EP3280558B1 - Method for producing a soft-magnetic body - Google Patents

Method for producing a soft-magnetic body Download PDF

Info

Publication number
EP3280558B1
EP3280558B1 EP16715832.8A EP16715832A EP3280558B1 EP 3280558 B1 EP3280558 B1 EP 3280558B1 EP 16715832 A EP16715832 A EP 16715832A EP 3280558 B1 EP3280558 B1 EP 3280558B1
Authority
EP
European Patent Office
Prior art keywords
sintering
coating
powder particles
soft magnetic
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16715832.8A
Other languages
German (de)
French (fr)
Other versions
EP3280558A1 (en
Inventor
Branislav Zlatkov
Marcus Menzel
Henrike Harstick
Henning Wöhl-Bruhn
Eike Hermann Timm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP3280558A1 publication Critical patent/EP3280558A1/en
Application granted granted Critical
Publication of EP3280558B1 publication Critical patent/EP3280558B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/11Controlling temperature, temperature profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a method for producing a soft magnetic body.
  • soft magnetic bodies and soft magnets made of soft magnetic materials for the production and use for soft magnetic cores of electric motors, electric valves in injection systems, actuators and sensors or the like.
  • Such soft magnetic bodies can, for. B. be designed as toroidal cores, mass cores or powder cores.
  • an inductive component is known whose soft magnetic core consists of a powder composite material.
  • the powder composite is produced by mixing a ferromagnetic amorphous or nanocrystalline alloy powder with a ferromagnetic dielectric powder and a thermoplastic or thermoset polymer.
  • a manufacturing method of a soft magnetic amorphous body using a glass having a low softening point as a binder and also as an insulator is known a manufacturing method of a soft magnetic amorphous body using a glass having a low softening point as a binder and also as an insulator.
  • a soft magnetic material powder is first pre-formed into a body together with the glass and the pre-formed body is heated without pressing.
  • the disadvantage is that the production of known soft magnetic bodies or soft magnets from a soft magnetic body is often very complex and associated with high costs. The robustness of the soft magnetic bodies is also frequently reduced, with the temperature and / or corrosion resistance possibly being insufficient.
  • the soft magnetic bodies or soft magnets or electrical sheets are operated in an alternating magnetic field - especially at higher frequencies - the soft magnetic bodies often have a high power loss due to the occurrence of eddy currents. It arise high temperatures, which have a negative effect on operation and reliability.
  • an undesired or uncontrollable crystal growth of the particles of the soft magnetic material typically takes place during the manufacturing process, in particular due to the powder metallurgical route (during sintering).
  • the object of the present invention to at least partially remedy the disadvantages described above.
  • the temperature and / or corrosion resistance and robustness are to be increased and / or the power loss or the eddy current losses are to be reduced.
  • another task is to reduce the energy losses occurring in the soft magnet.
  • a soft magnetic body is understood to mean in particular a body made of a soft magnetic material and / or a soft magnetic material.
  • the body can preferably have a certain structural shape and thus be designed, for example, as a toroidal tape core, mass core, powder core and / or as a molded or solid part.
  • a soft magnet is also understood to mean, in particular, a soft magnetic body which has a low coercive field strength and is therefore unsuitable for use as a permanent magnet or permanent magnet.
  • the soft magnet or the soft magnetic body has the soft magnetic material, which, for example, as a ferromagnetic material can easily be magnetized in a magnetic field (magnetic polarization) and thus serves to "strengthen" the magnetic field.
  • the magnetization does not take place permanently, so that no significant magnetization remains after the magnetic field has disappeared.
  • the coercive field strength is therefore significantly lower in the case of a soft magnetic material than in the case of a hard magnetic material.
  • the steps are preferably carried out one after the other, with step c) in particular being carried out after step b).
  • the temperature increase resulting from the heat treatment relates in particular to the coated powder, ie the temperature is increased both for the coating material and for the powder particles.
  • both the coating material and the soft magnetic material receive a maximum of a process temperature used for the heat treatment.
  • a heat treatment of the powder particles coated in step b) takes place in accordance with step c), with only the coating material being sintered or vitrified in accordance with step c).
  • the term sintering temperature relates in particular to a temperature which is suitable for sintering and / or vitrification (ie conversion into the glass phase) of the respective material (ie the soft magnetic material or the coating material).
  • the sintering temperature is, for example, in a range below the transformation temperature (in particular also glass transition temperature) or the melting temperature of the respective material. It is also conceivable that the sintering temperature is essentially proportional to the melting temperature and / or transformation temperature and / or a solidus temperature of the respective material.
  • the transformation temperature of the coating material is also lower than the melting temperature or sintering temperature of the soft magnetic material in order to prevent sintering or melting of the powder particles.
  • the coating material is preferably thermally stable at up to 600 ° C (Celsius) and / or up to 800 ° C and / or up to 1200 ° C and / or up to 1400 ° C.
  • a coating material is preferred chosen so that the adjacent powder particles can neither grow together in step b) nor in step c) due to the heat treatment. This prevents undesired crystal growth of the powder particles, ie the magnetic particles, but also contact closure of several particles.
  • the method according to the invention which is in particular a powder metallurgical method, increases the corrosion resistance of the soft magnetic body due to the coating. Passivation also takes place as a result of the coating in accordance with step b) of the particle surfaces.
  • the coating material here serves in particular as an insulator or binder, which z. B. is formed from a starting material and / or is used to produce a matrix material.
  • the starting material preferably represents a precursor for the coating material and / or the coating material represents a precursor for the matrix material.
  • the process temperature used for the heat treatment or sintering is preferably selected such that the coating material is converted into a matrix (a diamagnetic or paramagnetic material) is transferred, which embeds the powder particles.
  • the heat treatment or sintering of the coating material or the entire method according to the invention takes place under conditions in which no sintering of the soft magnetic material takes place.
  • Eddy current losses can thus be significantly reduced and a temperature rise or heating of the soft magnet during operation with higher-frequency alternating magnetic fields can be reduced.
  • Further energy losses, such as hysteresis or after-effects losses, can also be reduced due to the insulating effect of the coating.
  • Sintered powder particles isolated in this way have high temperature stability compared to soft magnetic components that are mixed together with a polymer as a binder.
  • step c) there is an aftertreatment by means of a further heat treatment and shaping of the heat-treated powder by hot isostatic pressing.
  • the heat treatment of the coating material according to step c) corresponds in particular to a heat treatment of the entire powder or the powder particles with the aim of sintering the coating material, although the melting and / or sintering of the powder particles and / or the soft magnetic material is avoided and / or prevented becomes. This enables the soft magnet produced to be adapted for a wide variety of purposes.
  • the soft magnetic powder is produced beforehand in order to provide the soft magnetic powder.
  • the powder can in particular be crystalline soft magnetic materials (such as soft iron, carbon steels, alloys based on FeAl, FeAlSi, FeNi, FeCo or the like) and / or made of amorphous soft magnetic materials (such as FeNiBSi, FeBSi or the like) and / or soft magnetic ferrite materials ( e.g. MnZn ferrites, MgZn ferrites or the like), spinel materials (e.g. MnMgZn, NiZn or the like) and / or garnet materials (BiCa, YGd or the like) and / or the like.
  • crystalline soft magnetic materials such as soft iron, carbon steels, alloys based on FeAl, FeAlSi, FeNi, FeCo or the like
  • amorphous soft magnetic materials such as FeNiBSi, FeBSi or the like
  • soft magnetic ferrite materials e.g. Mn
  • the coated powder particles are shaped into a compact, in particular by pressing.
  • the advantage is thus achieved that the desired shape of the soft magnetic body, the properties of the material and the packing density can be reliably adapted or improved.
  • the term “compact” here relates generally to the resulting shaped body or the green body and is therefore not limited to pressing. Shaping can also take place, for example, by molding and / or pressing and / or pouring and / or die pressing and / or hot pressing and / or cold isostatic pressing and / or hot isostatic pressing and / or ultrasonic pressing or the like.
  • the coated powder particles result from the uncoated powder particles which were coated according to step b) and thus have powder particles enveloped by the coating material.
  • the sintering temperature is pressure-dependent, so that the shaping can optionally be carried out together with the sintering and / or the heat treatment according to step c). This has the advantage that the temperature required for sintering can be reduced. However, it must then be taken into account that the process temperature used for sintering or for heat treatment according to step c) is adapted accordingly, so that the lower sintering temperature of the soft magnetic material is not reached during the heat treatment.
  • the pellet is heated according to step c), for example, to a temperature below the melting temperature of the soft magnetic material, but at least to a temperature which sinters the coating material and / or converts it into the glass phase, i.e. H. vitrified.
  • the process temperature for the heat treatment according to step c) is therefore in particular in the transformation range of the coating material, in particular glass (if this is used as a coating material).
  • the heat treatment according to step c) can be carried out in a vacuum or in a neutral or a reducing atmosphere. It is also conceivable that the heat treatment and in particular the sintering can take place under air and / or nitrogen and / or argon and / or hydrogen, since the surface of the powder particles is passivated.
  • the process temperature and / or the sintering temperature of the coating material is preferably at least 50 K (Kelvin) and / or 100 K and / or 150 K and / or 200 K and / or 220 K below the sintering temperature of the soft magnetic material.
  • a process temperature used for the heat treatment, in particular for sintering, and / or a process pressure used for the heat treatment are adapted such that a Sintering and / or melting of the powder particles is avoided, the process temperature being in particular below the sintering temperature suitable for sintering the soft magnetic material.
  • the heat treatment ie in particular the sintering and / or the vitrification, is preferably carried out in such a way that the process temperature used and the process pressure jointly influence the sintering temperature.
  • the compact or the coating material is preferably heated to a maximum of one process temperature, the maximum process pressure being selected in this process such that sintering and / or melting of the powder particles and / or the soft magnetic material is always avoided and / or prevented.
  • the heat treatment is preferably carried out in such a way that a phase transition of the powder particles is always avoided. This prevents a significant change in the powder particles (crystal growth or contact closure), which increases the performance of the soft magnet.
  • the coating material is at least partially converted into a matrix (ie a matrix material) of a diamagnetic and / or paramagnetic, in particular insulating material, is transferred, in particular in such a way that the matrix embeds the powder particles.
  • a coating is formed from the coating material or the matrix material, which for example completely surrounds the powder particles (i.e. in particular the majority of the powder particles of the powder). The coating increases the corrosion resistance of the soft magnetic material.
  • the coating leads to passivation of the particle surfaces of the powder particles.
  • impurities such as. B. by carbon, oxygen, phosphorus, which lead to a deterioration in the soft magnetic properties, can be prevented.
  • the coating by the coating material takes place in particular in such a way that a non-conductive barrier is formed, which leads to insulation of the powder particles. This allows eddy currents to be significantly reduced and the undesired heating of the soft magnetic body in the case of higher-frequency alternating magnetic fields.
  • the coating is carried out by a dry deposition method, in particular by a chemical and / or physical gas deposition method.
  • the coating can be carried out by chemical vapor deposition (CVD) or physical vapor deposition (PVD).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the deposition process in particular an educt such. B. used the starting material to produce the coating material.
  • PVD Physical gas deposition processes
  • PVD are vacuum-based coating processes in which the starting material is converted into the gas phase and deposited on the substrate to be coated (ie the powder particles), for example by way of condensation.
  • evaporation processes such as thermal evaporation, laser beam evaporation, arc evaporation, electron beam evaporation
  • sputtering i.e. sputter deposition or cathode atomization
  • the chemical gas deposition process ie CVD
  • the coating material is deposited on the surface of the substrate (due to a chemical reaction of the components present in the gas phase) to form a solid component.
  • the starting material is thus in a volatile form in the gas phase and separates out as a less volatile compound, for example elemental or as an oxide.
  • the dry processes have the advantage that no expensive solvents are required and no measures for solvent disposal or solvent re-purification are required.
  • there is no need for energy-intensive drying processes so that the coating processes described have a high degree of flexibility with regard to the coating materials that can be used.
  • wet techniques such as sol-gel methods, can also be used for coating.
  • the coating can preferably have at least one or an additional oxide layer and in particular can be produced by oxidizing the powder and then coating it with glass and / or ceramic-glass and / or ceramic. This results in a particularly advantageous configuration and insulation of the soft magnetic powder particles. In this way, the energy losses occurring in the soft magnet due to the electrical insulation effect of the coating in connection with the individual particles can be reduced, so that there is no short circuit between individual soft magnetic particles.
  • the invention can provide that the coating material is obtained in particular from a starting material and, after coating, the coating material is present, in particular in an oxidic and / or finely particulate structure, the coating material preferably being vitrified by the heat treatment and / or sintering.
  • Vitrification refers in particular to the solidification of a liquid by increasing its viscosity while it is being cooled. Here one remains Crystallization and an amorphous material is created.
  • the starting material in particular is used as the starting material.
  • the coating material is produced from the starting material and the matrix material (matrix) is produced from the coating material.
  • the materials, in particular the matrix material can preferably include and / or consist of glass, a glass ceramic and / or a ceramic.
  • the materials used for the coating, ie the coating material and / or the starting material and / or the matrix material can also have and / or consist of dia- or paramagnetic materials, in particular glass materials and / or glass ceramics and / or ceramics and / or oxides and / or mixtures of the materials mentioned.
  • the matrix material can particularly preferably be a glass and / or a glass ceramic and / or a ceramic and / or a combination of the materials mentioned.
  • the material used for the coating has in particular SiO2 and / or other metal oxides, in particular Al2O3, Na2O, K2O, MgO, CaO, B2O3, TiO2, PbO and / or the like and particularly preferably quartz and / or crown glass and / or lime Soda glass and / or float glass and / or borosilicate glass.
  • the materials can optionally have mixtures of different oxides with variable SiO2 proportions.
  • the oxides in the glass cannot be in the form of separate low-molecular-weight molecules, but rather as extensive networks. So z. B. the silicon oxide as a silicate in the form of interlinked SiO4 tetrahedra.
  • Glass-ceramics differ in particular from glasses in that, in addition to glassy phases, there are also polycrystalline phases.
  • Ceramic materials include in particular mineral silicate materials, ie like the glasses or glass ceramics SiO2 or SiO4 based materials like kaolins or clay minerals and / or oxidic ceramics based on aluminum oxide, beryllium oxide or the like.
  • the ceramic materials can also have non-oxidic materials and / or carbides and / or nitrides, such as silicon carbide SiC, boron carbide BC or boron nitride BN. Differences between the chemical composition of the ceramic materials and the glasses or glass ceramics are also conceivable.
  • the decisive factor here is to choose the matrix material such that it has a lower transformation temperature or melting temperature than the soft magnetic material, so that the soft magnetic material does not sinter or melt during step c).
  • the transformation temperature or melting temperature can be determined, for example, by means of calorimetric methods (such as differential scanning calorimetry or DCS).
  • the transformation temperature and / or melting temperature of the matrix material is preferably selected to be at least 100 K and preferably at least 200 K below the melting temperature of the soft magnetic material.
  • glass ceramics and / or ceramics for example salts and / or volatile compounds such as hydrides are used depending on the coating process.
  • precursor compounds at least one of the following elements or the like is used: Si, Al, Na, K, Mg, Ca, B, P, Pb, Ti, Li, Be.
  • the corresponding elementary components arise from these compounds, which react to the corresponding oxides in the gas phase or after deposition on the particle surface of the powder particles.
  • step b) ie after coating
  • step c) ie after sintering or heat treatment
  • the glass, ceramic or glass ceramic material is then produced from the oxides.
  • a thermal aftertreatment is carried out by hot isostatic pressing.
  • the hot isostatic pressing can alternatively or additionally also take place simultaneously with step c).
  • the compact is for example in the compression chamber of the system or optionally also z. B. placed in a deformable container, which z. B. to a heat treatment temperature which can be lower or higher than the sintering temperature, heated.
  • the compact is exposed to a pressure of up to 50 MPa and / or 100 MPa and / or 200 MPa and / or 300 MPa. In this way, the structure of the soft magnetic body can be compressed even further.
  • a magnetic field treatment and / or a thermal treatment can also take place.
  • the sintering temperature of the coating material is lower than the sintering temperature of the soft magnetic material.
  • the soft magnetic body is produced in particular by the method according to the invention in such a way that production always takes place without a magnetic field (that is, no external magnetic field is used).
  • the core here preferably has a diameter which essentially corresponds to the diameter of the powder particles in step a), ie before the heat treatment, preferably in the range from 0.5 ⁇ m to 250 ⁇ m (depending on the material and intended use of the body).
  • the soft magnetic body according to the invention thus brings the same advantages as have been described in detail with reference to a method according to the invention.
  • the soft magnetic body can preferably be produced by a method according to the invention.
  • a layer thickness of the coating is in the range from 1 nm to 10 ⁇ m, preferably in the range from 2 nm and 50 nm.
  • the diameter of the powder particles before sintering according to step c) essentially corresponds to the diameter of the powder particles after sintering according to step c) and / or the diameter of the powder particles of the soft magnetic body according to the invention or the soft magnet according to the invention.
  • the diameter remains essentially constant during the entire method according to the invention, possibly with a certain distribution (or tolerance).
  • the layer thicknesses and diameters are preferably matched to one another in such a way that sufficient electrical insulation and passivation of the powder particles is ensured, the layer thicknesses having to be small enough not to restrict the magnetic field density of the soft magnet too much.
  • a soft magnet is not according to the invention. It can be provided here that the soft magnet has a soft magnetic body according to the invention and / or is produced by a method according to the invention.
  • the soft magnet can optionally be produced by further post-treatment steps and / or by a machining production process (such as cutting and grinding).
  • the soft magnet according to the invention thus has the same advantages as have been described in detail with reference to a method according to the invention and / or a soft magnetic body according to the invention.
  • a soft magnetic powder 20 can have a plurality of powder particles 21, which, for example, as a sphere and / or ellipsoid of revolution and / or irregular with any shape ( Figure 2 ) are trained.
  • the powder particles 21 each have a diameter P of essentially 1 ⁇ m to 250 ⁇ m. In particular, it is conceivable that the diameters P of the individual powder particles 21 vary at most in this range mentioned and / or in a range of at most 0.1 ⁇ m to 50 ⁇ m.
  • the powder particles 21 have a soft magnetic material 22 which, for. B. may have a crystalline soft magnetic material such as soft iron or carbon steels.
  • the powder particles 21 shown here correspond to uncoated powder particles 21, so that this is an uncoated powder 20a.
  • a coated powder 20b which has a coating material 31.
  • the coating material 31 surrounds the powder particles 21 (or cores) as a coating 30, the coating 30 having a layer thickness D of at least 1 nm and / or a maximum of 10 nm and / or a maximum of 1 ⁇ m and / or a maximum of 10 ⁇ m with a tolerance of has a maximum of 1 nm and / or 10 nm. It is It can be clearly seen here that the powder particles 21 are (electrically) isolated from one another due to the coating 30, whereby eddy current losses can be significantly reduced.
  • the Figures 5 and 6 each schematically show a pellet 40 which has the coated powder 20b.
  • the compact was created, for example, by molding and in particular pressing in order to obtain a desired shape.
  • the shaping or pressing can also take place simultaneously with a heat treatment of the compact.
  • Vitrification of the coating material 31 is effected in particular by the heat treatment, in particular by sintering the coated powder 20b or the coating 30.
  • a soft magnetic body 10 is shown (quasi a section after sintering), which was created by the method 100 according to the invention.
  • the coating material 31 for example, was converted into a matrix material or a matrix 32.
  • no significant grain growth has taken place here, since the process temperature during the heat treatment is below a sintering temperature of the soft magnetic material 22.
  • the powder particles 21 have been isolated from one another by an amorphous phase, a contact closure between powder particles being excluded.
  • Method steps of a method 100 according to the invention are schematically visualized.
  • a soft magnetic powder 20 is provided.
  • the soft magnetic powder 20 has powder particles 21 made of a soft magnetic material 22.
  • the soft magnetic powder 20 is produced from crystalline, soft magnetic materials.
  • the powder particles 21 are coated with a coating material 31.
  • a coating material 31 and / or a starting material is produced and / or provided.
  • the coated powder 20b can then be pressed to form a compact 40.
  • the coated powder 20b or the compact 40 is then heat-treated or sintered, the process temperature used for the heat treatment being below a sintering temperature of the soft magnetic material 22.
  • the heat treatment takes place in particular in such a way that crystal growth of the powder particles 21 is avoided.
  • the coating 30 ensures that adjacent powder particles 21 cannot grow together.
  • a soft magnetic body 10 or a soft magnet 11 is shown, which can be used, for example, for electric motors.
  • the desired shape can be achieved, for example, by molding and / or post-treatment, which z. B. can be done during sintering or after sintering.
  • the soft magnetic body 10 not according to the invention and / or the soft magnet 11 not according to the invention can have any shape depending on the application and is therefore not limited to the shapes shown.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines weichmagnetischen Körpers.The present invention relates to a method for producing a soft magnetic body.

Es ist aus dem Stand der Technik bekannt, weichmagnetische Körper und Weichmagnete aus weichmagnetischen Werkstoffen zur Herstellung und zum Einsatz für weichmagnetische Kerne von Elektromotoren, elektrischen Ventilen in Einspritzsystemen, Aktoren und Sensoren oder dergleichen zu nutzen. Dabei können solche weichmagnetischen Körper z. B. als Ringbandkerne, Massekerne oder Pulverkerne ausgebildet sein.It is known from the prior art to use soft magnetic bodies and soft magnets made of soft magnetic materials for the production and use for soft magnetic cores of electric motors, electric valves in injection systems, actuators and sensors or the like. Such soft magnetic bodies can, for. B. be designed as toroidal cores, mass cores or powder cores.

Aus der DE 101 28 004 A1 ist z. B. ein induktives Bauelement bekannt, dessen weichmagnetischer Kern aus einem Pulververbundwerkstoff besteht. Der Pulververbundwerkstoff wird durch Mischen eines ferromagnetischen amorphen oder nanokristallinen Legierungspulvers mit einem ferromagnetischen dielektrischen Pulver sowie einem thermoplastischen oder duroplastischen Polymer hergestellt.From the DE 101 28 004 A1 is z. B. an inductive component is known whose soft magnetic core consists of a powder composite material. The powder composite is produced by mixing a ferromagnetic amorphous or nanocrystalline alloy powder with a ferromagnetic dielectric powder and a thermoplastic or thermoset polymer.

Aus der DE 600 19 697 T2 ist ein Herstellungsverfahren eines weichmagnetischen amorphen Körpers unter Verwendung eines Glases mit einem niedrigen Erweichungspunkt als Bindemittel und auch als Isolator bekannt. Dabei wir ein weichmagnetisches Materialpulver zusammen mit dem Glas zuerst zu einem Körper vorgeformt und der vorgeformte Körper ohne Pressen erhitzt.From the DE 600 19 697 T2 is known a manufacturing method of a soft magnetic amorphous body using a glass having a low softening point as a binder and also as an insulator. A soft magnetic material powder is first pre-formed into a body together with the glass and the pre-formed body is heated without pressing.

Des Weiteren ist aus der EP 0 844 623 A1 ein Verfahren zur Herstellung eines weichmagnetischen Pulvers bekannt, bei welchem die Sintertemperatur des verwendeten Glases unterhalb der Kristallisationstemperatur der verwendeten Metallpartikel liegt. Dabei ist beispielsweise das Pressen unter hoher Temperatur und insbesondere das heißisostatische Pressen des Pulvers zu einem Körper offenbart.Furthermore, from the EP 0 844 623 A1 a method for producing a soft magnetic powder is known in which the sintering temperature of the glass used is below the crystallization temperature of the metal particles used. For example, pressing at high temperature and in particular hot isostatic pressing of the powder to form a body is disclosed.

Nachteilig ist, dass die Herstellung bekannter weichmagnetischer Körper bzw. Weichmagnete aus einem weichmagnetischen Körper oft sehr aufwendig und mit hohen Kosten verbunden ist. Auch ist häufig die Robustheit der weichmagnetischen Körper reduziert, wobei die Temperatur- und/oder Korrosionsbeständigkeit ggf. nicht ausreichend ist. Bei einem Betrieb der weichmagnetischen Körper bzw. Weichmagnete oder Elektrobleche in einem magnetischen Wechselfeld - insbesondere bei höheren Frequenzen - weisen die weichmagnetischen Körper oft eine hohe Verlustleistung aufgrund des Auftretens von Wirbelströmen auf. Es entstehen hohe Temperaturen, welche sich negativ auf den Betrieb und die Zuverlässigkeit auswirken. Ferner findet typischerweise während des Herstellungsprozesses insbesondere durch die pulvermetallurgische Route (beim Sintern) ein unerwünschtes bzw. nicht kontrollierbares Kristallwachstum der Partikel des weichmagnetischen Materials statt.The disadvantage is that the production of known soft magnetic bodies or soft magnets from a soft magnetic body is often very complex and associated with high costs. The robustness of the soft magnetic bodies is also frequently reduced, with the temperature and / or corrosion resistance possibly being insufficient. When the soft magnetic bodies or soft magnets or electrical sheets are operated in an alternating magnetic field - especially at higher frequencies - the soft magnetic bodies often have a high power loss due to the occurrence of eddy currents. It arise high temperatures, which have a negative effect on operation and reliability. Furthermore, an undesired or uncontrollable crystal growth of the particles of the soft magnetic material typically takes place during the manufacturing process, in particular due to the powder metallurgical route (during sintering).

Es ist daher eine Aufgabe der vorliegenden Erfindung, die voranstehend beschriebenen Nachteile zumindest teilweise zu beheben. Insbesondere ist es Aufgabe der vorliegenden Erfindung, die Kosten und die Komplexität zur Herstellung der weichmagnetischen Körper und/oder Weichmagnete (weichmagnetische Bauteile) zu reduzieren. Weiter soll die Temperatur- und/oder Korrosionsbeständigkeit sowie die Robustheit erhöht und/oder die Verlustleistung bzw. die Wirbelstromverluste reduziert werden. Insbesondere ist eine weitere Aufgabe die Reduzierung der im Weichmagneten entstehenden Energieverluste.It is therefore an object of the present invention to at least partially remedy the disadvantages described above. In particular, it is the object of the present invention to reduce the costs and the complexity for producing the soft magnetic bodies and / or soft magnets (soft magnetic components). Furthermore, the temperature and / or corrosion resistance and robustness are to be increased and / or the power loss or the eddy current losses are to be reduced. In particular, another task is to reduce the energy losses occurring in the soft magnet.

Die voranstehende Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1. Weitere Merkmale und Details der Erfindung ergeben sich aus den jeweiligen Unteransprüchen, der Beschreibung und den Zeichnungen.The above object is achieved by a method having the features of claim 1. Further features and details of the invention emerge from the respective subclaims, the description and the drawings.

Unter einem weichmagnetischen Körper wird im Folgenden insbesondere ein Körper aus einem weichmagnetischen Werkstoff und/oder einem weichmagnetischen Material verstanden. Der Körper kann dabei vorzugsweise eine bestimmte Bauform aufweisen und somit beispielsweise als Ringbandkern, Massekern, Pulverkern und/oder als Form- oder Massivteil ausgebildet sein. Unter einem Weichmagneten wird insbesondere ebenfalls ein weichmagnetischer Körper verstanden, welcher eine geringe Koerzitivfeldstärke aufweist und damit für einen Einsatz als Dauermagnet bzw. Permanentmagnet ungeeignet ist. Insbesondere weist der Weichmagnet bzw. der weichmagnetische Körper das weichmagnetische Material auf, welches sich beispielsweise als ferromagnetisches Material in einem Magnetfeld leicht magnetisieren lässt (magnetische Polarisation) und damit der "Verstärkung" des magnetischen Feldes dient. Im Gegensatz zu Permanentmagneten und hartmagnetischen Werkstoffen erfolgt die Magnetisierung jedoch nicht auf Dauer, so dass nach dem Wegfall des magnetischen Feldes keine signifikante Magnetisierung bestehen bleibt. Die Koerzitivfeldstärke ist bei einem weichmagnetischen Material daher wesentlich geringer als bei einem hartmagnetischen Material.In the following, a soft magnetic body is understood to mean in particular a body made of a soft magnetic material and / or a soft magnetic material. The body can preferably have a certain structural shape and thus be designed, for example, as a toroidal tape core, mass core, powder core and / or as a molded or solid part. A soft magnet is also understood to mean, in particular, a soft magnetic body which has a low coercive field strength and is therefore unsuitable for use as a permanent magnet or permanent magnet. In particular, the soft magnet or the soft magnetic body has the soft magnetic material, which, for example, as a ferromagnetic material can easily be magnetized in a magnetic field (magnetic polarization) and thus serves to "strengthen" the magnetic field. In contrast to permanent magnets and hard magnetic materials, however, the magnetization does not take place permanently, so that no significant magnetization remains after the magnetic field has disappeared. The coercive field strength is therefore significantly lower in the case of a soft magnetic material than in the case of a hard magnetic material.

Die Aufgabe wird insbesondere gelöst durch ein Verfahren zur Herstellung eines weichmagnetischen Körpers und insbesondere eines Weichmagneten, umfassend die folgenden Schritte:

  1. a) Bereitstellen eines weichmagnetischen Pulvers mit Pulverpartikeln aus einem weichmagnetischen Material,
  2. b) Beschichten der Pulverpartikel mit einem isolierenden (d. h. elektrisch nicht-leitenden), insbesondere thermisch stabilen Beschichtungsmaterial. Hierbei ist vorgesehen, dass die Sintertemperatur des Beschichtungsmaterials geringer ist als die Sintertemperatur des weichmagnetischen Materials.
  3. c) Wärmebehandeln, insbesondere Sintern, des Beschichtungsmaterials, insbesondere zur Vitrifizierung des Beschichtungsmaterials, derart, dass während der Wärmebehandlung eine Sinterung und/oder ein Schmelzen der Pulverpartikel und/oder des weichmagnetischen Materials vermieden, d. h. teilweise oder (im Wesentlichen) vollständig verhindert wird.
The object is achieved in particular by a method for producing a soft magnetic body and in particular a soft magnet, comprising the following steps:
  1. a) providing a soft magnetic powder with powder particles made of a soft magnetic material,
  2. b) Coating the powder particles with an insulating (ie electrically non-conductive), in particular thermally stable, coating material. It is provided here that the sintering temperature of the coating material is lower than the sintering temperature of the soft magnetic material.
  3. c) Heat treatment, in particular sintering, of the coating material, in particular for vitrification of the coating material, in such a way that sintering and / or melting of the powder particles and / or the soft magnetic material is avoided during the heat treatment, ie partially or (essentially) completely prevented.

Die Schritte werden dabei vorzugsweise nacheinander durchgeführt, wobei insbesondere Schritt c) zeitlich nach Schritt b) durchgeführt wird. Dabei betrifft die durch das Wärmebehandeln entstehende Temperaturerhöhung insbesondere das beschichtete Pulver, d. h. es erfolgt die Temperaturerhöhung sowohl für das Beschichtungsmaterial als auch für die Pulverpartikel. Hierbei erhalten durch die Wärmebehandlung insbesondere sowohl das Beschichtungsmaterial als auch das weichmagnetische Material maximal eine zur Wärmebehandlung genutzte Prozesstemperatur. Mit anderen Worten erfolgt gemäß Schritt c) eine Wärmebehandlung der in Schritt b) beschichteten Pulverpartikel, wobei ausschließlich das Beschichtungsmaterial gemäß Schritt c) gesintert bzw. vitrifiziert wird. Der Ausdruck Sintertemperatur bezieht sich insbesondere auf eine Temperatur, die zur Sinterung und/oder Vitrifizierung (d. h. Überführung in die Glasphase) des jeweiligen Materials (d. h. des weichmagnetischen Materials bzw. des Beschichtungsmaterials) geeignet ist. Die Sintertemperatur liegt beispielsweise in einem Bereich unterhalb der Transformationstemperatur (insbesondere auch Glasübergangstemperatur) bzw. der Schmelztemperatur des jeweiligen Materials. Es ist weiter denkbar, dass die Sintertemperatur sich im Wesentlichen proportional zur Schmelztemperatur und/oder Transformationstemperatur und/oder einer Solidustemperatur des jeweiligen Materials verhält. Insbesondere ist auch die Transformationstemperatur des Beschichtungsmaterials geringer als die Schmelztemperatur bzw. Sintertemperatur des weichmagnetischen Materials, um eine Sinterung oder ein Schmelzen der Pulverpartikel zu verhindern. Dabei ist das Beschichtungsmaterial bevorzugt thermisch stabil bei bis zu 600° C (Celsius) und/oder bis zu 800° C und/oder bis zu 1200° C und/oder bis zu 1400° C. Gemäß Schritt b) wird bevorzugt ein derartiges Beschichtungsmaterial gewählt, dass die benachbarten Pulverpartikel weder bei Schritt b) noch bei Schritt c) durch die Wärmebehandlung zusammenwachsen können. Somit wird ein unerwünschtes Kristallwachstum der Pulverpartikel, d. h. der Magnetpartikel, aber auch Kontaktschluss von mehreren Teilchen verhindert. Weiter wird durch das erfindungsgemäße Verfahren, welches insbesondere ein pulvermetallurgisches Verfahren ist, die Korrosionsbeständigkeit des weichmagnetischen Körpers aufgrund der Beschichtung erhöht. Auch erfolgt durch die Beschichtung gemäß Schritt b) eine Passivierung der Partikeloberflächen. Hierdurch werden Verunreinigungen, wie z. B. in Abhängigkeit vom weichmagnetischen Werkstofftyp durch Kohlenstoff, Sauerstoff, Phosphor verhindert. Die Isolierung der Pulverpartikel durch das Beschichtungsmaterial ermöglicht ferner die Entstehung einer isolierenden, d. h. elektrisch nicht leitenden Barriere. Das Beschichtungsmaterial dient hierbei insbesondere als Isolator bzw. Bindemittel, welches z. B. aus einem Ausgangsmaterial gebildet wird und/oder zur Erzeugung eines Matrixmaterials genutzt wird. Das Ausgangsmaterial stellt in diesem Sinne bevorzugt einen Präkursor (Vorläufer) für das Beschichtungsmaterial und/oder das Beschichtungsmaterial einen Präkursor für das Matrixmaterial dar. Die zur Wärmebehandlung bzw. Sintern genutzte Prozesstemperatur ist dabei bevorzugt derart gewählt, dass das Beschichtungsmaterial in eine Matrix (eines diamagnetischen oder paramagnetischen Materials) überführt wird, das die Pulverpartikel einbettet. Vorzugsweise erfolgt dennoch die Wärmebehandlung bzw. Sinterung des Beschichtungsmaterials bzw. das gesamte erfindungsgemäße Verfahren hierbei unter Bedingungen, bei denen keine Sinterung des weichmagnetischen Materials erfolgt. Somit können Wirbelstromverluste deutlich reduziert und ein Temperaturanstieg bzw. eine Erwärmung des Weichmagneten während des Betriebs mit höherfrequenten magnetischen Wechselfeldern reduziert werden. Auch können weitere Energieverluste, wie Hysterese oder Nachwirkungsverluste, aufgrund der Isolationswirkung der Beschichtung reduziert werden. So isolierte gesinterte Pulverteilchen haben hohe Temperatustabilität gegenüber von weichmagnetischen Bauteilen, die mit einem Polymer als Binder zusammengemischt sind.The steps are preferably carried out one after the other, with step c) in particular being carried out after step b). The temperature increase resulting from the heat treatment relates in particular to the coated powder, ie the temperature is increased both for the coating material and for the powder particles. In this case, as a result of the heat treatment, in particular both the coating material and the soft magnetic material receive a maximum of a process temperature used for the heat treatment. In other words, a heat treatment of the powder particles coated in step b) takes place in accordance with step c), with only the coating material being sintered or vitrified in accordance with step c). The term sintering temperature relates in particular to a temperature which is suitable for sintering and / or vitrification (ie conversion into the glass phase) of the respective material (ie the soft magnetic material or the coating material). The sintering temperature is, for example, in a range below the transformation temperature (in particular also glass transition temperature) or the melting temperature of the respective material. It is also conceivable that the sintering temperature is essentially proportional to the melting temperature and / or transformation temperature and / or a solidus temperature of the respective material. In particular, the transformation temperature of the coating material is also lower than the melting temperature or sintering temperature of the soft magnetic material in order to prevent sintering or melting of the powder particles. The coating material is preferably thermally stable at up to 600 ° C (Celsius) and / or up to 800 ° C and / or up to 1200 ° C and / or up to 1400 ° C. According to step b), such a coating material is preferred chosen so that the adjacent powder particles can neither grow together in step b) nor in step c) due to the heat treatment. This prevents undesired crystal growth of the powder particles, ie the magnetic particles, but also contact closure of several particles. Furthermore, the method according to the invention, which is in particular a powder metallurgical method, increases the corrosion resistance of the soft magnetic body due to the coating. Passivation also takes place as a result of the coating in accordance with step b) of the particle surfaces. As a result, impurities such. B. depending on the soft magnetic material type prevented by carbon, oxygen, phosphorus. The isolation of the powder particles by the coating material also enables the creation of an insulating, ie electrically non-conductive, barrier. The coating material here serves in particular as an insulator or binder, which z. B. is formed from a starting material and / or is used to produce a matrix material. In this sense, the starting material preferably represents a precursor for the coating material and / or the coating material represents a precursor for the matrix material. The process temperature used for the heat treatment or sintering is preferably selected such that the coating material is converted into a matrix (a diamagnetic or paramagnetic material) is transferred, which embeds the powder particles. Preferably, however, the heat treatment or sintering of the coating material or the entire method according to the invention takes place under conditions in which no sintering of the soft magnetic material takes place. Eddy current losses can thus be significantly reduced and a temperature rise or heating of the soft magnet during operation with higher-frequency alternating magnetic fields can be reduced. Further energy losses, such as hysteresis or after-effects losses, can also be reduced due to the insulating effect of the coating. Sintered powder particles isolated in this way have high temperature stability compared to soft magnetic components that are mixed together with a polymer as a binder.

Erfindungsgemäß erfolgt nach Schritt c) eine Nachbehandlung, durch eine weitere Wärmebehandlung und Formen des wärmebehandelten Pulvers durch heißisostatisches Pressen. Die Wärmebehandlung des Beschichtungsmaterials gemäß Schritt c) entspricht dabei insbesondere einer Wärmebehandlung des gesamten Pulvers bzw. der Pulverpartikel mit dem Ziel, das Beschichtungsmaterial zu sintern, wobei allerdings das Schmelzen und/oder Sintern der Pulverpartikel und/oder des weichmagnetischen Materials vermieden und/oder verhindert wird. Dies ermöglicht eine Anpassung des hergestellten Weichmagneten für unterschiedlichste Verwendungszwecke.According to the invention, after step c) there is an aftertreatment by means of a further heat treatment and shaping of the heat-treated powder by hot isostatic pressing. The heat treatment of the coating material according to step c) corresponds in particular to a heat treatment of the entire powder or the powder particles with the aim of sintering the coating material, although the melting and / or sintering of the powder particles and / or the soft magnetic material is avoided and / or prevented becomes. This enables the soft magnet produced to be adapted for a wide variety of purposes.

Weiter ist es denkbar, dass bei Schritt a) zum Bereitstellen des weichmagnetischen Pulvers zuvor eine Herstellung des weichmagnetischen Pulvers erfolgt. Dabei kann das Pulver insbesondere kristalline weichmagnetische Werkstoffe (wie Weicheisen, Kohlenstoffstähle, Legierungen auf der Basis von FeAl, FeAlSi, FeNi, FeCo oder dergleichen) und/oder aus amorphen weichmagnetischen Werkstoffen (wie FeNiBSi, FeBSi oder dergleichen) und/oder weichmagnetische Ferritwerkstoffe (z. B. MnZn-Ferrite, MgZn-Ferrite oder dergleichen), Spinellwerkstoffe (z. B. MnMgZn, NiZn oder dergleichen) und/oder Granatwerkstoffe (BiCa, YGd oder dergleichen) und/oder dergleichen aufweisen. Hierdurch ergibt sich eine Verbesserung der Leistungsfähigkeit des Weichmagneten.It is also conceivable that in step a) the soft magnetic powder is produced beforehand in order to provide the soft magnetic powder. The powder can in particular be crystalline soft magnetic materials (such as soft iron, carbon steels, alloys based on FeAl, FeAlSi, FeNi, FeCo or the like) and / or made of amorphous soft magnetic materials (such as FeNiBSi, FeBSi or the like) and / or soft magnetic ferrite materials ( e.g. MnZn ferrites, MgZn ferrites or the like), spinel materials (e.g. MnMgZn, NiZn or the like) and / or garnet materials (BiCa, YGd or the like) and / or the like. This results in an improvement in the performance of the soft magnet.

Ferner kann im Rahmen der Erfindung vorgesehen sein, dass insbesondere nach Schritt b) und/oder vor Schritt c) ein Formen der beschichteten Pulverpartikel zu einem Pressling, insbesondere durch Pressen, erfolgt. Somit wird der Vorteil erzielt, dass zuverlässig die gewünschte Form des weichmagnetischen Körpers, die Eigenschaften des Materials und die Packungsdichte angepasst bzw. verbessert werden kann. Der Ausdruck "Pressling" bezieht sich hierbei allgemein auf den resultierenden geformten Körper bzw. den Grünkörper und ist somit nicht auf das Pressen beschränkt. Das Formen kann beispielsweise auch durch Abformen und/oder Pressen und/oder Schütten und/oder Matrizenpressen und/oder Warmpressen und/oder kaltisostatisches Pressen und/oder heißisostatisches Pressen und/oder Ultraschallpressen oder dergleichen erfolgen. Die beschichteten Pulverpartikel resultieren dabei aus den unbeschichteten Pulverpartikeln, welche gemäß Schritt b) beschichtet wurden und somit durch das Beschichtungsmaterial umhüllte Pulverpartikel aufweisen. Weiter ist die Sintertemperatur druckabhängig, so dass das Formen ggf. zusammen mit dem Sintern und/oder der Wärmebehandlung gemäß Schritt c) durchgeführt werden kann. Hierdurch lässt sich der Vorteil erzielen, dass die zum Sintern notwendige Temperatur herabgesetzt werden kann. Allerdings muss dann berücksichtigt werden, dass die zum Sintern bzw. zur Wärmebehandlung gemäß Schritt c) verwendete Prozesstemperatur entsprechend angepasst wird, sodass die geringere Sintertemperatur des weichmagnetischen Materials bei der Wärmebehandlung nicht erreicht wird. Die Erwärmung des Presslings erfolgt gemäß Schritt c) beispielsweise bis zu einer Temperatur unterhalb der Schmelztemperatur des weichmagnetischen Materials, jedoch mindestens auf eine Temperatur, die das Beschichtungsmaterial sintert und/oder in die Glasphase überführt, d. h. vitrifiziert. Somit liegt die Prozesstemperatur zur Wärmebehandlung gemäß Schritt c) insbesondere im Transformationsbereich des Beschichtungsmaterials, insbesondere Glas (wenn dieses als Beschichtungsmaterial eingesetzt wird). Die Wärmebehandlung gemäß Schritt c) kann dabei im Vakuum oder in einer neutralen bzw. einer reduzierenden Atmosphäre durchgeführt werden. Auch ist es denkbar, dass die Wärmebehandlung und insbesondere das Sintern unter Luft und/oder Stickstoff und/oder Argon und/oder Wasserstoff erfolgen kann, da die Oberfläche der Pulverpartikel passiviert ist. Bevorzugt liegt die Prozesstemperatur und/oder die Sintertemperatur des Beschichtungsmaterials mindestens 50 K (Kelvin) und/oder 100 K und/oder 150 K und/oder 200 K und/oder 220 K unterhalb der Sintertemperatur des weichmagnetischen Materials.Furthermore, it can be provided within the scope of the invention that, in particular after step b) and / or before step c), the coated powder particles are shaped into a compact, in particular by pressing. The advantage is thus achieved that the desired shape of the soft magnetic body, the properties of the material and the packing density can be reliably adapted or improved. The term “compact” here relates generally to the resulting shaped body or the green body and is therefore not limited to pressing. Shaping can also take place, for example, by molding and / or pressing and / or pouring and / or die pressing and / or hot pressing and / or cold isostatic pressing and / or hot isostatic pressing and / or ultrasonic pressing or the like. The coated powder particles result from the uncoated powder particles which were coated according to step b) and thus have powder particles enveloped by the coating material. Furthermore, the sintering temperature is pressure-dependent, so that the shaping can optionally be carried out together with the sintering and / or the heat treatment according to step c). This has the advantage that the temperature required for sintering can be reduced. However, it must then be taken into account that the process temperature used for sintering or for heat treatment according to step c) is adapted accordingly, so that the lower sintering temperature of the soft magnetic material is not reached during the heat treatment. The pellet is heated according to step c), for example, to a temperature below the melting temperature of the soft magnetic material, but at least to a temperature which sinters the coating material and / or converts it into the glass phase, i.e. H. vitrified. The process temperature for the heat treatment according to step c) is therefore in particular in the transformation range of the coating material, in particular glass (if this is used as a coating material). The heat treatment according to step c) can be carried out in a vacuum or in a neutral or a reducing atmosphere. It is also conceivable that the heat treatment and in particular the sintering can take place under air and / or nitrogen and / or argon and / or hydrogen, since the surface of the powder particles is passivated. The process temperature and / or the sintering temperature of the coating material is preferably at least 50 K (Kelvin) and / or 100 K and / or 150 K and / or 200 K and / or 220 K below the sintering temperature of the soft magnetic material.

Ferner kann im Rahmen der Erfindung vorgesehen sein, dass gemäß Schritt c) eine für die Wärmebehandlung, insbesondere für ein Sintern, verwendete Prozesstemperatur und/oder ein für die Wärmebehandlung verwendeter Prozessdruck derart angepasst sind, dass eine Sinterung und/oder ein Schmelzen der Pulverpartikel vermieden wird, wobei die Prozesstemperatur insbesondere unterhalb der zum Sintern des weichmagnetischen Materials geeigneten Sintertemperatur liegt. Bevorzugt erfolgt die Wärmebehandlung, d. h. insbesondere das Sintern und/oder die Vitrifizierung, dabei derart, dass die verwendete Prozesstemperatur und der Prozessdruck gemeinsam die Sintertemperatur beeinflussen. Hierbei wird vorzugsweise der Pressling bzw. das Beschichtungsmaterial maximal auf eine Prozesstemperatur erhitzt, wobei bei diesem Vorgang der maximale Prozessdruck derart gewählt wird, dass ein Sintern und/oder ein Schmelzen der Pulverpartikel und/oder des weichmagnetischen Materials stets vermieden und/oder verhindert wird. Mit anderen Worten erfolgt die Wärmebehandlung vorzugsweise derart, dass ein Phasenübergang der Pulverpartikel stets vermieden wird. Hierdurch wird eine wesentliche Veränderung der Pulverpartikel (Kristallwachstum bzw. Kontaktschluss) verhindert, wodurch die Leistungsfähigkeit des Weichmagneten erhöht wird.Furthermore, it can be provided within the scope of the invention that, according to step c), a process temperature used for the heat treatment, in particular for sintering, and / or a process pressure used for the heat treatment are adapted such that a Sintering and / or melting of the powder particles is avoided, the process temperature being in particular below the sintering temperature suitable for sintering the soft magnetic material. The heat treatment, ie in particular the sintering and / or the vitrification, is preferably carried out in such a way that the process temperature used and the process pressure jointly influence the sintering temperature. In this case, the compact or the coating material is preferably heated to a maximum of one process temperature, the maximum process pressure being selected in this process such that sintering and / or melting of the powder particles and / or the soft magnetic material is always avoided and / or prevented. In other words, the heat treatment is preferably carried out in such a way that a phase transition of the powder particles is always avoided. This prevents a significant change in the powder particles (crystal growth or contact closure), which increases the performance of the soft magnet.

Vorteilhafterweise kann bei der Erfindung vorgesehen sein, dass durch die Wärmebehandlung bei Schritt c) und/oder einer weiteren thermischen Behandlung des Beschichtungsmaterials vor und/oder nach Schritt c) das Beschichtungsmaterial zumindest teilweise in eine Matrix (d. h. ein Matrixmaterial) eines diamagnetischen und/oder paramagnetischen, insbesondere isolierenden Materials, überführt wird, insbesondere derart, dass die Matrix die Pulverpartikel einbettet. Hierdurch bildet sich eine Beschichtung aus dem Beschichtungsmaterial bzw. dem Matrixmaterial, welche die Pulverpartikel (d. h. insbesondere die überwiegende Zahl der Pulverpartikel des Pulvers) beispielsweise vollständig umgibt. Durch die Beschichtung wird die Korrosionsbeständigkeit des weichmagnetischen Materials erhöht. Weiter ergibt sich der Vorteil, dass die Beschichtung zu einer Passivierung der Partikeloberflächen der Pulverpartikel führt. Somit können Verunreinigungen, wie z. B. durch Kohlenstoff, Sauerstoff, Phosphor, die zu einer Verschlechterung der weichmagnetischen Eigenschaften führen, verhindert werden. Das Beschichten durch das Beschichtungsmaterial erfolgt insbesondere derart, dass sich eine nichtleitende Barriere ausbildet, welche zu einer Isolierung der Pulverpartikel führt. Hierdurch lassen sich Wirbelströme deutlich reduzieren und die unerwünschte Erwärmung des weichmagnetischen Körpers bei höherfrequenten magnetischen Wechselfeldern verringern.Advantageously, it can be provided in the invention that by the heat treatment in step c) and / or a further thermal treatment of the coating material before and / or after step c) the coating material is at least partially converted into a matrix (ie a matrix material) of a diamagnetic and / or paramagnetic, in particular insulating material, is transferred, in particular in such a way that the matrix embeds the powder particles. As a result, a coating is formed from the coating material or the matrix material, which for example completely surrounds the powder particles (i.e. in particular the majority of the powder particles of the powder). The coating increases the corrosion resistance of the soft magnetic material. There is also the advantage that the coating leads to passivation of the particle surfaces of the powder particles. Thus, impurities, such as. B. by carbon, oxygen, phosphorus, which lead to a deterioration in the soft magnetic properties, can be prevented. The coating by the coating material takes place in particular in such a way that a non-conductive barrier is formed, which leads to insulation of the powder particles. This allows eddy currents to be significantly reduced and the undesired heating of the soft magnetic body in the case of higher-frequency alternating magnetic fields.

Vorteilhafterweise kann bei der Erfindung vorgesehen sein, dass gemäß Schritt b) das Beschichten durch ein trockenes Abscheidungsverfahren, insbesondere durch ein chemisches und/oder physikalisches Gasabscheidungsverfahren erfolgt. So kann das Beschichten beispielsweise durch die chemische Gasphasenabscheidung (CVD, engl. chemical vapour deposition) oder die physikalische Gasphasenabscheidung (PVD, engl. physical vapour deposition) erfolgen. Hierbei wird als für die Abscheidungsverfahren insbesondere ein Edukt, z. B. das Ausgangsmaterial zur Erzeugung des Beschichtungsmaterials verwendet. Unter physikalischen Gasabscheidungsverfahren (d. h. PVD) werden dabei vakuumbasierte Beschichtungsverfahren verstanden, bei denen das Ausgangsmaterial in die Gasphase überführt wird und auf dem zu beschichtenden Substrat (d. h. den Pulverpartikeln) beispielsweise im Wege der Kondensation abgeschieden wird. Weiter können auch bei dem Beschichten Verdampfungsverfahren (wie thermisches Verdampfen, Laserstrahlverdampfen, Lichtbogenverdampfen, Elektronenstrahlverdampfen) und Sputtern (d. h. Sputterdeposition bzw. Kathodenzerstäubung) genutzt werden, wobei bei dem Sputtern das Ausgangsmaterial durch lonenbeschuss zerstäubt wird. Durch die chemischen Gasabscheidungsverfahren (d. h. CVD) wird das Ausgangsmaterial durch verschiedene Techniken in die Gasphase überführt, wobei hier auch ggf. Elektronen- oder lonenstrahlen zur Abscheidung genutzt werden. Bei der CVD erfolgt insbesondere das Abscheiden des Beschichtungsmaterials auf der Oberfläche des Substrats (aufgrund einer chemischen Reaktion der in der Gasphase vorliegenden Komponente) zu einer Feststoffkomponente. Das Ausgangsmaterial liegt somit in einer flüchtigen Form in der Gasphase vor und scheidet sich als eine weniger flüchtige Verbindung, beispielsweise elementar oder als Oxid, ab. Die trockenen Verfahren haben dabei den Vorteil, dass keine teuren Lösungsmittel benötigt werden und auch keine Maßnahmen zur Lösungsmittelentsorgung oder zur Lösungsmittelwiederaufreinigung erforderlich sind. Zudem entfallen energieintensive Trocknungsprozesse, sodass die beschriebenen Beschichtungsverfahren eine hohe Flexibilität hinsichtlich der einsetzbaren Beschichtungsmaterialien besitzen. Ferner können auch Nasstechniken, wie Sol-Gel-Verfahren zum Beschichten verwendet werden.Advantageously, it can be provided in the invention that according to step b) the coating is carried out by a dry deposition method, in particular by a chemical and / or physical gas deposition method. For example, the coating can be carried out by chemical vapor deposition (CVD) or physical vapor deposition (PVD). Here, as for the deposition process, in particular an educt such. B. used the starting material to produce the coating material. Under Physical gas deposition processes (ie PVD) are vacuum-based coating processes in which the starting material is converted into the gas phase and deposited on the substrate to be coated (ie the powder particles), for example by way of condensation. Furthermore, evaporation processes (such as thermal evaporation, laser beam evaporation, arc evaporation, electron beam evaporation) and sputtering (i.e. sputter deposition or cathode atomization) can also be used in the coating, with the starting material being atomized by ion bombardment during sputtering. The chemical gas deposition process (ie CVD) converts the starting material into the gas phase using various techniques, with electron or ion beams also being used here for deposition. In CVD, the coating material is deposited on the surface of the substrate (due to a chemical reaction of the components present in the gas phase) to form a solid component. The starting material is thus in a volatile form in the gas phase and separates out as a less volatile compound, for example elemental or as an oxide. The dry processes have the advantage that no expensive solvents are required and no measures for solvent disposal or solvent re-purification are required. In addition, there is no need for energy-intensive drying processes, so that the coating processes described have a high degree of flexibility with regard to the coating materials that can be used. Furthermore, wet techniques, such as sol-gel methods, can also be used for coating.

Weiter ist es denkbar, dass eine einschichtige Beschichtung und/oder eine zweischichtige Beschichtung erfolgt. Die Beschichtung kann vorzugsweise zumindest eine oder eine zusätzliche Oxidschicht aufweisen und insbesondere durch das Oxidieren des Pulvers und anschließender Beschichtung durch Glas und/oder Keramik-Glas und/oder Keramik hergestellt werden. Hierdurch ergibt sich eine besonders vorteilhafte Ausgestaltung und Isolation der weichmagnetischen Pulverpartikel. Somit können die im Weichmagneten entstehenden Energieverluste aufgrund der elektrischen Isolationswirkung der Beschichtung in Verbindung mit den Einzelpartikeln reduziert werden, so dass kein Kurzschluss von einzelnen weichmagnetischen Teilchen entsteht.It is also conceivable for a single-layer coating and / or a two-layer coating to take place. The coating can preferably have at least one or an additional oxide layer and in particular can be produced by oxidizing the powder and then coating it with glass and / or ceramic-glass and / or ceramic. This results in a particularly advantageous configuration and insulation of the soft magnetic powder particles. In this way, the energy losses occurring in the soft magnet due to the electrical insulation effect of the coating in connection with the individual particles can be reduced, so that there is no short circuit between individual soft magnetic particles.

Vorteilhafterweise kann bei der Erfindung vorgesehen sein, dass das Beschichtungsmaterial insbesondere aus einem Ausgangsmaterial gewonnen wird und nach dem Beschichten das Beschichtungsmaterial, insbesondere in oxidischer und/oder feinpartikulärer Struktur, vorliegt, wobei vorzugsweise durch das Wärmebehandeln und/oder Sintern das Beschichtungsmaterial vitrifiziert wird. Die Vitrifizierung bezieht sich hierbei insbesondere auf das Festwerden einer Flüssigkeit durch Erhöhung der Viskosität, während sie abgekühlt wird. Hierbei bleibt eine Kristallisation aus und es entsteht ein amorphes Material. Zur Erzeugung der Beschichtung wird dabei insbesondere das Ausgangsmaterial als Edukt herangezogen. Aus dem Ausgangsmaterial wird beispielsweise das Beschichtungsmaterial und aus dem Beschichtungsmaterial das Matrixmaterial (Matrix) erzeugt. Die Materialien, insbesondere das Matrixmaterial, können vorzugsweise Glas, eine Glaskeramik und/oder eine Keramik aufweisen und/oder hieraus bestehen. Die für die Beschichtung verwendeten Materialien, d. h. das Beschichtungsmaterial und/oder das Ausgangsmaterial und/oder das Matrixmaterial, können weiter auch dia- oder paramagnetische Materialien aufweisen und/oder hieraus bestehen, insbesondere Glasmaterialien und/oder Glaskeramiken und/oder Keramiken und/oder Oxide und/oder Mischungen aus den genannten Materialien. Besonders bevorzugt kann das Matrixmaterial ein Glas und/oder eine Glaskeramik und/oder eine Keramik und/oder eine Kombination aus den genannten Materialien sein. Weiter weist das für die Beschichtung verwendete Material insbesondere SiO2 und/oder andere Metalloxide, insbesondere Al2O3, Na2O, K2O, MgO, CaO, B2O3, TiO2, PbO und/oder dergleichen auf und besonders bevorzugt Quarz und/oder Kronglas und/oder Kalk-Natron-Glas und/oder Floatglas und/oder Borosilikatglas. Dabei können die Materialien ggf. Mischungen verschiedener Oxide mit variablen SiO2-Anteilen aufweisen. Weiter können die Oxide im Glas nicht in Form separater niedermolekularer Moleküle, sondern als ausgedehnte Netzwerke vorliegen. So liegt z. B. das Siliziumoxid als Silikat in Form miteinander verketteter SiO4-Tetraeder vor. Glaskeramiken unterscheiden sich insbesondere von den Gläsern darin, dass neben glasigen Phasen auch polykristalline Phasen vorhanden sind. Keramische Materialien umfassen insbesondere mineralische Silikatmaterialien, d. h. wie die Gläser oder Glaskeramiken SiO2 bzw. SiO4 basierte Materialien wie Kaoline oder Tonmineralien und/oder oxidische Keramiken, die auf Aluminiumoxid, Berylliumoxid oder dergleichen beruhen. Weiter können die keramischen Materialien auch nicht-oxidische Materialien und/oder Carbide und/oder Nitride, wie Siliziumcarbid SiC, Borcarbid BC oder Bornitrid BN aufweisen. Auch sind Überscheidungen der chemischen Zusammensetzung der keramischen Materialien zu den Gläsern oder Glaskeramiken denkbar. Entscheidend ist hierbei, das Matrixmaterial derart zu wählen, dass es eine niedrigere Transformationstemperatur bzw. Schmelztemperatur aufweist als das weichmagnetische Material, damit es während Schritt c) nicht zu einer Sinterung oder Schmelzung des weichmagnetischen Materials kommt. Die Transformationstemperatur oder Schmelztemperatur kann beispielsweise mittels kalorimetrischer Verfahren (wie Differentialscanningkalorimetrie bzw. DCS) bestimmt werden. Bevorzugt wird die Transformationstemperatur und/oder Schmelztemperatur des Matrixmaterials mindestens 100 K und bevorzugt mindestens 200 K unterhalb der Schmelztemperatur des weichmagnetischen Materials gewählt. Für die Erzeugung der Gläser, Glaskeramiken und/oder Keramiken kommen in Abhängigkeit vom Beschichtungsverfahren beispielsweise Salze und/oder flüchtige Verbindungen wie Hydride zum Einsatz. Vorzugsweise werden dabei Vorläuferverbindungen zumindest eines der folgenden Elemente oder dergleichen eingesetzt: Si, AI, Na, K, Mg, Ca, B, P, Pb, Ti, Li, Be. Nach der Zersetzung entstehen dann aus diesen Verbindungen ggf. die entsprechenden elementaren Komponenten, die noch in der Gasphase oder nach der Abscheidung auf der Partikeloberfläche der Pulverpartikel zu den entsprechenden Oxiden reagieren. Diese liegen z. B. nach Schritt b) (d. h. nach der Beschichtung) in oxidischer Form bzw. in feinpartikulärer Struktur vor (d. h. als "weißer Ruß"). Insbesondere nach Schritt c) (d. h. nach der Sinterung bzw. Wärmebehandlung) entsteht dann aus den Oxiden das Glas-, Keramik- oder Glaskeramik-Material.Advantageously, the invention can provide that the coating material is obtained in particular from a starting material and, after coating, the coating material is present, in particular in an oxidic and / or finely particulate structure, the coating material preferably being vitrified by the heat treatment and / or sintering. Vitrification refers in particular to the solidification of a liquid by increasing its viscosity while it is being cooled. Here one remains Crystallization and an amorphous material is created. To produce the coating, the starting material in particular is used as the starting material. For example, the coating material is produced from the starting material and the matrix material (matrix) is produced from the coating material. The materials, in particular the matrix material, can preferably include and / or consist of glass, a glass ceramic and / or a ceramic. The materials used for the coating, ie the coating material and / or the starting material and / or the matrix material, can also have and / or consist of dia- or paramagnetic materials, in particular glass materials and / or glass ceramics and / or ceramics and / or oxides and / or mixtures of the materials mentioned. The matrix material can particularly preferably be a glass and / or a glass ceramic and / or a ceramic and / or a combination of the materials mentioned. Furthermore, the material used for the coating has in particular SiO2 and / or other metal oxides, in particular Al2O3, Na2O, K2O, MgO, CaO, B2O3, TiO2, PbO and / or the like and particularly preferably quartz and / or crown glass and / or lime Soda glass and / or float glass and / or borosilicate glass. The materials can optionally have mixtures of different oxides with variable SiO2 proportions. Furthermore, the oxides in the glass cannot be in the form of separate low-molecular-weight molecules, but rather as extensive networks. So z. B. the silicon oxide as a silicate in the form of interlinked SiO4 tetrahedra. Glass-ceramics differ in particular from glasses in that, in addition to glassy phases, there are also polycrystalline phases. Ceramic materials include in particular mineral silicate materials, ie like the glasses or glass ceramics SiO2 or SiO4 based materials like kaolins or clay minerals and / or oxidic ceramics based on aluminum oxide, beryllium oxide or the like. Furthermore, the ceramic materials can also have non-oxidic materials and / or carbides and / or nitrides, such as silicon carbide SiC, boron carbide BC or boron nitride BN. Differences between the chemical composition of the ceramic materials and the glasses or glass ceramics are also conceivable. The decisive factor here is to choose the matrix material such that it has a lower transformation temperature or melting temperature than the soft magnetic material, so that the soft magnetic material does not sinter or melt during step c). The transformation temperature or melting temperature can be determined, for example, by means of calorimetric methods (such as differential scanning calorimetry or DCS). The transformation temperature and / or melting temperature of the matrix material is preferably selected to be at least 100 K and preferably at least 200 K below the melting temperature of the soft magnetic material. For the production of glasses, glass ceramics and / or ceramics, for example salts and / or volatile compounds such as hydrides are used depending on the coating process. Preference is given to precursor compounds at least one of the following elements or the like is used: Si, Al, Na, K, Mg, Ca, B, P, Pb, Ti, Li, Be. After the decomposition, the corresponding elementary components arise from these compounds, which react to the corresponding oxides in the gas phase or after deposition on the particle surface of the powder particles. These are z. B. after step b) (ie after coating) in oxidic form or in a finely particulate structure (ie as "white soot"). In particular after step c) (ie after sintering or heat treatment) the glass, ceramic or glass ceramic material is then produced from the oxides.

Erfindungsgemäß ist vorgesehen, dass nach Schritt c) ein thermisches Nachbehandeln durch heißisostatisches Pressen erfolgt. Weiter kann das heißisostatische Pressen alternativ oder zusätzlich auch gleichzeitig mit Schritt c) erfolgen. Der Pressling wird dabei beispielsweise im Verdichtungsraum der Anlage oder optional auch z. B. in einen deformierbaren Behälter gesetzt, welcher z. B. auf eine Wärmebehandlungstemperatur, die niedriger oder höher als die Sintertemperatur sein kann, erhitzt wird. Dabei wird der Pressling einem Druck bis zu 50 MPa und/oder 100 MPa und/oder 200 MPa und/oder 300 MPa ausgesetzt. Hierdurch kann das Gefügte des weichmagnetischen Körpers noch weiter verdichtet werden. Weiter kann beispielsweise auch eine Magnetfeldbehandlung und/oder eine thermische Behandlung erfolgen.According to the invention it is provided that after step c) a thermal aftertreatment is carried out by hot isostatic pressing. Furthermore, the hot isostatic pressing can alternatively or additionally also take place simultaneously with step c). The compact is for example in the compression chamber of the system or optionally also z. B. placed in a deformable container, which z. B. to a heat treatment temperature which can be lower or higher than the sintering temperature, heated. The compact is exposed to a pressure of up to 50 MPa and / or 100 MPa and / or 200 MPa and / or 300 MPa. In this way, the structure of the soft magnetic body can be compressed even further. Furthermore, for example, a magnetic field treatment and / or a thermal treatment can also take place.

Nicht erfindungsgemäß ist vorgesehen ein weichmagnetischer Körper, aufweisend:

  • Pulverpartikel, insbesondere Kerne, aus einem weichmagnetischen Material,
  • Beschichtung (insbesondere der Kerne) aus einem wärmebehandelten isolierenden Beschichtungsmaterial, wobei die Beschichtung die Pulverpartikel umgibt.
A soft magnetic body is not provided according to the invention, having:
  • Powder particles, especially cores, made of a soft magnetic material,
  • Coating (in particular of the cores) of a heat-treated insulating coating material, the coating surrounding the powder particles.

Hierbei ist insbesondere vorgesehen, dass die Sintertemperatur des Beschichtungsmaterials geringer ist als die Sintertemperatur des weichmagnetischen Materials. Dabei wird der weichmagnetische Körper insbesondere derart durch das erfindungsgemäße Verfahren hergestellt, dass die Herstellung stets magnetfeldfrei erfolgt (also kein äußeres Magnetfeld genutzt wird). Der Kern weist hierbei vorzugsweise einen Durchmesser auf, welcher im Wesentlichen dem Durchmesser der Pulverpartikel bei Schritt a), d. h. vor der Wärmebehandlung entspricht, bevorzugt im Bereich von 0,5 µm bis 250 µm (abhängig vom Werkstoff und Einsatzzweck des Körpers). Damit bringt der erfindungsgemäße weichmagnetische Körper die gleichen Vorteile mit sich, wie sie ausführlich mit Bezug auf ein erfindungsgemäßes Verfahren beschrieben worden sind. Zudem kann der weichmagnetische Körper vorzugsweise durch ein erfindungsgemäßes Verfahren hergestellt werden.It is particularly provided here that the sintering temperature of the coating material is lower than the sintering temperature of the soft magnetic material. In this case, the soft magnetic body is produced in particular by the method according to the invention in such a way that production always takes place without a magnetic field (that is, no external magnetic field is used). The core here preferably has a diameter which essentially corresponds to the diameter of the powder particles in step a), ie before the heat treatment, preferably in the range from 0.5 μm to 250 μm (depending on the material and intended use of the body). The soft magnetic body according to the invention thus brings the same advantages as have been described in detail with reference to a method according to the invention. In addition, the soft magnetic body can preferably be produced by a method according to the invention.

In einer weiteren Möglichkeit kann vorgesehen sein, dass eine Schichtdicke der Beschichtung im Bereich von 1 nm bis 10 µm, vorzugsweise im Bereich von 2 nm und 50 nm liegt. Hierdurch ergibt sich eine besonders vorteilhafte elektrische Isolierung und/oder Passivierung der Pulverpartikel, d. h. der Kerne, welche durch die Beschichtung umhüllt werden. Vorteilhafterweise entspricht der Durchmesser der Pulverpartikel vor dem Sintern gemäß Schritt c) im Wesentlichen dem Durchmesser der Pulverpartikel nach dem Sintern gemäß Schritt c) und/oder dem Durchmesser der Pulverpartikel des erfindungsgemäßen weichmagnetischen Körpers bzw. des erfindungsgemäßen Weichmagnets. Der Durchmesser bleibt insbesondere während des gesamten erfindungsgemäßen Verfahrens im Wesentlichen konstant, ggf. mit einer gewissen Verteilung (bzw. Toleranz). Dabei werden die Schichtdicken und Durchmesser bevorzugt derart aufeinander abgestimmt, dass eine ausreichende elektrische Isolierung und Passivierung der Pulverpartikel gewährleistet ist, wobei die Schichtdicken klein genug sein müssen, um die Magnetfelddichte des Weichmagneten nicht zu sehr zu beschränken.In a further possibility it can be provided that a layer thickness of the coating is in the range from 1 nm to 10 μm, preferably in the range from 2 nm and 50 nm. This results in a particularly advantageous electrical insulation and / or passivation of the powder particles, i. H. of the cores which are enveloped by the coating. Advantageously, the diameter of the powder particles before sintering according to step c) essentially corresponds to the diameter of the powder particles after sintering according to step c) and / or the diameter of the powder particles of the soft magnetic body according to the invention or the soft magnet according to the invention. In particular, the diameter remains essentially constant during the entire method according to the invention, possibly with a certain distribution (or tolerance). The layer thicknesses and diameters are preferably matched to one another in such a way that sufficient electrical insulation and passivation of the powder particles is ensured, the layer thicknesses having to be small enough not to restrict the magnetic field density of the soft magnet too much.

Nicht erfindungsgemäß ist ein Weichmagnet. Hierbei kann vorgesehen sein, dass der Weichmagnet einen erfindungsgemäßen weichmagnetischen Körper aufweist und/oder durch ein erfindungsgemäßes Verfahren hergestellt wird. Der Weichmagnet kann dabei ggf. durch weitere Nachbehandlungsschritte und/oder durch ein spanendes Fertigungsverfahren (wie Trennen und Schleifen) hergestellt werden. Damit bringt der erfindungsgemäße Weichmagnet die gleichen Vorteile mit sich, wie sie ausführlich mit Bezug auf ein erfindungsgemäßes Verfahren und/oder einen erfindungsgemäßen weichmagnetischen Körper beschrieben worden sind.A soft magnet is not according to the invention. It can be provided here that the soft magnet has a soft magnetic body according to the invention and / or is produced by a method according to the invention. The soft magnet can optionally be produced by further post-treatment steps and / or by a machining production process (such as cutting and grinding). The soft magnet according to the invention thus has the same advantages as have been described in detail with reference to a method according to the invention and / or a soft magnetic body according to the invention.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnungen Ausführungsbeispiele der Erfindung im Einzelnen beschrieben sind. Dabei können die in den Ansprüchen und in der Beschreibung erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein. Es zeigen:

Fig. 1
eine schematische Darstellung eines unbeschichteten, weichmagnetischen Pulvers in Kugelform mit Angabe des Partikeldurchmessers,
Fig. 2
eine schematische Darstellung eines unbeschichteten, weichmagnetischen Pulvers in irregulärer Form,
Fig. 3
eine schematische Darstellung eines beschichteten weichmagnetischen Pulvers mit Angabe der Schichtdicke,
Fig. 4
eine schematische Darstellung eines beschichteten weichmagnetischen Pulvers in irregulärer Form,
Fig. 5
eine schematische Darstellung eines Pressling aus einem regulären, kugeligen und beschichteten Pulver,
Fig. 6
eine schematische Darstellung eines Presslings aus einem irregulären, beschichteten Pulver,
Fig. 7
eine schematische Darstellung eines wärmebehandelten beschichteten Pulvers,
Fig. 8
eine schematische Darstellung eines wärmebehandelten, irregulären, beschichteten Pulvers
Fig. 9
eine schematische Darstellung zur Visualisierung von Verfahrensschritten eines erfindungsgemäßen Verfahrens,
Fig. 10
eine schematische Darstellung von Ausführungsbeispielen eines erfindungsgemäßen weichmagnetischen Körpers und erfindungsgemäßen Weichmagneten.
Further advantages, features and details of the invention emerge from the following description, in which exemplary embodiments of the invention are described in detail with reference to the drawings. The features mentioned in the claims and in the description can each be essential to the invention individually or in any combination. Show it:
Fig. 1
a schematic representation of an uncoated, soft magnetic powder in spherical shape with details of the particle diameter,
Fig. 2
a schematic representation of an uncoated, magnetically soft powder in irregular form,
Fig. 3
a schematic representation of a coated magnetically soft powder with details of the layer thickness,
Fig. 4
a schematic representation of a coated magnetically soft powder in irregular form,
Fig. 5
a schematic representation of a pellet made from a regular, spherical and coated powder,
Fig. 6
a schematic representation of a pellet made from an irregular, coated powder,
Fig. 7
a schematic representation of a heat-treated coated powder,
Fig. 8
Fig. 3 is a schematic representation of a heat-treated, irregular, coated powder
Fig. 9
a schematic representation for the visualization of process steps of a process according to the invention,
Fig. 10
a schematic representation of embodiments of a soft magnetic body according to the invention and soft magnets according to the invention.

Wie in den Figuren 1 und 2 gezeigt ist, kann ein weichmagnetisches Pulver 20 eine Vielzahl Pulverpartikel 21 aufweisen, welche beispielsweise als Kugel und/oder Rotationsellipsoid und/oder irregulär mit einer beliebigen Form (Figur 2) ausgebildet sind. Die Pulverpartikel 21 weisen dabei jeweils einen Durchmesser P von im Wesentlichen 1 µm bis 250 µm auf. Insbesondere ist es denkbar, dass die Durchmesser P der einzelnen Pulverpartikel 21 maximal in diesem genannten Bereich und/oder in einem Bereich von maximal 0,1 µm bis 50 µm variieren. Die Pulverpartikel 21 weisen dabei ein weichmagnetisches Material 22 auf, welches z. B. einen kristallinen weichmagnetischen Werkstoff wie Weicheisen oder Kohlenstoffstähle aufweisen kann. Die in den Figuren 1 und 2 gezeigten Pulverpartikel 21 entsprechen dabei unbeschichteten Pulverpartikeln 21, sodass es sich hierbei um ein unbeschichtetes Pulver 20a handelt.As in the Figures 1 and 2 is shown, a soft magnetic powder 20 can have a plurality of powder particles 21, which, for example, as a sphere and / or ellipsoid of revolution and / or irregular with any shape ( Figure 2 ) are trained. The powder particles 21 each have a diameter P of essentially 1 μm to 250 μm. In particular, it is conceivable that the diameters P of the individual powder particles 21 vary at most in this range mentioned and / or in a range of at most 0.1 μm to 50 μm. The powder particles 21 have a soft magnetic material 22 which, for. B. may have a crystalline soft magnetic material such as soft iron or carbon steels. The ones in the Figures 1 and 2 The powder particles 21 shown here correspond to uncoated powder particles 21, so that this is an uncoated powder 20a.

In den Figuren 3 und 4 ist dagegen ein beschichtetes Pulver 20b dargestellt, welches ein Beschichtungsmaterial 31 aufweist. Das Beschichtungsmaterial 31 umgibt dabei als Beschichtung 30 die Pulverpartikel 21 (bzw. Kerne), wobei die Beschichtung 30 eine Schichtdicke D von mindestens 1 nm und/oder maximal 10 nm und/oder maximal 1 µm und/oder maximal 10 µm mit einer Toleranz von maximal 1 nm und/oder 10 nm aufweist. Es ist dabei deutlich erkennbar, dass aufgrund der Beschichtung 30 die Pulverpartikel 21 voneinander (elektrisch) isoliert werden, wodurch Wirbelstromverluste deutlich reduziert werden können.In the Figures 3 and 4 on the other hand, a coated powder 20b is shown which has a coating material 31. The coating material 31 surrounds the powder particles 21 (or cores) as a coating 30, the coating 30 having a layer thickness D of at least 1 nm and / or a maximum of 10 nm and / or a maximum of 1 μm and / or a maximum of 10 μm with a tolerance of has a maximum of 1 nm and / or 10 nm. It is It can be clearly seen here that the powder particles 21 are (electrically) isolated from one another due to the coating 30, whereby eddy current losses can be significantly reduced.

Die Figuren 5 und 6 zeigen schematisch jeweils einen Pressling 40, welcher das beschichtete Pulver 20b aufweist. Der Pressling ist dabei beispielsweise durch Formen und insbesondere Pressen entstanden, um eine gewünschte Form zu erhalten. Das Formen bzw. Pressen kann dabei auch gleichzeitig zu einer Wärmebehandlung des Presslings erfolgen. Durch die Wärmebehandlung, insbesondere durch ein Sintern des beschichteten Pulvers 20b bzw. der Beschichtung 30 wird insbesondere eine Vitrifizierung des Beschichtungsmaterials 31 bewirkt.The Figures 5 and 6 each schematically show a pellet 40 which has the coated powder 20b. The compact was created, for example, by molding and in particular pressing in order to obtain a desired shape. The shaping or pressing can also take place simultaneously with a heat treatment of the compact. Vitrification of the coating material 31 is effected in particular by the heat treatment, in particular by sintering the coated powder 20b or the coating 30.

In den Figuren 7 und 8 ist ein weichmagnetischer Körper 10 gezeigt (quasi ein Ausschnitt nach dem Sintern), welcher durch das erfindungsgemäße Verfahren 100 entstanden ist. Durch die Wärmebehandlung bzw. Sinterung gemäß Schritt c) wurde beispielsweise das Beschichtungsmaterial 31 in ein Matrixmaterial bzw. eine Matrix 32 überführt. Erfindungsgemäß ist hierbei kein wesentliches Kornwachstum erfolgt, da die Prozesstemperatur bei der Wärmebehandlung unterhalb einer Sintertemperatur des weichmagnetischen Material 22 liegt. Die Pulverpartikel 21 sind hierbei durch eine amorphe Phase voneinander isoliert worden, wobei ein Kontaktschluss zwischen Pulverteilchen ausgeschlossen ist.In the Figures 7 and 8 a soft magnetic body 10 is shown (quasi a section after sintering), which was created by the method 100 according to the invention. As a result of the heat treatment or sintering in accordance with step c), the coating material 31, for example, was converted into a matrix material or a matrix 32. According to the invention, no significant grain growth has taken place here, since the process temperature during the heat treatment is below a sintering temperature of the soft magnetic material 22. The powder particles 21 have been isolated from one another by an amorphous phase, a contact closure between powder particles being excluded.

In Figur 9 sind schematisch Verfahrensschritte eines erfindungsgemäßen Verfahrens 100 visualisiert. Dabei erfolgt gemäß dem Verfahrensschritt 100.1 eine Bereitstellung eines weichmagnetischen Pulvers 20. Das weichmagnetische Pulver 20 weist dabei Pulverpartikel 21 aus einem weichmagnetischen Material 22 auf. Gemäß dem Verfahrensschritt 100.6 wird das weichmagnetische Pulver 20 dabei aus kristallinen, weichmagnetischen Werkstoffen, hergestellt. Anschließend erfolgt gemäß dem Verfahrensschritt 100.2 ein Beschichten der Pulverpartikel 21 mit einem Beschichtungsmaterial 31. Hierfür wird gemäß Verfahrensschritt 100.7 ein Beschichtungsmaterial 31 und/oder ein Ausgangsmaterial hergestellt und/oder bereitgestellt. Optional kann anschließend im Verfahrensschritt 100.3 ein Pressen des beschichteten Pulvers 20b zu einem Pressling 40 erfolgen. Im Verfahrensschritt 100.4 wird sodann das beschichtete Pulver 20b bzw. der Pressling 40 wärmebehandelt bzw. gesintert, wobei die zum Wärmebehandeln genutzte Prozesstemperatur unterhalb einer Sintertemperatur des weichmagnetischen Materials 22 liegt. Die Wärmebehandlung erfolgt insbesondere derart, dass ein Kristallwachstum der Pulverpartikel 21 vermieden wird. Die Beschichtung 30 gewährleistet hierbei, dass benachbarte Pulverpartikel 21 nicht zusammenwachsen können. Anschließend erfolgt gemäß Verfahrensschritt 100.5 eine Nachbehandlung durchein heißisostatisches Pressen.In Figure 9 Method steps of a method 100 according to the invention are schematically visualized. According to method step 100.1, a soft magnetic powder 20 is provided. The soft magnetic powder 20 has powder particles 21 made of a soft magnetic material 22. According to method step 100.6, the soft magnetic powder 20 is produced from crystalline, soft magnetic materials. Then, according to method step 100.2, the powder particles 21 are coated with a coating material 31. For this, according to method step 100.7, a coating material 31 and / or a starting material is produced and / or provided. Optionally, in method step 100.3, the coated powder 20b can then be pressed to form a compact 40. In method step 100.4, the coated powder 20b or the compact 40 is then heat-treated or sintered, the process temperature used for the heat treatment being below a sintering temperature of the soft magnetic material 22. The heat treatment takes place in particular in such a way that crystal growth of the powder particles 21 is avoided. The coating 30 ensures that adjacent powder particles 21 cannot grow together. Subsequently, according to method step 100.5, there is an after-treatment by hot isostatic pressing.

In Figur 10 ist ein weichmagnetischer Körper 10 bzw. ein Weichmagnet 11 gezeigt, welcher beispielsweise für Elektromotoren verwendet werden kann. Die gewünschte Form kann beispielsweise durch das Formen und/oder die Nachbehandlung erzielt werden, welche z. B. beim Sintern oder im Anschluss an das Sintern erfolgen kann. Der nicht erfindungsgemäße weichmagnetische Körper 10 und/oder der nicht erfindungsgemäße Weichmagnet 11 kann je nach Anwendungszweck dabei beliebige Formen aufweisen und ist somit nicht auf die dargestellten Formen beschränkt.In Figure 10 a soft magnetic body 10 or a soft magnet 11 is shown, which can be used, for example, for electric motors. The desired shape can be achieved, for example, by molding and / or post-treatment, which z. B. can be done during sintering or after sintering. The soft magnetic body 10 not according to the invention and / or the soft magnet 11 not according to the invention can have any shape depending on the application and is therefore not limited to the shapes shown.

Die voranstehende Erläuterung der Ausführungsformen beschreibt die vorliegende Erfindung ausschließlich im Rahmen von Beispielen. Selbstverständlich können einzelne Merkmale der Ausführungsformen, sofern technisch sinnvoll, frei miteinander kombiniert werden, ohne den Rahmen der vorliegenden Erfindung zu verlassen.The above explanation of the embodiments describes the present invention exclusively in the context of examples. Of course, individual features of the embodiments can be freely combined with one another, provided that they are technically sensible, without departing from the scope of the present invention.

BezugszeichenlisteList of reference symbols

1010
weichmagnetischer Körpersoft magnetic body
1111
WeichmagnetSoft magnet
2020th
weichmagnetisches Pulversoft magnetic powder
20a20a
unbeschichtetes Pulveruncoated powder
20b20b
beschichtetes Pulvercoated powder
2121st
PulverpartikelPowder particles
2222nd
weichmagnetisches Materialsoft magnetic material
3030th
BeschichtungCoating
3131
BeschichtungsmaterialCoating material
3232
Matrixmatrix
4040
PresslingPellet
100100
VerfahrenProcedure
100.1100.1
erster Verfahrensschrittfirst procedural step
100.2100.2
zweiter Verfahrensschrittsecond process step
100.3100.3
dritter Verfahrensschrittthird process step
100.4100.4
vierter Verfahrensschrittfourth procedural step
100.5100.5
fünfter Verfahrensschrittfifth procedural step
100.6100.6
sechster Verfahrensschrittsixth process step
100.7100.7
siebter Verfahrensschrittseventh procedural step
DD.
SchichtdickeLayer thickness
PP
PartikeldurchmesserParticle diameter

Claims (5)

  1. Method (100) for producing a soft-magnetic body (10), comprising the following steps:
    a) providing a soft-magnetic powder (20) having powder particles (21) made of a soft-magnetic material (22),
    b) coating the powder particles (21) with an insulating coating material (31), wherein the sintering temperature of the coating material (31) is lower than the sintering temperature of the soft-magnetic material (22),
    c) heat-treating the coating material (31) in such a way that a sintering and/or melting of the powder particles (21) is avoided during the heat treatment, wherein according to step c) a process pressure used for the heat treatment is adapted in such a way that sintering and/or melting of the powder particles (21) is avoided, wherein
    the coating material (31) is obtained from a starting material and, after coating, the coating material (31) is present in an oxidic and/or fine-particulate structure, wherein the coating material (31) is vitrified by the sintering,
    characterized in that
    after step c), a thermal aftertreatment takes place via hot isostatic pressing.
  2. Method (100) according to Claim 1,
    characterized in that
    in particular after step b), the coated powder particles (21) are shaped to form a pellet (40), in particular by pressing.
  3. Method (100) according to Claim 1 or 2,
    characterized in that
    according to step c), a process temperature used for the heat treatment, in particular for a sintering, is adapted in such a way that a sintering and/or melting of the powder particles (21) is avoided, wherein the process temperature is below the sintering temperature suitable for sintering the soft-magnetic material (22).
  4. Method (100) according to any one of the preceding claims,
    characterized in that
    the coating material (31) is at least partially transferred into a matrix (32) of a diamagnetic or paramagnetic, in particular insulating material by the heat treatment in step c) and/or a further thermal treatment of the coating material (31) before and/or after step c), in particular in such a way that the matrix (32) embeds the powder particles (21).
  5. Method (100) according to any one of the preceding claims,
    characterized in that
    according to step b), the coating is carried out via a dry deposition method, in particular via a chemical and/or physical gas deposition method.
EP16715832.8A 2015-04-09 2016-04-06 Method for producing a soft-magnetic body Active EP3280558B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015105431.0A DE102015105431A1 (en) 2015-04-09 2015-04-09 Process for producing a soft magnetic body
PCT/EP2016/057539 WO2016162383A1 (en) 2015-04-09 2016-04-06 Method for producing a soft-magnetic body

Publications (2)

Publication Number Publication Date
EP3280558A1 EP3280558A1 (en) 2018-02-14
EP3280558B1 true EP3280558B1 (en) 2020-11-04

Family

ID=55745759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16715832.8A Active EP3280558B1 (en) 2015-04-09 2016-04-06 Method for producing a soft-magnetic body

Country Status (4)

Country Link
EP (1) EP3280558B1 (en)
CN (1) CN107396630B (en)
DE (1) DE102015105431A1 (en)
WO (1) WO2016162383A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017210941A1 (en) * 2017-06-28 2019-01-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A method of manufacturing a soft magnetic composite and soft magnetic composite
DE102021109597A1 (en) * 2021-04-16 2022-10-20 Magnetec Gmbh Magnetic field sensitive component, manufacturing process and use
US20230260687A1 (en) * 2022-02-14 2023-08-17 General Electric Company Dual phase soft magnetic particle combinations, components and manufacturing methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844623A1 (en) * 1996-11-26 1998-05-27 Kubota Corporation Pressed body of amorphous magnetically soft alloy powder and process for producing same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744099B2 (en) * 1985-04-19 1995-05-15 鐘淵化学工業株式会社 Soft magnetic material composition
DE19849781A1 (en) * 1998-10-28 2000-05-11 Vacuumschmelze Gmbh Injection molded soft magnetic powder composite and process for its manufacture
JP2001073062A (en) * 1999-09-09 2001-03-21 Kubota Corp Production of amorphous soft magnetic alloy powder molded body
JP3986043B2 (en) * 2001-02-20 2007-10-03 日立粉末冶金株式会社 Powder magnetic core and manufacturing method thereof
DE10110341A1 (en) * 2001-03-03 2002-10-31 Bosch Gmbh Robert Metal powder composite and starting material and method for producing such
DE10128004A1 (en) 2001-06-08 2002-12-19 Vacuumschmelze Gmbh Wound inductive device has soft magnetic core of ferromagnetic powder composite of amorphous or nanocrystalline ferromagnetic alloy powder, ferromagnetic dielectric powder and polymer
JP3861288B2 (en) * 2002-10-25 2006-12-20 株式会社デンソー Method for producing soft magnetic material
CN100565721C (en) * 2003-08-06 2009-12-02 日本科学冶金株式会社 The manufacture method of soft magnetic composite powder and manufacture method thereof and soft magnetic compact
JP2008028162A (en) * 2006-07-21 2008-02-07 Sumitomo Electric Ind Ltd Soft magnetic material, manufacturing method therefor, and dust core
DE102008048839A1 (en) * 2008-09-25 2010-04-01 Tridelta Weichferrite Gmbh Soft magnetic material i.e. manganese zinc ferrite for e.g. transformer, has nano-fraction of soft magnetic material particles with particle size in range of ten to two hundred nano meter, where material is produced by spray drying
JP5482097B2 (en) * 2009-10-26 2014-04-23 Tdk株式会社 Soft magnetic material, dust core and method for manufacturing the same
JP6071211B2 (en) * 2011-02-22 2017-02-01 三菱マテリアル株式会社 Low magnetostrictive high magnetic flux density composite soft magnetic material and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844623A1 (en) * 1996-11-26 1998-05-27 Kubota Corporation Pressed body of amorphous magnetically soft alloy powder and process for producing same

Also Published As

Publication number Publication date
EP3280558A1 (en) 2018-02-14
CN107396630B (en) 2020-09-11
WO2016162383A1 (en) 2016-10-13
CN107396630A (en) 2017-11-24
DE102015105431A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
EP2920796B1 (en) Process for manufacturing a permanent magnet as well as permanent magnet
KR101060091B1 (en) Method of manufacturing magnetic core and induction element with magnetic core and magnetic core
DE69821278T2 (en) Magnetic core and manufacturing process
JP6439884B6 (en) Soft magnetic alloys and magnetic parts
EP3280558B1 (en) Method for producing a soft-magnetic body
KR20190092286A (en) Soft magnetic alloy and magnetic device
KR920004025B1 (en) Ferrite magnets and making method thereof
JP2010238914A (en) Method of producing high strength low loss composite soft magnetic material, and high strength low loss composite soft magnetic material
DE3422281A1 (en) Process for manufacturing mouldings from magnetic metal alloys, and mouldings thus produced
JP2010236018A (en) High-strength low-core-loss composite soft magnetic material, method for manufacturing the same, and electromagnetic circuit parts
WO2015003824A1 (en) Method for producing a permanent magnet, and permanent magnet and electrical machine having such a permanent magnet
EP3414768B1 (en) Hybrid magnet and method for the production thereof
JP6237853B1 (en) Soft magnetic alloy
DE102015213957B4 (en) A method for producing a hybrid magnet as well as hybrid magnet produced by the method and an electric machine comprising the hybrid magnet
DE3120168A1 (en) Magnetic metal alloy moulded articles, process for their production and device for carrying out the process
KR20150133280A (en) Sintered magnet production method
EP3441990B1 (en) Soft magnetic alloy and magnetic device
JP2018053352A (en) Soft magnetic alloy
WO2016162188A1 (en) Soft magnetic composite and corresponding method for producing a soft magnetic composite
WO2019002434A1 (en) Method for producing a soft-magnetic composite material and soft-magnetic composite material
DE952199C (en) Magnetic core for coils in electrical engineering
CH263771A (en) Electrical semiconductor.
DE19740353A1 (en) Compact magnetic, glass ceramic shaped component with a high magnetic particle content, and method for its production
DE10160640A1 (en) Thermally insulating hollow sphere used in the production of insulating elements has an outer casing with a hollow chamber containing an oxide in powder form formed during sintering in an atmosphere containing oxygen
JPH04237104A (en) Ferrite magnetic material and manufacture thereof

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MENZEL, MARCUS

Inventor name: TIMM, EIKE HERMANN

Inventor name: WOEHL-BRUHN, HENNING

Inventor name: HARSTICK, HENRIKE

Inventor name: ZLATKOV, BRANISLAV

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190409

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200703

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1330148

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016011609

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210205

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016011609

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210406

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210406

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1330148

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160406

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230430

Year of fee payment: 8