EP3280864B1 - Procédé de forage, procédé de réalisation d'un essai pressiométrique, ensemble correspondant - Google Patents

Procédé de forage, procédé de réalisation d'un essai pressiométrique, ensemble correspondant Download PDF

Info

Publication number
EP3280864B1
EP3280864B1 EP16718270.8A EP16718270A EP3280864B1 EP 3280864 B1 EP3280864 B1 EP 3280864B1 EP 16718270 A EP16718270 A EP 16718270A EP 3280864 B1 EP3280864 B1 EP 3280864B1
Authority
EP
European Patent Office
Prior art keywords
hole
outer sheath
tube
inner tube
pressuremeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP16718270.8A
Other languages
German (de)
English (en)
Other versions
EP3280864A1 (fr
Inventor
Francis Cour
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calyf
Original Assignee
Calyf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calyf filed Critical Calyf
Publication of EP3280864A1 publication Critical patent/EP3280864A1/fr
Application granted granted Critical
Publication of EP3280864B1 publication Critical patent/EP3280864B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/105Expanding tools specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/108Expandable screens or perforated liners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/20Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes

Definitions

  • the invention generally relates to drilling methods, especially for pressuremeter soundings of the Ménard type, performed in accordance with standard NF P 94-110 of July 1991 ("the Standard").
  • a pressuremeter survey is a set of successive operations consisting of the execution of a pressuremeter drilling and the realization, in this borehole, of one or more pressuremeter tests.
  • a pressuremeter drilling consists in producing in the ground a cylindrical excavation with circular cross section, into which the pressuremeter probe is introduced.
  • the quality of the pressuremeter test and that of the preliminary drilling are closely related.
  • the Standard requires the pressuremeter test to be performed in passes, the pass lengths must not exceed the maximum values fixed by the Standard.
  • the test makes it possible to obtain a soil deformability characteristic, called the Ménard E M pressuremeter module, a limiting resistance characteristic, called a pressuremeter pressure limit p l , and a characteristic pressure, called the pressurometric creep pressure p f .
  • the inherent limit resistance of the pressuremeter probe shall be as small as possible in relation to the pressuremeter pressure limit of the ground.
  • the probe must be able to reach a diametral expansion rate of 50% with respect to its diameter at rest.
  • the inherent limit resistance of the probe is equal to the pressure of the injection liquid necessary to reach the expansion rate of 50% in the air. This clean limit resistance should typically be less than 2.5 bar.
  • the bare flexible sheath probe is chosen according to the type of terrain.
  • the clean limit resistance of the bare flexible sheath probe should typically be less than 1.5 bar. This limit resistance is equal to the liquid pressure injection required to achieve the 50% expansion rate in the air of the bare flexible sheath probe.
  • the split tube is a steel tube, typically having six equidistant slots.
  • the nature and the thickness of the material are chosen so that the clean limit resistance of the split tube alone does not exceed 1 bar.
  • This inherent limit resistance is equal to the additional injection liquid pressure required for the complete probe to reach the expansion rate of 50% in air, compared to a bare flexible tube probe.
  • the clean limit resistance of the split tube alone is equal to the difference between the intrinsic limit resistance of the complete probe and the inherent limit resistance of the bare probe.
  • the split tube plays a role of protection of the probe against the aggressions of the ground, during the phase of descent of the probe in the borehole, then during the phase of swelling for the realization of the test, and with the ascent.
  • TFEM Split Tube with Simultaneous Removal of Materials
  • the TFEM technique makes it possible to set up such a means of support, simultaneously or immediately after the ground attack by the drilling tool.
  • the TFEM technique consists in driving in the ground, by threshing or jacking, a casing whose lower section consists of a split tube element, complying with the specifications of the Standard for Split Tube Probes. During penetration, the casing behaves like a corer.
  • the materials that penetrate the casing are broken up and brought to the surface with the help of ad hoc tools (retrojets, rotary tools, etc.). Once the maximum penetration is reached, the pressuremeter probe with flexible sheath is lowered at the level of the split tube element, then the tests are carried out by stepping up the casing step by step.
  • This TFEM technique makes it possible to precisely cut the hole and perfectly support the walls of the hole until the tests are performed.
  • its use has been very limited because of the problems of refusal in most of the soils other than loose sands and soft clays, and the very low yield of the tools of disintegration of the materials cored by the tube.
  • the ODEX technique makes it possible to drill the ground with a destructive tool operated at the bottom of the casing by rotopercussion and, simultaneously, to bring the destroyed materials back to the surface using a drilling fluid circulating inside the casing.
  • the casing descended without rotation.
  • ODEX casing must withstand the stresses imposed during the drilling phase, which in common applications where the casing elements are solid (not split) is not a problem.
  • the presence, at the bottom of the casing, of a split tube element poses a problem.
  • the clean limit resistance of the slit tube must not exceed 1 bar. This value is substantially less than the pressure of the drilling fluid circulating inside the casing. This entails a risk of opening the slits of the split tube element, and thus of the passage of the drilling fluid to the outside. The drilling fluid can then flow between the casing and the wall of the hole, which may cause a disintegration of the hole wall detrimental to the quality of drilling.
  • the invention aims to provide a method that is better suited to carrying out pressuremeter tests.
  • the invention relates to a drilling method of the aforementioned type, characterized in that the tube comprises an inner tube and an outer tubular sleeve interposed between the inner tube. and a wall of the hole, the method comprising, after the step of digging the hole, a recovery step during which the inner tube is extracted from the hole, the outer sleeve remaining in place inside the hole.
  • the new method thus makes it possible to carry out the drilling with a conventional ODEX-type casing drilling technique or similar, by adding to the casing a thin-walled sheath descended into the ground simultaneously with the inner tube. Once drilling is complete, the inner tube is raised, while the sleeve is left in place in the ground, ensuring the support of the wall of the hole. Drilling equipment can therefore be demobilized at an early stage.
  • the outer sheath 18 is in fact designed not to deform under the effect of an external radial pressure of between 0.2 and 2 bars, preferably between 0.5 and 1.5 bars. , applied for example on a height of 1 m.
  • an external radial pressure of between 0.2 and 2 bars, preferably between 0.5 and 1.5 bars. , applied for example on a height of 1 m.
  • such pressure applied for example by the ground on the outer surface of the sheath will not lead to a rupture of the sheath, or a tear, or a local depression of more than 5 mm.
  • the outer sleeve 18 has an intrinsic limit resistance of less than 1 bar, preferably less than 0.8 bar, more preferably less than 0.6 bar.
  • the clean limit resistance of the outer sleeve is equal to the difference in the limit resistance of the complete probe (pressuremeter + outer sleeve) and the inherent limit resistance of the pressuremeter without the outer sleeve. It corresponds to the additional injection liquid pressure to be applied so that the complete probe reaches a dilatation rate of 50% in air, compared to the pressuremeter probe alone without the outer sleeve.
  • the relatively more rigid inner tube gives good resistance to the tube during the step of digging the hole, and avoids any deformation of the tube.
  • the outer sleeve remains in place inside the hole.
  • the outer sheath is less rigid, and therefore opposes reduced resistance during any pressuremeter tests.
  • the inner tube has an internal internal resistance greater than 1 bar as defined above, preferably greater than 1.5 bar. This is due in particular to the fact that the inner tube is full.
  • the invention relates to a method for producing a pressuremeter test according to claim 1.
  • the method of performing a pressuremeter test may also have one or more of the features defined in dependent claims 2 to 10, considered individually or in any technically possible combination.
  • the drilling assembly is intended to implement the drilling method described above.
  • the drilling method of the invention is intended to be implemented by the above drilling assembly.
  • the invention relates to an assembly for carrying out a pressuremeter test according to claim 11.
  • the assembly for carrying out the pressuremeter test may also have one or more of the features defined in the dependent claims 12 to 14, considered individually or in any technically possible combination.
  • the set 2 represented on the figure 1 is intended for carrying out a pressuremeter test, in order to characterize the nature and behavior of a soil.
  • This soil can be of any type: sand, clay, soft rock, hard rock, etc.
  • the assembly 2 comprises means for drilling a hole in the ground, and means for carrying out the pressiometric test itself.
  • the hole drilled in the ground could be used for other purposes, different from carrying out a pressuremeter test. It could for example be used for logging, gamma rays or electrical resistance. It could also be used to make seismic measurements. For these types of tests and measurements, it is advantageous for the ground to be as little reworked as possible, and for the casing not to be a thick-thick steel tube.
  • the assembly 2 comprises a device 4 ( figure 2 ) of digging a longitudinal hole 6 in the ground 8, and a device 10 for placing a tube 14 in the hole simultaneously with the digging ( figure 1a ).
  • the hole is typically vertical in orientation. Alternatively, it is inclined relative to the vertical, or even horizontal.
  • the hole is straight. It is typically circular in cross section, or substantially circular.
  • the tube 14 extends substantially over the entire longitudinal length of the hole 6.
  • the device 10 is adapted to push the tube 14 progressively into the hole 6, as the hole 6 is dug.
  • the tube 14 comprises a relatively more rigid inner tube 16, and a relatively less rigid outer tubular sleeve 18 interposed between the inner tube 16 and a wall 19 of the hole.
  • the inner tube and the outer sleeve extend both substantially the entire longitudinal length of the hole.
  • the drilling assembly 2 further comprises an extraction device 20 provided for, after digging the hole 10, up the inner tube 16 out of the hole, the outer sleeve 18 remaining in place inside the hole 10 ( figure 1b ).
  • the inner tube 16 is made of a metallic material, for example steel. It has a thickness greater than 2 mm. Typically, it has a thickness of between 2 and 10 mm. In the example shown, on the figure 3 it has a thickness of 7 mm. He is full.
  • the outer sheath 18 is typically made of a plastic material, preferably a rigid and breakable plastic material.
  • a plastic material preferably a rigid and breakable plastic material.
  • it is made of polycarbonate or acetate. It has a thickness typically between 1 and 4 mm, for example between 2 and 3 mm. In the example shown on the figure 3 the sheath has a thickness of 2 mm.
  • the difference between the inner diameter of the sleeve and the outer diameter of the tube is between 2 and 8 mm. In the example shown, this difference is 4 mm.
  • the outer diameter of the sleeve 18 is chosen only slightly smaller than the nominal internal diameter of the hole to be drilled. Typically, the difference between the nominal internal diameter of the hole and the outer diameter of the sleeve is between 1 and 8 mm, and is 4 mm in the example shown in FIG. figure 3 . In practice, the wall of the hole tends to sag slightly with time, so that the ground comes into contact with the outer sleeve.
  • the digging device 4 is of any suitable type.
  • the digging device comprises a roto-percussion drilling tool 21, of the type shown in FIG. figure 2 .
  • the tool 21 comprises a drilling head 22 rotatably mounted on the inner tube 16, a device 24 for rotating the drill head 22 with respect to the inner tube 16, and a device 26 for transmitting longitudinal percussion to the drilling head 22 through the inner tube 16.
  • the drilling head 22 is of any type adapted to the terrain. It is mounted on a lower end 28 of the inner tube. It protrudes longitudinally towards the bottom of the hole 10 relative to the inner tube and the outer tube. The drilling head 22 is typically guided in rotation relative to the inner tube by reliefs formed on the inner surface of this tube, such as the ribs 30 shown in FIG. figure 2 .
  • the driving device 24 typically comprises a motor located outside the hole 10, and a drill string 31 transmitting the torque of the motor to the drill head 22.
  • the inner end of the drill string 31 is rigidly fixed to the drill head. drilling 22.
  • the drill string 31 is rotated by the motor.
  • the percussion device 26 is of any suitable type.
  • the percussion generated by the device 26 is transmitted to the drill head by the drill string 31, the latter transmitting the percussion in turn to the inner tube 16 so as to pull the latter towards the bottom of the hole as and when measuring the progress of drilling.
  • the percussions generated by the device 26 are transmitted directly to the inner tube 16, the inner tube 16 transmitting in turn the percussions to the drill head 22.
  • the digging device 4 typically comprises a unit (not shown) for injecting a drilling fluid into the interior of the inner tube 16.
  • the drilling fluid makes it possible to evacuate excavated material from the drill head.
  • the inner tube 16 comprises a plurality of tube sections 32, connected to each other by ferrules 34 of internal connection.
  • Each section of tube 32 has the dimensions stated above, and is made of the material indicated above.
  • the inner tube 16, and more particularly each of these sections 32, is full. By this is meant that the inner tube has no slot, opening or light, cut in the inner tube.
  • the drilling fluid is confined inside the inner tube 16 and can not circulate between the inner tube and the wall of the tube 10.
  • the inner connecting ferrule 34 may be of any suitable type.
  • each section 32 has an external thread 35 at its upper end 36.
  • the upper end 36 has a reduced thickness, the outer surface of the section 32 being hollowed in line with the upper end 36.
  • the lower end 38 of the section 32 has an internal thread 40.
  • the lower end 38 has a reduced thickness, by digging the inner face of the section 32 at the end 38.
  • Each inner connecting ferrule comprises a central tubular portion 42, extended longitudinally upwards by an upper tubular portion 44 and downwards by a lower tubular portion 46.
  • the upper tubular portion 44 carries a external thread 48, intended to cooperate with the internal thread 40 of the lower end of a tube section 32.
  • the lower tubular portion 46 carries an internal thread 50 intended to cooperate with the external thread 34 of the end. superior of another section of tube 32.
  • the central tubular portion 42 has substantially the same thickness as the tube sections 32. Moreover, the cumulative thickness of the upper tubular portion 44 and the lower end 38 substantially corresponds to the thickness of a tube section 32. Similarly, the cumulative thickness of the lower tubular portion 46 and the upper end 36 substantially corresponds to the thickness of a tube section 32. Thus, each inner connecting ferrule 34 fits exactly into the extension of the two sections 32 connected by said ferrule 34.
  • the outer sheath 18 also comprises a plurality of sleeve sections 52, connected to each other by external connecting ferrules 54.
  • Each outer connecting ferrule 54 has a cylindrical shape. It is delimited longitudinally towards the bottom of the hole and towards the inlet by lower and upper slices 56 and 58, in which grooves are provided, respectively 60, 62.
  • the grooves 60, 62 are substantially cylindrical.
  • the groove 60 is provided to receive an upper longitudinal end of a sleeve section 52.
  • the groove 62 is provided to receive a lower longitudinal end of another sleeve section.
  • the device for placing the tube 10 is provided for, during the digging step, introducing the pipe sections 32 and the sleeve sections 52 one by one into the hole 6, as and when the drilling progress.
  • An internal connecting ferrule 34 is interposed between two successive sections of tubes 32.
  • an outer connecting shell 54 is interposed between two successive sleeve sections 52.
  • the tube 14 comprises a plurality of connecting members 64 of the outer sleeve 18 and the inner tube 16 to each other, arranged so that the inner tube 16 is longitudinally connected to the outer sleeve 18 in translation towards the bottom of the hole 10, and is free longitudinally relative to the outer sleeve 18 in translation towards the entrance of the hole.
  • This advancement results for example percussion applied to the drill head or the inner tube.
  • each connecting member 64 is carried by an inner connecting ferrule 34, and cooperates with an outer connecting ferrule 54 to bind the inner tube 16 to the outer sleeve 18 in translation longitudinally towards the bottom of the hole.
  • each connecting member 64 is carried by an external connecting ferrule 54 and cooperates with an internal connecting ferrule 34.
  • each member 64 comprises a latch 66 pivotally mounted on an inner connecting ferrule 34 about an axis 68.
  • the latch 66 is rotatable about the axis 68, between a retracted position to the interior of a housing 70 formed in the inner connecting ferrule 34, and a locking position, in which the latch 66 projects out of the housing 70.
  • the lock In the retracted position, the lock is fully housed in the housing 70. In the locking position, the lock 66 extends, from the axis 68, longitudinally towards the bottom of the hole, and radially towards the outer sleeve. An end 74 of the latch, opposite the axis 68, protrudes radially from the surface 72 out of the housing 70.
  • a return spring biases the latch 66 towards its locking position.
  • the device 20 for extracting the inner tube from the hole 6 preferably comprises means 83 for locking the outer sleeve 18 in place inside the hole, during the extraction of the inner tube 16. This locking is typically performed at the head, at the end of the outer sleeve 18 located at the entrance of the hole. Blocking is achieved by any suitable means. It should be noted that the pressure exerted by the ground on the outer sheath contributes to blocking the outer sheath 18 in place inside the hole during the extraction of the inner tube 16.
  • the assembly 2 further comprises a pressuremeter probe 86, of a size adapted to be introduced into the outer sleeve 18 ( figure 1c ).
  • the pressuremeter probe 86 comprises a radially deformable cell 88, a unit 90 supplying the cell 88 with an incompressible fluid, and a controller 92.
  • the unit 90 is designed to supply the deformable cell 88 with fluid at a pressure that can vary within a predetermined range.
  • the controller 92 drives the unit 90 according to a predetermined program, and varies the pressure inside the cell 88 as a function of time, according to a predetermined pressure-time curve recorded in the controller 92.
  • the assembly 2 further comprises a device 94 for moving the pressuremeter probe 86, longitudinally along the hole 6, inside the outer sleeve 18.
  • the pressuremeter probe 86 can thus be placed successively at several positions distributed along the hole, and perform a pressuremeter test at each of said positions.
  • the outer sheath 18 advantageously comprises attenuations 96, distributed longitudinally along the outer sheath 18. These weakenings contribute to the outer sheath 18 having a lower intrinsic strength. 1 bar. On the other hand, it is important to note that these weakenings do not degrade the resistance of the sheath to the compression.
  • the fades 96 are slots in the outer sleeve.
  • they are lines of lesser thickness of material, facilitating the tearing of the outer sheath.
  • the losses 96 are made before placing the outer sleeve inside the tube, typically during the manufacture of the outer sleeve.
  • the losses 96 are made after placing the outer sleeve inside the hole.
  • the pressuremeter probe 86 is equipped with knives, arranged to create the weakenings in the outer sleeve 18 when the pressuremeter probe 86 moves along the outer sleeve.
  • the losses 96 are for example made over the entire length of the outer sleeve 18. In a variant, they are made only at the positions where the pressuremeter tests are to be carried out.
  • the outer sheath does not have any weakening, the intrinsic limit resistance of the sheath being obtained by appropriately selecting the thickness and the nature of the material.
  • the method comprises a step of digging the hole 6 in the ground with a casing of the hole 6 simultaneously by the tube 14 ( figure 1a and figure 2 ).
  • the tube 14 is set up progressively, as the hole 6 is dug.
  • the tube 14 extends continuously over the entire longitudinal length of the hole 6.
  • Tubing sections 32 and sleeve sections 52 are added in the hole 6, to form the inner tube and the outer sleeve, as drilling. Between each pair of consecutive pipe sections 32, an inner connecting shell 34 is interposed. Likewise, between each pair of consecutive sleeve segments 52, an outer connecting ferrule 54 is placed.
  • the pipe sections 32 and the sleeve sections 52 have longitudinally substantially the same length.
  • the inner connecting ferrules 34 and outer connecting ferrules 54 are always placed opposite each other.
  • the inner connecting ferrules 34 and the outer connecting ferrules 54 are circumferentially oriented such that each connecting member 64 is engaged in a concavity 76.
  • the drilling head 22 is rotated relative to the inner tube 16 by the device 24.
  • the inner tube 16 is fixed in rotation relative to the ground.
  • the drilling head 22 is rotated by the drill string 31.
  • percussion is applied to the drill head 22 by the device 26 provided for this purpose.
  • the percussions are transmitted to the inner tube 16 by the drill head 22, and / or are directly applied to the inner tube 16 by the device 26.
  • the inner tube 16 during its displacement longitudinally towards the bottom of the hole 6, drives the outer sheath 18, via the connecting members 64.
  • each latch 66 press against a bottom of the concavity 76, and thus urge the outer sleeve 18 longitudinally towards the bottom of the hole.
  • the orientation of the lock 66 allows the transmission of this effort.
  • the method also comprises, after the step of digging the hole 6, an upward step ( figure 1b ) during which the inner tube 16 is withdrawn from the hole 6, the outer sleeve 18 remaining in place inside the hole 6.
  • the inner tube 16 is moved longitudinally towards the inlet of the hole 6, by the device 20 provided for this purpose.
  • the pipe sections 32 are disassembled as they come out of the hole 6.
  • the connecting members 64 do not oppose the displacement of the inner tube 16 relative to the outer sleeve 18. Due to the orientation of the locks 66, the longitudinal movement of the inner tube 16 relative to the outer sleeve 18 to the inlet of the hole 6 causes the locks 66 to move towards their retracted positions inside the housings 70.
  • the outer sleeve 18 is locked in position inside the hole 6 by the means 83 provided for this purpose, and also by the pressure exerted by the ground.
  • the method comprises, after the recovery step, a step of introducing the pressuremeter probe 86 into the outer sheath 18 ( figure 1c ), followed by one or more measurement steps ( figure 1d ).
  • the measuring step is repeated at several positions distributed longitudinally along the hole 6.
  • the first measuring step is carried out by placing the pressuremeter probe 86 at the bottom of the hole 6, the pressuremeter probe 86 then being successively displaced from the bottom of the hole 6 to the inlet of the hole 6.
  • the outer sleeve 18 is not moved between the measurement steps. It stays in place, at the same position.
  • the first measurement step is performed with the probe 86 at the bottom of the hole 6, the second measurement step is performed immediately above the first measurement step, the third measurement step immediately above the second step of measurement, and so on until the entrance of the hole 6.
  • the pressuremeter probe 86 is moved by the device 94 provided for this purpose.
  • the deformable cell 88 of the pressuremeter probe is inflated by the device 90, the latter injecting an incompressible fluid into the cell 88.
  • the control device 92 controls the device 90, so that the device 90 inflates the deformable cell according to a predetermined pressure-time curve.
  • the swelling cell 88 is pressed radially against the outer sleeve and urges it against the wall of the hole.
  • the cell 88 will permanently deform the outer sheath, as shown in FIG. figure 1 .
  • the deformation of the outer sheath is facilitated by the weakening 96.
  • the control device 92 records the volume injected as a function of the pressure. Soil characteristics are then calculated from the recorded values.
  • the outer sheath is rigid enough to prevent the collapse of the hole.
  • the stresses applied by the walls of the hole on the outer sheath are moderate.
  • the circular geometry of the outer sleeve gives it good resistance against radial pressures, despite its small thickness.
  • the above method allows to put in place the outer sleeve immediately near the wall of the hole, typically less than 4 mm from the wall of the hole, and preferably less than 2 mm from the wall of the hole. This limits the reworking of the materials at the periphery of the hole, and guarantees a good representativeness of possible pressuremeter tests.
  • the fact that the inner tube is solid means that the drilling fluid can not flow between the inner tube and the hole wall, which contributes to the good quality of the drilling.
  • a roto-percussion drill bit with a rotatably mounted drill head on the inner tube and a device transmitting percussion to the drill head and / or the inner tube allows to drill very effectively, through any type of soil.
  • Such a tool also makes it possible to set up the tube almost instantaneously at the rear of the drill bit. The tube does not rotate but moves in translation, so that the materials at the periphery of the hole are not reworked.
  • the connecting members of the outer sleeve and the inner tube to one another allow the inner tube to drive the outer sleeve in translation towards the bottom of the hole, while allowing easy extraction of the inner tube from the hole, without train the outer sheath.
  • the use of a lubricating fluid during the rise of the inner tube also contributes to this result.
  • the method and the drilling assembly of the invention can be used for other applications than pressuremeter tests, for example for logging or seismic tests.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Earth Drilling (AREA)

Description

  • L'invention concerne en général les procédés de forage, notamment pour les sondages pressiométriques de type Ménard, pratiqués conformément à la norme NF P 94-110 de juillet 1991 (« la Norme »).
  • Plus précisément, l'invention concerne selon un premier aspect non couvert par le jeu de revendications, un procédé de forage dans un sol, comprenant typiquement l'étape suivante :
    • creusement d'un trou longitudinal dans le sol, avec tubage du trou simultanément par un tube s'étendant sensiblement sur toute une longueur longitudinale du trou.
  • Un sondage pressiométrique est un ensemble d'opérations successives consistant en l'exécution d'un forage pressiométrique et en la réalisation, dans ce forage, d'un ou plusieurs essais pressiométriques.
  • Un forage pressiométrique consiste à réaliser dans le terrain une excavation cylindrique à section transversale circulaire, dans laquelle est introduite la sonde pressiométrique. La qualité de l'essai pressiométrique et celle de la réalisation du forage préalable sont étroitement liées. Aussi, la Norme prescrit de réaliser l'essai pressiométrique par passes, les longueurs de passe ne devant pas dépasser des valeurs maximum fixées par la Norme.
  • L'essai permet d'obtenir une caractéristique de déformabilité du sol, appelé le module pressiométrique Ménard EM, une caractéristique de résistance limite, appelée pression limite pressiométrique pl, et une pression caractéristique, appelée pression de fluage pressiométrique pf.
  • Deux types de sonde peuvent être employées selon la nature et l'état du terrain:
    • la sonde à gaine souple;
    • la sonde à gaine souple placée dans un tube fendu.
  • La résistance limite propre de la sonde pressiométrique, y compris le tube fendu éventuel, doit être la plus faible possible par rapport à la pression limite pressiométrique du terrain. La sonde doit être capable d'atteindre un taux de dilatation diamétrale de 50% par rapport à son diamètre au repos. La résistance limite propre de la sonde est égale à la pression du liquide d'injection nécessaire pour atteindre le taux de dilatation de 50% dans l'air. Cette résistance limite propre doit typiquement être inférieure à 2,5 bars.
  • Pratiquement, la sonde à gaine souple nue est choisie en fonction du type de terrain. La résistance limite propre de la sonde à gaine souple nue doit typiquement être inférieure à 1,5 bars. Cette résistance limite propre est égale à la pression du liquide d'injection nécessaire pour atteindre le taux de dilatation de 50% dans l'air de la sonde à gaine souple nue.
  • Le tube fendu est un tube en acier, portant typiquement six fentes équidistantes. La nature et l'épaisseur du matériau sont choisies pour que la résistance limite propre du tube fendu seul ne dépasse pas 1 bar. Cette résistance limite propre est égale à la pression supplémentaire de liquide d'injection nécessaire pour que la sonde complète atteigne le taux de dilatation de 50% dans l'air, par rapport à une sonde à gaine souple nue. En d'autres termes, la résistance limite propre du tube fendu seul est égale à la différence entre la résistance limite propre de la sonde complète et la résistance limite propre de la sonde nue.
  • Le tube fendu joue un rôle de protection de la sonde contre les agressions du terrain, pendant la phase de descente de la sonde dans le trou de forage, puis pendant la phase de gonflement pour la réalisation de l'essai, et à la remontée.
  • Une technique de forage pressiométrique connue sous le nom de "Tube Fendu avec Enlèvement Simultané des Matériaux" (TFEM), a été développée pour s'affranchir de l'obligation du forage par passes, qui est la conséquence de l'absence de moyen de soutènement du trou après remontée du tube de forage. La technique TFEM permet de mettre en place un tel moyen de soutènement, simultanément ou immédiatement après l'attaque du terrain par l'outil de forage. Concrètement, la technique TFEM consiste à foncer dans le terrain, par battage ou vérinage, un tubage dont la section basse est constituée d'un élément de tube fendu, conforme aux spécifications de la Norme pour les sondes à tube fendu. Pendant la pénétration, le tubage se comporte comme un carottier. Les matériaux qui pénètrent dans le tubage sont désagrégés et remontés en surface à l'aide d'outils ad hoc (rétrojets, outils rotatifs..). Une fois la pénétration maximale atteinte, la sonde pressiométrique à gaine souple est descendue au niveau de l'élément de tube fendu, puis les essais sont effectués en remontant pas à pas le tubage. Cette technique TFEM permet d'assurer un découpage précis du trou et un soutien parfait des parois du trou jusqu'à l'exécution des essais. Toutefois, dans la pratique, son utilisation a été très limitée en raison des problèmes de refus dans la plupart des terrains autres que les sables lâches et les argiles molles, et du très faible rendement des outils de désagrégation des matériaux carottés par le tube.
  • Une amélioration des performances de la technique TFEM a été obtenue en l'associant avec la technique ODEX de forage avec tubage simultané du trou, couramment utilisée dans le domaine minier. La technique ODEX permet de forer le terrain avec un outil destructif opéré en fond du tubage par rotopercussion et, simultanément, de remonter les matériaux détruits vers la surface à l'aide d'un fluide de forage circulant à l'intérieur du tubage. Le tubage est descendu sans rotation.
  • Un tubage mis en oeuvre par la technique ODEX doit résister aux contraintes imposées pendant la phase de forage, ce qui, dans les applications courantes où les éléments de tubage sont pleins (non fendus), ne pose pas de problème.
  • En revanche, dans le cas particulier de l'application à la technique TFEM, la présence, en partie basse du tubage, d'un élément de tube fendu pose un problème. En effet, conformément à la Norme, la résistance limite propre du tube fendu ne doit pas dépasser 1 bar. Cette valeur est sensiblement inférieure à la pression du fluide de forage circulant à l'intérieur du tubage. Ceci entraine un risque d'ouverture des fentes de l'élément de tube fendu, et donc de passage du fluide de forage vers l'extérieur. Le fluide de forage peut alors circuler entre le tubage et la paroi du trou, ce qui risque de provoquer une désagrégation de la paroi du trou préjudiciable à la qualité du forage.
  • Dans ce contexte, l'invention vise à proposer un procédé qui soit mieux adapté à la réalisation des essais pressiométriques.
  • A cette fin, l'invention porte, selon le premier aspect non couvert par le jeu de revendications, sur un procédé de forage du type précité, caractérisé en ce que le tube comprend un tube interne et un fourreau tubulaire externe interposé entre le tube interne et une paroi du trou, le procédé comprenant, après l'étape de creusement du trou, une étape de remontée au cours de laquelle le tube interne est extrait hors du trou, le fourreau externe restant en place à l'intérieur du trou.
  • Le nouveau procédé permet donc de réaliser le forage avec une technique classique de forage avec tubage à l'avancement du type ODEX ou similaire, en ajoutant au tubage un fourreau à paroi mince descendu dans le terrain simultanément avec le tube interne. Une fois le forage terminé, le tube interne est remonté, alors que le fourreau est laissé en place dans le terrain, assurant le soutènement de la paroi du trou. Les équipements de forage peuvent donc être démobilisés à un stade précoce.
  • Les essais pressiométriques sont réalisés, le cas échéant, ultérieurement, avec le matériel d'essai approprié. La sonde pressiométrique est descendue à l'intérieur du fourreau, jusqu'à la profondeur maximale requise pour les essais. Les essais pressiométriques sont alors réalisés à la remontée. Au niveau de chaque essai, le fourreau joue le rôle du tube fendu couramment mis en oeuvre avec les sondes pressiométriques classiques. Le fourreau a donc deux fonctions :
    • le soutènement des parois du trou ;
    • pendant l'essai pressiométrique, la protection de la sonde.
  • Pour satisfaire la première fonction, le fourreau externe 18 est en effet prévu pour ne pas se déformer sous l'effet d'une pression radiale extérieure comprise entre 0,2 et 2 bars , de préférence comprise entre 0,5 et 1,5 bars, appliquée par exemple sur une hauteur de 1 m. On entend par là qu'une telle pression appliquée par exemple par le terrain sur la surface externe du fourreau, ne va pas conduire à une rupture du fourreau, ou à une déchirure, ou à un enfoncement local de plus de 5 mm.
  • Pour satisfaire la seconde fonction, le fourreau externe 18 présente une résistance limite propre inférieure à 1 bar de préférence inférieure à 0,8 bar, encore de préférence inférieure à 0,6 bar. Comme décrit précédemment, la résistance limite propre du fourreau externe est égale à la différence la résistance limite propre.de la sonde complète (sonde pressiométrique + fourreau externe) et la résistance limite propre de la sonde pressiométrique sans le fourreau externe. Elle correspond à la pression de liquide d'injection supplémentaire à appliquer pour que la sonde complète atteigne un taux de dilatation de 50 % dans l'air, par rapport à la sonde pressiométrique seule sans le fourreau externe.
  • Ainsi, le tube interne relativement plus rigide confère une bonne résistance au tube pendant l'étape de creusement du trou, et évite toute déformation du tube. Après extraction de ce tube interne, seul le fourreau externe reste en place à l'intérieur du trou. Le fourreau externe est moins rigide, et oppose donc une résistance réduite au cours d'éventuels essais pressiométriques.
  • Typiquement, le tube interne présente une résistance interne propre supérieure à 1 bar définie comme précédemment, de préférence supérieure à 1,5 bar. Ceci provient notamment du fait que le tube interne est plein.
  • Le procédé non couvert par le jeu de revendications peut également présenter une ou plusieurs des caractéristiques ci-dessous, considérée(s) individuellement ou selon toutes les combinaisons techniquement possibles :
    • le fourreau externe est en une matière plastique ;
    • le fourreau externe présente une épaisseur comprise entre 1 et 4 mm ;
    • le tube interne présente un diamètre externe, le fourreau externe présentant un diamètre interne, la différence entre le diamètre interne et le diamètre externe étant comprise entre 2 et 8 mm ;
    • le fourreau externe comporte des affaiblissements longitudinaux, répartis en périphérie du fourreau externe ;
    • les affaiblissements sont réalisés après mise en place du fourreau externe à l'intérieur du trou ; et
    • le fourreau externe est bloqué en position pendant l'étape de remontée.
  • Selon un second aspect, l'invention porte sur un procédé de réalisation d'un essai pressiométrique selon la revendication 1.
  • Le procédé de réalisation d'un essai pressiométrique peut également présenter une ou plusieurs des caractéristiques définies dans les revendications dépendantes 2 à 10, considérée(s) individuellement ou selon toutes les combinaisons techniquement possibles.
  • Selon un troisième aspect non couvert par le jeu de revendications, l'invention porte sur un ensemble de forage dans un sol, l'ensemble comportant:
    • un dispositif de creusement, comprenant un outil de forage d'un trou longitudinal dans le sol ;
    • un tube adapté pour s'étendre sensiblement sur toute une longueur longitudinale du trou, le tube comprenant un tube interne et un fourreau tubulaire externe interposé entre le tube interne et une paroi du trou ;
    • un dispositif de mise en place du tube dans le trou simultanément avec le creusement ;
    • un dispositif d'extraction, après creusement du trou, du tube interne hors du trou, le fourreau externe restant en place à l'intérieur du trou.
  • L'ensemble de forage est prévu pour mettre en oeuvre le procédé de forage décrit plus haut.
  • Inversement, le procédé de forage de l'invention est prévu pour être mis en oeuvre par l'ensemble de forage ci-dessus.
  • L'ensemble de forage de l'invention non couvert par le jeu de revendications peut en outre présenter les caractéristiques ci-dessous :
    • le tube comprend une pluralité d'organes de liaison du fourreau externe et du tube interne l'un à l'autre, agencés pour que le tube interne soit lié longitudinalement au fourreau externe en translation vers un fond du trou, et soit libre longitudinalement par rapport au fourreau externe en translation vers une entrée du trou ;
    • le tube interne comprend une pluralité de tronçons de tube raccordés les uns aux autres par des viroles de liaison internes ;
    • le fourreau externe comprend une pluralité de tronçons de fourreau raccordés les uns aux autres par des viroles de liaison externes ;
    • chaque organe de liaison étant porté par l'une d'une virole de liaison interne et d'une virole de liaison externe et coopérant avec l'autre d'une virole de liaison interne et d'une virole de liaison externe pour lier le tube interne longitudinalement au fourreau externe en translation vers le fond du trou.
  • Selon un quatrième aspect, l'invention porte sur un ensemble permettant la réalisation d'un essai pressiométrique selon la revendication 11.
  • L'ensemble de réalisation de l'essai pressiométrique peut également présenter une ou plusieurs des caractéristiques définies dans les revendications dépendantes 12 à 14, considérée(s) individuellement ou selon toutes les combinaisons techniquement possibles.
  • D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui en est donnée ci-dessus, à titre indicatif et nullement limitatif, en référence aux figures annexées, parmi lesquelles :
    • la figure 1 représente de manière schématique différentes étapes du procédé de réalisation d'un essai pressiométrique selon l'invention ;
    • la figure 2 est une représentation schématique simplifiée de l'étape de creusement du trou du procédé de la figure 1 ; et
    • la figure 3 est une représentation schématique agrandie du fourreau externe et du tube interne utilisés dans le procédé de l'invention.
  • L'ensemble 2 représenté sur la figure 1 est destiné à la réalisation d'un essai pressiométrique, en vue de caractériser la nature et le comportement d'un sol. Ce sol peut être de tout type : sable, argile, roche molle, roche dure, etc.
  • Comme le montre la figure 1, l'ensemble 2 comporte les moyens destinés à forer un trou dans le sol, et des moyens destinés à la réalisation de l'essai pressiométrique proprement dit.
  • Il est à noter que le trou foré dans le sol pourrait être utilisé dans d'autres buts, différents de la réalisation d'un essai pressiométrique. Il pourrait par exemple être utilisé pour réaliser une diagraphie, en rayons gammas ou en résistance électrique. Il pourrait également être utilisé pour réaliser des mesures sismiques. Pour ces types d'essais et de mesure, il est avantageux que le terrain soit le moins remanié possible, et que le tubage ne soit pas un tube d'acier de forte épaissseur.
  • Comme visible sur la figure 1, l'ensemble 2 comporte un dispositif 4 (figure 2) de creusement d'un trou 6 longitudinal dans le sol 8, et un dispositif 10 de mise en place d'un tube 14 dans le trou simultanément avec le creusement (figure 1a).
  • Le trou est typiquement d'orientation verticale. En variante, il est incliné par rapport à la verticale, ou même horizontal.
  • Le trou est rectiligne. Il est typiquement à section droite circulaire, ou sensiblement circulaire.
  • Du fait que le trou 6 est tubé simultanément au creusement, le tube 14 s'étend sensiblement sur toute la longueur longitudinale du trou 6. Le dispositif 10 est adapté pour enfoncer le tube 14 progressivement dans le trou 6, au fur et à mesure du creusement du trou 6.
  • Comme visible sur les figures 1 et 2, le tube 14 comprend un tube interne 16 relativement plus rigide, et un fourreau tubulaire externe 18, relativement moins rigide interposé entre le tube interne 16 et une paroi 19 du trou.
  • Le tube interne et le fourreau externe s'étendent l'un et l'autre sensiblement sur toute la longueur longitudinale du trou.
  • Comme le montre la figure 1, l'ensemble de forage 2 comporte en outre un dispositif d'extraction 20 prévu pour, après creusement du trou 10, remonter le tube interne 16 hors du trou, le fourreau externe 18 restant en place à l'intérieur du trou 10 (figure 1b).
  • Le tube interne 16 est en un matériau métallique, par exemple en acier. Il présente une épaisseur supérieure à 2 mm. Typiquement, il présente une épaisseur comprise entre 2 et 10 mm. Dans l'exemple représenté, sur la figure 3, il présente une épaisseur de 7 mm. Il est plein.
  • Le fourreau externe 18 est typiquement en une matière plastique, de préférence une matière plastique rigide et cassable.. Par exemple, il est en polycarbonate ou en acétate. Il présente une épaisseur typiquement comprise entre 1 et 4 mm, par exemple entre 2 et 3 mm. Dans l'exemple représenté sur la figure 3, le fourreau présente une épaisseur de 2 mm.
  • De manière à permettre une extraction sans difficulté du tube interne, la différence entre le diamètre interne du fourreau et le diamètre externe du tube est comprise entre 2 et 8 mm. Dans l'exemple représenté, cette différence vaut 4 mm.
  • Par ailleurs, le diamètre externe du fourreau 18 est choisi seulement légèrement inférieur au diamètre interne nominal du trou à forer. Typiquement, la différence entre le diamètre interne nominal du trou et le diamètre externe du fourreau est comprise entre 1 et 8 mm, et vaut 4 mm dans l'exemple représenté sur la figure 3. En pratique, la paroi du trou tend s'affaisser légèrement avec le temps, de telle sorte que le terrain vient en contact avec le fourreau externe.
  • Le dispositif de creusement 4 est de tout type approprié. Typiquement, le dispositif de creusement comprend un outil 21 de forage par roto-percussion, du type représenté sur la figure 2.
  • L'outil 21 comprend une tête de forage 22 montée rotative sur le tube interne 16, un dispositif 24 d'entrainement en rotation de la tête de forage 22 par rapport au tube interne 16, et un dispositif 26 prévu pour transmettre une percussion longitudinale à la tête de forage 22 à travers le tube interne 16.
  • La tête de forage 22 est de tout type adapté en fonction du terrain. Elle est montée sur une extrémité inférieure 28 du tube interne. Elle fait saillie longitudinalement vers le fond du trou 10 par rapport au tube interne et au tube externe. La tête de forage 22 est typiquement guidée en rotation par rapport au tube interne par des reliefs ménagés sur la surface interne de ce tube, tels que les nervures 30 représentée sur la figure 2.
  • Le dispositif d'entrainement 24 comporte typiquement un moteur situé hors du trou 10, et un train de tiges 31 transmettant le couple du moteur à la tête de forage 22. L'extrémité intérieure du train de tiges 31 est rigidement fixée à la tête de forage 22. Le train de tiges 31 est entrainé en rotation par le moteur.
  • Le dispositif de percussion 26 est de tout type adapté. Les percussions générées par le dispositif 26 sont transmises à la tête de forage par le train de tiges 31, celui-ci transmettant les percussions à son tour au tube interne 16 de manière à tirer celui-ci vers le fond du trou au fur et à mesure de l'avancement du forage. Alternativement, ou en plus, les percussions générées par le dispositif 26 sont transmises directement au tube interne 16, le tube interne 16 transmettant à son tour les percussions à la tête de forage 22.
  • Le dispositif de creusement 4 comporte typiquement une unité (non représentée) d'injection d'un fluide de forage à l'intérieur du tube interne 16. Le fluide de forage permet d'évacuer des matériaux excavés par la tête de forage.
  • Comme visible sur la figure 3, le tube interne 16 comporte une pluralité de tronçons de tube 32, raccordés les uns aux autres par des viroles 34 de liaison interne. Chaque tronçon de tube 32 présente les dimensions énoncées ci-dessus, et est réalisé dans le matériau indiqué ci-dessus.
  • Le tube interne 16, et plus particulièrement chacun de ces tronçons 32, est plein. On entend par là que le tube interne ne comporte pas de fente, d'ouverture ou de lumière, découpées dans le tube interne. Ainsi, le fluide de forage est confiné à l'intérieur du tube interne 16 et ne peut pas circuler entre le tube interne et la paroi du tube 10.
  • La virole de liaison interne 34 peut être de tout type adapté.
  • Dans l'exemple représenté, chaque tronçon 32 présente un filetage externe 35 à son extrémité supérieure 36. L'extrémité supérieure 36 présente une épaisseur réduite, la surface externe du tronçon 32 étant creusée au droit de l'extrémité supérieure 36.
  • L'extrémité inférieure 38 du tronçon 32 présente un filetage interne 40. L'extrémité inférieure 38 présente une épaisseur réduite, par creusement de la face interne du tronçon 32 au niveau de l'extrémité 38.
  • Chaque virole de liaison interne comporte une portion tubulaire centrale 42, prolongée longitudinalement vers le haut par une portion tubulaire supérieure 44 et vers le bas par une portion tubulaire inférieure 46. La portion tubulaire supérieure 44 porte un filetage externe 48, destiné à coopérer avec le filetage interne 40 de l'extrémité inférieure d'un tronçon de tube 32. La portion tubulaire inférieure 46 porte quant à elle un filetage interne 50 destiné à coopérer avec le filetage externe 34 de l'extrémité supérieure d'un autre tronçon de tube 32.
  • Comme visible sur la figure 3, la portion tubulaire centrale 42 présente sensiblement la même épaisseur que les tronçons de tube 32. Par ailleurs, l'épaisseur cumulée de la portion tubulaire supérieure 44 et de l'extrémité inférieure 38 correspond sensiblement à l'épaisseur d'un tronçon de tube 32. De même, l'épaisseur cumulée de la portion tubulaire inférieure 46 et de l'extrémité supérieure 36 correspond sensiblement à l'épaisseur d'un tronçon de tube 32. Ainsi, chaque virole de liaison interne 34 s'inscrit exactement dans le prolongement des deux tronçons 32 raccordés par ladite virole 34.
  • Le fourreau externe 18 comprend lui aussi une pluralité de tronçons de fourreau 52, raccordés les uns aux autres par des viroles de liaison externe 54. Chaque virole de liaison externe 54 présente une forme cylindrique. Elle est délimitée longitudinalement vers le fond du trou et vers l'entrée par des tranches inférieure et supérieure 56 et 58, dans lesquelles sont ménagées des rainures, respectivement 60, 62. Les rainures 60, 62 sont sensiblement cylindriques. La rainure 60 est prévue pour recevoir une extrémité longitudinale supérieure d'un tronçon de fourreau 52. La rainure 62 est prévue pour recevoir une extrémité longitudinale inférieure d'un autre tronçon de fourreau.
  • Le dispositif de mise en place du tube 10 est prévu pour, au cours de l'étape de creusement, introduire les tronçons de tube 32 et les tronçons de fourreau 52 un par un dans le trou 6, au fur et à mesure de l'avancement du forage. Une virole de liaison interne 34 est interposée entre deux tronçons de tubes 32 successifs. De même, une virole de liaison externe 54 est interposée entre deux tronçons de fourreau 52 successifs.
  • Par ailleurs, et comme visible sur la figure 3, le tube 14 comprend une pluralité d'organes de liaison 64 du fourreau externe 18 et du tube interne 16 l'un à l'autre, agencés pour que le tube interne 16 soit lié longitudinalement au fourreau externe 18 en translation vers le fond du trou 10, et soit libre longitudinalement par rapport au fourreau externe 18 en translation vers l'entrée du trou.
  • Ainsi, pendant le creusement du trou 10, c'est le tube interne 16 qui entraine le fourreau externe 18 vers le fond du trou, au fur et à mesure de l'avancement du forage.
  • Cet avancement résulte par exemple des percussions appliquées à la tête de forage ou au tube interne.
  • Ces percussions ne sont pas appliquées au fourreau externe, de telle sorte que celui-ci n'est pas endommagé par les percussions.
  • Dans l'exemple représenté, chaque organe de liaison 64 est porté par une virole de liaison interne 34, et coopère avec une virole de liaison externe 54 pour lier le tube interne 16 au fourreau externe 18 en translation longitudinalement vers le fond du trou.
  • En variante, chaque organe de liaison 64 est porté par une virole de liaison externe 54 et coopère avec une virole de liaison interne 34.
  • Dans l'exemple représenté, chaque organe 64 comporte un verrou 66 monté pivotant sur une virole de liaison interne 34 autour d'un axe 68. Le verrou 66 est mobile en rotation autour de l'axe 68, entre une position escamotée à l'intérieure d'un logement 70 ménagé dans la virole de liaison interne 34, et une position de blocage, dans laquelle le verrou 66 fait saillie hors du logement 70.
  • Dans la position escamotée, le verrou est entièrement logé dans le logement 70,. Dans la position de blocage, le verrou 66 s'étend, à partir de l'axe 68, longitudinalement vers le fond du trou, et radialement vers le fourreau externe. Une extrémité 74 du verrou, opposée à l'axe 68, fait saillie radialement par rapport à la surface 72 hors du logement 70.
  • Comme visible sur la figure 3, l'extrémité 74 est engagée dans une concavité 76 creusée dans une surface radialement interne de la virole de liaison externe 54.
  • Un ressort de rappel, non représenté, sollicite le verrou 66 vers sa position de blocage.
  • Le dispositif 20 prévu pour l'extraction du tube interne hors du trou 6 comporte de préférence des moyens 83 pour bloquer le fourreau externe 18 en place à l'intérieur du trou, pendant l'extraction du tube interne 16. Ce blocage est typiquement réalisé en tête, au niveau de l'extrémité du fourreau externe 18 située à l'entrée du trou. Le blocage est réalisé par tout moyen adapté. Il est à noter que la pression exercée par le terrain sur le fourreau externe contribue à bloquer le fourreau externe 18 en place à l'intérieur du trou, pendant l'extraction du tube interne 16.
  • L'ensemble 2 comporte encore une sonde pressiométrique 86, de taille adaptée pour être introduite dans le fourreau externe 18 (figure 1c). La sonde pressiométrique 86 comporte une cellule déformable radialement 88, une unité 90 d'alimentation de la cellule 88 en un fluide incompressible, et un contrôleur 92. L'unité 90 est prévue pour alimenter la cellule déformable 88 en fluide à une pression qui peut varier dans une plage prédéterminée. Le contrôleur 92 pilote l'unité 90 selon un programme prédéterminé, et fait varier la pression à l'intérieur de la cellule 88 en fonction du temps, selon une courbe pression-temps prédéterminée enregistrée dans le contrôleur 92.
  • L'ensemble 2 comporte encore un dispositif 94 permettant de déplacer la sonde pressiométrique 86, longitudinalement le long du trou 6, à l'intérieur du fourreau externe 18. La sonde pressiométrique 86 peut ainsi être placée successivement à plusieurs positions réparties le long du trou, et réaliser un essai pressiométrique à chacune desdites positions.
  • De manière à faciliter la déformation du fourreau externe18 à chaque essai pressiométrique, le fourreau externe 18 comporte avantageusement des affaiblissements 96, répartis longitudinalement le long du fourreau externe 18. Ces affaiblissements contribuent à faire que le fourreau externe 18 présente une résistance limite propre inférieure à 1 bar. En revanche, il est important de noter que ces affaiblissements ne dégradent pas la résistance du fourreau à la compression.
  • Par exemple, les affaiblissements 96 sont des fentes ménagées dans le fourreau externe. En variante, ce sont des lignes de moindre épaisseur de matière, facilitant le déchirement du fourreau externe.
  • Par exemple, les affaiblissements 96 sont réalisés avant mise en place du fourreau externe à l'intérieur du tube, typiquement lors de la fabrication du fourreau externe.
  • En variante, les affaiblissements 96 sont réalisés après mise en place du fourreau externe à l'intérieur du trou. Par exemple, la sonde pressiométrique 86 est équipée de couteaux, agencés de manière à créer les affaiblissements dans le fourreau externe 18 quand la sonde pressiométrique 86 se déplace le long du fourreau externe.
  • Les affaiblissements 96 sont par exemple réalisés sur toute la longueur du fourreau externe 18. En variante, ils sont réalisés seulement au niveau des positions où doivent être réalisés les essais pressiométriques.
  • En variante, le fourreau externe ne compte pas d'affaiblissement, la résistance limite propre du fourreau étant obtenue en choisissant de manière appropriée l'épaisseur et la nature du matériau.
  • Le procédé de l'invention va maintenant être décrit.
  • Le procédé comporte une étape de creusement du trou 6 dans le sol avec un tubage du trou 6 simultanément par le tube 14 (figure 1a et figure 2).
  • Le tube 14 est mis en place progressivement, au fur et à mesure que le trou 6 est creusé.
  • Le tube 14 s'étend en permanence sur toute la longueur longitudinale du trou 6.
  • Des tronçons de tube 32 et des tronçons de fourreau 52 sont ajoutés dans le trou 6, pour constituer le tube interne et le fourreau externe, au fur et à mesure du forage. Entre chaque paire de tronçons de tube 32 consécutifs, une virole de liaison interne 34 est interposée. De même, entre chaque paire de tronçons de fourreau 52 consécutifs, une virole de liaison externe 54 est placée.
  • Les tronçons de tube 32 et les tronçons de fourreau 52 présentent longitudinalement sensiblement la même longueur. Ainsi, les viroles de liaison interne 34 et les viroles de liaison externe 54 sont toujours placées en vis-à-vis l'une de l'autre.
  • Les viroles de liaison interne 34 et les viroles de liaison externe 54 sont orientées circonférentiellement de telle sorte que chaque organe de liaison 64 soit en prise dans une concavité 76.
  • Au cours de l'étape de creusement, quand celle-ci est réalisée à l'aide de l'outil de forage par roto-percussion 20 du type représenté sur la figure 2, la tête de forage 22 est entrainée en rotation par rapport au tube interne 16 par le dispositif 24. Le tube interne 16 est fixe en rotation par rapport au sol. La tête de forage 22 est entrainée en rotation par le train de tiges 31.
  • Au fur et à mesure de l'avancement du forage, de nouvelles tiges sont ajoutées au train de tiges 31.
  • Par ailleurs, des percussions sont appliquées à la tête de forage 22 par le dispositif 26 prévu à cet effet. Les percussions sont transmises au tube interne 16 par la tête de forage 22, et/ou sont directement appliquées au tube interne 16 par le dispositif 26.
  • Ainsi, au cours du forage, la tête de forage 22 et le tube interne 16 progressent ensemble le long du trou 6.
  • Le tube interne 16, au cours de son déplacement longitudinalement vers le fond du trou 6, entraine le fourreau externe 18, via les organes de liaison 64.
  • En effet, les extrémités 74 de chaque verrou 66 appuient sur un fond de la concavité 76, et sollicitent ainsi le manchon externe 18 longitudinalement vers le fond du trou. L'orientation du verrou 66 permet la transmission de cet effort.
  • Le procédé comporte encore, après l'étape de creusement du trou 6, une étape de remontée (figure 1b) au cours de laquelle le tube interne 16 est extrait hors du trou 6, le fourreau externe 18 restant en place à l'intérieur du trou 6.
  • Le tube interne 16 est déplacé longitudinalement vers l'entrée du trou 6, par le dispositif 20 prévu à cet effet. Les tronçons de tube 32 sont démontés au fur et à mesure qu'ils sortent du trou 6.
  • Les organes de liaison 64 ne s'opposent pas au déplacement du tube interne 16 par rapport au fourreau externe 18. Du fait de l'orientation des verrous 66, le mouvement longitudinal du tube interne 16 par rapport au fourreau externe 18 vers l'entrée du trou 6 provoque le déplacement des verrous 66 vers leurs positions escamotés à l'intérieur des logements 70.
  • Pendant l'étape de remontée, le fourreau externe 18 est bloqué en position à l'intérieur du trou 6 par les moyens 83 prévus à cet effet, et également par la pression exercée par le terrain.
  • Le procédé comporte, après l'étape de remontée, une étape d'introduction de la sonde pressiométrique 86 dans le fourreau externe 18 (figure 1c), suivi d'une ou plusieurs étapes de mesure (figure 1d).
  • L'étape de mesure est répétée à plusieurs positions réparties longitudinalement le long du trou 6.
  • La première étape de mesure est effectuée en plaçant la sonde pressiométrique 86 au fond du trou 6, la sonde pressiométrique 86 étant ensuite déplacée successivement depuis le fond du trou 6 vers l'entrée du trou 6. Le fourreau externe 18 n'est pas déplacé entre les étapes de mesure. Il reste en place, à la même position.
  • Ainsi, la première étape de mesure est effectuée avec la sonde 86 au fond du trou 6, la seconde étape de mesure est effectuée immédiatement au-dessus de la première étape de mesure, la troisième étape de mesure immédiatement au-dessus de la seconde étape de mesure, et ainsi de suite jusqu'à l'entrée du trou 6.
  • Entre deux étapes de mesure, la sonde pressiométrique 86 est déplacée par le dispositif 94 prévu à cet effet.
  • A chaque étape de mesure, la cellule déformable 88 de la sonde pressiométrique est gonflée par le dispositif 90, celui-ci injectant un fluide incompressible dans la cellule 88. Le dispositif de contrôle 92 pilote le dispositif 90, de telle sorte que celui-ci gonfle la cellule déformable suivant une courbe pression-temps prédéterminée.
  • La cellule 88 en gonflant vient se plaquer radialement contre le fourreau externe et sollicite celui-ci contre la paroi du trou. Ainsi, la cellule 88 va déformer de manière permanente le fourreau externe, comme illustré sur la figure 1. La déformation du fourreau externe est facilitée par les affaiblissements 96.
  • Le dispositif de contrôle 92 enregistre le volume injecté en fonction de la pression. Les caractéristiques du sol sont ensuite calculées à partir des valeurs enregistrées.
  • Le procédé et l'ensemble permettant de mettre en oeuvre ce procédé, présente de nombreux avantages.
  • Du fait qu'un tubage est mis en place dans le trou pendant le creusement de ce trou, il ne se produit pas de décompression de terrain au voisinage du trou ou d'effondrement du trou. Le fait que le tube comporte un tube interne relativement rigide permet d'introduire ce tube dans le trou au moment du forage, sans que le tube soit endommagé. Le fait que le tube interne relativement plus rigide est extrait hors du trou en ne laissant en place que le fourreau externe relativement moins rigide, permet d'améliorer la qualité des résultats d'éventuels essais pressiométriques. Le fourreau externe en effet se déforme facilement quand la sonde pressiométrique est gonflée.
  • Par ailleurs, le fourreau externe est suffisamment rigide pour empêcher l'effondrement du trou. Les contraintes appliquées par les parois du trou sur le fourreau externe sont modérées. La géométrie circulaire du fourreau externe lui confère une bonne résistance vis-à-vis des pressions radiales, en dépit de sa faible épaisseur.
  • Le procédé ci-dessus permet de mettre en place le fourreau externe immédiatement à proximité de la paroi du trou, typiquement à moins de 4 mm de la paroi du trou, et de préférence à moins de 2 mm de la paroi du trou. Ceci limite le remaniement des matériaux à la périphérie du trou, et garantit une bonne représentativité d'éventuels essais pressiométriques.
  • Le fait que le tube interne soit plein fait que le fluide de forage ne peut pas circuler entre le tube interne et la paroi du trou, ce qui contribue à la bonne qualité du forage.
  • Le fait d'utiliser un outil de forage par roto-percussion, avec une tête de forage montée rotative sur le tube interne et un dispositif transmettant des percussions à la tête de forage et/ou au tube interne permet de forer de manière très efficace, à travers tout type de sol. Un tel outil permet également de mettre en place le tube de manière quasi instantanée à l'arrière de l'outil de forage. Le tube ne tourne pas mais se déplace en translation, de telle sorte que les matériaux à la périphérie du trou ne sont pas remaniés.
  • Les organes de liaison du fourreau externe et du tube interne l'un à l'autre permettent au tube interne d'entrainer le fourreau externe en translation vers le fond du trou, tout en permettant une extraction facile du tube interne hors du trou, sans entrainer le fourreau externe. L'utilisation d'un fluide lubrifiant pendant l'étape de remontée du tube interne contribue aussi à ce résultat.
  • Il est à noter que le procédé et l'ensemble de forage de l'invention peut être utilisé pour d'autres applications que des essais pressiométriques, par exemple pour des diagraphies ou des essais sismiques.

Claims (14)

  1. Procédé de réalisation d'un essai pressiométrique, le procédé comprenant:
    - une étape de creusement d'un trou (6) longitudinal dans le sol (8), avec tubage du trou (6) simultanément par un tube (14) s'étendant sensiblement sur toute une longueur longitudinale du trou (6), le tube (14) comprenant un tube interne (16) et un fourreau (18) tubulaire externe interposé entre le tube interne (16) et une paroi du trou (6),
    - après l'étape de creusement du trou (6), une étape de remontée au cours de laquelle le tube interne (16) est extrait hors du trou (6), le fourreau externe (18) restant en place à l'intérieur du trou (6) ;
    caractérisé en ce que le procédé comprend :
    - une étape d'introduction d'une sonde pressiométrique (86) dans le fourreau externe (18) ;
    - une étape de mesure au cours de laquelle une cellule déformable (88) de la sonde pressiométrique (86) est gonflée par un fluide, la cellule (88) sollicitant radialement le fourreau externe (18) contre la paroi du trou (6).
  2. Procédé selon la revendication 1, caractérisé en ce que l'étape de mesure est répétée à plusieurs positions réparties longitudinalement le long du trou (6), en déplaçant la sonde pressiométrique (86) successivement depuis un fond du trou (6) vers une entrée du trou (6), le fourreau externe (18) n'étant pas déplacé.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le fourreau externe (18) présente une résistance limite propre inférieure ou égale à 1 bars, de préférence inférieure à 0,8 bars.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le fourreau externe (18) est prévu pour ne pas se déformer sous l'effet d'une pression radiale extérieure comprise entre 0,2 et 2 bars.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le fourreau externe (18) est en une matière plastique.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le fourreau externe (18) présente une épaisseur comprise entre 1 et 4 mm.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le tube interne (16) présente un diamètre externe, le fourreau externe (18) présentant un diamètre interne, la différence entre le diamètre interne et le diamètre externe étant comprise entre 2 et 8 mm.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le fourreau externe (18) comporte des affaiblissements longitudinaux (96), répartis en périphérie du fourreau externe (18).
  9. Procédé selon la revendication 8, caractérisé en ce que les affaiblissements (96) sont réalisés après mise en place du fourreau externe (18) à l'intérieur du trou (6).
  10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le fourreau externe (18) est bloquée en position pendant l'étape de remontée.
  11. Ensemble permettant la réalisation d'un essai pressiométrique, l'ensemble comportant:
    - un dispositif (4) de creusement, comprenant un outil (21) de forage d'un trou (6) longitudinal dans le sol (8) ;
    - un tube (14) adapté pour s'étendre sensiblement sur toute une longueur longitudinale du trou (6), le tube (14) comprenant un tube interne (16) et un fourreau (18) tubulaire externe interposé entre le tube interne (16) et une paroi du trou (6) ;
    - un dispositif (10) de mise en place du tube (14) dans le trou (6) simultanément avec le creusement ;
    - un dispositif (20) d'extraction, après creusement du trou (6), du tube interne (16) hors du trou (6), le fourreau externe (18) restant en place à l'intérieur du trou (6) caractérisé en ce que l'ensemble comprend:
    - une sonde pressiométrique (86) susceptible d'être introduite dans le fourreau externe (18), comportant une cellule déformable (88) ;
    - un dispositif (90) prévu pour gonfler la cellule déformable (88) à l'aide d'un fluide, de manière à ce que la cellule déformable (88) sollicite radialement le fourreau externe (18) contre la paroi du trou (6).
  12. Ensemble selon la revendication 11, caractérisé en ce que l'ensemble comprend un dispositif (94) permettant de déplacer la sonde pressiométrique (86) successivement à plusieurs positions réparties longitudinalement le long du trou (6), depuis un fond du trou (6) vers une entrée du trou (6), sans déplacement du fourreau externe (18).
  13. Ensemble selon la revendication 11 ou 12, caractérisé en ce que le tube (14) comprend une pluralité d'organes (64) de liaison du fourreau externe (18) et du tube interne (16) l'un à l'autre, agencés pour que le tube interne (16) soit lié longitudinalement au fourreau externe (18) en translation vers un fond du trou (6), et soit libre longitudinalement par rapport au fourreau externe (18) en translation vers une entrée du trou (6).
  14. Ensemble selon la revendication 13, caractérisé en ce que
    - le tube interne (15) comprend une pluralité de tronçons (32) de tube raccordés les uns aux autres par des viroles (34) de liaison internes ;
    - le fourreau externe (18) comprend une pluralité de tronçons (52) de fourreau raccordés les uns aux autres par des viroles (54) de liaison externes ;
    - chaque organe de liaison (64) étant porté par l'une d'une virole (34) de liaison interne et d'une virole (54) de liaison externe et coopérant avec l'autre d'une virole (34) de liaison interne et d'une virole (54) de liaison externe pour lier le tube interne (16) longitudinalement au fourreau externe (18) en translation vers le fond du trou (6).
EP16718270.8A 2015-04-10 2016-04-08 Procédé de forage, procédé de réalisation d'un essai pressiométrique, ensemble correspondant Not-in-force EP3280864B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1553142A FR3034805B1 (fr) 2015-04-10 2015-04-10 Procede de forage, procede de realisation d'un essai pressiometrique, ensemble correspondant
PCT/EP2016/057814 WO2016162513A1 (fr) 2015-04-10 2016-04-08 Procédé de forage, procédé de réalisation d'un essai pressiométrique, ensemble correspondant

Publications (2)

Publication Number Publication Date
EP3280864A1 EP3280864A1 (fr) 2018-02-14
EP3280864B1 true EP3280864B1 (fr) 2019-03-06

Family

ID=53484002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16718270.8A Not-in-force EP3280864B1 (fr) 2015-04-10 2016-04-08 Procédé de forage, procédé de réalisation d'un essai pressiométrique, ensemble correspondant

Country Status (4)

Country Link
US (1) US10598008B2 (fr)
EP (1) EP3280864B1 (fr)
FR (1) FR3034805B1 (fr)
WO (1) WO2016162513A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109165434B (zh) * 2018-08-13 2020-07-28 中国科学院武汉岩土力学研究所 高应力地下洞室流变性软岩稳定性分析的解析计算方法
FR3100326B1 (fr) * 2019-08-29 2021-12-31 Calyf Appareil de mesure du périmètre d’un objet déformable, utilisation de l’appareil pour la pléthysmographie par inductance ou sur un obturateur gonflable, dispositifs de mesure par mise en pression du sous-sol et par compression d’un échantillon de sol ou de roche
CN115992697B (zh) * 2023-03-24 2023-06-13 中海油田服务股份有限公司 一种旁压测试***及旁压测试方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005504A (en) * 1959-05-11 1961-10-24 Gardner Denver Co Drilling device
US3945444A (en) * 1975-04-01 1976-03-23 The Anaconda Company Split bit casing drill
US4279299A (en) * 1979-12-07 1981-07-21 The United States Of America As Represented By The United States Department Of Energy Apparatus for installing condition-sensing means in subterranean earth formations
US6106200A (en) * 1996-11-12 2000-08-22 Techmo Entwicklungs-Und Vertriebs Gmbh Process and device for simultaneously drilling and lining a hole
US6164126A (en) * 1998-10-15 2000-12-26 Schlumberger Technology Corporation Earth formation pressure measurement with penetrating probe
KR20120082278A (ko) 2011-01-13 2012-07-23 삼성전자주식회사 표면 코팅층 및 상기 표면 코팅층을 포함하는 열 교환기
US8733474B2 (en) * 2011-01-14 2014-05-27 Schlumberger Technology Corporation Flow control diverter valve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10598008B2 (en) 2020-03-24
EP3280864A1 (fr) 2018-02-14
WO2016162513A1 (fr) 2016-10-13
FR3034805B1 (fr) 2019-06-14
FR3034805A1 (fr) 2016-10-14
US20180080315A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
EP0265344B1 (fr) Procédé pour la réalisation d'un pieu dans le sol, machine de forage et dispositif pour la mise en oeuvre de ce procédé
BE1011414A3 (fr) Systeme combine de carottage et de forage a trepan stabilise.
EP3280864B1 (fr) Procédé de forage, procédé de réalisation d'un essai pressiométrique, ensemble correspondant
FR2501777A1 (fr) Methode et dispositif pour effectuer, a l'aide d'outils specialises, des operations telles que des mesures, dans des portions de puits fortement inclinees sur la verticale, ou horizontales
EP1525371B1 (fr) Conduite de guidage telescopique de forage en mer
FR2814494A1 (fr) Moteur de trepan de carottage ameliore et procede pour obtenir un echantillon de carotte de materiau
FR2858011A1 (fr) Dispositif et procede d'echantillonnage en fond de puits
FR2914006A1 (fr) Procede et appareil pour une diagraphie de puits acheminee par tige
FR2864989A1 (fr) Outil de carottage avec dispositif de retenue
EP2417323B1 (fr) Dispositif de verrouillage pour un dispositif de forage
FR2937076A1 (fr) Procede de reparation d'une suspension de colonne perdue, dispositif et ebauche pour sa mise en oeuvre
EP2652205B1 (fr) Procede de forage
EP2157277B1 (fr) Dispositif pour la réalisation d'un puits dans un sol
EP0531336B1 (fr) Carottier double pour forage devie
EP0165154B1 (fr) Méthode et dispositif pour effectuer à l'aide d'outils spécialisés des opérations telles que des mesures, dans des portions de puits fortement inclinées sur la verticale, ou horizontales
EP0010037B1 (fr) Tarière creuse pour le forage en vue du moulage de pieux en béton
WO2021048496A1 (fr) Procédé et dispositif de forage grand diamètre ou de creusement de puits suivant plusieurs inclinaisons
EP4041986B1 (fr) Dispositif de mesure pour déterminer la conformité des puits forés pour l'eau et son procédé de fonctionnement
EP2697470B1 (fr) Procédé et dispositif de forage non destructif
EP3835487B1 (fr) Pénétromètre statique auto-foreur
WO2017137702A1 (fr) Procede de fabrication d'un tirant d'ancrage et tirant d'ancrage.
FR2459356A1 (fr) Dispositif de forage pour un forage etage
FR2832454A1 (fr) Equipement de forage de puits verticaux
FR2997762A1 (fr) Methode de realisation d'essai geotechnique utilisant un tubage et un penetrometre dote d'un cone de penetration.
FR3055919A1 (fr) Dispositif de forage de sol pour la realisation d'essais d'expansion en forage d'un sol in situ

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180926

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1104782

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016010740

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190607

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190606

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1104782

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190706

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016010740

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190408

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190706

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

26N No opposition filed

Effective date: 20191209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220329

Year of fee payment: 7

Ref country code: FR

Payment date: 20220314

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220421

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230501

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230408

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430