SAT 1 V u = + g F 3 a MAX si V u > g F 3 a MAX
    Figure imgb0062
    avec
    Vu la consigne de pilotage,
    ωF la pulsation du filtre du troisième ordre (F3),
    L la longueur du câble de suspension (6) qui relie la charge suspendue (1) au point d'accroche (H),
    g la gravité et
    aMAX une valeur représentative de l'accélération maximale que le moteur d'entraînement (7, 8) peut conférer au point d'accroche (H) auquel est suspendue la charge (1).
  11. Procédé selon l'une des revendications précédentes caractérisé en ce que l'étape (b) de traitement comprend une sous-étape (b3) de saturation secondaire, qui est destinée à maintenir constante ou à faire décroître la consigne d'exécution (Vtrol) lorsque ladite consigne d'exécution atteint sensiblement la vitesse maximale (VMAX) que le moteur d'entraînement (7, 8) peut conférer au point d'accroche (H).
  12. Procédé selon les revendications 11 et 4 caractérisé en ce que, au cours de la sous-étape (b3) de saturation secondaire, on applique à la consigne de pilotage (Vu) une seconde loi de saturation (SAT2) exprimée par : SAT 2 V u = MIN E t , V u si V trol > 0
    Figure imgb0063
    et SAT 2 V u = MAX E t , V u si V trol < 0 ,
    Figure imgb0064
    avec :
    Vu la consigne de pilotage,
    Vtrol la consigne d'exécution, estimée V trol = V f + L g V ¨ f
    Figure imgb0065
    Vf la consigne de pilotage filtrée issue du filtre du troisième ordre (F3),
    et E t = V f + c 1 ω F V ˙ f + c 2 ω F 2 V ¨ f g F 3 V ˙ f
    Figure imgb0066
    avec
    c1, c2 les coefficients, respectivement du premier ordre et du second ordre, utilisés par le filtre du troisième ordre (F3),
    ωF la pulsation du filtre du troisième ordre (F3),
    L la longueur du câble de suspension (6) qui relie la charge suspendue (1) au point d'accroche (H),
    g la gravité.
  13. Procédé selon l'une des revendication précédentes caractérisé en ce que l'étape (b) de traitement comprend une sous-étape (b5) de saturation de la dérivée troisième de la consigne de pilotage filtrée au cours de laquelle on applique à la dérivée troisième V f
    Figure imgb0067
    de la consigne de pilotage filtrée (Vf) une troisième loi de saturation (SAT3) dont les seuils de saturation dépendent de l'accélération maximale (aMAx) que le moteur d'entraînement (7, 8) peut conférer au point d'accroche (H) de la charge suspendue(1).
  14. Procédé selon les revendications 13 et 4 caractérisé en ce que la troisième loi de saturation (SAT3) s'exprime par : SAT 3 V f = ω F 3 × V u V f c 1 ω F V ˙ f c 2 ω F 2 V ¨ f
    Figure imgb0068
    si g L V ˙ f a MAX V f g L V ˙ f + a MAX ,
    Figure imgb0069
    SAT 3 V f = g L V ˙ f a MAX si V f < g L V ˙ f a MAX
    Figure imgb0070
    et SAT 3 V f = g L V ˙ f + a MAX si V f > g L V ˙ f + a MAX
    Figure imgb0071
    avec
    Vf la consigne de pilotage filtrée issue du filtre du troisième ordre (F3),
    ωF la pulsation du filtre du troisième ordre (F3),
    c1, c2 les coefficients, respectivement du premier ordre et du second ordre, utilisés par le filtre du troisième ordre (F3),
    L la longueur du câble de suspension (6) qui relie la charge suspendue (1) au point d'accroche (H),
    g la gravité et
    aMAX une valeur représentative de l'accélération maximale que le moteur d'entraînement (7, 8) peut conférer au point d'accroche (H) auquel est suspendue la charge (1).
EP17190875.9A 2016-10-05 2017-09-13 Procédé de commande de grue anti-ballant à filtre du troisième ordre Active EP3305710B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1659607A FR3056976B1 (fr) 2016-10-05 2016-10-05 Procede de commande de grue anti-ballant a filtre du troisieme ordre

Publications (2)

Publication Number Publication Date
EP3305710A1 EP3305710A1 (fr) 2018-04-11
EP3305710B1 true EP3305710B1 (fr) 2019-05-29

Family

ID=58009907

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17190875.9A Active EP3305710B1 (fr) 2016-10-05 2017-09-13 Procédé de commande de grue anti-ballant à filtre du troisième ordre

Country Status (5)

Country Link
US (1) US20180093868A1 (fr)
EP (1) EP3305710B1 (fr)
CN (1) CN108163712A (fr)
ES (1) ES2743527T3 (fr)
FR (1) FR3056976B1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3071240B1 (fr) * 2017-09-21 2019-09-06 Manitowoc Crane Group France Optimisation dynamique d’une courbe de charge de grue
CN108303883A (zh) * 2018-01-22 2018-07-20 五邑大学 基于一阶动态滑模变结构的桥吊防摆方法
EP3653562A1 (fr) * 2018-11-19 2020-05-20 B&R Industrial Automation GmbH Procédé et régulateur d'oscillation permettant de réguler les oscillations d'un système technique oscillant
CN110342405B (zh) * 2019-07-25 2020-10-02 上海振华重工(集团)股份有限公司 一种集装箱跨运车起升机构精确定位的控制方法
JP7176645B2 (ja) * 2019-10-11 2022-11-22 株式会社タダノ 制御システムおよびクレーン
CN112456361A (zh) * 2020-11-25 2021-03-09 西北工业大学 一种减小吊放声纳液压绞车水下分机摆动幅度的控制方法
CN114803851A (zh) * 2021-01-18 2022-07-29 台达电子工业股份有限公司 基于变频器架构的桥式天车***全时程防摇摆的控制方法
CN113682966B (zh) * 2021-07-19 2023-06-02 杭州大杰智能传动科技有限公司 用于智能塔吊的运行数据监控识别***及其方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1652810B1 (fr) * 2003-08-05 2012-12-19 Sintokogio, Ltd. Grue et dispositif de commande de celle-ci
DE102012004914A1 (de) * 2012-03-09 2013-09-12 Liebherr-Werk Nenzing Gmbh Kransteuerung mit Seilkraftmodus
FR3016872B1 (fr) * 2014-01-30 2019-04-05 Manitowoc Crane Group France Procede de commande anti-ballant a assistance reglable pour le transport d’une charge suspendue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3056976A1 (fr) 2018-04-06
CN108163712A (zh) 2018-06-15
FR3056976B1 (fr) 2018-11-16
ES2743527T3 (es) 2020-02-19
EP3305710A1 (fr) 2018-04-11
US20180093868A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
EP3305710B1 (fr) Procédé de commande de grue anti-ballant à filtre du troisième ordre
EP2361216B1 (fr) Dispositif de regulation du deplacement d&#39;une charge suspendue a une grue
FR3016872A1 (fr) Procede de commande anti-ballant a assistance reglable pour le transport d’une charge suspendue
FR2786283A1 (fr) Procede et dispositif de pilotage de l&#39;attitude d&#39;un satellite
WO2015197951A1 (fr) Assistance de direction mixte comprenant une boucle d&#39;asservissement en couple pilotée en consigne par un contrôleur déposition destiné a l&#39;asservissement en trajectoire
EP2219988B1 (fr) Dispositif et procede de regulation du deplacement d&#39;une charge suspendue
FR3053133A1 (fr) Procede de conversion dynamique d&#39;attitude d&#39;un drone a voilure tournante
CA2640521C (fr) Systeme de commande electrique pour une gouverne de direction d&#39;un avion
FR2881849A1 (fr) Procede et dispositif de pilotage d&#39;un avion en tangage
FR2890374A1 (fr) Procede de gestion d&#39;un actionneur de frein electromecanique notamment pour aeronef
EP2855238A2 (fr) Dispositif de controle de trajectoire d&#39;un vehicule
EP2870040B1 (fr) Dispositif et procédé de contrôle de trajectoire d&#39;un véhicule
EP2420909A1 (fr) Procédé de gestion d&#39;un mouvement de lacet d&#39;un aéronef roulant au sol
FR3099450A1 (fr) Procédé de pilotage autonome d’un actionneur d’un appareil automobile
FR3071240B1 (fr) Optimisation dynamique d’une courbe de charge de grue
EP1753947B1 (fr) Procede de controle d&#39;une consigne de couple a appliquer aux roues d&#39;une transmission automatisee pour vehicule automobile et dispositif correspondant.
CA2349770C (fr) Systeme de commande electrique pour une gouverne de direction d&#39;aeronef
CA2690318A1 (fr) Procede de gestion de la commande d&#39;orientation d&#39;un atterrisseur d&#39;aeronef
EP1440880A1 (fr) Procédé et système de commande d&#39;une gouverne d&#39;aéronef
WO1995005336A1 (fr) Procede de controle de balancement d&#39;une charge pendulaire et dispositif de mise en ×uvre du procede_____________________________
FR2903380A1 (fr) Concept de controle dynamique d&#39;un aeronef a voilure fixe, pour le vol horizontal,par l&#39;intermediaire de quatre rotors a helice et mise en oeuvre dans le cadre de drones convertibles.
FR3035979A1 (fr) Loi de commande avancee pour empennage braquable
EP0611211B1 (fr) Système de contrôle et de commande de la vitesse de déplacement d&#39;une charge pendulaire et appareil de levage comprenant un tel système
FR3093687A1 (fr) Procédé de pilotage autonome d’une mobilité d’un appareil
FR3094324A1 (fr) Procédé de pilotage autonome d’un organe de commande de trajectoire d’un appareil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180712

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1138135

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017004197

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190529

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190930

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190830

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1138135

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2743527

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017004197

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

26N No opposition filed

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190913

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190913

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210913

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230928

Year of fee payment: 7

Ref country code: DE

Payment date: 20230920

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231124

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 7