EP3292912B1 - Verfahren zum betrieb eines multizyklons zum trennen von fein- und feinstkorn sowie multizyklon - Google Patents

Verfahren zum betrieb eines multizyklons zum trennen von fein- und feinstkorn sowie multizyklon Download PDF

Info

Publication number
EP3292912B1
EP3292912B1 EP16188007.5A EP16188007A EP3292912B1 EP 3292912 B1 EP3292912 B1 EP 3292912B1 EP 16188007 A EP16188007 A EP 16188007A EP 3292912 B1 EP3292912 B1 EP 3292912B1
Authority
EP
European Patent Office
Prior art keywords
carrier gas
cyclone
fine
fine particles
individual cyclones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16188007.5A
Other languages
English (en)
French (fr)
Other versions
EP3292912A1 (de
Inventor
Holger Wulfert
André BÄTZ
Winfried Ruhkamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Loesche GmbH
Original Assignee
Loesche GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP16188007.5A priority Critical patent/EP3292912B1/de
Application filed by Loesche GmbH filed Critical Loesche GmbH
Priority to CA3007583A priority patent/CA3007583A1/en
Priority to PCT/EP2017/072546 priority patent/WO2018046640A1/de
Priority to SG11201804823RA priority patent/SG11201804823RA/en
Priority to EA201800353A priority patent/EA034688B1/ru
Priority to US16/067,373 priority patent/US10926270B2/en
Priority to JP2018531546A priority patent/JP6934871B2/ja
Priority to CN201780008607.6A priority patent/CN109641217B/zh
Publication of EP3292912A1 publication Critical patent/EP3292912A1/de
Application granted granted Critical
Publication of EP3292912B1 publication Critical patent/EP3292912B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/007Mills with rollers pressed against a rotary horizontal disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/14Separating or sorting of material, associated with crushing or disintegrating with more than one separator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/24Passing gas through crushing or disintegrating zone
    • B02C23/26Passing gas through crushing or disintegrating zone characterised by point of gas entry or exit or by gas flow path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/24Passing gas through crushing or disintegrating zone
    • B02C23/30Passing gas through crushing or disintegrating zone the applied gas acting to effect material separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/24Passing gas through crushing or disintegrating zone
    • B02C23/32Passing gas through crushing or disintegrating zone with return of oversize material to crushing or disintegrating zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C11/00Accessories, e.g. safety or control devices, not otherwise provided for, e.g. regulators, valves in inlet or overflow ducting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/12Construction of the overflow ducting, e.g. diffusing or spiral exits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/14Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/14Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations
    • B04C5/185Dust collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/24Multiple arrangement thereof
    • B04C5/28Multiple arrangement thereof for parallel flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C2015/002Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs combined with a classifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • B04C2009/002Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks with external filters

Definitions

  • the invention relates to a method for operating a multicyclone for separating fine and very fine grain, and a multicyclone.
  • Generic methods with a plurality of individual cyclones of essentially the same structure, each having a carrier gas inlet opening, a carrier gas outlet opening and a semolina discharge opening, are known.
  • the individual cyclones are housed together in a housing with little air intake, in which an upper and a lower chamber is formed.
  • the carrier gas outlet openings of the individual cyclones are designed to be open towards the upper chamber and the upper chamber has an overall carrier gas outlet opening. This serves to discharge the carrier gas, which has in each case emerged from the respective carrier gas outlet openings of the individual cyclones into the upper chamber, via the entire carrier gas outlet opening from the housing of the multicyclone.
  • the semolina discharge openings of the individual cyclones are each designed to be open towards the lower chamber.
  • the lower chamber has a device for extracting cyclone grits introduced through the semolina outlet openings with little air intake.
  • a common cyclone control air supply is also provided to the lower chamber.
  • Single cyclones are also called centrifugal separators. They serve, for example, as so-called mass force separators in process engineering systems for separating solid particles from gases. For example, they are used for exhaust gas purification.
  • the aim here is to use the cyclone to clean the carrier gas, which transports the particles into the cyclone, as completely as possible, that is to say to a very high degree of purity, and again from the cyclone dissipate. Ideally, a degree of cleaning of over 99% is achieved depending on the particle size and mass.
  • Essential components of a centrifugal separator are an upper inlet cylinder, a conical extension of this cylinder and an immersion tube.
  • a cyclone works as follows. Carrier gas with the particles to be separated is blown tangentially into the inlet cylinder so that it describes a circular path. The particles in the carrier gas are guided by their centrifugal force to the wall of the cylindrical region and braked in the subsequent conical region, in particular to the cone walls, so that they fall out of the carrier gas stream and leave the cyclone at the bottom. The carrier gas thus cleaned exits the cyclone via the immersion tube which extends inside the inlet cylinder and the subsequent cone.
  • a cyclone can also be used to separate or classify fine particles. It is taught here that the separation properties of the cyclone can be influenced in part by the rate of inflow of the carrier gas stream into a cyclone. However, since the carrier gas flow or process gas flow can often not be influenced arbitrarily in process engineering plants due to further apparatuses installed in such plants, such a regulation has proven to be not always optimally feasible.
  • a device which has a plurality of multicyclones, the individual multicyclones being provided in a common housing, as a result of which an upper and lower chamber is formed. Carrier gas can escape into the upper chamber.
  • the lower chamber has a common semolina discharge opening.
  • the invention is therefore based on the object of providing a simple and efficient method for operating a multicyclone for separating fine and very fine particles and a multicyclone.
  • the carrier gas inlet openings each have a carrier gas stream of equal volume from outside the housing with the fine and very fine grain to be separated as particles.
  • an at least partial separation of fine and very fine grain is carried out, the fine grain entering the lower chamber as cyclone semolina via the semolina discharge openings and from there being withdrawn from the housing via the device for low-air intake.
  • the finest grain is fed out of the multicyclone as a cyclone fine material by means of the carrier gas flow via the upper chamber and the carrier gas outlet opening.
  • the amount, the fineness and / or the purity of the fine grain discharged from the multicyclone is adjusted by regulating the amount of the cyclone control air fed into the lower chamber through the cyclone control air supply.
  • False air entry arm or poorly air or poorly airless in the sense of the invention can be understood such that hardly or ideally no air or gas can penetrate into the multicyclone from outside the multicyclone. However, it is not possible to completely prevent the ingress of false air or incorrect air in real circumstances, or it can only be achieved with unreasonable effort.
  • the main reason for the entry of incorrect air into the multi-cyclone is the device for extracting cyclone sizes discharged through the semolina discharge openings with little air intake.
  • Such a device can be implemented, for example, as a rotary valve.
  • Cell wheel locks that meet the requirements of the invention described here have, for example, a gap width of approximately 0.3 mm.
  • carrier gas flow is used in the context of the present description.
  • this can be a gas or air flow with which the particles to be separated, which are referred to as fine and very fine particles, are transported.
  • any gas or gas mixture can be used for this.
  • it can be ambient air, oxygen-depleted process gas or the like.
  • a basic idea of the invention can be seen in supplying the individual cyclones provided in the multicyclone with a carrier gas stream of equal volume. The result of this is that the individual cyclones have essentially the same separation characteristics between fine and ultra-fine grains, which significantly simplifies regulation of this separation limit across the entire multicyclone.
  • cyclone control air as the control variable for the separation limit, that is to say in particular for the quantity, the fineness and / or purity of the fine grain becomes.
  • a simple regulation is also provided by the fact that the cyclone control air is not supplied separately to each individual cyclone, but rather a common single supply of the cyclone control air to the lower chamber of the multicyclone is provided. Of course, several feeds into the lower chamber could also be provided due to the design. It is essential here, however, that the supply and thus also the regulation of the cyclone control air take place in the lower chamber and not in each individual cyclone itself and directly.
  • the volume per unit time of the carrier gas streams of the same volume to the individual cyclones is set depending on the geometry of the individual cyclones used, in order to separate approximately 99% of the fine and very fine grain in the carrier gas streams as cyclone semolina when the cyclone control air supply is closed. It has been found that a basic state set in this way can be regulated or controlled particularly efficiently and effectively by supplying cyclone control air. This results from the fact that the single cyclones of the multicyclone are operated in this basic state in such a way that they enable the most complete separation of the fine and fine particles.
  • this separation can be worsened by the supply of cyclone control air, so that the goal is achieved to remove part of the particle in the carrier gas stream as a fine particle from the multicyclone by means of the carrier gas total outlet stream and to feed it to a later separation.
  • the loading of the carrier gas flows of the same volume to the individual cyclones with fine and very fine grain can also be adjusted depending on the geometry of the individual cyclones, in order to achieve approximately 99% of the total when the cyclone control air supply is closed to separate fine and ultra-fine grains from the carrier gas flows as cyclone semolina.
  • the loading of the carrier gas streams of the same volume with particles which can be separated as fine and very fine particles is a relevant variable for setting a stable basic state.
  • the load can be specified as grams of dust particles per cubic meter of carrier gas or as kilograms of dust particles per kilogram of carrier gas.
  • the loading should be optimized as desired, since it has a significant influence on the effectiveness of the multicyclone. This means that the closer the load is to the optimum, that is to say with a 99% separation without the supply of cyclone control air, the greater the throughput can be achieved with such a multicyclone.
  • a pressure difference between the upper and the lower chamber is set during operation and the pressure in the upper chamber is lower than the pressure in the lower chamber.
  • This can be achieved, for example, by means of a suction fan after the multicyclone, so that a pressure drop arises in the entire multicyclone.
  • the static pressure in the upper chamber is lower than in the lower chamber. It is therefore easy to achieve that the cyclone control air introduced into the lower chamber flows through the individual cyclones into the upper chamber, and thus has the desired effect on the separation properties of the individual cyclones.
  • the pressure in the upper chamber and in the lower chamber is set lower than the ambient pressure. This ensures that the cyclone control air does not have to be blown into the multicyclone itself, but is sucked into it.
  • Such a method simplifies the construction and operation of a multicyclone, since it is necessary for the process to either blow the carrier gas streams actively into the multicyclone or, as is preferred, to suck through the multicyclone via a blower.
  • the fine and very fine particles to be separated can be fed directly into a carrier gas stream.
  • the fine and ultra-fine grain to be separated is fed into the multicyclone by means of the carrier gas of a dispersing unit prior to the task, and is transported from there to the multicyclone by means of the carrier gas stream.
  • Such a method is particularly advantageous when the fine and ultra-fine grain is not supplied directly from an upstream process via the carrier gas stream, but from a storage location such as a bunker.
  • the use of a dispersion unit ensures that the fine and ultra-fine particles are distributed as homogeneously as possible in the carrier gas stream and that hardly any particles adhere to one another. This has a positive effect on the result of the separation in the multicyclone.
  • the fine grain which is discharged from the multicyclone by means of the carrier gas outlet stream can be separated from the carrier gas stream in any manner. It is advantageous if this is carried out using a filter.
  • a filter for example, a bag filter or cartridge filter can be used as the filter.
  • the method according to the invention can advantageously be applied to a multicyclone with a plurality of individual cyclones of essentially the same structure.
  • These individual cyclones each have a carrier gas inlet opening, a carrier gas outlet opening and a semolina discharge opening.
  • the individual cyclones are housed together in a housing with little air intake, in which an upper and a lower chamber is formed.
  • the carrier gas outlet openings of the individual cyclones are designed to be open towards the upper chamber.
  • This upper chamber has a total carrier gas outlet opening in order to discharge the carrier gas which enters the upper chamber from the respective carrier gas outlet openings of the individual cyclones via this total carrier gas outlet opening from the housing of the multicyclone.
  • the semolina discharge openings of the individual cyclones are each designed to be open toward the lower chamber, the lower chamber having a device for the removal of cyclone grits introduced through the semolina discharge opening with little air intake.
  • the carrier gas inlet openings are designed in such a way that they can each be acted upon with a carrier gas flow of the same volume from outside the housing of the multicyclone and are not connected in terms of flow technology to the upper or the lower chamber.
  • a common cyclone control air supply is provided to the lower chamber, via which cyclone control air can be directed into the lower chamber.
  • a control and regulating device is provided and set up in order to set the amount, the fineness and / or the purity of the fine grain guided from the multicyclone by means of the amount of cyclone control air per unit time.
  • the entire structure of the multicyclone is such that there is a common cyclone control air supply to all individual cyclones. This means that only one feed, which leads centrally into the lower chamber, has to be adjusted and / or regulated in order to influence the properties of the fine grain mentioned above.
  • the individual cyclones are fluidically connected to the lower chamber via their semolina discharge openings.
  • the supply of cyclone control air via the lower chamber and the semolina discharge openings into the individual cyclones influences the vertebral sink, which is formed in each of the individual cyclones and is largely responsible for the selectivity or other separation properties in a cyclone.
  • An advantage of such an embodiment is that the carrier gas stream which is fed to the individual cyclones does not have to be modified or influenced here. This means that the multicyclone during operation is once set to an ideally optimal operating point and then the separation properties only have to be varied and readjusted via the amount of cyclone control air supplied per unit of time.
  • the construction of the multicyclone according to the invention thus has the advantage that the multicyclone can in principle be set at an optimal operating point with regard to the amount of carrier gas flowing in and its loading and can thus be operated in an efficient manner.
  • the individual cyclones can be arranged arbitrarily in the multi-cyclone.
  • the individual cyclones are provided in the housing in terms of flow technology in parallel. This means that they all have a respective individual carrier gas inlet opening which is supplied with carrier gas laden with particles from outside the multicyclone.
  • the parallel arrangement ensures that the individual cyclones, which are essentially of identical design, each behave identically and thus have a similar separation behavior.
  • the multicyclone can be easily scaled by providing additional individual cyclones in parallel, since these only have to be provided in the common housing. This again shows the advantage of the common cyclone control air supply, so that no additional new cyclone control air supply is necessary for a further individual cyclone.
  • the upper and the lower chamber are made airtight with respect to one another, an air exchange between the upper and the lower chamber taking place essentially only via the individual cyclones.
  • Airtight in this sense means that an air exchange between the two chambers can take place exclusively via or through the individual cyclones, so that no direct air exchange is provided between these two chambers.
  • the airtight separation of the Upper and lower chamber has the result that the cyclone control air can only flow into the single cyclones via the semolina outlet openings of the individual cyclones and into the upper chamber via the carrier gas outlet openings. With such a construction it is achieved that the cyclone control air introduced into the lower chamber flows completely through the individual cyclones and is thus fully used to control the separation between fine and very fine particles.
  • a multicyclone according to the invention can preferably be used or installed in the context of a fine grain separator for separating fine and fine grain from a preliminary or intermediate product.
  • a fine grain separator has a filter connected downstream of or downstream of the multicyclone.
  • the preliminary or intermediate product is fed to at least one multicyclone by means of a carrier gas stream.
  • the fine grain can be separated as cyclone semolina.
  • the fine grain which is still in the carrier gas stream, is then passed on to the filter, where it can be separated.
  • Such a fine grain separator makes it possible in a simple manner to further treat the carrier gas stream emerging from the multicyclone, in which the fine grain not separated out in the cyclones is present, so that the fine grain can also be obtained from the carrier gas stream, and the carrier gas stream itself either Process can be fed again or can be directed into the environment.
  • the respective individual cyclones of the plurality of multicyclones are each equipped with a smaller diameter in the flow direction of the carrier gas stream.
  • a plurality of multicyclones can be arranged in a cascading manner in front of the filter, the diameter of the individual cyclones becoming smaller the closer the multicyclone is arranged to the filter in the flow direction.
  • the diameter of a single cyclone is largely responsible for the options for setting the separation limit.
  • the preliminary or intermediate product can be fed to the fine grain separator directly from a process-technical plant, for example a grinding process.
  • a process-technical plant for example a grinding process.
  • the volumes of the carrier gas flows are often defined based on the upstream process, it is not easy to operate the multicyclone at an efficient operating point.
  • a storage bunker for the preliminary and intermediate product and a dispersion unit are provided in front of the multi-cyclone (s) of the fine grain separator.
  • the preliminary or intermediate product to be separated is fed from the storage bunker via the dispersing unit to the fine grain separator by means of the carrier gas stream.
  • the fine grain separator can be decoupled from an upstream process and can thus be operated independently of its operating state.
  • dispersing unit after the storage bunker has proven to be advantageous, since the dispersing unit ensures that the fine and very fine particles to be conveyed further by means of the carrier gas stream are present homogeneously and essentially without adhesions in the carrier gas stream, so that a good separation in the Multicyclone is enabled.
  • the fine grain separator can also be used in a grinding plant to produce fine and fine grain from a raw material.
  • a grinding plant has a mill-sifter combination, which has a sifter and a mill.
  • the mill-sifter combination is designed to feed raw material from the sifter to the mill-sifter combination, which has been crushed at least once, as rejected coarse material of the mill for further comminution.
  • a grinding plant filter is also provided.
  • crushed ground material which has not been rejected is transported from the classifier of the mill-classifier combination to the grinding plant filter and is separated there from the grinding plant carrier gas flow. Then, directly or indirectly, for example via a bunker, the crushed ground material separated on the grinding plant filter is fed to the fine grain separator, where it is separated into fine and fine grain.
  • any type of mill construction can be used which enables the ground material to be reduced to the desired fineness. It has proven to be advantageous to use a vertical mill with a grinding plate and grinding rollers for this purpose, since this achieves a good comminution result and a large range of grain fractions occurs during the comminution, so that fine and very fine particles of both fractions are present in the carrier gas stream. It is also advantageous that a vertical mill can be operated relatively energy-efficiently in this process compared to ball mills.
  • a schematic representation of a multicyclone 1 according to the invention is shown.
  • a plurality of individual cyclones 10 of identical construction are arranged in a housing 3, six in the exemplary embodiment shown here six times six, ie 36.
  • Fig. 1 only six individual cyclones 10 are visible.
  • the further individual cyclones 10 are located in the depth direction of the sketch.
  • the individual cyclones 10 are preferably used in a square arrangement.
  • the individual cyclones 10 are essentially identical in design and each have a carrier gas inlet opening 11, a carrier gas outlet opening 12 and one Semolina discharge opening 13.
  • the housing 3 is divided into an upper chamber 5 and a lower chamber 6 by means of a separation 15.
  • the individual cyclones 10 are each arranged between the upper chamber 5 and the lower chamber 6.
  • the carrier gas inlet openings 11 of the individual cyclones 10 are designed such that they can be operated with a carrier gas stream from outside the housing 3.
  • the carrier gas is fed into the carrier gas inlet openings 11 of the individual cyclones 10 directly from outside the housing 3, so that the carrier gas does not first penetrate into the upper chamber 5 or lower chamber 6.
  • Each individual cyclone 10 is fluidically connected to the upper chamber 5 via its carrier gas outlet opening 12.
  • each individual cyclone 10 is fluidically connected to the lower chamber 6 via its semolina discharge opening 13.
  • the upper chamber 5 has a total carrier gas outlet opening 7, via which carrier gas, which enters the upper chamber 5 from the carrier gas outlet openings 12 of the individual cyclones 10, can emerge from the latter.
  • a device for the extraction of cyclone semolina with little or no air.
  • This device can be designed, for example, as a cellular wheel sluice 8, so that the cyclone grits can be removed from the lower chamber 6 without large amounts of air being able to enter the lower chamber 6.
  • a cyclone control air supply 9 is provided in the lower chamber 6. Via this cyclone control air supply 9, air or gas can be directed into the lower chamber 6 in a targeted manner.
  • a volume flow measurement 62 and a control flap 61 are arranged in front of the cyclone control air supply 9, with which the volume or the amount of the cyclone control air introduced into the lower chamber 6 can be varied and adjusted.
  • the multicyclone 1 is not used for cleaning an air or gas flow of particles, as is conventionally customary, but rather as a targeted separation unit of particles that are present within a carrier gas stream.
  • a carrier gas flow is conducted into the individual individual cyclones 10, which are each arranged in parallel in terms of flow technology, that is to say next to and behind one another, with a corresponding particle loading.
  • the carrier gas loaded with particles is distributed to the individual individual cyclones 10 with the same volume per unit of time and the same loading of particles, so that the individual cyclones 10 have the same possible separation characteristics or separation properties. Due to the geometry of the inlet cylinder and the cone of the individual cyclones 10, it is possible in a known manner to separate the particles from the carrier gas stream. The separated particles are transferred via the semolina discharge opening 13 into the lower chamber 6 as cyclone semolina or fall into the latter.
  • the carrier gas which has essentially been cleaned of the particles, can then enter the upper chamber 5 from the individual cyclones 10 via the carrier gas outlet opening 12 and in turn leave the upper chamber 5 via the entire carrier gas outlet opening 7.
  • the separation of the particles in the individual cyclone 10 essentially takes place in that the geometry of the cyclone accelerates the carrier gas located on a circular path with the particles, so that the particles emerge from and after the accelerated carrier gas flow due to centrifugal force and gravity fall out below through the semolina discharge opening 13.
  • the carrier gas cleaned in this way can then emerge from the individual cyclone 10 via a dip tube provided, as already described, and via the carrier gas outlet opening 12.
  • the flow conditions occurring within a single cyclone 10 are also referred to as a vertebral sink. If this vertebral sink is disturbed, for example by cyclone control air which flows into the single cyclone 10 via the semolina discharge openings 13, the flow rate of the carrier gas in the single cyclone 10 changes, so that even lighter particles, which are referred to here as very fine particles, via the dip tube from the single cyclone 10 can emerge and are not separated out as semolina via the semolina discharge opening 13.
  • the invention makes use of this knowledge by specifically supplying cyclone control air via the cyclone control air supply 9 into the lower chamber 6 of the multicyclone 1. It is important here that it is ensured that the supplied cyclone control air flows through the individual cyclones 10 and influences the vertebra. This can be done, for example, by providing a suction blower downstream of the total carrier gas outlet opening 7, which sucks the carrier gas through the multicyclone 1. In this way, the static pressure in the upper chamber 5 is lower than in the lower chamber 6, the pressure there again being lower than the ambient pressure. In this way, the cyclone control air can be supplied by means of the control flap 62 by opening and closing the lower chamber 6.
  • the cyclone control air can be used to set the mass flow distribution between the very fine material which is discharged from the multicyclone and the fine material which is separated out as cyclone semolina in the multicyclone.
  • the D50 value describes the particle size distribution for a particle size distribution in which 50% by mass is larger and 50% by mass is smaller than the specified diameter of the boundary particle. In particular with the subtleties here, it has been found that this size is more suitable than the usual Blaine specific surface.
  • the multicyclone 1 according to the invention is shown in the context of a fine grain separator 40.
  • the fine grain separator 40 has as essential elements a storage bin 42 for a preliminary or intermediate product to be separated.
  • a dispersing unit 20 is provided in order to be able to distribute the preliminary or intermediate product to be separated as homogeneously as possible in a carrier air stream.
  • a multicyclone 1 according to the invention is then used, to which a filter 30, which is preferably designed as a bag filter, is connected downstream.
  • the preliminary or intermediate product stored in the bunker 42 is fed via a cellular wheel sluice 43 to a speed-controlled conveyor screw 44, which feeds the preliminary or intermediate product to the dispersion unit 20.
  • a speed-controlled conveyor screw 44 which feeds the preliminary or intermediate product to the dispersion unit 20.
  • removal from the bunker and feeding to the dispersing unit 20 can also be achieved by other means.
  • the dispersing unit 20 serves to distribute the product to be separated as homogeneously as possible in a carrier gas stream.
  • Fig. 2 schematically shown dispersing unit 20 described, wherein differently constructed dispersing units can also be used.
  • a fan 45 with corresponding control is provided downstream of the filter 30. This blower 45 sucks the carrier gas through the filter 30, the multicyclone 1 and the dispersing unit 20.
  • the dispersing unit 20 itself has a distributor plate 22, a blade ring 24, turbulence internals 25 and a displacement body 26.
  • the preliminary or intermediate product fed to the dispersing unit 20 via the screw conveyor 44 falls onto the distributor plate 22.
  • the distributor plate 22 rotates, so that the applied preliminary or intermediate product slides laterally from the distributor plate 22 or is thrown against a wall of the dispersing unit 20. It is mechanically torn apart and distributed over a larger flow cross-section.
  • the previously described carrier gas which flows through the air intake openings 23 and is additionally swirled by means of the blade ring 24, which is arranged on the edge of the distributor plate 22, entrains the preliminary or intermediate product to be separated from the carrier gas stream.
  • the preliminary or intermediate product is again torn apart, in this case pneumatically.
  • turbulence internals 25 are provided in the direction of flow of the carrier gas, which achieve additional turbulence and thus better dispersion of the preliminary and intermediate product to be separated.
  • the turbulence internals 25 can be formed, for example, by means of static mixing elements or impact bodies.
  • a dynamic rotor which further improves the mixing and dispersion of the preliminary or intermediate product. This is additionally improved by the displacement body 26, which can be designed to be height-adjustable.
  • the preliminary or intermediate product to be separated is passed to the multicyclone 1 according to the invention by means of the carrier gas stream.
  • This is, as already in relation to Fig. 1 explained, regulated in the basic state with regard to the loading of the carrier gas stream, which is set by means of the feed from the bunker 42, and the volume per unit time of the carrier gas stream, which is set via the blower 45, is operated in such a way that in the initial state an almost complete separation of the fine and very fine grain in the multicyclone 1 is made possible.
  • a poorer separation is then achieved by supplying cyclone control air via the cyclone control air supply 9, so that the finer particles in the carrier gas stream are not separated as cyclone semolina, but instead are conducted further in the direction of the filter 30 with the carrier gas stream.
  • the fine particles are also separated in this filter 30 and can be removed from the filter 30, for example via a cellular wheel sluice 31.
  • the carrier gas stream thus cleaned can in part be fed back into the process or blown out into the environment.
  • An advantage of the fine grain separator 40 described here is that it can always be operated in the range of an optimal operating point, regardless of upstream processes that produce the preliminary or intermediate product, since both the loading and the volume per unit of time of the carrier gas depend only on the properties of the individual assemblies of the finest grain separator 40 are defined and there is no need to take into account upstream or downstream further processes.
  • a grinding plant 50 with a mill-sifter combination 51 is shown.
  • the mill-sifter combination has a mill 52 and a sifter 53.
  • the ground material crushed in the mill-sifter combination 51 is transported to a grinding plant filter 55 by means of a grinding plant carrier gas stream which is set by the mill blower 56.
  • the grinding plant carrier gas stream can in part be returned via a hot gas generator 57, which, for example, enables grinding drying in the mill-sifter combination.
  • Particles which are in the carrier gas stream of the grinding plant are separated in the grinding plant filter 55. These particles are then fed to the finest grain separator 40 using a multicyclone 1 according to the invention.
  • Conventional grinding plants 50 as shown in FIGS Fig. 3 are exemplified, in their optimal operating point usually a loading of the carrier gas in the range of 30 g / m 3 to 50 g / m 3 with a fineness of up to 6000 cm 2 / g.
  • a multicyclone 1 according to the invention and thus also the finest grain separator 40 can be operated with a loading in the range between 200 g / m 3 to 300 g / m 3 .
  • the decoupling makes it possible to make the fine grain separator 40 smaller, or to provide only one fine grain separator 40 for several grinding plants 50. This reduces the size of the system and thus minimizes the investment costs.
  • Fig. 4 a combined schematic diagram is shown, which shows the relationship between the cyclone control air volume and the dust loading of the carrier gas in relation to the fineness of the fine grain.
  • the fineness of the fine grain decreases with increasing cyclone control air volume.
  • an optimum of the dust loading or particle loading of the carrier gas stream upstream of the multicyclone is formed for the fineness.
  • the multicyclone according to the invention and its operating method for separating fine and very fine grain thus enable simple and efficient separation of fine and very fine grain as well as a decoupled operation to upstream process plants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Cyclones (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betrieb eines Multizyklons zum Trennen von Fein- und Feinstkorn sowie einen Multizyklon.
  • Es sind gattungsgemäße Verfahren mit mehreren im Wesentlichen gleich aufgebauten Einzelzyklonen, welche jeweils eine Trägergaseintrittsöffnung, eine Trägergasaustrittsöffnung und eine Grießaustragsöffnung aufweisen, bekannt. Hierbei sind die Einzelzyklone gemeinsam in einem fehllufteintragarmen Gehäuse eingehaust, in dem eine obere und eine untere Kammer ausgebildet ist. Die Trägergasaustrittsöffnungen der Einzelzyklone sind zur oberen Kammer hin offen ausgeführt und die obere Kammer weist eine Trägergasgesamtaustrittsöffnung auf. Diese dient dazu, das Trägergas, welches jeweils aus den jeweiligen Trägergasaustrittsöffnungen der Einzelzyklone in die obere Kammer ausgetreten ist, über die Trägergasgesamtaustrittsöffnung aus dem Gehäuse des Multizyklons abzuführen. Die Grießaustragsöffnungen der Einzelzyklone sind jeweils zur unteren Kammer hin offen ausgebildet. Zusätzlich weist die untere Kammer eine Einrichtung zum fehllufteintragarmen Abziehen von durch die Grießaustrittsöffnungen eingetragenen Zyklongrieße auf. Ferner ist zu der unteren Kammer eine gemeinsame Zyklonregelluftzuführung vorgesehen.
  • Einzelzyklone werden auch als Fliehkraftabscheider bezeichnet. Sie dienen beispielsweise als sogenannte Massenkraftabscheider in prozesstechnischen Anlagen zum Separieren von festen Partikeln aus Gasen. Beispielsweise werden sie zur Abgasreinigung eingesetzt. Hierbei ist das Ziel, mittels des Zyklons das Trägergas, welches die Partikel in den Zyklon transportiert möglichst komplett, das heißt bis zu einem sehr großen Reinheitsgrad von Partikeln zu reinigen und wieder aus dem Zyk-Ion abzuführen. Idealerweise wird hierbei ein Reinigungsgrad abhängig von der Partikelgröße und -masse von über 99% erreicht.
  • Wesentliche Bauteile eines Fliehkraftabscheiders sind ein oberer Einlaufzylinder, eine kegelförmige Verlängerung dieses Zylinders sowie ein Tauchrohr. Ein Zyklon funktioniert wie folgt. In den Einlaufzylinder wird Trägergas mit den abzutrennenden Partikeln tangential eingeblasen, sodass es eine kreisförmige Bahn beschreibt. Die in dem Trägergas befindlichen Partikel werden durch ihre Fliehkraft an die Wandung des zylindrischen Bereichs geleitet und im anschließenden kegelförmigen Bereich, insbesondere an den Kegelwänden, abgebremst, so dass sie aus dem Trägergasstrom herausfallen und den Zyklon nach unten verlassen. Das somit gereinigte Trägergas tritt über das Tauchrohr, welches sich im Inneren des Einlaufzylinders und des anschließenden Kegels erstreckt, wieder aus dem Zyklon aus.
  • Aus der PCT/EP2015/066348 ist bekannt, dass man einen Zyklon auch zum Trennen beziehungsweise Klassieren von feinen Partikeln einsetzen kann. Hierbei wird gelehrt, dass über die Einströmungsgeschwindigkeit des Trägergasstromes in einen Zyklon teilweise die Trenneigenschaften des Zyklons beeinflusst werden können. Da jedoch in prozesstechnischen Anlagen die Trägergasströmung beziehungsweise Prozessgasströmung oft auf Grund von weiteren in derartigen Anlagen verbauten Apparaturen nicht beliebig beeinflussbar ist, hat sich eine derartige Regelung als nicht immer optimal durchführbar herausgestellt.
  • Aus der FR 1 517 649 A ist eine Vorrichtung bekannt, welche mehrere Multizyklone aufweist, wobei die jeweils einzelnen Multizyklone in einem gemeinsamen Gehäuse vorgesehen sind, wodurch eine obere und untere Kammer ausgebildet ist. Trägergas kann in die obere Kammer austreten. Zusätzlich weist die untere Kammer eine gemeinsame Grießaustragsöffnung auf.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein einfaches und effizientes Verfahren zum Betrieb eines Multizyklons zum Trennen von Fein- und Feinstkorn sowie einen Multizyklon zu schaffen.
  • Diese Aufgabe wird erfindungsgemäß durch ein Verfahren zum Betrieb eines Multizyklons zum Trennen von Fein- und Feinstkorn mit den Merkmalen des Anspruchs 1 sowie durch einen Multizyklon mit den Merkmalen des Anspruchs 8 gelöst.
  • Vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen und der Beschreibung sowie deren Figuren und deren Erläuterungen angegeben.
  • Beim erfindungsgemäßen Verfahren ist vorgesehen, dass den Trägergaseintrittsöffnungen jeweils von außerhalb des Gehäuses ein volumengleicher Trägergasstrom mit dem zu trennenden Fein- und Feinstkorn als Partikel zugeführt wird. In den Einzelzyklonen des Multizyklons wird eine zumindest anteilige Trennung von Fein- und Feinstkorn durchgeführt, wobei das Feinkorn als Zyklongrieß über die Grießaustragsöffnungen in die untere Kammer eintritt und von dort über die Einrichtung zum fehllufteintragarmen Abzug aus dem Gehäuse abgezogen wird. Das Feinstkorn wird als Zyklonfeingut mittels des Trägergasstroms über die obere Kammer und die Trägergasaustrittsöffnung aus dem Multizyklon geleitet. Ferner ist vorgesehen, dass mittels einer Regelung der Menge der durch die Zyklonregelluftzuführung in die untere Kammer zugeführten Zyklonregelluft pro Zeiteinheit die Menge, die Feinheit und/oder die Reinheit des aus dem Multizyklon geleiteten Feinstkorns eingestellt wird.
  • Falschlufteintragarm beziehungsweise falschluftarm oder auch fehlluftarm im Sinne der Erfindung kann derart verstanden werden, dass kaum beziehungsweise idealerweise keine Luft oder Gas von außerhalb des Multizyklons in den Multizyklon eindringen kann. Ein komplettes Verhindern des Eindringens von Falschluft oder Fehlluft ist jedoch bei realen Gegebenheiten nicht oder nur mit nicht vertretbarem Aufwand zu erreichen. Als wesentlicher Grund für den Eintrag von Fehlluft in den Multizyklon ist die Einrichtung zum fehllufteintragarmen Abzug von durch die Grießaustragsöffnungen ausgetragenen Zyklongrieße anzusehen. Eine derartige Einrichtung kann beispielsweise als Zellradschleuse realisiert werden. Zellradschleusen, die den Anforderungen der hier beschriebenen Erfindung entsprechen, weisen beispielsweise eine Spaltbreite von ca. 0,3 mm auf. Insgesamt ist es möglich festzuhalten, dass der Falschlufteintrag im Sinne der Erfindung idealerweise möglichst gegen Null geht, jedoch in realen Szenarien maximal in einem Bereich von 1% liegen sollte.
  • Im Rahmen der hier vorliegenden Beschreibung wird der Begriff "Trägergasströmung" verwendet. Hierbei kann es sich im Sinne der Erfindung um eine Gas- oder Luftströmung handeln, mit der die zu trennenden Partikel, welche als Fein- und Feinstkorn bezeichnet werden, transportiert werden. Grundsätzlich kann hierzu jedes beliebige Gas oder Gasgemisch verwendet werden. Es kann sich beispielsweise um Umgebungsluft, sauerstoffabgereichertes Prozessgas oder dergleichen handeln.
  • Ein Grundgedanke der Erfindung kann darin gesehen werden, die in dem Multizyklon vorgesehenen Einzelzyklone jeweils mit einem volumengleichen Trägergasstrom zu versorgen. Dies hat zur Folge, dass die Einzelzyklone im Wesentlichen gleiche Trenncharakteristika zwischen Fein- und Feinstkorn aufweisen, wodurch eine Regelung dieser Trenngrenze über den gesamten Multizyklon deutlich vereinfacht wird.
  • Des Weiteren wurde entsprechend der Erfindung erkannt, dass es im Sinne eines einfachen Aufbaus und einer einfachen Regelung des Multizyklons zu bevorzugen ist, wenn Zyklonregelluft als Regelgröße für die Trenngrenze, das heißt insbesondere für die Menge, die Feinheit und/oder Reinheit des Feinstkorns, verwendet wird. Eine einfache Regelung ist auch dadurch gegeben, dass die Zyklonregelluft nicht jedem Einzelzyklon separat zugeführt wird, sondern eine gemeinsame einzige Zuführung der Zyklonregelluft zur unteren Kammer des Multizyklons vorgesehen ist. Selbstverständlich könnten auch konstruktionsbedingt mehrere Zuführungen in die untere Kammer vorgesehen sein. Wesentlich hierbei ist jedoch, dass die Zuführung und damit auch die Regelung der Zyklonregelluft in die untere Kammer erfolgt und nicht in jeden Einzelzyklon selbst und direkt.
  • Zentral bei der Erfindung ist, dass erkannt wurde, dass durch das Zuführen von Zyklonregelluft, der sich innerhalb des Zyklons ausbildende Wirbel beziehungsweise die Wirbelsenke gestört ausbildet, so dass keine 99%ige oder noch bessere Abscheidung der festen Partikel im Trägergasstrom mehr möglich ist. Tendenziell werden dann gröbere, das heißt Partikel mit einer höheren Dichte, noch abgeschieden, wohingegen kleinere beziehungsweise feinere Partikel mit einer geringeren Dichte nicht mehr aus dem Trägergasstrom abgeschieden werden können und über den aus dem Zyklon austretenden Trägergasstrom mitausgetragen werden.
  • Vorteilhaft ist es, wenn das Volumen pro Zeiteinheit der volumengleichen Trägergasströme zu den Einzelzyklonen abhängig von der Geometrie der verwendeten Einzelzyklone eingestellt wird, um bei geschlossener Zyklonregelluftzuführung ca. 99% des sich in den Trägergasströmen befindlichen Fein- und Feinstkorns als Zyklongrieß abzuscheiden. Es hat sich herausgestellt, dass ein derart eingestellter Grundzustand besonders effizient und effektiv mittels der Zuführung von Zyklonregelluft geregelt beziehungsweise gesteuert werden kann. Dies ergibt sich dadurch, dass die Einzelzyklone des Multizyklons in diesem Grundzustand derart betrieben werden, dass sie eine möglichst komplette Abscheidung des Fein- und Feinstkorns ermöglichen. Anschließend kann durch das Zuführen von Zyklonregelluft diese Trennung verschlechtert werden, so dass das Ziel erreicht wird, einen Teil des im Trägergasstroms befindlichen Partikel als Feinstkorn aus dem Multizyklon mittels des Trägergasgesamtaustrittstroms abzuführen und einer späteren Abscheidung zuzuführen.
  • Alternativ oder zusätzlich zum Einstellen des Volumens pro Zeiteinheit der volumengleichen Trägergasströme zu den Einzelzyklonen kann auch die Beladung der volumengleichen Trägergasströme zu den Einzelzyklonen mit Fein- und Feinstkorn abhängig von der Geometrie der Einzelzyklone eingestellt werden, um bei geschlossener Zyklonregelluftzuführung ca. 99% des sich in den Trägergasströmen befindlichen Fein- und Feinstkorn als Zyklongrieß abzuscheiden. In ähnlicher Weise wie über das Volumen pro Zeiteinheit der volumengleichen Trägergasströme ist auch die Beladung der volumengleichen Trägergasströme mit Partikeln, welche als Fein- und Feinstkorn abscheidbar sind, eine relevante Größe zum Einstellen eines stabilen Grundzustandes. Hierbei kann die Beladung als Gramm Staubpartikel pro Kubikmeter Trägergas oder als Kilogramm Staubpartikel pro Kilogramm Trägergas angegeben werden.
  • Das Einstellen einer Beladung, die die zuvor angegebenen Bedingungen erfüllt, ist bevorzugt, da bei einer zu hohen Beladung bereits grundsätzlich keine 99%ige Abscheidung von Fein- und Feinstkorn als Zyklongrieß möglich ist, und somit die Regelung über Zyklonregelluft erschwert wird. Wunschgemäß ist selbstverständlich die Beladung möglichst zu optimieren, da sie einen wesentlichen Einfluss auf die Effektivität des Multizyklons hat. Dies bedeutet, je näher die Beladung am Optimum ist, das heißt bei einer 99%igen Abscheidung ohne dem Zuführen von Zyklonregelluft, ein umso größerer Durchsatz kann mit einem derartigen Multizyklon erreicht werden.
  • Bevorzugt ist es, wenn im Betrieb eine Druckdifferenz zwischen der oberen und der unteren Kammer eingestellt wird und der Druck in der oberen Kammer niedriger ist als der Druck in der unteren Kammer. Dies kann beispielsweise durch ein saugendes Gebläse nach dem Multizyklon erreicht werden, so dass sich im gesamten Multizyklon ein Druckgefälle einstellt. Hierdurch ist in der oberen Kammer der statische Druck niedriger als in der unteren Kammer. Somit ist es einfach möglich zu erreichen, dass die in die untere Kammer eingeführte Zyklonregelluft durch die Einzelzyklone in die obere Kammer strömt, und somit den gewünschten Effekt auf die Trenneigenschaften der Einzelzyklone hat.
  • Diesbezüglich ist es vorteilhaft, wenn der Druck in der oberen Kammer und in der unteren Kammer niedriger als der Umgebungsdruck eingestellt wird. Hierdurch wird erreicht, dass die Zyklonregelluft nicht in den Multizyklon selbst geblasen werden muss, sondern in diesen eingesaugt wird. Ein derartiges Verfahren erleichtert den Aufbau und den Betrieb eines Multizyklons, da es verfahrensbedingt notwendig ist, entweder die Trägergasströme aktiv in den Multizyklon hineinzublasen oder wie es bevorzugt ist, über ein Gebläse durch den Multizyklon hindurchzusaugen.
  • Grundsätzlich kann das zu trennende Fein- und Feinstkorn direkt in einen Trägergasstrom aufgegeben werden. Vorteilhaft ist es jedoch, wenn das zu trennende Fein- und Feinstkorn vor der Aufgabe in den Multizyklon mittels des Trägergases einer Dispergiereinheit zugeführt wird, und von dort mittels des Trägergasstroms zum Multizyklon transportiert wird. Ein derartiges Verfahren ist insbesondere dann vorteilhaft, wenn das Fein- und Feinstkorn nicht direkt aus einem vorgeschalteten Prozess über den Trägergasstrom zugeführt wird, sondern aus einer Lagerstelle wie einem Bunker. Durch das Verwenden einer Dispergiereinheit wird erreicht, dass das Fein- und Feinstkorn in dem Trägergasstrom möglichst homogen verteilt ist und auch kaum Partikel aneinander anhaften. Hierdurch wird das Ergebnis der Trennung im Multizyklon positiv beeinflusst.
  • Grundsätzlich kann das Feinstkorn, welches mittels des Trägergasaustrittstroms aus dem Multizyklon ausgetragen wird, in beliebiger Weise aus dem Trägergasstrom abgetrennt werden. Vorteilhaft ist es, wenn dies mittels eines Filters durchgeführt wird. Als Filter kann hierbei beispielsweise ein Schlauchfilter oder Patronenfilter verwendet werden.
  • Das erfindungsgemäße Verfahren kann in vorteilhafter Weise auf einen Multizyklon mit mehreren im Wesentlichen gleich aufgebauten Einzelzyklonen angewendet werden. Diese Einzelzyklone weisen jeweils eine Trägergaseintrittsöffnung, eine Trägergasaustrittsöffnung und eine Grießaustragsöffnung auf. Die Einzelzyklone sind gemeinsam in einem fehllufteintragsarmen Gehäuse eingehaust, in dem eine obere und eine untere Kammer ausgebildet ist. Hierbei sind die Trägergasaustrittsöffnungen der Einzelzyklone zur oberen Kammer hin offen ausgeführt. Diese obere Kammer weist eine Trägergasgesamtaustrittsöffnung auf, um das Trägergas, welches aus den jeweiligen Trägergasaustrittsöffnungen der Einzelzyklone in die obere Kammer eintritt, über diese Trägergasgesamtaustrittsöffnung aus dem Gehäuse des Multizyklons abzuführen. Die Grießaustragsöffnungen der Einzelzyklone sind jeweils zur unteren Kammer hin offen ausgebildet, wobei die untere Kammer eine Einrichtung zum fehllufteintragsarmen Abzug von durch die Grießaustragsöffnung eingetragenen Zyklongrieße aufweist.
  • Die Trägergaseintrittsöffnungen sind derart ausgebildet, dass sie jeweils von außerhalb des Gehäuses des Multizyklons mit einem volumengleichen Trägergasstrom beaufschlagbar und nicht mit der oberen oder der unteren Kammer strömungstechnisch verbunden sind. Zu der unteren Kammer ist eine gemeinsame Zyklonregelluftzuführung vorgesehen, über welche gezielt Zyklonregelluft in die untere Kammer leitbar ist. Zusätzlich ist eine Steuer- und Regeleinrichtung vorgesehen und eingerichtet, um mittels der Menge der Zyklonregelluft pro Zeiteinheit die Menge, die Feinheit und/oder die Reinheit des aus dem Multizyklon geleiteten Feinstkorns einzustellen.
  • Mit einer derartigen erfindungsgemäßen Konstruktion ist es relativ einfach möglich, über das Einstellen der Zyklonregelluftmenge pro Zeiteinheit, die Menge, die Feinheit und/oder Reinheit des mittels des Multizyklons abgetrennten Feinstkorns einzustellen.
  • Der gesamte Aufbau des Multizyklons ist derart, dass es eine gemeinsame Zyklonregelluftzuführung zu allen Einzelzyklonen gibt. Dies bedeutet, dass lediglich eine Zuführung, welche zentral in die untere Kammer führt, eingestellt und/oder geregelt werden muss, um auf die zuvor aufgeführten Eigenschaften des Feinstkorns Einfluss zu nehmen.
  • Damit dies einfach möglich ist, sind die Einzelzyklone über ihre Grießaustragsöffnungen strömungstechnisch mit der unteren Kammer verbunden. Durch das Zuführen von Zyklonregelluft über die untere Kammer und die Grießaustragsöffnungen in die Einzelzyklone wird die Wirbelsenke, welche sich jeweils in den Einzelzyklonen ausbildet, und maßgeblich für die Trennschärfe beziehungsweise weitere Trenneigenschaften in einem Zyklon zuständig ist, beeinflusst. Je mehr diese Wirbelsenke beeinflusst wird, umso mehr verschiebt sich die Trenngrenze vom Bereich des Feinstkorns in den Bereich des Feinkorns.
  • Vorteilhaft an einer derartigen Ausführung ist, dass der Trägergasstrom, der den Einzelzyklonen zugeführt wird, hierbei nicht abgeändert oder beeinflusst werden muss. Dies bedeutet, dass der Multizyklon im Betrieb einmal auf einen idealerweise optimalen Betriebspunkt eingestellt wird und anschließend die Trenneigenschaften lediglich über die Menge der zugeführten Zyklonregelluft pro Zeiteinheit variiert und nachjustiert werden müssen.
  • So hat die Konstruktion des erfindungsgemäßen Multizyklons den Vorteil, dass der Multizyklon grundsätzlich in einem optimalen Betriebspunkt bezüglich der Menge des zuströmenden Trägergases sowie dessen Beladung eingestellt werden kann und somit in einer effizienten Weise betrieben werden kann.
  • Grundsätzlich können die Einzelzyklone in dem Multizyklon beliebig angeordnet sein. In Bezug auf eine einfache Regelung des Multizyklons ist es bevorzugt, wenn die Einzelzyklone strömungstechnisch parallel in dem Gehäuse vorgesehen sind. Dies bedeutet, dass sie alle eine jeweilige einzelne Trägergaseintrittsöffnung aufweisen, welche von außerhalb des Multizyklons mit Partikeln beladenem Trägergas versorgt wird.
  • Durch die parallele Anordnung wird erreicht, dass sich die Einzelzyklone, welche im Wesentlichen identisch ausgebildet sind, jeweils gleich verhalten und so ein ähnliches Trennverhalten vorliegt. Auch bietet sich der Vorteil, dass der Multizyklon einfach skaliert werden kann, indem zusätzliche Einzelzyklone parallel vorgesehen werden, da diese lediglich in dem gemeinsamen Gehäuse vorgesehen werden müssen. Hier zeigt sich wiederum der Vorteil der gemeinsamen Zyklonregelluftzuführung, so dass für einen weiteren Einzelzyklon keine zusätzliche neue Zyklonregelluftzuführung notwendig ist.
  • Bevorzugt ist es, wenn die obere und die untere Kammer luftdicht zueinander ausgebildet sind, wobei ein Luftaustausch zwischen der oberen und der unteren Kammer im Wesentlichen nur über die Einzelzyklone erfolgt. Luftdicht in diesem Sinne bedeutet, dass ein Luftaustausch zwischen beiden Kammern ausschließlich über beziehungsweise durch die Einzelzyklone erfolgen kann, so dass kein direkter Luftaustausch zwischen diesen zwei Kammern vorgesehen ist. Das luftdichte Trennen der oberen und der unteren Kammer hat zur Folge, dass die Zyklonregelluft nur über die Grießaustrittsöffnungen der Einzelzyklone in die Einzelzyklone und über die Trägergasaustrittsöffnungen in die obere Kammer strömen kann. Mit einer derartigen Konstruktion wird erreicht, dass die in die untere Kammer eingeleitete Zyklonregelluft komplett durch die Einzelzyklone strömt und somit voll zur Steuerung der Trennung zwischen Fein- und Feinstkorn eingesetzt wird.
  • Ein erfindungsgemäßer Multizyklon kann bevorzugt im Rahmen eines Feinstkornabscheiders zum Trennen von Fein- und Feinstkorn aus einem Vor- oder Zwischenprodukt verwendet werden beziehungsweise eingebaut sein. Ein derartiger Feinstkornabscheider weist neben einem erfindungsgemäßen Multizyklon einen nach dem beziehungsweise stromabwärts des Multizyklons geschalteten Filter auf. Das Vor- oder Zwischenprodukt wird mittels eines Trägergasstroms mindestens einem Multizyklon zugeführt. Im Multizyklon ist das Feinkorn als Zyklongrieß abscheidbar. Anschließend wird das sich weiterhin im Trägergasstrom befindliche Feinstkorn weiter zum Filter geleitet, in dem es abscheidbar ist. Ein derartiger Feinstkornabscheider ermöglicht es in einfacher Weise, den aus dem Multizyklon austretenden Trägergasstrom, in welchem das in den Zyklonen nicht abgeschiedene Feinstkorn vorhanden ist, weiter zu behandeln, so dass auch das Feinstkorn aus dem Trägergasstrom gewonnen werden kann, und der Trägergasstrom selbst entweder dem Prozess erneut zugeführt oder in die Umwelt geleitet werden kann.
  • Ferner ist es möglich, mehrere Multizyklone vor dem Filter strömungstechnisch in Serie nacheinander vorzusehen. Hierbei sind die jeweiligen Einzelzyklone der mehreren Multizyklone in Strömungsrichtung des Trägergasstromes jeweils mit einem geringeren Durchmesser ausgestattet. Mit anderen Worten können mehrere Multizyklone kaskadierend vor dem Filter angeordnet sein, wobei der Durchmesser der Einzelzyklone kleiner wird je näher in Strömungsrichtung der Multizyklon an dem Filter angeordnet ist.
  • Der Durchmesser eines Einzelzyklons ist wesentlich verantwortlich für die Möglichkeiten zum Einstellen der Trenngrenze. Je kleiner der Durchmesser ist, umso weiter kann die Trenngrenze zwischen Fein- und Feinstkorn in Richtung Feinstkorn beziehungsweise kleinerem Durchmesser verschoben werden, so dass das Feinstkorn feiner ist. Mit einer derartigen kaskadierenden Anordnung von mehreren Multizyklonen ist es somit möglich, verschiedene Fraktionen von Fein- beziehungsweise Feinstkorn mit einem Feinstkornabscheider herzustellen.
  • Grundsätzlich kann das Vor- oder Zwischenprodukt dem Feinstkornabscheider direkt aus einer prozesstechnischen Anlage, beispielsweise einem Mahlprozess, zugeführt werden. Da in diesem Fall jedoch oft die Volumina der Trägergasströme basierend auf dem vorgeschalteten Prozess definiert sind, ist es nicht einfach, den Multizyklon dann in einem effizienten Betriebspunkt zu betreiben.
  • Daher ist es vorteilhaft, wenn vor dem oder den Multizyklonen des Feinstkornabscheiders ein Vorratsbunker für das Vor- und Zwischenprodukt sowie eine Dispergiereinheit vorgesehen ist. Das zu separierende Vor- oder Zwischenprodukt wird vom Vorratsbunker über die Dispergiereinheit dem Feinstkornabscheider mittels des Trägergasstroms zugeführt. Mit einem derartigen Aufbau kann der Feinstkornabscheider von einem vorgeschalteten Prozess abgekoppelt und so unabhängig von dessem Betriebszustand betrieben werden. Das Einsetzen einer Dispergiereinheit nach dem Vorratsbunker hat sich als vorteilhaft herausgestellt, da mittels der Dispergiereinheit erreicht wird, dass das mittels des Trägergasstroms weiter zu befördernde Fein- und Feinstkorn homogen und im Wesentlichen ohne Anhaftungen in dem Trägergasstrom vorhanden ist, so dass eine gute Trennung im Multizyklon ermöglicht ist.
  • Der Feinstkornabscheider kann auch in einer Mahlanlage zum Herstellen von Fein- und Feinstkorn aus einem Rohstoff eingesetzt werden. Eine derartige Mahlanlage weist eine Mühle-Sichter-Kombination auf, welche einen Sichter und eine Mühle hat. Hierbei ist die Mühle-Sichter-Kombination ausgebildet, um bei einer ersten Sichtung mindestens einmal zerkleinerten Rohstoff vom Sichter der Mühle-Sichter-Kombination als abgewiesenes Grobgut der Mühle wieder zur weiteren Zerkleinerung zuzuführen.
  • Ferner ist ein Mahlanlagenfilter vorgesehen. Mittels eines Mahlanlagenträgergasstromes wird vom Sichter der Mühle-Sichter-Kombination nicht abgewiesenes zerkleinertes Mahlgut zum Mahlanlagenfilter transportiert und dort aus dem Mahlanlagenträgergasstrom abgeschieden. Anschließend wird direkt oder indirekt, beispielsweise über einen Bunker, das am Mahlanlagenfilter abgeschiedene zerkleinerte Mahlgut dem Feinstkornabscheider zugeführt und dort in Fein- und Feinstkorn getrennt.
  • Grundsätzlich kann eine beliebige Mühlenkonstruktion verwendet werden, die eine Zerkleinerung des Mahlgutes auf die gewünschte Feinheit ermöglicht. Als vorteilhaft hat es sich herausgestellt, eine Vertikalmühle mit Mahlteller und Mahlwalzen hierfür zu verwenden, da hiermit ein gutes Zerkleinerungsergebnis erreicht wird und bei der Zerkleinerung eine große Bandbreite an Kornfraktionen entstehen, so dass in dem Trägergasstrom Fein- und Feinstkorn beider Fraktionen vorhanden ist. Vorteilhaft ist außerdem, dass eine Vertikalmühle in diesem Verfahren relativ energieeffizient im Vergleich zu Kugelmühlen betrieben werden kann.
  • Die Erfindung wird nachfolgend anhand von Beispielen mit Hilfe von schematischen Figuren erläutert. Hierbei zeigen:
  • Fig. 1
    eine skizzenhafte Darstellung eines erfindungsgemäßen Multizyklons;
    Fig. 2
    ein schematisches Flussdiagramm eines erfindungsgemäßen Feinstkornabscheiders mit Dispergiereinheit und Vorratsbunker;
    Fig. 3
    ein schematisches Flussdiagramm einer Mahlanlage mit erfindungsgemäßen Feinstkornabscheider, und
    Fig. 4
    ein kombiniertes schematisches Diagramm zur Erläuterung der Zyklonregelluftmenge und der Staubbeladung des Trägergases in Bezug auf die Feinheit.
  • In Fig. 1 ist eine schematische Darstellung eines erfindungsgemäßen Multizyklons 1 gezeigt. In dem Multizyklons 1 sind in einem Gehäuse 3 mehrere, im hier dargestellten Ausführungsbeispiel sechs mal sechs, also 36, baugleiche Einzelzyklone 10 angeordnet. In Fig. 1 sind nur sechs Einzelzyklone 10 sichtbar. Die weiteren Einzelzyklone 10 befinden sich in der Tiefenrichtung der Skizze. Bevorzugt werden die Einzelzyklone 10 in einer quadratischen Anordnung eingesetzt.
  • Die Einzelzyklone 10 sind im Wesentlichen identischer Bauart und weisen jeweils eine Trägergaseintrittsöffnung 11, eine Trägergasaustrittsöffnung 12 sowie eine Grießaustragsöffnung 13 auf. Mittels einer Trennung 15 ist das Gehäuse 3 in eine obere Kammer 5 und in eine untere Kammer 6 unterteilt.
  • Die einzelnen Einzelzyklone 10 sind jeweils zwischen der oberen Kammer 5 und der unteren Kammer 6 angeordnet. Die Trägergaseintrittsöffnungen 11 der Einzelzyklone 10 sind derart ausgestaltet, dass sie mit einem Trägergasstrom von außerhalb des Gehäuses 3 bedient werden können. Die Zuführung des Trägergases in die Trägergaseintrittsöffnungen 11 der Einzelzyklone 10 erfolgt hierbei direkt von außerhalb des Gehäuses 3, so dass das Trägergas nicht zuerst in die obere Kammer 5 oder untere Kammer 6 eindringt.
  • Jeder Einzelzyklon 10 ist über seine Trägergasaustrittsöffnung 12 mit der oberen Kammer 5 strömungstechnisch verbunden. In analoger Weise ist jeder Einzelzyklon 10 über seine Grießaustragsöffnung 13 mit der unteren Kammer 6 strömungstechnisch verbunden. Die obere Kammer 5 weist eine Trägergasgesamtaustrittsöffnung 7 auf, über die Trägergas, welches aus den Trägergasaustrittsöffnungen 12 der Einzelzyklone 10 in die obere Kammer 5 eintritt, aus dieser austreten kann.
  • An der unteren Kammer 6 ist eine Einrichtung zum falsch- oder fehlluftarmen Abzug von Zyklongrießen vorgesehen. Diese Einrichtung kann beispielsweise als Zellradschleuse 8 ausgeführt sein, so dass die Zyklongrieße aus der unteren Kammer 6 abgeführt werden können, ohne dass größere Mengen Luft in die untere Kammer 6 eintreten können.
  • Zusätzlich ist eine Zyklonregelluftzuführung 9 in die untere Kammer 6 vorgesehen. Über diese Zyklonregelluftzuführung 9 kann gezielt Luft beziehungsweise Gas in die untere Kammer 6 geleitet werden. Hierfür ist eine Volumenstrommessung 62 sowie eine Regelklappe 61 vor der Zyklonregelluftzuführung 9 angebracht, womit das Volumen beziehungsweise die Menge der in die untere Kammer 6 eingebrachten Zyklonregelluft variiert und eingestellt werden kann.
  • Im Folgenden wird nun der Betrieb und die Funktionsweise des erfindungsgemäßen Multizyklons 1 näher erläutert.
  • Entsprechend der Erfindung wird der Multizyklon 1 nicht, wie herkömmlicherweise üblich, zum Reinigen eines Luft- oder Gasstromes von Partikeln verwendet, sondern als gezieltes Trennaggregat von Partikeln, welche innerhalb eines Trägergasstromes vorhanden sind. Hierzu wird ein Trägergasstrom in die einzelnen Einzelzyklone 10, welche jeweils strömungstechnisch parallel, das heißt neben- und hinter einander, angeordnet sind, mit einer entsprechenden Partikelbeladung geleitet.
  • Im Rahmen der Erfindung wird diesbezüglich auf Fein- und Feinstkorn Bezug genommen, wobei eine Trennung zwischen Fein- und Feinstkorn durchgeführt werden soll. Das mit Partikeln beladene Trägergas wird an die einzelnen Einzelzyklonen 10 mit einem gleichen Volumen pro Zeiteinheit und einer gleichen Beladung von Partikeln aufgeteilt, so dass die Einzelzyklone 10 eine möglichst gleiche Abscheidecharakteristik beziehungsweise Trenneigenschaften aufweisen. Durch die Geometrie des Einlaufzylinders und des Kegels der Einzelzyklone 10 ist es in bekannter Weise möglich, die Partikel aus dem Trägergasstrom abzuscheiden. Die abgeschiedenen Partikel werden über die Grießaustragsöffnung 13 als Zyklongrieße in die untere Kammer 6 überführt beziehungsweise fallen in diese. Das im Wesentlichen von den Partikeln gereinigte Trägergas kann dann über die Trägergasaustrittsöffnung 12 aus den Einzelzyklonen 10 in die obere Kammer 5 eindringen und diese wiederum über die Trägergasgesamtaustrittsöffnung 7 verlassen.
  • Im Einzelzyklon 10 findet die Abscheidung der Partikel im Wesentlichen dadurch statt, dass durch die Geometrie des Zyklons das sich auf einer kreisförmigen Bahn befindliche Trägergas mit den Partikeln weiter beschleunigt wird, so dass die Partikel aufgrund von Fliehkraft und Schwerkraft aus dem beschleunigten Trägergasstrom austreten und nach unten über die Grießaustragsöffnung 13 herausfallen. Das so gereinigte Trägergas kann dann über ein vorgesehenes Tauchrohr, wie bereits beschrieben, und über die Trägergasaustrittsöffnung 12 aus dem Einzelzyklon 10 austreten.
  • Die sich innerhalb eines Einzelzyklons 10 einstellenden Strömungsbedingungen werden auch als Wirbelsenke bezeichnet. Wird diese Wirbelsenke gestört, beispeilsweise durch Zyklonregelluft, welche über die Grießaustragsöffnungen 13 in das Einzelzyklon 10 einströmt, verändert sich die Strömungsgeschwindigkeit des Trägergases in dem Einzelzyklon 10, so dass auch leichtere Partikel, welche hier als Feinstkorn bezeichnet werden, über das Tauchrohr aus dem Einzelzyklon 10 austreten können und nicht als Zyklongrieß über die Grießaustragsöffnung 13 abgeschieden werden.
  • Diese Erkenntnis macht sich die Erfindung zunutze, indem sie gezielt Zyklonregelluft über die Zyklonregelluftzuführung 9 in die untere Kammer 6 des Multizyklons 1 zuführt. Wesentlich ist hierbei, dass sichergestellt wird, dass die zugeführte Zyklonregelluft durch die Einzelzyklone 10 strömt und die Wirbelsenke beeinflusst. Dies kann beispielsweise dadurch geschehen, dass stromabwärts der Trägergasgesamtaustrittsöffnung 7 ein saugendes Gebläse vorgesehen ist, welches das Trägergas durch den Multizyklon 1 saugt. Auf diese Weise ist in der oberen Kammer 5 der statische Druck niedriger als in der unteren Kammer 6, wobei der Druck dort wiederum niedriger ist als der Umgebungsdruck. Auf diese Weise kann die Zyklonregelluft mittels der Regelklappe 62 durch Öffnen und Schließen der unteren Kammer 6 zugeführt werden.
  • Um einen effektiven Betrieb des erfindungsgemäßen Multizyklons 1 zu erreichen, hat es sich herausgestellt, dass es vorteilhaft ist, die Menge des Trägergases sowie dessen Beladung mit Partikeln so einzustellen, dass eine 99%ige oder noch bessere Abscheidung der Partikel in den Einzelzyklonen 10 bei geschlossener Zyklonregelluftzuführung 9 erreicht wird. Wird nun gezielt Zyklonregelluft zugeführt, kann die Abscheidungsrate verändert werden, so dass ein Teil der Partikel als Feinstkorn über den aus dem Multizyklon 1 austretenden Trägergasgesamtstrom abgeführt werden kann und später aus diesem abgeschieden werden kann.
  • Anders ausgedrückt, kann mittels der Zyklonregelluft die Massestromaufteilung zwischen Feinstgut, welches aus dem Multizyklon ausgetragen wird, und Feingut, welches als Zyklongrieß im Multizyklon abgeschieden wird, eingestellt werden. Dies bedeutet, dass bei einer komplett geöffneten Zyklonregelluftzuführung 9 annähernd 100% der im Trägergasstrom vorhandenen Partikel über die Gesamtträgergasaustrittsöffnung 7 wieder aus dem Multizyklon 1 ausgeführt werden. Demgegenüber werden annähernd 100%, genauer um etwa 99%, der Partikel im Trägergasstrom bei komplett geschlossener Zyklonregelluftzuführung 9 als Zyklongrieß im Multizyklon 1 abgeschieden.
  • Beispielsweise ist es möglich, bei einer Aufgabe von zu trennenden Partikeln mit 5000 Blaine, das heißt .ca D50 = 8µm und dem Verwenden von Einzelzyklonen mit einem Durchmesser von 150 mm Feinstkorn mit einer Feinheit von D50<6 µm bei entsprechend eingestellter Zyklonregelluftmenge abzuscheiden. Grundsätzlich kann festgehalten werden, dass der Bereich der optimalen Trennung im Wesentlichen auch durch die Geometrie, insbesondere den Durchmesser der Einzelzyklone, definiert wird. Dies kann auch als Selektivität eines Einzelzyklons bezeichnet werden. Im Zusammenhang mit der Zyklonregelluft lässt sich so die Feinheit des Feingutes in einem bestimmten Bandbereich definieren und nachregeln.
  • Der D50-Wert beschreibt die Partikelgrößenverteilung bei einer Kornverteilung, bei der 50 M.-% größer und 50 M.-% kleiner als der angegebene Durchmesser des Grenzkornes sind. Insbesondere bei den hier vorliegenden Feinheiten hat sich herausgestellt, dass diese Größe besser geeignet ist als die übliche spezifische Oberfläche nach Blaine.
  • In Fig. 2 ist der erfindungsgemäße Multizyklon 1 im Rahmen eines Feinstkornabscheiders 40 dargestellt. Der Feinstkornabscheider 40 weist als wesentliche Elemente einen Vorratsbunker 42 für ein zu trennendes Vor- oder Zwischenprodukt auf. Ferner ist eine Dispergiereinheit 20 vorgesehen, um das zu trennende Vor- oder Zwischenprodukt möglichst homogen in einem Trägerluftstrom verteilen zu können. Anschließend wird ein erfindungsgemäßer Multizyklon 1 eingesetzt, an dem sich stromabwärts ein Filter 30, der bevorzugt als Schlauchfilter ausgeführt ist, anschließt.
  • Im Folgenden wird nun genauer auf den Aufbau des Feinstkornabscheiders 40 eingegangen, wobei gleichzeitig auch dessen Funktions- und Betriebsweise beschrieben wird.
  • Das im Bunker 42 gelagerte Vor- oder Zwischenprodukt wird über eine Zellradschleuse 43 einer drehzahlgeregelten Förderschnecke 44 zugeführt, die das Vor- oder Zwischenprodukt der Dispergiereinheit 20 zuführt. Grundsätzlich kann das Abführen aus dem Bunker sowie das Zuführen zur Dispergiereinheit 20 auch mit anderen Mitteln erreicht werden.
  • Wie bereits erläutert, dient die Dispergiereinheit 20 dazu, das zu trennende Produkt möglichst homogen in einem Trägergasstrom zu verteilen. Hierzu wird exemplarisch die in Fig. 2 schematisch dargestellte Dispergiereinheit 20 beschrieben, wobei auch anders aufgebaute Dispergiereinheiten verwendet werden können.
  • Zum Erzeugen des Trägergasstromes, in den das Vor- und Zwischenprodukt eingebracht wird, ist stromabwärts des Filters 30 ein Gebläse 45 mit entsprechender Regelung vorgesehen. Dieses Gebläse 45 saugt das Trägergas durch den Filter 30, den Multizyklon 1 und die Dispergiereinheit 20 an.
  • Hierzu sind in der Dispergiereinheit 20 Lufteinsaugöffnungen 23 vorgesehen. Die Dispergiereinheit 20 selbst weist einen Verteilerteller 22, einen Schaufelkranz 24, Turbulenzeinbauten 25 sowie einen Verdrängungskörper 26 auf. Das über die Förderschnecke 44 der Dispergiereinheit 20 zugeführte Vor- oder Zwischenprodukt fällt auf den Verteilerteller 22. Der Verteilerteller 22 dreht sich, so dass das aufgegebene Vor- oder Zwischenprodukt seitlich von dem Verteilerteller 22 abgleitet beziehungsweise an eine Wandung der Dispergiereinheit 20 geschleudert wird. Es wird also mechanisch auseinandergerissen und auf einen größeren Strömungsquerschnitt verteilt. Durch das bereits zuvor beschriebene Trägergas, welches durch die Luftansaugöffnungen 23 strömt, und zusätzlich mittels des Schaufelkranzes 24, welcher am Rand des Verteilertellers 22 angeordnet ist, verwirbelt wird, wird das zu trennende Vor- oder Zwischenprodukt vom Trägergasstrom mitgerissen. Durch das schnell einströmende Trägergas wird das Vor- oder Zwischenprodukt somit erneut, in diesem Fall pneumatisch, weiter auseinandergerissen.
  • Um eine noch bessere Dispergierung zu erreichen, sind in der Strömungsrichtung des Trägergases Turbulenzeinbauten 25 vorgesehen, welche eine zusätzliche Verwirbelung und damit bessere Dispergierung des zu trennenden Vor- und Zwischenproduktes erreichen. Die Turbulenzeinbauten 25 können beispielsweise mittels statischer Mischelemente oder Prallkörper ausgebildet sein. Es besteht aber auch die Möglichkeit, zusätzlich oder alternativ zu diesen Ausführungen einen dynamischen Rotor zu verwenden, der die Durchmischung und Dispergierung des Vor- oder Zwischenproduktes weiter verbessert. Dies wird zusätzlich durch den Verdrängungskörper 26 verbessert, welcher höhenverstellbar ausgestaltet sein kann.
  • Nach der Dispergiereinheit 20 wird das zu trennende Vor- oder Zwischenprodukt mittels des Trägergasstromes zum erfindungsgemäßen Multizyklon 1 geleitet. Dieser wird, wie bereits in Bezug auf Fig. 1 erläutert, geregelt, indem er im Grundzustand bezüglich der Beladung des Trägergasstroms, welche mittels der Zuführung aus dem Bunker 42 eingestellt wird, und des Volumens pro Zeiteinheit des Trägergasstroms, welches über das Gebläse 45 eingestellt wird, derart betrieben wird, dass im Ausgangszustand eine fast komplette Abscheidung des Fein- und Feinstkorns im Multizyklon 1 ermöglicht ist. Über das Zuführen von Zyklonregelluft über die Zyklonregelluftzuführung 9 wird dann eine schlechtere Abscheidung erreicht, so dass die feineren Partikel im Trägergasstrom nicht als Zyklongrieß abgeschieden werden, sondern mit dem Trägergasstrom weiter Richtung Filter 30 geleitet werden.
  • In diesem Filter 30 werden auch die Feinstpartikel abgeschieden und können aus dem Filter 30, beispielsweise über eine Zellradschleuse 31 abgeführt werden. Der somit gereinigte Trägergasstrom kann teilweise dem Prozess erneut zugeführt oder auch in die Umgebung ausgeblasen werden.
  • Vorteilhaft an dem hier beschriebenen Feinstkornabscheider 40 ist, dass dieser unabhängig von vorgeschalteten Prozessen, welche das Vor- oder Zwischenprodukt herstellen, immer im Bereich eines optimalen Betriebspunktes betrieben werden kann, da sowohl die Beladung wie auch das Volumen pro Zeiteinheit des Trägergases nur durch die Eigenschaften der Einzelbaugruppen des Feinstkornabscheiders 40 definiert werden und nicht auf vor- oder nachgeschaltete weitere Prozesse Rücksicht genommen werden muss.
  • Dies ist im Folgenden in Bezug auf Fig. 3 weiter verdeutlicht. In Fig. 3 ist eine Mahlanlage 50 mit einer Mühle-Sichter-Kombination 51 dargestellt. Die Mühle-Sichter-Kombination weist eine Mühle 52 und einen Sichter 53 auf. Das in der Mühle-Sichter-Kombination 51 zerkleinerte Mahlgut wird mittels eines Mahlanlagenträgergasstromes, welcher durch das Mühlengebläse 56 eingestellt wird, zu einem Mahlanlagenfilter 55 transportiert. Der Mahlanlagenträgergasstrom kann zum Teil wieder über einen Heißgaserzeuger 57, der beispielsweise eine Mahltrocknung in der Mühle-Sichter-Kombination ermöglicht, zurückgeführt werden.
  • In dem Mahlanlagenfilter 55 werden Partikel, welche sich in dem Trägergasstrom der Mahlanlage befinden, abgeschieden. Anschließend werden diese Partikel dem Feinstkornabscheider 40 mit einem erfindungsgemäßen Multizyklon 1 zugeführt.
  • In dieser Figur ist verdeutlicht, dass durch die Konstruktion des erfindungsgemäßen Feinstkornabscheiders 40 dieser im Wesentlichen entkoppelt zum Mahlanlagenkreislauf betrieben werden kann. Dies hat zur Folge, dass sowohl die Mahlanlage 50 selbst wie auch der Feinstkornabscheider 40 jeweils in optimalen Betriebspunkten betrieben werden können, die auch von der Beladung der Trägergasströme mit zu zerkleinerndem Gut beziehungsweise zu trennendem Gut und dem Volumen pro Zeiteinheit des Trägergases abhängen.
  • So weisen herkömmliche Mahlanlagen 50, wie sie in Fig. 3 exemplarisch dargestellt werden, in ihrem optimalen Betriebspunkt meist eine Beladung des Trägergases im Bereich von 30 g/m3 bis 50 g/m3 bei einer Feinheit von bis zu 6000 cm2/g auf. Dem hingegen kann ein erfindungsgemäßer Multizyklon 1 und damit auch der Feinstkornabscheider 40 mit einer Beladung im Bereich zwischen 200 g/m3 bis 300 g/m3 betrieben werden. Durch die Abkopplung ist es somit möglich, den Feinstkornabscheider 40 kleiner zu dimensionieren, beziehungsweise nur einen Feinstkornabscheider 40 für mehrere Mahlanlagen 50 vorzusehen. Dies verringert die notwendige Anlagengröße und minimiert dadurch die entstehenden Investitionskosten.
  • In Fig. 4 ist ein kombiniertes schematisches Diagramm dargestellt, welches den Zusammenhang zwischen der Zyklonregelluftmenge sowie der Staubbeladung des Trägergases in Bezug auf die Feinheit des Feinstkorns zeigt.
  • Hierbei ist auf der Ordinate die Feinheit in cm2/g des Feinstkornes vorgesehen. Auf den Abszissen ist auf der linken Seite die Zyklonregelluftmenge in m3/h und auf der rechten Seite die Beladung des Trägergases in g/m3 dargestellt.
  • Wie aus dem Diagramm ersichtlich, fällt die Feinheit des Feinstkorns mit zunehmender Zyklonregelluftmenge ab. Demgegenüber bildet sich für die Feinheit ein Optimum der Staubbeladung beziehungsweise Partikelbeladung des Trägergasstroms vor dem Multizyklon aus.
  • Hieraus kann gefolgert werden, dass wie zuvor bereits beschrieben, es einen optimalen Betriebspunkt zum Betrieb eines erfindungsgemäßen Multizyklons in Bezug auf die Beladung des Trägerluftstromes gibt. Die Feinheit des Feinstkorns kann dann entsprechend einer Regelung über die Zyklonregelluft beeinflusst werden.
  • Der erfindungsgemäße Multizyklon sowie dessen Betriebsverfahren zum Trennen von Fein- und Feinstkorn ermöglichen somit ein einfaches und effizientes Trennen von Fein- und Feinstkorn sowie einen entkoppelten Betrieb zu vorgeschalteten Prozessanlagen.

Claims (15)

  1. Verfahren zum Betrieb eines Multizyklons (1) zum Trennen von Fein- und Feinstkorn, wobei der Multizyklon (1) aufweist:
    mehrere im Wesentlichen gleich aufgebaute Einzelzyklone (10), welche jeweils eine Trägergaseintrittsöffnung (11), eine Trägergasaustrittsöffnung (12) und eine Grießaustragsöffnung (13) aufweisen,
    wobei die Einzelzyklone gemeinsam in einem fehllufteintragarmen Gehäuse (3) eingehaust sind, in dem eine obere (5) und eine untere (6) Kammer ausgebildet ist,
    wobei die Trägergasaustrittsöffnungen (12) der Einzelzyklone (10) zur oberen Kammer (5) hin offen ausgeführt sind,
    wobei die obere Kammer (5) eine Trägergasgesamtaustrittsöffnung (7) aufweist, um das Trägergas, welches jeweils aus den jeweiligen Trägergasaustrittsöffnungen (12) der Einzelzyklone (10) in die obere Kammer (5) ausgetreten ist, über die Trägergasgesamtaustrittsöffnung (7) aus dem Gehäuse (3) des Multizyklons (1) abzuführen,
    wobei die Grießaustragsöffnungen (13) jeweils zur unteren Kammer (6) hin offen ausgebildet sind,
    wobei die untere Kammer (6) eine Einrichtung (8) zum Abzug von durch die Grießaustragsöffnungen (13) eingetragenen Zyklongrießen, welche im Wesentlichen fehllufteintragsfrei ausgeführt ist, aufweist,
    wobei zu der unteren Kammer (6) eine gemeinsame Zyklonregelluftzuführung (9) vorgesehen ist,
    wobei den Trägergaseintrittsöffnungen (11) jeweils von außerhalb des Gehäuses (3) ein volumengleicher Trägergasstrom mit dem zu trennendem Fein- und Feinstkorn zugeführt wird,
    wobei in den Einzelzyklonen (10) eine zumindest anteilige Trennung von Fein- und Feinstkorn durchgeführt wird,
    wobei das Feinkorn als Zyklongrieß über die Grießaustragsöffnungen (13) in die untere Kammer (6) eintritt und von dort über die Einrichtung (8) zum Abzug aus dem Gehäuse (3) abgezogen wird,
    wobei das Feinstkorn als Zyklonfeingut mittels des Trägergasstroms über die obere Kammer (5) und die Trägergasgesamtaustrittsöffnung (7) aus dem Multizyklon (1) geleitet wird,
    dadurch gekennzeichnet,
    dass mittels einer Regelung der Menge der durch die Zyklonregelluftzuführung (9) in die untere Kammer (6) zugeführten Zyklonregelluft pro Zeiteinheit die Menge, die Feinheit und/oder die Reinheit des aus dem Multizyklon (1) geleiteten Feinstkorns eingestellt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das Volumen pro Zeiteinheit der volumengleichen Trägergasströme zu den Einzelzyklonen (10) abhängig von der Geometrie der Einzelzyklone (10) eingestellt wird, um bei geschlossener Zyklonregelluftzuführung (9) ca. 99% des sich in den Trägergasströmen befindlichen Fein- und Feinstkorn als Zyklongrieß abzuscheiden.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die Beladung der volumengleichen Trägergasströme zu den Einzelzyklonen (10) mit Fein- und Feinstkorn abhängig von der Geometrie der Einzelzyklone (10) eingestellt wird, um bei geschlossener Zyklonregelluftzuführung (9) ca. 99% des sich in den Trägergasströmen befindlichen Fein- und Feinstkorn als Zyklongrieß abzuscheiden.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass im Betrieb eine Druckdifferenz zwischen der oberen (5) und der unteren (6) Kammer eingestellt wird, und
    dass der Druck in der oberen Kammer (5) niedriger ist als der Druck in der unteren Kammer (6).
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass der Druck in der oberen Kammer (5) und in der unteren Kammer (6) niedriger als der Umgebungsdruck eingestellt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass das zu trennende Fein- und Feinstkorn vor Aufgabe in den Multizyklon (10) einer Dispergiereinheit (20) zugeführt wird und von dort mittels des Trägergasstromes zum Multizyklon (1) transportiert wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass der Trägergasstrom mit dem Feinstkorn aus der Trägergasgesamtaustrittsöffnung (7) einem Filter (30) zum Abscheiden des Feinstkorns aus dem Trägergasstrom zugeführt wird.
  8. Multizyklon (1) mit
    mehreren im Wesentlichen gleich aufgebauten Einzelzyklonen (10), welche jeweils eine Trägergaseintrittsöffnung (11), eine Trägergasaustrittsöffnung (12) und eine Grießaustragsöffnung (13) aufweisen,
    wobei die Einzelzyklone (10) gemeinsam in einem fehllufteintragarmen Gehäuse (3) eingehaust sind, in dem eine obere (5) und eine untere (6) Kammer ausgebildet ist,
    wobei die Trägergasaustrittsöffnungen (12) der Einzelzyklone (10) zur oberen Kammer (5) hin offen ausgeführt sind,
    wobei die obere Kammer (5) eine Trägergasgesamtaustrittsöffnung (12) aufweist, um das Trägergas, welches jeweils aus den jeweiligen Trägergasaustrittsöffnungen (12) der Einzelzyklone (10) in die obere Kammer ausgetreten ist, über die Trägergasgesamtaustrittsöffnung (12) aus dem Gehäuse (3) des Multizyklons (10) abzuführen,
    wobei die Grießaustragsöffnungen (13) jeweils zur unteren Kammer (6) offen ausgebildet sind,
    wobei die untere Kammer (6) eine Einrichtung (8) zum Abzug von durch die Grießaustragsöffnungen (13) eingetragenen Grießen, welche im Wesentlichen fehllufteintragsfrei ausgeführt ist, aufweist,
    wobei die Trägergaseintrittsöffnungen (11) jeweils von außerhalb des Gehäuses (3) mit einem volumengleichen Trägergasstrom, welche zu trennendes Fein- und Feinstkorn aufweist, beaufschlagbar ausgebildet sind,
    dadurch gekennzeichnet,
    dass zu der unteren Kammer (6) eine gemeinsame Zyklonregelluftzuführung (9) vorgesehen ist, über welche gezielt Regelluft in die untere Kammer (6) leitbar ist, dass eine Steuer- und Regeleinrichtung vorgesehen ist, um mittels der Menge der Zyklonregelluft pro Zeiteinheit die Menge, die Feinheit und/oder die Reinheit des aus dem Multizyklon (1) geleiteten Feinstkorns einzustellen, und
    dass Feinkorn als Zyklongrieß abtrennbar ist.
  9. Multizyklon nach Anspruch 8,
    dadurch gekennzeichnet,
    dass die Einzelzyklone (10) strömungstechnisch parallel in dem Gehäuse (3) vorgesehen sind.
  10. Multizyklon nach Anspruch 8 oder 9,
    dadurch gekennzeichnet,
    dass die obere (5) und die untere (6) Kammer luftdicht zueinander ausgebildet sind,
    wobei ein Luftaustausch zwischen der oberen Kammer (5) und der unteren Kammer (6) nur über die Einzelzyklone (10) erfolgt.
  11. Feinstkornabscheider (40) zum Trennen von Fein- und Feinstkorn aus einem Vor- oder Zwischenprodukt mit
    mindestens einem Multizyklon (1) nach einem der Ansprüche 8 bis 10 und einem Filter (30),
    wobei das Vor- oder Zwischenprodukt mittels eines Trägergasstromes dem mindestens einen Multizyklon (1) zuführbar ist,
    wobei das Feinkorn am Multizyklon (1) abscheidbar ist, und
    wobei mittels Trägergas das Feinstkorn zum Filter (30) weiterleitbar ist und dort abscheidbar ist.
  12. Feinstkornabscheider (40) nach Anspruch 11,
    dadurch gekennzeichnet,
    dass mehrere Multizyklone (1) vor dem Filter (30) strömungstechnisch in Serie nacheinander vorgesehen sind und
    dass die jeweiligen Einzelzyklone (10) der mehreren Multizyklone (1) in Strömungsrichtung des Trägergasstroms jeweils einen geringeren Durchmesser aufweisen.
  13. Feinstkornabscheider (40) nach Anspruch 11 oder 12,
    gekennzeichnet durch,
    einen Vorratsbunker (42) für das Vor- oder Zwischenprodukt und
    eine Dispergiereinheit (20),
    wobei das zu separierende Vor- oder Zwischenprodukt vom Vorratsbunker (42) über die Dispergiereinheit (20) dem Feinstkornabscheider (40) mittels des Trägergasstromes zuführbar ist.
  14. Mahlanlage (50) zum Herstellen von Fein- und Feinstkorn aus einem Rohstoff mit einer Mühle-Sichter-Kombination (51), welche einen Sichter (53) und eine Mühle (52) aufweist,
    wobei die Mühle-Sichter-Kombination (51) ausgebildet ist, um bei einer ersten Sichtung mindestens einmal zerkleinerten Rohstoff vom Sichter (53) der Mühle-Sichter-Kombination (51) als abgewiesenes Grobgut der Mühle (52) zur weiteren Zerkleinerung wieder zuzuführen,
    mit einem Mahlanlagenfilter (55),
    wobei mittels eines Mahlanlagenträgergasstroms vom Sichter (53) der Mühle-Sichter-Kombination (51) nicht abgewiesenes Mahlgut zum Mahlanlagenfilter (55) transportierbar ist und dort aus dem Mahlanlagenträgergasstrom abscheidbar ist, gekennzeichnet durch
    einen Feinstkornabscheider (40) nach einem der Ansprüche 11 bis 13, wobei mindestens ein Teil des am Mahlanlagenfilter (55) abgeschiedenen Mahlproduktes dem Feinstkornabscheider (40) als Vor- oder Zwischenprodukt zum Abtrennen von Fein- und Feinstkorn zuführbar ist.
  15. Mahlanlage nach Anspruch 14,
    dadurch gekennzeichnet,
    dass die Mühle (52) der Mühle-Sichter-Kombination (51) eine Vertikalmühle mit einem Mahlteller und Mahlwalzen ist.
EP16188007.5A 2016-09-09 2016-09-09 Verfahren zum betrieb eines multizyklons zum trennen von fein- und feinstkorn sowie multizyklon Active EP3292912B1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP16188007.5A EP3292912B1 (de) 2016-09-09 2016-09-09 Verfahren zum betrieb eines multizyklons zum trennen von fein- und feinstkorn sowie multizyklon
PCT/EP2017/072546 WO2018046640A1 (de) 2016-09-09 2017-09-08 Verfahren zum betrieb eines multizyklons zum trennen von fein- und feinstkorn sowie multizyklon
SG11201804823RA SG11201804823RA (en) 2016-09-09 2017-09-08 Method for operating a multi-cyclone for the separation of fine and very fine grain as well as a multi-cyclone
EA201800353A EA034688B1 (ru) 2016-09-09 2017-09-08 Способ эксплуатации мультициклона для разделения мелких и очень мелких гранул, а также мультициклон
CA3007583A CA3007583A1 (en) 2016-09-09 2017-09-08 Method for operating a multi-cyclone for the separation of fine and very fine grain as well as a multi-cyclone
US16/067,373 US10926270B2 (en) 2016-09-09 2017-09-08 Method for operating a multi-cyclone for the separation of fine and very fine grain as well as a multi-cyclone
JP2018531546A JP6934871B2 (ja) 2016-09-09 2017-09-08 微細粒及び極微細粒の分離のためマルチサイクロンを動作させる方法並びにマルチサイクロン
CN201780008607.6A CN109641217B (zh) 2016-09-09 2017-09-08 操作多体旋风分离机构来分离细粒和超细粒的方法以及多体旋风分离机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16188007.5A EP3292912B1 (de) 2016-09-09 2016-09-09 Verfahren zum betrieb eines multizyklons zum trennen von fein- und feinstkorn sowie multizyklon

Publications (2)

Publication Number Publication Date
EP3292912A1 EP3292912A1 (de) 2018-03-14
EP3292912B1 true EP3292912B1 (de) 2019-12-25

Family

ID=56958737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16188007.5A Active EP3292912B1 (de) 2016-09-09 2016-09-09 Verfahren zum betrieb eines multizyklons zum trennen von fein- und feinstkorn sowie multizyklon

Country Status (8)

Country Link
US (1) US10926270B2 (de)
EP (1) EP3292912B1 (de)
JP (1) JP6934871B2 (de)
CN (1) CN109641217B (de)
CA (1) CA3007583A1 (de)
EA (1) EA034688B1 (de)
SG (1) SG11201804823RA (de)
WO (1) WO2018046640A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3071898C (en) * 2017-07-14 2023-03-07 Vermeer Manufacturing Company Hydro excavation vacuum apparatus
US11318482B2 (en) * 2018-10-22 2022-05-03 Omachron Intellectual Property Inc. Air treatment apparatus
SE543276C2 (sv) * 2019-03-19 2020-11-10 Airgrinder Ab Förfarande och anordning för att söndermala och t orka ett material eller en materialblandning
CN111112084B (zh) * 2019-12-26 2023-06-30 盐城市普天涂装工业有限公司 一种风力选粉***
CN114622996A (zh) * 2020-12-10 2022-06-14 通用电气阿维奥有限责任公司 空气/油分离器装置及方法
US20220401968A1 (en) * 2021-06-22 2022-12-22 Foremost Equipment LP Multicyclone separator
CN114515696B (zh) * 2022-01-13 2022-11-29 哈尔滨工业大学 可自动判别天然矿物颗粒级配状态的筛分和循环研磨装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB736320A (en) * 1952-10-08 1955-09-07 Howden James & Co Ltd Improvements in or relating to centrifugal dust separators
BE602048A (de) * 1960-10-15
NL6704815A (de) * 1966-04-08 1967-10-09
FR1584200A (de) * 1968-09-16 1969-12-12
US4061274A (en) * 1976-07-26 1977-12-06 Williams Patent Crusher And Pulverizer Company Material reducing apparatus and method of operating the same
JPS55157365A (en) * 1979-05-28 1980-12-08 Hosokawa Micron Kk Classifying method and classifying device
JPS5824369A (ja) * 1981-08-05 1983-02-14 Hitachi Plant Eng & Constr Co Ltd 慣性分離型集じん装置
JPS5867551U (ja) * 1981-10-29 1983-05-09 三井造船株式会社 マルチサイクロン
US4526678A (en) * 1983-06-22 1985-07-02 Elkem Chemicals, Inc. Apparatus and method for separating large from small particles suspended in a gas stream
EP0335770B1 (de) * 1988-04-01 1997-01-15 Merrell Pharmaceuticals Inc. Derivate von Fluorphosphonat-Nukleotiden
DE68918701T2 (de) * 1989-12-13 1995-02-09 Satake Eng Co Ltd Mahlvorrichtung und System dafür.
DE4224704C2 (de) * 1992-07-25 2002-01-31 Kloeckner Humboldt Wedag Verfahren und Anlage zur Zerkleinerung von Mahlgut
CN2277835Y (zh) * 1996-09-02 1998-04-08 北京西山除尘器厂 切向渐开线长筒型多管除尘器
US5915635A (en) * 1996-09-13 1999-06-29 Gowan Milling Company, L.L.C. Jet milling of agrichemical feedstocks
CN2340512Y (zh) * 1998-07-21 1999-09-29 中国科学院广州能源研究所 新型旋风分离式多管除尘器
JP4599540B2 (ja) * 2005-06-23 2010-12-15 太平工業株式会社 石炭灰処理設備
DE202007016785U1 (de) * 2007-11-29 2009-04-02 Khd Humboldt Wedag Gmbh Kreislaufmahlanlage
KR101091013B1 (ko) * 2009-12-02 2011-12-09 기아자동차주식회사 멀티 사이클론 타입의 크로즈드 크랭크케이스 벤틸레이션
CN201692886U (zh) * 2010-04-20 2011-01-05 武汉英吉利尔涂装科技有限公司 可调节风量的高效多管旋风除尘器
DE102011014592A1 (de) * 2011-03-21 2012-09-27 Loesche Gmbh Wälzmühle
JP2013000623A (ja) * 2011-06-14 2013-01-07 Jp Steel Plantech Co 軸流式マルチサイクロン集塵機
CN103272438B (zh) * 2013-05-02 2015-07-15 洛阳理工学院 一种集重力收尘的高效旋风收尘器
CN104172988A (zh) * 2013-05-28 2014-12-03 向桂南 一种真空吸尘器尘气分离装置
CN203412534U (zh) * 2013-07-25 2014-01-29 天津玄元大越科技有限公司 一种三合一泥浆清洁器
CN105880046A (zh) * 2014-12-10 2016-08-24 刘英聚 一种旋流高效第三级旋风分离方法及设备
BR102015003408B8 (pt) * 2015-02-13 2022-12-13 New Steel Solucoes Sustentaveis S A Sistema para recuperação a seco de finos de óxido de ferro a partir de rochas compactas e semicompactas portadoras de ferro
EP3135380B1 (de) * 2015-08-27 2017-10-11 Josef Fischer Kryogenmahlvorrichtung und -verfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6934871B2 (ja) 2021-09-15
WO2018046640A1 (de) 2018-03-15
US10926270B2 (en) 2021-02-23
EA034688B1 (ru) 2020-03-06
EA201800353A1 (ru) 2018-11-30
CN109641217A (zh) 2019-04-16
SG11201804823RA (en) 2018-07-30
US20190015840A1 (en) 2019-01-17
JP2019531178A (ja) 2019-10-31
CA3007583A1 (en) 2018-03-15
EP3292912A1 (de) 2018-03-14
CN109641217B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
EP3292912B1 (de) Verfahren zum betrieb eines multizyklons zum trennen von fein- und feinstkorn sowie multizyklon
EP1506058B1 (de) Kreislaufmahlanlage mit mühle und sichter
EP2785472B1 (de) Vorrichtung zum sichten von körnigem gut
EP2637790B1 (de) Verfahren zur zerkleinerung von mahlgut und wälzmühle
EP2542704A1 (de) Aufbereitungsverfahren für edelstahlschlacken und stahlwerksschlacken zur metallrückgewinnung
EP0603481B1 (de) Verfahren und Anlage zur Zerkleinerung von Mahlgut
EP0460490B1 (de) Sichter
DE4223762A1 (de) Sichter zum Sichten von körnigem Gut und Mahlanlage mit Einschaltung eines solchen Sichters
EP2804696B1 (de) Verfahren und vertikalmühle zum mahlen von mahlgut
EP1948360A1 (de) Wälzmühle
EP0634219A1 (de) Verfahren und Einrichtung zum Zerkleinern von Material unterschiedlicher Körnung
EP2694215A1 (de) Verfahren und vorrichtung zur vermahlung von feuchtem material
WO2015086554A1 (de) Kreislaufmahlanlage mit vorsichter und kugelmühle
EP3802457B1 (de) Trockenaufbereitung von kaolin bei der herstellung von hpa
EP1640070B1 (de) Anlage und Verfahren zur Zerkleinerung von Mahlgut
EP3368222B1 (de) Pneumatisch verbundene kaskadensichter und kreislaufmahlanlage mit pneumatisch verbundenen kaskadensichtern
AT392923B (de) Verfahren zum zerkleinern von stueckigem material sowie vorrichtung zur durchfuehrung dieses verfahrens
DE3730597C2 (de) Strahlmühle
EP2350239B1 (de) Verfahren zur aufbereitung von braunkohle
EP3849714B1 (de) Sichtrad mit segelflächenelementen und verfahren zum sichten mit einem solchen sichtrad
DE102018005205B4 (de) Sichter und Verfahren zum Sichten
WO2014037237A1 (de) Vorrichtung und verfahren zur verarbeitung von ersatzbrennstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180912

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016008120

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B02C0015000000

Ipc: B04C0009000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B04C 5/185 20060101ALI20190624BHEP

Ipc: B04C 5/12 20060101ALI20190624BHEP

Ipc: B04C 5/28 20060101ALI20190624BHEP

Ipc: B02C 15/00 20060101ALI20190624BHEP

Ipc: B02C 23/14 20060101ALI20190624BHEP

Ipc: B04C 5/14 20060101ALI20190624BHEP

Ipc: B04C 9/00 20060101AFI20190624BHEP

Ipc: B04C 11/00 20060101ALI20190624BHEP

INTG Intention to grant announced

Effective date: 20190726

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016008120

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1216584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200326

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200425

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016008120

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

26N No opposition filed

Effective date: 20200928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1216584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210909

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230901

Year of fee payment: 8

Ref country code: NL

Payment date: 20230920

Year of fee payment: 8

Ref country code: IE

Payment date: 20230918

Year of fee payment: 8

Ref country code: GB

Payment date: 20230921

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230919

Year of fee payment: 8

Ref country code: DE

Payment date: 20230922

Year of fee payment: 8

Ref country code: BE

Payment date: 20230918

Year of fee payment: 8