EP3268954B1 - Arrangement and field device for process measurement technology - Google Patents

Arrangement and field device for process measurement technology Download PDF

Info

Publication number
EP3268954B1
EP3268954B1 EP16704442.9A EP16704442A EP3268954B1 EP 3268954 B1 EP3268954 B1 EP 3268954B1 EP 16704442 A EP16704442 A EP 16704442A EP 3268954 B1 EP3268954 B1 EP 3268954B1
Authority
EP
European Patent Office
Prior art keywords
arrangement
damping element
natural frequency
annular
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16704442.9A
Other languages
German (de)
French (fr)
Other versions
EP3268954A1 (en
Inventor
Yaoying Lin
Alfred Rieder
Wolfgang Drahm
Michal Bezdek
Pierre Ueberschlag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of EP3268954A1 publication Critical patent/EP3268954A1/en
Application granted granted Critical
Publication of EP3268954B1 publication Critical patent/EP3268954B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K1/00Devices in which sound is produced by striking a resonating body, e.g. bells, chimes or gongs
    • G10K1/06Devices in which sound is produced by striking a resonating body, e.g. bells, chimes or gongs the resonating devices having the shape of a bell, plate, rod, or tube
    • G10K1/062Devices in which sound is produced by striking a resonating body, e.g. bells, chimes or gongs the resonating devices having the shape of a bell, plate, rod, or tube electrically operated
    • G10K1/066Devices in which sound is produced by striking a resonating body, e.g. bells, chimes or gongs the resonating devices having the shape of a bell, plate, rod, or tube electrically operated the sounding member being a tube, plate or rod
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K1/00Devices in which sound is produced by striking a resonating body, e.g. bells, chimes or gongs
    • G10K1/06Devices in which sound is produced by striking a resonating body, e.g. bells, chimes or gongs the resonating devices having the shape of a bell, plate, rod, or tube
    • G10K1/08Details or accessories of general applicability
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/002Devices for damping, suppressing, obstructing or conducting sound in acoustic devices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
    • G10K11/04Acoustic filters ; Acoustic resonators

Definitions

  • the present invention solves this problem by a device having the features of claim 1.
  • An inventive arrangement comprises an ultrasonic transducer and a damping element, or a bandpass filter, with a longitudinal axis L.
  • An ultrasonic transducer is limited in this respect not only to piezoelectric elements or other ultrasound generating elements but may also include the region of the arrangement, which the ultrasonic signal before entering the medium must cross. This may include, for example, one or more coupling layers or matching layers.
  • a metallic attachment may be part of the ultrasonic transducer from which an ultrasonic signal is emitted into a gaseous or liquid medium. Particularly preferably, this metallic attachment is connected by means of a joint with the damping element.
  • the damping element connects the ultrasonic transducer with a housing or Meßrohrwandung.
  • this wall is not part of the arrangement.
  • the transducer has an attachment with a wetted surface.
  • Ultrasonic signals are emitted from the surface into a gaseous or liquid medium.
  • This can be a measuring medium in the case of a flow meter or, for example, in level measurement. Air.
  • the damping element has at least two annular grooves and a ring-shaped segment arranged therebetween.
  • An annular segment is an annular trained circumferential projection.
  • the annular mass segment always has the same wall thickness along its circumference.
  • the damping element has a first natural frequency f a , in which the annular mass segment performs an axial movement parallel to the longitudinal direction of the damping element. This can also be called axial mode. If the damping element has a plurality of axial modes, then the first natural frequency is to be understood as the highest natural frequency at which the annular mass segment carries out an axial movement parallel to the longitudinal direction of the damping element.
  • damping element according to the invention has a second natural frequency f r , in which the annular mass segment performs a rotational movement, preferably around its center of mass. This can also be called rotation mode. If the damping element has a plurality of rotational modes, the first natural frequency to be understood as the lowest natural frequency at which the annular mass segment carries out a rotational movement.
  • the ratio of the first natural frequency f a to the second natural frequency f r is smaller than 0.75 according to the invention. This arrangement allows selection of the useful frequency over a very wide frequency range. Advantageous embodiments are the subject of the dependent claims. It is advantageous if the ratio of the first natural frequency f a to the second natural frequency f r is less than 0.55, particularly preferably less than 0.4.
  • the damping element has a first mean distance r 2 from the outer wall of a hollow-cylindrical partial region to the longitudinal axis L.
  • the averaging of the distance relates to a distance averaged over the circumference and the length of the annular groove. Thus, individual areas may deviate from the mean.
  • the damping element has a second average distance r 1 from the inner wall of the hollow cylindrical partial region to the longitudinal axis L.
  • the averaging of the distance refers to a distance of the inner wall to the longitudinal axis averaged over the circumference and the length of the annular groove.
  • this term is 0.093 r 2 - r 1 1 mm + 0.0016 l 3 1 mm - 12.5 2 + 0.057 less than 0.55, and is more preferably less than 0.40.
  • the data for r 1 , r 2 and l 3 must be given in millimeters.
  • the ultrasonic transducer and the damping element are connected to one another in a material-locking manner.
  • the damping element has less than 5 annular grooves. An increasing number of annular grooves means an increasing danger of weak points which can fail under pressure loads and under structure-borne sound vibrations.
  • the length of the at least two annular grooves in the axial direction is the same length and that the length of the annular segment is greater, preferably at least 1.5 times as large as the length of one of the two annular grooves. Due to the design of the ring segment segment over a large longitudinal range of time, the structure-borne noise can be better erased and at the same time there is a better splitting between axial modes and rotational modes in the frequency spectrum. It is advantageous if the ultrasonic transducer terminally a bending plate having a surface from which the ultrasonic signal is emitted into the medium, which Bending plate edge free swinging is formed.
  • the bending plate is described as a plate having the surface from which the ultrasonic signal is radiated into a medium.
  • EP 1 340 964 B1 takes place in this embodiment, no edge feed of structure-borne noise by a bending plate in the damping element, but the bending plate is free swinging edge.
  • the ultrasonic signal can advantageously be transmitted over a large area into the gaseous or liquid medium.
  • the arrangement in a frequency range in which the ratio of the useful frequency to the first natural frequency is greater than 1.6 and in which the ratio of the useful frequency to the second natural frequency is less than 0.7 has no axial or rotational natural frequency ,
  • the arrangement can not have an axial or rotational natural frequency in the range between 50,000 and 120,000 hearts.
  • a field device of process measuring technology, in particular an ultrasonic flowmeter for measuring gaseous media, has a measuring tube to which an arrangement according to claim 1 is attached.
  • the arrangement can also be used in a level gauge, wherein the measuring tube but usually by a storage vessel -. a tank or a silo is replaced.
  • the present arrangement can be used both in level gauges and in flow meters.
  • the structure, the mode of operation and the resulting advantages will be described primarily for an ultrasonic flowmeter.
  • the arguments can mainly be transferred to ultrasonic level measurement.
  • Ultrasonic flowmeters are widely used in process and automation technology. They allow in a simple way to determine the volume flow and / or mass flow of a medium to be measured in a pipeline.
  • the known ultrasonic flowmeters often work according to the transit time difference principle.
  • the transit time difference principle the different transit times of ultrasonic waves, in particular ultrasonic pulses, so-called bursts, are evaluated relative to the flow direction of the liquid.
  • ultrasonic pulses at a certain angle to Tube axis sent both with and against the flow. From the transit time difference, the flow rate and thus with a known diameter of the pipe section of the volume flow can be determined.
  • ultrasonic waves are generated or received with the help of so-called ultrasonic transducers.
  • ultrasonic transducers are firmly connected to the pipe wall of the respective pipe section.
  • This type of device is also known in professional circles as an inline ultrasonic flowmeter.
  • Clamp-on ultrasonic flow measurement systems are also available which are externally attached to the measuring tube, e.g. be unbolted.
  • clamp-on ultrasonic flowmeters are not the subject of the present invention
  • the ultrasonic transducers normally comprise an electromechanical transducer element, e.g. one or more piezoelectric elements
  • the ultrasonic transducers are arranged in a common plane on the measuring tube, either on opposite sides of the measuring tube, then the acoustic signal, projected on a tube cross-section, once along a secant through the measuring tube , or on the same side of the measuring tube, then the acoustic signal is reflected on the opposite side of the measuring tube, whereby the acoustic signal passes twice through the measuring tube along the projected on the cross section through the measuring tube secant.
  • Fig. 1 In the concrete embodiment of the Fig. 1 is an arrangement with a corresponding ultrasonic transducer 1 with two superposed electromechanical transducer elements 2, in particular with two piezo elements configured.
  • the ultrasonic transducer 1 also has an attachment 4 with a surface 5 in contact with the medium. At this surface 5, the ultrasonic waves generated by the one or more electromechanical transducer elements 2 are delivered to the measuring medium.
  • the in Fig. 1 shown essay 4 has a base 6, which is in contact, in particular in positive contact with the electromechanical transducer elements 2. Furthermore, the article 4 on a bending plate 7 on with the medium-contacting surface 5.
  • the base 6 of the attachment 4 has an interface 16 to a damping element 15.
  • This damping element 15 is formed as a cylindrical body with at least two mutually parallel annular grooves 10 and 12.
  • the interface 16 may e.g. be designed as a welded joint.
  • a first annular mass segment 9 is arranged, which has a greater wall thickness, in particular at least twice as thick a wall thickness as the annular groove 10.
  • a second ring segment 11 is also arranged, which has a greater wall thickness, in particular at least twice as thick wall thickness, as the annular grooves 10 and 12th
  • the damping element 15 is essentially defined by three radii. It is provided a first radius r 1 , which extends from a longitudinal axis L of the damping element 15 to an inner wall of the cylindrical body. Furthermore, a second radius r 2 is provided, which describes the distance of the outer wall in the region of the annular grooves 10, 12 to the longitudinal axis. Finally, a third radius r 3 is provided which describes the radial distance between the longitudinal axis and the outermost point of the second annular segment 11.
  • the damping element 15 is connected via an interface 17 in the region of the third radius r 3 with a housing wall 14.
  • the interface 17 may be formed as a welded joint.
  • the interface is in Fig. 1 arranged on radially outside of the second radius r 2 and in the region of the third radius r 3 .
  • the annular grooves 10 and 12 extend over a respective longitudinal section l 1 and l 2 along the longitudinal axis L. These longitudinal sections l 1 and l 2 are in Fig. 1 the same size.
  • the second ring mass segment 11 extends over a longitudinal section l 3 , which in the embodiment of the Fig. 1 is greater than the lengths l 1 and l 2 .
  • the first annular mass segment 9 is connected at its radially outermost point with a ring segment 8, which extends from the interface 16 to the ring mass 9.
  • This ring segment 8 has a smaller, preferably at least twice as small wall thickness as the first annular mass segment 9.
  • the Ringmassesegment 9 goes over at its radially innermost point in the annular groove. As a result, upon the application of an axial force, a deflection of this force through the annular mass segment takes place from outside to inside.
  • Fig. 2 shows a damping element of the prior art of EP 1 340 964 B1 , The damping behavior of this damping element was investigated and with the damping behavior of the damping behavior of the arrangement of Fig. 1 compared.
  • Fig. 3 shows on the basis of the spectrum S1 with the solid line vibration spectra, the damping behavior of the arrangement of Fig. 1 in comparison with the spectrum S2 with the dashed line to the damping behavior of the arrangement of Fig. 2 ,
  • a useful signal An which is needed to determine the level or the flow, is in the spectrum S1 at about 8200 Hz.
  • the frequency range of the useful signal An for the arrangement of Fig. 1 be chosen in a very wide range.
  • the frequency range of the useful signal can be selected arbitrarily in the range between 45,000 to about 120,000 Hz, without resulting in larger superimpositions of the useful signal An with the natural frequencies A-a1, A-a2, A-r1 of the damping element 15.
  • the peaks in spectrum S1 at 28,000 and at 35,000 Hz represent axial vibrations, while the peak at about 136,000 Hz represents a rotational vibration.
  • the spectrum of the damping element of the Fig. 2 true to scale implementation a whole series of natural oscillations, which overlap with a useful signal at about 82000 Hz.
  • the peaks at 25000 and at 55000 Hz represent axial vibrations B-a1 and B-a2.
  • the peaks at 71000 and 73000 Hz, on the other hand, represent rotational vibrations B-r1 and B-r2.
  • Both the axial and the Rotational vibrations are in the in Fig. 3 variant shown below the useful frequency of 82000 Hz.
  • Fig. 4 shows the vibration behavior of the damping element when transmitting and / or receiving an ultrasonic signal in the useful frequency range. It can be seen that predominantly the ultrasonic transducer 1, ie the electromechanical transducer elements 2 and 3 and the attachment 4 with the base 6 and the bending plate 7, are in vibration.
  • the bending plate 7 has a radial deflection A1 during operation of the ultrasonic flow device. However, this deflection A1 is not transmitted to a subsequent damping structure, but the bending plate 7 is free-swinging and is not disturbed in its radial deflection by a damping structure. As a result, the radiated ultrasound signal is transmitted to the medium particularly well and unhindered.
  • Fig. 5 shows the vibration behavior of the arrangement according to the invention in the illustrated embodiment according to Fig. 1 in the state of natural frequency A-a2 (axial mode at about 35000 Hz.).
  • the annular mass segment 11 performs an axial movement between the two parallel annular grooves 10 and 12.
  • the up and down movement of the ring gauge segment 11 results in a temporary deformation of the material wall in the region of the annular grooves 10 and 12 in the form of a temporary thinning or thickening.
  • Fig. 6 shows the vibration behavior of the arrangement according to the invention in the illustrated embodiment according to Fig. 1 in the state of natural frequency A-r1 (rotation mode at about 137000 Hz.).
  • the annular mass segment 11 performs a rotational movement between the two parallel annular grooves 10 and 12. Due to the oscillatory movement of the annular segment 11, there is a temporary material wall deformation in the region of the annular grooves 10 and 12 in the form of a wave-shaped bending of the material wall.
  • Fig. 1 illustrated embodiment can be further modified within the scope of the invention.
  • a prismatic basic structure is also possible, preferably with uniform prism surfaces.
  • Individual segments of the basic structure, in particular also the annular mass segment 11, can be made polygonal in a two-dimensional section perpendicular to the longitudinal axis L.
  • the damping element and the attachment are rotationally symmetrical and consist of metal.
  • the attachment may preferably consist of stainless steel or titanium.
  • the damping element is preferably made of stainless steel.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Measuring Volume Flow (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

Es ist eine Anordnung eines Ultraschallwandlers mit einem Filterelement aus der EP 1 340 964 B1 bekannt. Diese Anordnung weist allerdings eine signalabstrahlende Biegeplatte auf, welche randseitig den Körperschall in das Filterelement einspeist. Dadurch wird das Ultraschallsignal zwar in der Mitte zentriert, allerdings ist die abstrahlende Fläche sehr gering. Der konstruktive Gesamtaufbau der Anordnung in dieser Druckschrift zeigt zudem ein Frequenzspektrum, in welchem Rotations- und Axialmoden sehr nahe beieinander liegen und unterhalb eines Frequenzbereichs von 80000 Hz, dem üblichen Frequenzbereich des Nutzsignals. Das bedeutet, dass die Wahl der Frequenz für das Nutzsignal äußerst eingeschränkt ist oder man einen Messfehler, hervorgerufen durch die Eigenfrequenzen, kompensieren muss.It is an arrangement of an ultrasonic transducer with a filter element of the EP 1 340 964 B1 known. However, this arrangement has a signal-emitting bending plate which feeds the structure-borne noise into the filter element at the edge. As a result, the ultrasound signal is centered in the middle, but the radiating surface is very small. The constructive overall structure of the arrangement in this document also shows a frequency spectrum in which rotational and axial modes are very close to each other and below a frequency range of 80000 Hz, the usual frequency range of the useful signal. This means that the choice of the frequency for the useful signal is extremely limited or one must compensate for a measurement error caused by the natural frequencies.

Ausgehend von diesem Stand der Technik ist es nunmehr Aufgabe der vorliegenden Erfindung eine Anordnung bereitzustellen, mit einem breiten Frequenzbereich für das Nutzsignal, ohne dass eine Kompensation eines Messfehlers notwendig ist.Based on this prior art, it is now an object of the present invention to provide an arrangement with a wide frequency range for the useful signal, without compensation of a measurement error is necessary.

Die vorliegende Erfindung löst diese Aufgabe durch eine Vorrichtung mit den Merkmalen des Anspruchs 1.The present invention solves this problem by a device having the features of claim 1.

Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.Advantageous embodiments of the invention are the subject of the dependent claims.

Eine erfindungsgemäße Anordnung umfasst einen Ultraschallwandler und ein Dämpfungselement, bzw. einen Bandpassfilter, mit einer Längsachse L. Ein Ultraschallwandler beschränkt sich diesbezüglich nicht ausschließlich auf Piezoelemente oder andere ultraschallerzeugende Elemente sondern kann auch den Bereich der Anordnung umfassen, welchen das Ultraschallsignal vor Eintritt in das Medium durchqueren muss. Dies kann z.B. eine oder mehrere Koppelschichten oder Anpassungsschichten umfassen. Besonders bevorzugt kann z.B. ein metallischer Aufsatz Teil des Ultraschallwandlers sein, von welchem aus ein Ultraschallsignal in ein gasförmiges oder flüssiges Medium ausgesandt wird. Besonders bevorzugt ist dieser metallische Aufsatz mittels einer Fügestelle mit dem Dämpfungselement verbunden.An inventive arrangement comprises an ultrasonic transducer and a damping element, or a bandpass filter, with a longitudinal axis L. An ultrasonic transducer is limited in this respect not only to piezoelectric elements or other ultrasound generating elements but may also include the region of the arrangement, which the ultrasonic signal before entering the medium must cross. This may include, for example, one or more coupling layers or matching layers. Especially preferred For example, a metallic attachment may be part of the ultrasonic transducer from which an ultrasonic signal is emitted into a gaseous or liquid medium. Particularly preferably, this metallic attachment is connected by means of a joint with the damping element.

Weiterhin erfindungsgemäß verbindet das Dämpfungselement den Ultraschallwandler mit einer Gehäuse- oder Messrohrwandung. Diese Wandung ist dabei jedoch nicht Teil der Anordnung. Der Wandler weist einen Aufsatz mit einer mediumsberührenden Oberfläche auf.Furthermore, according to the invention, the damping element connects the ultrasonic transducer with a housing or Meßrohrwandung. However, this wall is not part of the arrangement. The transducer has an attachment with a wetted surface.

Von der Oberfläche werden Ultraschallsignale in ein gasförmiges oder flüssiges Medium ausgesandt. Dies kann im Fall eines Durchflussmessgerätes ein Messmedium sein oder bei der Füllstandsmessung z.B. Luft.Ultrasonic signals are emitted from the surface into a gaseous or liquid medium. This can be a measuring medium in the case of a flow meter or, for example, in level measurement. Air.

Das Dämpfungselement weist zumindest zwei Ringnuten und ein dazwischen angeordnetes Ringmassesegment auf. Ein Ringmassesegment ist ein ringförmig ausgebildeter umlaufender Vorsprung. In einer bevorzugten Ausführungsvariante weist das Ringmassesegment entlang seines Umfangs stets die gleiche Wandstärke auf.The damping element has at least two annular grooves and a ring-shaped segment arranged therebetween. An annular segment is an annular trained circumferential projection. In a preferred embodiment, the annular mass segment always has the same wall thickness along its circumference.

Weiterhin erfindungsgemäß weist Dämpfungselement eine erste Eigenfrequenz fa aufweist, in welcher das Ringmassesegment eine Axialbewegung parallel zur Längsrichtung des Dämpfungselements ausführt. Dies kann auch Axialmode genannt werden. Falls das Dämpfungselement mehrere Axialmoden aufweist, so ist als erste Eigenfrequenz die höchste Eigenfrequenz zu verstehen, bei welcher das Ringmassesegment eine Axialbewegung parallel zur Längsrichtung des Dämpfungselements ausführt.Furthermore, according to the invention, the damping element has a first natural frequency f a , in which the annular mass segment performs an axial movement parallel to the longitudinal direction of the damping element. This can also be called axial mode. If the damping element has a plurality of axial modes, then the first natural frequency is to be understood as the highest natural frequency at which the annular mass segment carries out an axial movement parallel to the longitudinal direction of the damping element.

Zudem weist Dämpfungselement erfindungsgemäß ein zweite Eigenfrequenz fr auf, in welcher das Ringmassesegment eine Rotationsbewegung, vorzugsweise um seinen Masseschwerpunkt, ausführt. Dies kann auch Rotationsmode genannt werden. Falls das Dämpfungselement mehrere Rotationsmoden aufweist, so ist als erste Eigenfrequenz die niedrigste Eigenfrequenz zu verstehen, bei welcher das Ringmassesegment eine Rotationsbewegung ausführt.In addition, damping element according to the invention has a second natural frequency f r , in which the annular mass segment performs a rotational movement, preferably around its center of mass. This can also be called rotation mode. If the damping element has a plurality of rotational modes, the first natural frequency to be understood as the lowest natural frequency at which the annular mass segment carries out a rotational movement.

Das Verhältnis der ersten Eigenfrequenz fa zur zweiten Eigenfrequenz fr ist erfindungsgemäß kleiner als 0,75.
Diese Anordnung ermöglicht eine Auswahl der Nutzfrequenz über einen sehr breiten Frequenzbereich.
Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
Es ist von Vorteil, wenn das Verhältnis der ersten Eigenfrequenz fa zur zweiten Eigenfrequenz fr kleiner ist als 0,55, besonders bevorzugt kleiner ist als 0,4.
The ratio of the first natural frequency f a to the second natural frequency f r is smaller than 0.75 according to the invention.
This arrangement allows selection of the useful frequency over a very wide frequency range.
Advantageous embodiments are the subject of the dependent claims.
It is advantageous if the ratio of the first natural frequency f a to the second natural frequency f r is less than 0.55, particularly preferably less than 0.4.

Das Dämpfungselement weist zumindest im Bereich einer ersten der zumindest zwei Ringnuten einen ersten mittleren Abstand r2 von der Außenwandung eines hohlzylindrischen Teilbereichs bis zur Längsachse L auf. Die Mittelung des Abstandes bezieht sich auf einen Abstand gemittelt über den Umfang und die Länge der Ringnut. So können einzelne Bereiche vom Mittelwert abweichen.
Das Dämpfungselement weist zumindest im Bereich der ersten der zumindest zwei Ringnuten einen zweiten mittleren Abstand r1 von der Innenwandung des hohlzylindrischen Teilbereichs bis zur Längsachse L auf. Auch hierbei bezieht sich die Mittelung des Abstandes auf einen Abstand der Innenwandung zur Längsachse gemittelt über den Umfang und die Länge der Ringnut.
Außerdem weist das Ringmassesegment zwischen den beiden Ringnuten eine gewisse Länge l3 in axialer Richtung auf. Diese Länge ist ebenfalls über die Länge und den Umfang gemittelt.
Diese Größen sind in einem mathematischen Ausdruck zusammengefasst und zueinander ins Verhältnis gesetzt. Nach der vorliegenden Erfindung ist dieser Ausdruck 0,093 r 2 r 1 1 mm + 0,0016 l 3 1 mm 12,5 2 + 0,057

Figure imgb0001
kleiner als 0,55, und ist vorteilhaft besonders bevorzugt kleiner als 0,40. Die Angaben für r1, r2 und l3 sind in Millimeter anzugeben.
Durch diese bauliche Abstimmung einzelner Segmente des Dämpfungselements kann eine weitere Optimierung des Frequenzspektrums der Anordnung erreicht werden.
Es ist zudem von Vorteil wenn der hohlzylindrische Teilbereich rotationssymmetrisch ist. Dadurch erfolgt eine gleichmäßige Belastung und Auslöschung des Körperschalls.
Es ist von Vorteil, wenn der Ultraschallwandler und das Dämpfungselement stoffschlüssig miteinander verbunden sind. Es sind zwar auch Schraubvarianten für Ultraschallwandler und Dämpfungselemente bekannt, diese können sich allerdings unter Schwingungen lösen oder verformen und sind meist keine hygienische Lösung.
Es ist weiterhin von Vorteil, wenn das Dämpfungselement weniger als 5 Ringnuten aufweist. Eine zunehmende Anzahl von Ringnuten bedeutet eine zunehmende Gefahr von Schwachstellen welche bei Druckbelastungen und unter Körperschallschwingungen versagen können.
Es ist von Vorteil, wenn die Länge der zumindest zwei Ringnuten in axialer Richtung gleich lang ist und dass die Länge des Ringmassesegments größer, vorzugsweise zumindest 1,5 mal so groß ist, wie die Länge einer der zwei Ringnuten. Durch die Ausgestaltung des Ringmassesegments über einen großen Längsbereich hinweg kann der Körperschall besser ausgelöscht werden und zugleich eine bessere Aufspaltung zwischen Axialmoden und Rotationsmoden im Frequenzspektrum erfolgen.
Es ist von Vorteil, wenn der Ultraschallwandler endständig eine Biegeplatte, welche eine Oberfläche aufweist, von welcher das Ultraschallsignal in das Medium ausgesandt wird, welche Biegeplatte randseitig frei schwingend ausgebildet ist. In der EP 1 340 964 B1 wird die Biegeplatte als eine Platte mit der Oberfläche beschrieben, von welcher aus das Ultraschallsignal in ein Medium abgestrahlt wird. Im Unterschied zur EP 1 340 964 B1 erfolgt bei dieser Ausgestaltung keine randseitige Einspeisung des Körperschalls durch eine Biegeplatte in das Dämpfungselement, sondern die Biegeplatte ist randseitig frei schwingend. Dadurch kann das Ultraschallsignal in vorteilhafter Weise großflächig in das gasförmige oder flüssige Medium übertragen werden.At least in the region of a first of the at least two annular grooves, the damping element has a first mean distance r 2 from the outer wall of a hollow-cylindrical partial region to the longitudinal axis L. The averaging of the distance relates to a distance averaged over the circumference and the length of the annular groove. Thus, individual areas may deviate from the mean.
At least in the region of the first of the at least two annular grooves, the damping element has a second average distance r 1 from the inner wall of the hollow cylindrical partial region to the longitudinal axis L. Again, the averaging of the distance refers to a distance of the inner wall to the longitudinal axis averaged over the circumference and the length of the annular groove.
In addition, the annular mass segment between the two annular grooves on a certain length l 3 in the axial direction. This length is also averaged over the length and perimeter.
These quantities are summarized in a mathematical expression and set in relation to each other. According to the present invention, this term is 0.093 r 2 - r 1 1 mm + 0.0016 l 3 1 mm - 12.5 2 + 0.057
Figure imgb0001
less than 0.55, and is more preferably less than 0.40. The data for r 1 , r 2 and l 3 must be given in millimeters.
By means of this constructional tuning of individual segments of the damping element, a further optimization of the frequency spectrum of the arrangement can be achieved.
It is also advantageous if the hollow cylindrical portion is rotationally symmetric. This results in a uniform load and cancellation of structure-borne noise.
It is advantageous if the ultrasonic transducer and the damping element are connected to one another in a material-locking manner. Although there are also known Schraubvarianten for ultrasonic transducers and damping elements, but they can solve under vibration or deform and are usually no hygienic solution.
It is also advantageous if the damping element has less than 5 annular grooves. An increasing number of annular grooves means an increasing danger of weak points which can fail under pressure loads and under structure-borne sound vibrations.
It is advantageous if the length of the at least two annular grooves in the axial direction is the same length and that the length of the annular segment is greater, preferably at least 1.5 times as large as the length of one of the two annular grooves. Due to the design of the ring segment segment over a large longitudinal range of time, the structure-borne noise can be better erased and at the same time there is a better splitting between axial modes and rotational modes in the frequency spectrum.
It is advantageous if the ultrasonic transducer terminally a bending plate having a surface from which the ultrasonic signal is emitted into the medium, which Bending plate edge free swinging is formed. In the EP 1 340 964 B1 For example, the bending plate is described as a plate having the surface from which the ultrasonic signal is radiated into a medium. In contrast to EP 1 340 964 B1 takes place in this embodiment, no edge feed of structure-borne noise by a bending plate in the damping element, but the bending plate is free swinging edge. As a result, the ultrasonic signal can advantageously be transmitted over a large area into the gaseous or liquid medium.

Es ist von Vorteil, wenn die Anordnung in einem Frequenzbereich, in welchem das Verhältnis der Nutzfrequenz zur ersten Eigenfrequenz größer ist als 1,6 und in welchem das Verhältnis der Nutzfrequenz zur zweiten Eigenfrequenz kleiner ist als 0,7 keine axiale oder Rotations-Eigenfrequenz aufweist. Die Anordnung kann insbesondere im Bereich zwischen 50000 und 120000 Herz keine axiale oder Rotations-Eigenfrequenz aufweisen.It is advantageous if the arrangement in a frequency range in which the ratio of the useful frequency to the first natural frequency is greater than 1.6 and in which the ratio of the useful frequency to the second natural frequency is less than 0.7 has no axial or rotational natural frequency , In particular, the arrangement can not have an axial or rotational natural frequency in the range between 50,000 and 120,000 hearts.

Ein erfindungsgemäßes Feldgerät der Prozessmesstechnik, insbesondere Ultraschall-Durchflussmessgerät zur Messung von gasförmigen Medien, weist ein Messrohr auf, an welchem eine Anordnung nach Anspruch 1 angebracht ist.A field device according to the invention of process measuring technology, in particular an ultrasonic flowmeter for measuring gaseous media, has a measuring tube to which an arrangement according to claim 1 is attached.

Alternativ kann die Anordnung auch in einem Füllstandsmessgerät eingesetzt werden, wobei das Messrohr dabei jedoch meist durch ein Vorratsgefäß - z.B. einen Tank oder ein Silo ersetzt ist.Alternatively, the arrangement can also be used in a level gauge, wherein the measuring tube but usually by a storage vessel -. a tank or a silo is replaced.

Auch andere Feldgeräte aus dem Bereich der Prozessmesstechnik sind für den Einsatz der Anordnung sind denkbar.Other field devices from the field of process measuring technology are conceivable for the use of the arrangement.

Die vorliegende Erfindung wird nachfolgend anhand der beigefügten Zeichnungen näher erläutert:
Es zeigen:

  • Fig. 1 ein erfindungsgemäße Anordnung umfassend einen Ultraschallwandler und ein Dämpfungselement;
  • Fig. 2 eine Anordnung gemäß dem Stand der Technik
  • Fig. 3 ein Frequenzspektrum der Anordnung aus Fig. 1 und der Anordnung gemäß Fig. 2
  • Fig. 4 eine Darstellung des Schwingungsverhaltens der erfindungsgemäßen Anordnung bei einer Anregungsfrequenz bei der Nutzfrequenz
  • Fig. 5 eine Darstellung des Schwingungsverhaltens der erfindungsgemäßen Anordnung bei einer Anregungsfrequenz im Bereich einer Axialmode; und
  • Fig. 6 eine Darstellung des Schwingungsverhaltens der erfindungsgemäßen Anordnung bei einer Anregungsfrequenz im Bereich einer Rotationsmode.
The present invention is explained in more detail below with reference to the attached drawings:
Show it:
  • Fig. 1 an inventive arrangement comprising an ultrasonic transducer and a damping element;
  • Fig. 2 an arrangement according to the prior art
  • Fig. 3 a frequency spectrum of the arrangement Fig. 1 and the arrangement according to Fig. 2
  • Fig. 4 a representation of the vibration behavior of the inventive arrangement at an excitation frequency at the Nutzfrequenz
  • Fig. 5 a representation of the vibration behavior of the inventive arrangement at an excitation frequency in the range of an axial mode; and
  • Fig. 6 a representation of the vibration behavior of the inventive arrangement at an excitation frequency in the range of a rotational mode.

Die vorliegende Anordnung kann sowohl bei Füllstandmessgeräten als auch bei Durchflussmessgeräten eingesetzt werden. Nachfolgend wird jedoch der Aufbau, die Funktionsweise und die daraus resultierenden Vorteile vorwiegend für ein Ultraschall-Durchflussmessgerät beschrieben. Die Argumente lassen sich jedoch überwiegend auch auf die Ultraschall-Füllstandsmessung übertragen.The present arrangement can be used both in level gauges and in flow meters. In the following, however, the structure, the mode of operation and the resulting advantages will be described primarily for an ultrasonic flowmeter. However, the arguments can mainly be transferred to ultrasonic level measurement.

Ultraschall-Durchflussmessgeräte werden vielfach in der Prozess- und Automatisierungstechnik eingesetzt. Sie erlauben in einfacher Weise, den Volumendurchfluss und/oder Massendurchfluss eines Messmediums in einer Rohrleitung zu bestimmen. Die bekannten Ultraschall-Durchflussmessgeräte arbeiten häufig nach dem Laufzeitdifferenz Prinzip. Beim Laufzeitdifferenz-Prinzip werden die unterschiedlichen Laufzeiten von Ultraschallwellen, insbesondere Ultraschallimpulsen, so genannten Bursts, relativ zur Strömungsrichtung der Flüssigkeit ausgewertet. Hierzu werden Ultraschallimpulse in einem bestimmten Winkel zur Rohrachse sowohl mit als auch entgegen der Strömung gesendet. Aus der Laufzeitdifferenz lässt sich die Fliessgeschwindigkeit und damit bei bekanntem Durchmesser des Rohrleitungsabschnitts der Volumendurchfluss bestimmen.Ultrasonic flowmeters are widely used in process and automation technology. They allow in a simple way to determine the volume flow and / or mass flow of a medium to be measured in a pipeline. The known ultrasonic flowmeters often work according to the transit time difference principle. In the transit time difference principle, the different transit times of ultrasonic waves, in particular ultrasonic pulses, so-called bursts, are evaluated relative to the flow direction of the liquid. For this purpose, ultrasonic pulses at a certain angle to Tube axis sent both with and against the flow. From the transit time difference, the flow rate and thus with a known diameter of the pipe section of the volume flow can be determined.

Die Ultraschallwellen werden mit Hilfe so genannter Ultraschallwandler erzeugt bzw. empfangen. Hierfür sind Ultraschallwandler mit der Rohrwandung des betreffenden Rohrleitungsabschnitts fest verbunden. Dieser Gerätetyp ist in Fachkreisen auch als Inline-Ultraschalldurchflussmessgerät bekannt. Es sind auch Clamp-on-Ultraschall-Durchflussmesssysteme erhältlich, welche von außen an das Messrohr angebracht, z.B. aufgeschnallt, werden. Clamp-On Ultraschall-Durchflussmessgeräte sind jedoch nicht Gegenstand der vorliegenden ErfindungThe ultrasonic waves are generated or received with the help of so-called ultrasonic transducers. For this purpose, ultrasonic transducers are firmly connected to the pipe wall of the respective pipe section. This type of device is also known in professional circles as an inline ultrasonic flowmeter. Clamp-on ultrasonic flow measurement systems are also available which are externally attached to the measuring tube, e.g. be unbolted. However, clamp-on ultrasonic flowmeters are not the subject of the present invention

Die Ultraschallwandler weisen normalerweise aus einem elektromechanischen Wandlerelement, z.B. ein oder mehrere piezoelektrische Elemente aufThe ultrasonic transducers normally comprise an electromechanical transducer element, e.g. one or more piezoelectric elements

Sowohl bei Clamp-On-Systemen, als auch bei Inline-Systemen sind die Ultraschallwandler in einer gemeinsamen Ebene am Messrohr angeordnet, entweder auf gegenüberliegenden Seiten des Messrohrs, dann verläuft das akustische Signal, projiziert auf einen Rohrquerschnitt, einmal entlang einer Sekante durch das Messrohr, oder auf derselben Seite des Messrohrs, dann wird das akustische Signal an der gegenüberliegenden Seite des Messrohrs reflektiert, wodurch das akustische Signal zweimal das Messrohr entlang der auf den Querschnitt durch das Messrohr projizierten Sekante durchquert.Both in clamp-on systems and inline systems, the ultrasonic transducers are arranged in a common plane on the measuring tube, either on opposite sides of the measuring tube, then the acoustic signal, projected on a tube cross-section, once along a secant through the measuring tube , or on the same side of the measuring tube, then the acoustic signal is reflected on the opposite side of the measuring tube, whereby the acoustic signal passes twice through the measuring tube along the projected on the cross section through the measuring tube secant.

Im konkreten Ausführungsbeispiel der Fig. 1 ist eine Anordnung mit einem entsprechenden Ultraschallwandler 1 mit zwei übereinander-angeordneten elektromechanischen Wandlerelementen 2, insbesondere mit zwei Piezoelementen, ausgestaltet. Der Ultraschallwandler 1 weist zudem einen Aufsatz 4 mit einer mediumsberührenden Oberfläche 5 auf. An dieser Oberfläche 5 werden die durch das oder die elektromechanischen Wandlerelemente 2 erzeugten Ultraschallwellen an das Messmedium abgegeben.In the concrete embodiment of the Fig. 1 is an arrangement with a corresponding ultrasonic transducer 1 with two superposed electromechanical transducer elements 2, in particular with two piezo elements configured. The ultrasonic transducer 1 also has an attachment 4 with a surface 5 in contact with the medium. At this surface 5, the ultrasonic waves generated by the one or more electromechanical transducer elements 2 are delivered to the measuring medium.

Der in Fig. 1 dargestellte Aufsatz 4 weist einen Sockel 6 auf, welcher in Kontakt, insbesondere in formschlüssigen Kontakt, mit den elektromechanischen Wandlerelementen 2 steht. Weiterhin weist der Aufsatz 4 eine Biegeplatte 7 auf mit der mediumsberührenden Oberfläche 5 auf.The in Fig. 1 shown essay 4 has a base 6, which is in contact, in particular in positive contact with the electromechanical transducer elements 2. Furthermore, the article 4 on a bending plate 7 on with the medium-contacting surface 5.

Der Sockel 6 des Aufsatzes 4 weist eine Schnittstelle 16 zu einem Dämpfungselement 15 auf. Dieses Dämpfungselement 15 ist als ein zylindrischer Körper ausgebildet mit zumindest zwei parallel zueinander verlaufenden Ringnuten 10 und 12. Die Schnittstelle 16 kann z.B. als eine Schweißverbindung ausgebildet sein.The base 6 of the attachment 4 has an interface 16 to a damping element 15. This damping element 15 is formed as a cylindrical body with at least two mutually parallel annular grooves 10 and 12. The interface 16 may e.g. be designed as a welded joint.

Zwischen der Schnittstelle 16 und einer ersten der beiden Ringnuten 10 ist ein erstes Ringmassesegment 9 angeordnet, welches eine größere Wanddicke, insbesondere zumindest eine doppelt so starke Wanddicke aufweist, wie die Ringnut 10.Between the interface 16 and a first of the two annular grooves 10, a first annular mass segment 9 is arranged, which has a greater wall thickness, in particular at least twice as thick a wall thickness as the annular groove 10.

Zwischen diesen beiden Ringnuten 10 und 12 ist zudem ein zweites Ringsegment 11 angeordnet, welches eine größere Wanddicke, insbesondere zumindest eine doppelt so starke Wanddicke aufweist, wie die Ringnuten 10 und 12.Between these two annular grooves 10 and 12, a second ring segment 11 is also arranged, which has a greater wall thickness, in particular at least twice as thick wall thickness, as the annular grooves 10 and 12th

Wie aus Fig. 1 ersichtlich, wird das Dämpfungselement 15 im Wesentlichen durch drei Radien definiert. Es ist ein erster Radius r1 vorgesehen, welcher sich von einer Längsachse L des Dämpfungselements 15 bis zu einer Innenwandung des zylindrischen Körpers erstreckt. Des Weiteren ist ein zweiter Radius r2 vorgesehen, welcher den Abstand der Außenwandung im Bereich der Ringnuten 10, 12 zur Längsachse beschreibt. Schließlich ist ein dritter Radius r3 vorgesehen, welcher den radialen Abstand zwischen der Längsachse und dem äußersten Punkt des zweiten Ringmassesegments 11 beschreibt.How out Fig. 1 can be seen, the damping element 15 is essentially defined by three radii. It is provided a first radius r 1 , which extends from a longitudinal axis L of the damping element 15 to an inner wall of the cylindrical body. Furthermore, a second radius r 2 is provided, which describes the distance of the outer wall in the region of the annular grooves 10, 12 to the longitudinal axis. Finally, a third radius r 3 is provided which describes the radial distance between the longitudinal axis and the outermost point of the second annular segment 11.

Nach der zweiten Ringnut 12 wird das Dämpfungselement 15 über eine Schnittstelle 17 im Bereich des dritten Radius r3 mit einer Gehäusewandung 14 verbunden. Auch hier kann die Schnittstelle 17 als Schweißverbindung ausgebildet sein. Die Schnittstelle ist in Fig. 1 auf radial außerhalb des zweiten Radius r2 und im Bereich des dritten Radius r3 angeordnet.After the second annular groove 12, the damping element 15 is connected via an interface 17 in the region of the third radius r 3 with a housing wall 14. Again, the interface 17 may be formed as a welded joint. The interface is in Fig. 1 arranged on radially outside of the second radius r 2 and in the region of the third radius r 3 .

Die Ringnuten 10 und 12 erstrecken sich über einen jeweiligen Längenabschnitt l1 und l2 entlang der Längsachse L. Diese Längenabschnitte l1 und l2 sind in Fig. 1 gleich groß dimensioniert. Das zweite Ringmassensegment 11 erstreckt sich über einen Längenabschnitt l3, welcher im Ausführungsbeispiel der Fig. 1 größer ist als die Längenabschnitte l1 und l2.The annular grooves 10 and 12 extend over a respective longitudinal section l 1 and l 2 along the longitudinal axis L. These longitudinal sections l 1 and l 2 are in Fig. 1 the same size. The second ring mass segment 11 extends over a longitudinal section l 3 , which in the embodiment of the Fig. 1 is greater than the lengths l 1 and l 2 .

Das erste Ringmassesegment 9 ist an seinem radial äußersten Punkt mit einem Ringsegment 8 verbunden, welches sich von der Schnittstelle 16 bis zur Ringmasse 9 erstreckt. Dieses Ringsegment 8 weist eine geringere, vorzugsweise zumindest doppelt so kleine Wanddicke auf wie das erste Ringmassesegment 9.The first annular mass segment 9 is connected at its radially outermost point with a ring segment 8, which extends from the interface 16 to the ring mass 9. This ring segment 8 has a smaller, preferably at least twice as small wall thickness as the first annular mass segment 9.

Das Ringmassesegment 9 geht an seinem radial innersten Punkt in die Ringnut über. Dadurch erfolgt bei Einwirken einer axialen Kraft eine Umlenkung dieser Kraft durch das Ringmassesegment von außen nach innen.The Ringmassesegment 9 goes over at its radially innermost point in the annular groove. As a result, upon the application of an axial force, a deflection of this force through the annular mass segment takes place from outside to inside.

Fig. 2 zeigt ein Dämpfungselement aus dem Stand der Technik der EP 1 340 964 B1 . Das Dämpfungsverhalten dieses Dämpfungselements wurde untersucht und mit dem Dämpfungsverhalten des Dämpfungsverhalten der Anordnung der Fig. 1 verglichen. Fig. 2 shows a damping element of the prior art of EP 1 340 964 B1 , The damping behavior of this damping element was investigated and with the damping behavior of the damping behavior of the arrangement of Fig. 1 compared.

Fig. 3 zeigt anhand des Spektrums S1 mit der durchgezogenen Linie Schwingungsspektren das Dämpfungsverhaltens der Anordnung der Fig. 1 in Gegenüberstellung mit dem Spektrum S2 mit der gestrichelten Linie zum Dämpfungsverhalten der Anordnung der Fig. 2. Fig. 3 shows on the basis of the spectrum S1 with the solid line vibration spectra, the damping behavior of the arrangement of Fig. 1 in comparison with the spectrum S2 with the dashed line to the damping behavior of the arrangement of Fig. 2 ,

Ein Nutzsignal A-n, welches zur Bestimmung des Füllstandes oder des Durchflusses benötigt wird, liegt im Spektrum S1 bei etwa 8200 Hz. Wie sich aus Fig. 3 ergibt kann der Frequenzbereich des Nutzsignals A-n für die Anordnung der Fig. 1 in einem sehr breiten Bereich gewählt werden. Der Frequenzbereich des Nutzsignals kann beliebig im Bereich zwischen 45000 bis etwa 120000 Hz gewählt werden, ohne dass es zu größeren Überlagerungen des Nutzsignals A-n mit den Eigenfrequenzen A-a1, A-a2, A-r1 des Dämpfungselements 15 kommt. Die Peaks im Spektrum S1 bei 28000 und bei 35000 Hz stellen Axialschwingungen dar, während der Peak bei etwa 136000 Hz eine Rotationsschwingung darstellt.A useful signal An, which is needed to determine the level or the flow, is in the spectrum S1 at about 8200 Hz. As is apparent from Fig. 3 results in the frequency range of the useful signal An for the arrangement of Fig. 1 be chosen in a very wide range. The frequency range of the useful signal can be selected arbitrarily in the range between 45,000 to about 120,000 Hz, without resulting in larger superimpositions of the useful signal An with the natural frequencies A-a1, A-a2, A-r1 of the damping element 15. The peaks in spectrum S1 at 28,000 and at 35,000 Hz represent axial vibrations, while the peak at about 136,000 Hz represents a rotational vibration.

Demgegenüber weist das Spektrum des Dämpfungselements der Fig. 2 bei maßstabsgetreuer Umsetzung eine ganze Reihe von Eigenschwingungen auf, welche sich mit einem Nutzsignal bei etwa 82000 Hz überlagern. Die Peaks bei 25000 und bei 55000 Hz stellen dabei Axialschwingungen B-a1 und B-a2 dar. Die Peaks bei 71000 und 73000 Hz hingegen stellen Rotationsschwingungen B-r1 und B-r2 dar. Sowohl die Axial- als auch die Rotationsschwingungen liegen bei der in Fig. 3 dargestellten Variante unterhalb der Nutzfrequenz von 82000 Hz.In contrast, the spectrum of the damping element of the Fig. 2 true to scale implementation a whole series of natural oscillations, which overlap with a useful signal at about 82000 Hz. The peaks at 25000 and at 55000 Hz represent axial vibrations B-a1 and B-a2. The peaks at 71000 and 73000 Hz, on the other hand, represent rotational vibrations B-r1 and B-r2. Both the axial and the Rotational vibrations are in the in Fig. 3 variant shown below the useful frequency of 82000 Hz.

Fig. 4 zeigt das Schwingungsverhalten des Dämpfungselements beim Senden und/oder Empfangen eines Ultraschallsignals im Nutzfrequenzbereich. Man erkennt, dass sich vorwiegend der Ultraschallwandler 1, also die elektromechanischen Wandlerelemente 2 und 3 und der Aufsatz 4 mit dem Sockel 6 und der Biegeplatte 7, in Schwingung befinden. Die Biegeplatte 7 weist im Betrieb des Ultraschalldurchflussgerätes eine radiale Auslenkung A1 auf. Diese Auslenkung A1 wird jedoch nicht auf eine nachfolgende Dämpfungsstruktur übertragen, sondern die Biegeplatte 7 ist freischwingend und ist in ihrer radialen Auslenkung nicht durch eine dämpfende Struktur gestört. Dadurch wird das abgestrahlte Ultraschallsignal besonders gut und ungehindert an das Medium übertragen. Fig. 4 shows the vibration behavior of the damping element when transmitting and / or receiving an ultrasonic signal in the useful frequency range. It can be seen that predominantly the ultrasonic transducer 1, ie the electromechanical transducer elements 2 and 3 and the attachment 4 with the base 6 and the bending plate 7, are in vibration. The bending plate 7 has a radial deflection A1 during operation of the ultrasonic flow device. However, this deflection A1 is not transmitted to a subsequent damping structure, but the bending plate 7 is free-swinging and is not disturbed in its radial deflection by a damping structure. As a result, the radiated ultrasound signal is transmitted to the medium particularly well and unhindered.

Fig. 5 zeigt das Schwingungsverhalten der erfindungsgemäßen Anordnung in der dargestellten Ausführungsvariante gemäß Fig. 1 im Zustand der Eigenfrequenz A-a2 (Axialmode bei ca. 35000 Hz.). In erster Linie führt das Ringmassesegment 11 zwischen den beiden parallelen Ringnuten 10 und 12 eine Axialbewegung aus. Durch die Auf- und Ab-Bewegung des Ringmassesegments 11 kommt es zu einer temporären Materialwandverformung im Bereich der der Ringnuten 10 und 12 in Form einer temporären Ausdünnung oder Verdickung. Fig. 5 shows the vibration behavior of the arrangement according to the invention in the illustrated embodiment according to Fig. 1 in the state of natural frequency A-a2 (axial mode at about 35000 Hz.). In the first place, the annular mass segment 11 performs an axial movement between the two parallel annular grooves 10 and 12. The up and down movement of the ring gauge segment 11 results in a temporary deformation of the material wall in the region of the annular grooves 10 and 12 in the form of a temporary thinning or thickening.

Fig. 6 zeigt das Schwingungsverhalten der erfindungsgemäßen Anordnung in der dargestellten Ausführungsvariante gemäß Fig. 1 im Zustand der Eigenfrequenz A-r1 (Rotationsmode bei ca. 137000 Hz.). In erster Linie führt das Ringmassesegment 11 zwischen den beiden parallelen Ringnuten 10 und 12 eine Rotationsbewegung aus. Durch die Schwingungsbewegung des Ringmassesegments 11 kommt es zu einer temporären Materialwandverformung im Bereich der der Ringnuten 10 und 12 in Form eines wellenförmigen Verbiegens der Materialwand. Fig. 6 shows the vibration behavior of the arrangement according to the invention in the illustrated embodiment according to Fig. 1 in the state of natural frequency A-r1 (rotation mode at about 137000 Hz.). First and foremost, the annular mass segment 11 performs a rotational movement between the two parallel annular grooves 10 and 12. Due to the oscillatory movement of the annular segment 11, there is a temporary material wall deformation in the region of the annular grooves 10 and 12 in the form of a wave-shaped bending of the material wall.

Die in Fig. 1 dargestellte Ausführungsvariante lässt sich im Rahmen der Erfindung auch weiter abwandeln. So ist anstelle einer zylindrischen Grundstruktur auch eine prismatische Grundstruktur vorzugsweise mit einheitlichen Prismenflächen möglich. Auch einzelne Segmente der Grundstruktur, so insbesondere auch das Ringmassesegment 11, können im zweidimensionalen Schnitt senkrecht zur Längsachse L vieleckig ausgestaltet werden.In the Fig. 1 illustrated embodiment can be further modified within the scope of the invention. Thus, instead of a basic cylindrical structure, a prismatic basic structure is also possible, preferably with uniform prism surfaces. Individual segments of the basic structure, in particular also the annular mass segment 11, can be made polygonal in a two-dimensional section perpendicular to the longitudinal axis L.

Aufgrund der Abfolge aus Ringmassesegmente 9 und 11 und Ringnuten 10 und 12 kann eine Entkopplung des oder der Rotationsmodi von den Axialmodi erreicht werden, so dass ein breiter Frequenzbereich zwischen diesen einzelnen Eigenfrequenzen für das Nutzsignal zur Verfügung steht.Due to the sequence of annular mass segments 9 and 11 and annular grooves 10 and 12, a decoupling of the or the modes of rotation of the axial modes can be achieved, so that a wide frequency range between these individual natural frequencies for the useful signal is available.

Insgesamt kann die Anordnung ein- oder mehrstückig aufgebaut sein. Das Dämpfungselement und der Aufsatz sind rotationssymmetrisch und bestehen aus Metall. Dabei kann der Aufsatz vorzugsweise aus Edelstahl oder Titan bestehen. Das Dämpfungselement besteht vorzugsweise aus Edelstahl. Bezugszeichenliste 1 Ultraschallwandler 2 Wandlerelement 4 Aufsatz 5 Oberfläche 6 Sockel 7 Biegeplatte 8 Ringsegment 9 Ringmassesegment 10 Ringnut 11 Ringmassesegment 12 Ringnut 13 Abschnitt 14 Gehäusewandung 15 Dämpfungselement 16 Schnittstelle 17 Schnittstelle L Längsachse r1 Radius Längsachse bis Innenwand l3 Länge Ringmassensegment r2 Radius Längsachse bis Außenwand (Ringnut) fa Axialmode r3 Radius Längsachse bis Außenwand (Ringmassesegment) fr Rotationsmode l1 Länge Ringnut fn Nutzfrequenz l2 Länge Ringnut Overall, the arrangement can be constructed in one or more pieces. The damping element and the attachment are rotationally symmetrical and consist of metal. The attachment may preferably consist of stainless steel or titanium. The damping element is preferably made of stainless steel. <B> LIST OF REFERENCES </ b> 1 ultrasound transducer 2 transducer element 4 essay 5 surface 6 base 7 bending plate 8th ring segment 9 Ring Ground Segment 10 ring groove 11 Ring Ground Segment 12 ring groove 13 section 14 housing 15 damping element 16 interface 17 interface L longitudinal axis r 1 Radius longitudinal axis to inner wall l 3 Length of ring mass segment r 2 Radius longitudinal axis to outer wall (ring groove) f a axial mode r 3 Radius longitudinal axis to outer wall (Ringmassesegment) f r rotation mode 1 Length of ring groove f n useful frequency l 2 Length of ring groove

Claims (10)

  1. Arrangement comprising an ultrasonic transducer (1) and a damping element (15) with a longitudinal axis (L), said damping element (15) connecting the ultrasonic transducer (1) to a housing or measuring tube wall (14), wherein the ultrasonic transducer (1) has a part (4) with a surface (5) in contact with the medium, from said surface ultrasonic signals are transmitted to a gaseous or liquid medium, and wherein the damping element (15) has at least two annular grooves (10, 12) and an annular mass segment (11) arranged between said grooves,
    wherein
    the damping element (15) has a first natural frequency (fa) at which the annular mass segment (11) executes an axial movement parallel to the longitudinal direction of the damping element (15),
    wherein this first natural frequency is the highest frequency in the event of there being several natural frequencies at which the annular mass segment (11) executes an axial movement parallel to the longitudinal direction of the damping element (15),
    and
    wherein the damping element (15) has a second natural frequency (fr) at which the annular mass segment performs a rotational movement;
    wherein this second natural frequency is the lowest natural frequency in the event of there being several natural frequencies at which the annular mass segment (11) executes a rotational movement,
    characterized in that
    the ratio of the first natural frequency (fa) to the second natural frequency (fr) is less than 0.75,
    and in that the damping element (15) presents, at least in the area of a first of the at least two annular grooves (10), a first average distance τ2 from the outer wall of a hollow cylindrical subsection to the longitudinal axis (L),
    wherein the damping element (15) presents, at least in the area of the first of the at least two annular grooves (10), a second average distance τ1 from the inner wall of the hollow cylindrical subsection to the longitudinal axis (L),
    wherein the damping element (15) presents an average length l3 in the area of the ring mass segment (11) between the annular grooves (10, 12),
    wherein the expression 0.093 T 2 T 1 / 1 mm + 0.0016 l 3 / 1 mm 12.5 2 + 0.057
    Figure imgb0004
    is less than 0.55, wherein the values for τ1, τ2 and l3 must be indicated in millimeters.
  2. Arrangement as claimed in Claim 1, characterized in that the ratio of the first natural frequency (fa) to the second natural frequency (fr) is less than 0.55, preferably less than 0.4.
  3. Arrangement as claimed in Claim 1 or 2, wherein the expression 0.093 T 2 T 1 / 1 mm + 0.0016 l 3 / 1 mm 12.5 2 + 0.057
    Figure imgb0005
    is less than 0.40, wherein the values τ1, τ2 and l3 must be indicated in millimeters.
  4. Arrangement as claimed in one of the previous claims, characterized in that the hollow cylindrical subsection is rotationally symmetrical.
  5. Arrangement as claimed in one of the previous claims, characterized in that the ultrasonic transducer (1) and the damping element (15) are connected to one another by means of substance-to-substance bonding.
  6. Arrangement as claimed in one of the previous claims, characterized in that the damping element (15) has fewer than five annular grooves (10, 12).
  7. Arrangement as claimed in one of the previous claims, characterized in that the lengths l1, l2 of the at least two annular grooves (10, 12) are identical in length in the axial direction and in that the length l3 of the annular mass segment (11) is greater than, preferably at least 1.5 times greater than, the length l1 or l2 of one of the two annular grooves (10, 12).
  8. Arrangement as claimed in one of the previous claims, characterized in that the ultrasonic transducer (1) has a bending plate (7) at its end, said plate having the surface (5) from which the ultrasonic signal is transmitted to the medium, said bending plate (7) being designed to oscillate freely at the sides.
  9. Arrangement as claimed in one of the previous claims, characterized in that the arrangement does not have an axial natural frequency or a rotational natural frequency in a frequency range in which the ratio of the useful frequency fn to the first natural frequency fa is greater than 1.6 and in which the ratio of the useful frequency fn to the second natural frequency fr is less than 0.7.
  10. Field device used in process measuring technology, particularly an ultrasonic flowmeter for the measurement of gaseous media, characterized in that the field device has a measuring tube or a supply vessel on which an arrangement as claimed in Claim 1 is fitted.
EP16704442.9A 2015-03-10 2016-02-15 Arrangement and field device for process measurement technology Active EP3268954B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015103486.7A DE102015103486A1 (en) 2015-03-10 2015-03-10 Arrangement and field device of process measuring technology
PCT/EP2016/053092 WO2016142127A1 (en) 2015-03-10 2016-02-15 Arrangement and field device for process measurement technology

Publications (2)

Publication Number Publication Date
EP3268954A1 EP3268954A1 (en) 2018-01-17
EP3268954B1 true EP3268954B1 (en) 2018-11-28

Family

ID=55357989

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16704442.9A Active EP3268954B1 (en) 2015-03-10 2016-02-15 Arrangement and field device for process measurement technology

Country Status (5)

Country Link
US (1) US10269336B2 (en)
EP (1) EP3268954B1 (en)
CN (1) CN107430845B (en)
DE (1) DE102015103486A1 (en)
WO (1) WO2016142127A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015103486A1 (en) 2015-03-10 2016-09-15 Endress + Hauser Flowtec Ag Arrangement and field device of process measuring technology
DE102015106352A1 (en) * 2015-04-24 2016-10-27 Endress + Hauser Flowtec Ag Arrangement and ultrasonic flowmeter

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1340964B1 (en) * 2002-03-01 2005-02-09 SICK Engineering GmbH Ultrasonic transducer system with ultrasonic filter
DE102004047786A1 (en) * 2004-10-01 2006-04-06 Robert Bosch Gmbh Correction of the effect of pulses in a gas flow, especially the intake flow into a motor vehicle multi-cylinder combustion engine, by multiple filtering of input signals prior to adding in an adder circuit
US7766067B2 (en) * 2006-09-28 2010-08-03 3-L Ludvigsen A/S Rotary ultrasonic sealer
US8559269B2 (en) * 2008-07-02 2013-10-15 Chevron U.S.A., Inc. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof
DE102008033098C5 (en) 2008-07-15 2016-02-18 Krohne Ag ultrasound transducer
US9504233B2 (en) * 2009-03-06 2016-11-29 Leah Stephens Electromechanical horn for deterring animals
US8387443B2 (en) * 2009-09-11 2013-03-05 The Board Of Trustees Of The University Of Illinois Microcantilever with reduced second harmonic while in contact with a surface and nano scale infrared spectrometer
DE102009046144A1 (en) * 2009-10-29 2011-05-19 Robert Bosch Gmbh Ultrasonic transducer for use in a fluid medium
KR20130128427A (en) * 2010-12-03 2013-11-26 리써치 트라이앵글 인스티튜트 Method for forming an ultrasonic transducer, and associated apparatus
DE102010064117A1 (en) * 2010-12-23 2012-06-28 Endress + Hauser Flowtec Ag Ultrasonic transducer housing for use in volumetric flow meter, has attenuator comprising membrane-side end section, and sectional plane whose longitudinal axis lies monotonic to longitudinal axis of housing
DE102011090082A1 (en) * 2011-12-29 2013-07-04 Endress + Hauser Flowtec Ag Ultrasonic transducer for a flowmeter
JP5919479B2 (en) * 2012-11-08 2016-05-18 パナソニックIpマネジメント株式会社 Ultrasonic flow meter
DE102015103486A1 (en) 2015-03-10 2016-09-15 Endress + Hauser Flowtec Ag Arrangement and field device of process measuring technology

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20180061390A1 (en) 2018-03-01
EP3268954A1 (en) 2018-01-17
CN107430845A (en) 2017-12-01
US10269336B2 (en) 2019-04-23
DE102015103486A1 (en) 2016-09-15
CN107430845B (en) 2021-04-13
WO2016142127A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
EP3298354B1 (en) System for measuring at least one parameter of a fluid
EP3577427B1 (en) Ultrasonic meter and method for sensing a flow variable
WO2013097994A9 (en) Ultrasonic transducer for a flow rate meter
EP3308123B1 (en) Device for measuring the pressure of a fluid flowing through a pipeline
DE102011090080A1 (en) Replaceable ultrasonic transducer for an ultrasonic flowmeter
DE102008055030A1 (en) Measuring tube of an ultrasonic flow measuring system
EP3404372A1 (en) Ultrasound flow meter
EP3486630B1 (en) Measuring device for the determination of pressure in a measurement volume
EP1378727B1 (en) Ultrasound mass flow meter
DE102010063535A1 (en) Coupling element of an ultrasonic transducer for an ultrasonic flowmeter
EP3268954B1 (en) Arrangement and field device for process measurement technology
EP3244172B1 (en) Ultrasonic transducer with spreader element
EP1340964A1 (en) Ultrasonic transducer system with ultrasonic filter
DE102007062913A1 (en) Ultrasonic transducer i.e. clamp-on ultrasonic transducer, for use in process and automation technology, has coupling element, where exit of ultrasonic signal from coupling element in signal path is registered by piezo-electric element
DE102009039633A1 (en) Ultrasonic flow rate measuring device for measuring speed of e.g. gas, to measure acoustic waves, has housing attached to wall at its end region and comprising housing parts formed from different materials with different acoustic impedances
EP3273205A1 (en) Method and assembly for ultrasound clamp on flow measurement and body for realizing the measurement
EP3521774B1 (en) Ultrasound flow meter and method for determining the flow speed
DE202020104105U1 (en) Flow meter for measuring the flow of a fluid
EP3631378B1 (en) Sensor for measuring the mass flow of a flowable medium
EP3910295B1 (en) Measuring device for determining a fluid variable
DE102016111133A1 (en) Device for determining or monitoring the volume and / or mass flow of a fluid medium in a pipeline
EP3855134B1 (en) Device for measuring the flow speed of a fluid
DE202015106040U1 (en) System for flow measurement
EP3286528B1 (en) Arrrangement and ultrasonic flow meter
DE102016015129A1 (en) Method for operating a sound measuring arrangement and sound measuring arrangement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180712

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1071148

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016002639

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181128

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190328

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190301

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190328

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016002639

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190215

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

26N No opposition filed

Effective date: 20190829

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1071148

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 9

Ref country code: GB

Payment date: 20240219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240228

Year of fee payment: 9

Ref country code: FR

Payment date: 20240221

Year of fee payment: 9