EP3267111B1 - Ringförmige brennkammerwand mit verbesserter kühlung an den primär- und/oder verdünnungsluftlöchern - Google Patents

Ringförmige brennkammerwand mit verbesserter kühlung an den primär- und/oder verdünnungsluftlöchern Download PDF

Info

Publication number
EP3267111B1
EP3267111B1 EP17175880.8A EP17175880A EP3267111B1 EP 3267111 B1 EP3267111 B1 EP 3267111B1 EP 17175880 A EP17175880 A EP 17175880A EP 3267111 B1 EP3267111 B1 EP 3267111B1
Authority
EP
European Patent Office
Prior art keywords
orifices
annular wall
cooling
rows
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17175880.8A
Other languages
English (en)
French (fr)
Other versions
EP3267111A3 (de
EP3267111A2 (de
Inventor
Matthieu François RULLAUD
Bernard Joseph Jean-Pierre Carrere
Hubert Pascal Verdier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Safran Helicopter Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Safran Helicopter Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS, Safran Helicopter Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3267111A2 publication Critical patent/EP3267111A2/de
Publication of EP3267111A3 publication Critical patent/EP3267111A3/de
Application granted granted Critical
Publication of EP3267111B1 publication Critical patent/EP3267111B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03042Film cooled combustion chamber walls or domes

Definitions

  • the present invention relates to the general field of turbomachine combustion chambers. It relates more particularly to an annular wall for a direct or reverse-flow combustion chamber cooled by a so-called “multiperforation” process.
  • a turbomachine annular combustion chamber is formed of an inner annular wall (also called inner shroud) and an outer annular wall (also called outer shroud) which are connected upstream by a transverse wall forming the bottom of the chamber.
  • the inner and outer shrouds are each provided with a plurality of various holes and orifices allowing air circulating around the combustion chamber to penetrate inside the latter.
  • the inner and outer shrouds are subjected to the high temperatures of the gases resulting from the combustion of the air/fuel mixture.
  • multiperforation orifices are also drilled through these shrouds over their entire surface. These multi-perforation orifices, generally inclined at 60°, allow the air circulating outside the chamber to penetrate inside the latter by forming films of cooling air along the shrouds.
  • the object of the present invention is therefore to overcome such drawbacks by proposing an annular combustion chamber wall which ensures adequate cooling of the zones located directly downstream of the primary and dilution holes.
  • said two rows of orifices are then either two rows of additional orifices arranged immediately upstream of a row of cooling orifices, or two rows of cooling orifices arranged immediately downstream of a row of additional orifices, or else a row of additional orifices and an adjacent row of cooling orifices.
  • said geometric axes of each of said orifices are inclined respectively by 22.5°, 45° and 67.5°, with respect to a plane perpendicular to said axial direction D.
  • the direction of inclination of said additional orifices is constrained by the direction of flow of the air/fuel mixture downstream of said combustion chamber.
  • the present invention also relates to a combustion chamber and a turbomachine (having a combustion chamber) comprising an annular wall as defined above.
  • the figure 1 illustrates in its environment a combustion chamber 10 for a turbomachine.
  • a turbomachine includes in particular a compression section (not shown) in which air is compressed before being injected into a chamber casing 12, then into the combustion chamber 10 mounted inside the latter. Compressed air is introduced into the combustion chamber and mixed with fuel before being burned there. The gases resulting from this combustion are then directed towards a high-pressure turbine 14 arranged at the outlet of the combustion chamber.
  • the combustion chamber is of the annular type. It is formed of an internal annular wall 16 and an external annular wall 18 which are joined upstream by a transverse wall 20 forming the bottom of the chamber. It can be direct as shown or reverse flow where a return elbow which can also be cooled by multi-boring is placed between the combustion chamber and the turbine nozzle.
  • the inner 16 and outer 18 annular walls extend along a longitudinal axis slightly inclined with respect to the longitudinal axis 22 of the turbomachine.
  • the chamber bottom 20 is provided with a plurality of openings 20A in which fuel injectors 24 are mounted.
  • the chamber casing 12 which is formed of an inner casing 12a and an outer casing 12b, forms with the combustion chamber 10 annular spaces 26 into which is admitted compressed air intended for combustion, dilution and cooling of the chamber.
  • the internal 16 and external 18 annular walls each have a cold side 16a, 18a arranged on the side of the annular space 26 in which the compressed air circulates and a hot side 16b, 18b facing the interior of the combustion chamber ( picture 3 ).
  • the combustion chamber 10 is divided into a so-called “primary” zone (or combustion zone) and a so-called “secondary” zone (or dilution zone) located downstream from the previous one (downstream is understood in relation to a general axial flow direction of the gases resulting from the combustion of the air/fuel mixture inside the combustion chamber and materialized by the arrow D).
  • the air that supplies the primary zone of the combustion chamber is introduced through a circumferential row of primary holes 28 made in the internal 16 and external 18 annular walls of the chamber over the entire circumference of these annular walls. These primary holes have a downstream edge aligned on the same line 28A.
  • the air supplying the secondary zone of the chamber it passes through a plurality of dilution holes 30 also formed in the internal 16 and external 18 annular walls over the entire circumference of these annular walls.
  • These dilution holes 30 are aligned along a circumferential row which is offset axially downstream with respect to the rows of primary holes 28 and they can have different diameters with in particular an alternation of large and small holes. In the configuration shown in picture 2 , these dilution holes of different diameters however then have a downstream edge aligned on the same line 30A.
  • a plurality of cooling holes 32 are provided (illustrated in the figures 2 and 3 ).
  • These orifices 32 which provide cooling of the walls 16, 18 by multiperforation, are distributed according to a plurality of rows circumferential spaced axially from each other. These rows of multi-perforation orifices cover the entire surface of the annular walls of the chamber with the exception of particular zones which are the subject of the invention and which are precisely delimited and included between the line 28A, 30A forming an upstream transition axis and a transition axis downstream offset axially downstream with respect to this upstream axis and either substantially in front of the dilution holes (for the downstream axis 28B) or substantially in front of the exit plane of the chamber (for the downstream axis 30B).
  • the number and the diameter d1 of the cooling orifices 32 are identical in each of the rows.
  • the pitch p1 between two orifices of the same row is constant and may or may not be identical for all the rows.
  • the adjacent rows of cooling orifices are arranged so that the orifices 32 are staggered as shown in the picture 2 .
  • the cooling orifices 32 generally have an angle of inclination ⁇ 1 with respect to a normal N to the annular wall 16, 18 through which they are pierced.
  • This inclination ⁇ 1 allows the air passing through these orifices to form a film of air along the hot side 16b, 18b of the annular wall.
  • the inclination ⁇ 1 of the cooling orifices 32 is directed so that the film of air thus formed flows in the direction of flow of the combustion gases inside the chamber (schematized by the arrow D ).
  • the diameter d1 of the cooling orifices 32 can be between 0.3 and 1 mm, the pitch d1 comprised between 1 and 10 mm and their inclination ⁇ 1 comprised between +30° and +70°, typically +60°.
  • the primary holes 28 and the dilution holes 30 have a diameter of the order of 4 to 20 mm.
  • each annular wall 16, 18 of the combustion chamber comprises, arranged directly downstream of primary 28 and dilution 30 holes and distributed in several circumferential rows, typically at least 5 rows, from the axis of upstream transition 28A, 30A and up to the downstream transition axis 28B, 30B, a plurality of additional cooling orifices 34.
  • the film of air delivered by these additional orifices flows in a perpendicular direction due to their arrangement in a plane perpendicular to this axial direction D of flow of the combustion gases.
  • This multi-perforation made perpendicular to the axis of the turbomachine (in the rest of the description, we will speak of gyratory multi-perforation as opposed to the axial multi-perforation of the cooling orifices) makes it possible to bring the additional orifices closer to the primary or dilution holes and therefore to improve the efficiency of the air/fuel mixture.
  • the additional orifices 34 of the same row have the same diameter d2, preferably identical to the diameter d1 of the cooling orifices 32, are spaced apart by a constant pitch p2 which may or may not be identical to the pitch p1 between the cooling orifices 32 and have an inclination ⁇ 2, preferably identical to the inclination ⁇ 1 of the cooling orifices 32 but arranged in a perpendicular plane.
  • these characteristics of the additional orifices 34 can, while remaining within the ranges of values defined above, be substantially different from those of the cooling orifices 32, that is to say that the inclination ⁇ 2 of the additional orifices of a same row with respect to a normal N to the annular wall 16, 18 may be different from that ⁇ 1 of the cooling orifices, and the diameter d2 of the additional orifices of the same row may be different from that d1 of the cooling orifices 32.
  • the additional orifices 34 behind the row of primary holes 28 can also advantageously have characteristics in terms of inclination, diameter or pitch different from those arranged behind the row of dilution holes 30 and, more particularly, within the same zone a difference in the diameter d2 and the pitch p2 can also be made to densify this cooling in the most thermally stressed parts, that is to say those just downstream of the holes primary and large dilution orifices, when the latter are formed by alternating large and small orifices as illustrated in picture 2 .
  • the introduction of the gyratory multiperforation makes it possible, by limiting the rise in the thermal gradient, to avoid the formation of cracks downstream of the primary holes 28.
  • the multiperforation upstream of the dilution 30 from the downstream transition axis 28B remaining of the axial type it is necessary to provide a transition zone made in two rows in which the additional cooling holes 34 are each arranged in an inclined plane, one of 30° and the other 60° with respect to the axial direction D, the other parameters, namely the diameter d2, the pitch p2 and the inclination ⁇ 2 of these additional holes in these inclined planes remaining unchanged.
  • the introduction of the axial multiperforation makes it possible to fill the local level of gyration in order not to lose the TuHP efficiency of the combustion chamber.
  • the average temperature profile at the chamber outlet is improved due to the more effective mixing thus obtained.
  • This transition zone is made on two rows of additional cooling holes each arranged in an inclined plane, one of 30° and the other of 60° with respect to the axial direction D, the other parameters, namely the diameter d2 , the pitch p2 and the inclination ⁇ 2 of the additional holes in these inclined planes remaining unchanged.
  • this zone from axis 30B may not exist or be integrated into the return elbow.
  • transition zone has been described at the level of the gyratory multi-perforation, nothing however prohibits carrying it out at the level of the axial multi-perforation or even straddling a row of axial multi-perforation inclined at 30° and a row of gyratory multi-perforation inclined at 60°.
  • this transition zone can comprise three rows, the inclination of the orifices will then be 22.5°, 45° and 67.5° respectively.
  • the flow in the primary zone is not modified, the gyration not impacting the orientation of the dilution jets and by being freed from the thermal barrier allows a saving in mass and therefore in cost.
  • the direction of the drilling of the gyratory multiperforation is fixed by the orientation of the blades of the High Pressure distributor ( DBH) downstream of the combustion chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Claims (6)

  1. Ringförmige Wand (16, 18) einer Brennkammer (10) einer Turbomaschine, umfassend eine kalte Seite (16a, 18a) und eine heiße Seite (16b, 18b), wobei die ringförmige Wand umfasst:
    . eine Vielzahl von Primärlöchern (28) oder Verdünnungslöchern (30), die entlang einer Umfangsreihe verteilt sind, um Luft, die auf der kalten Seite (16a, 18a) der ringförmigen Wand zirkuliert, zu ermöglichen, auf die heiße Seite (16b, 18b) zu dringen, um jeweils ein Luft/Treibstoff-Gemisch zu erzeugen bzw. die Verdünnung des Luft/Treibstoff-Gemischs sicherzustellen; und
    eine Vielzahl von Kühlöffnungen (32), um der Luft, die auf der kalten Seite (16a, 18a) der ringförmigen Wand zirkuliert, zu ermöglichen, auf die heiße Seite (16b, 18b) zu dringen, um einen Kühlluftfilm entlang der ringförmigen Wand zu bilden, wobei die Kühlöffnungen entlang einer Vielzahl von Umfangsreihen, welche axial voneinander beabstandet sind, verteilt sind, und wobei die geometrischen Achsen jeder der Kühlöffnungen in einer axialen Strömungsrichtung D der Verbrennungsgase um einen Neigungswinkel θ1 gegenüber einer Normalen N zu der ringförmigen Wand geneigt sind;
    . eine Vielzahl von zusätzlichen Kühlöffnungen (34), die direkt stromabwärts den Primärlöchern bzw. Verdünnungslöchern angeordnet und entlang einer Vielzahl von Umfangsreihen, welche axial voneinander beabstandet sind, verteilt sind,
    wobei die geometrischen Achsen jeder der zusätzlichen Kühlöffnungen in einer Ebene senkrecht zu der axialen Richtung D angeordnet und um einen Neigungswinkel θ2 gegenüber einer Normalen N zu der ringförmigen Wand geneigt sind,
    dadurch gekennzeichnet, dass sie ferner im Bereich einer Übergangszone (28B, 30B), die direkt stromabwärts der Vielzahl von Reihen von zusätzlichen Öffnungen (34) und direkt stromaufwärts der Vielzahl von Reihen von Kühlöffnungen (32) ausgebildet ist, genau zwei Reihen von Öffnungen umfasst, deren geometrische Achsen jeder der Öffnungen gegenüber einer Ebene senkrecht zu der axialen Richtung D um jeweils 30° und 60° geneigt sind.
  2. Wand nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Reihen von Öffnungen zwei Reihen von zusätzlichen Öffnungen, die direkt stromaufwärts einer Reihe von Kühlöffnungen angeordnet sind, zwei Reihen von Kühlöffnungen, die direkt stromabwärts einer Reihe von zusätzlichen Öffnungen angeordnet sind, oder eine Reihe von zusätzlichen Öffnungen und eine benachbarte Reihe von Kühlöffnungen, sind.
  3. Ringförmige Wand (16, 18) einer Brennkammer (10) einer Turbomaschine, umfassend eine kalte Seite (16a, 18a) und eine heiße Seite (16b, 18b), wobei die ringförmige Wand umfasst:
    . eine Vielzahl von Primärlöchern (28) oder Verdünnungslöchern (30), die entlang einer Umfangsreihe verteilt sind, um Luft, die auf der kalten Seite (16a, 18a) der ringförmigen Wand zirkuliert, zu ermöglichen, auf die heiße Seite (16b, 18b) zu dringen, um jeweils ein Luft/Treibstoff-Gemisch zu erzeugen bzw. die Verdünnung des Luft/Treibstoff-Gemischs sicherzustellen; und
    . eine Vielzahl von Kühlöffnungen (32), um der Luft, die auf der kalten Seite (16a, 18a) der ringförmigen Wand zirkuliert, zu ermöglichen, auf die heiße Seite (16b, 18b) zu dringen, um einen Kühlluftfilm entlang der ringförmigen Wand zu bilden, wobei die Kühlöffnungen entlang einer Vielzahl von Umfangsreihen, welche axial voneinander beabstandet sind, verteilt sind, und wobei die geometrischen Achsen jeder der Kühlöffnungen in einer axialen Strömungsrichtung D der Verbrennungsgase um einen Neigungswinkel θ1 gegenüber einer Normalen N zu der ringförmigen Wand geneigt sind;
    . eine Vielzahl von zusätzlichen Kühlöffnungen (34), die direkt stromabwärts den Primärlöchern bzw. Verdünnungslöchern angeordnet und entlang einer Vielzahl von Umfangsreihen, welche axial voneinander beabstandet sind, verteilt sind,
    wobei die geometrischen Achsen jeder der zusätzlichen Kühlöffnungen in einer Ebene senkrecht zu der axialen Richtung D angeordnet und um einen Neigungswinkel θ2 gegenüber einer Normalen N zu der ringförmigen Wand geneigt sind,
    dadurch gekennzeichnet, dass sie ferner im Bereich einer Übergangszone (28B, 30B), die direkt stromabwärts der Vielzahl von Reihen von zusätzlichen Öffnungen (34) und direkt stromaufwärts der Vielzahl von Reihen von Kühlöffnungen (32) ausgebildet ist, genau drei Reihen von Öffnungen umfasst, deren geometrische Achsen jeder der Öffnungen gegenüber einer Ebene senkrecht zu der axialen Richtung D um jeweils 22,5°, 45° und 67,5° geneigt sind.
  4. Wand nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Neigungsrichtung von zusätzlichen Öffnungen durch die Strömungsrichtung des Luft/Treibstoff-Gemisches stromabwärts der Brennkammer eingeschränkt wird.
  5. Brennkammer (10) einer Turbomaschine, die wenigstens eine ringförmige Wand (16, 18) nach einem der Ansprüche 1 bis 4 umfasst.
  6. Turbomaschine, umfassend eine Brennkammer (10), die wenigstens eine ringförmige Wand (16, 18) nach einem der Ansprüche 1 bis 4 umfasst.
EP17175880.8A 2011-10-26 2012-10-25 Ringförmige brennkammerwand mit verbesserter kühlung an den primär- und/oder verdünnungsluftlöchern Active EP3267111B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1159704A FR2982008B1 (fr) 2011-10-26 2011-10-26 Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution
PCT/FR2012/052446 WO2013060987A2 (fr) 2011-10-26 2012-10-25 Paroi annulaire de chambre de combustion à refroidissement amélioré au niveau des trous primaires et/ou de dilution
EP12790620.4A EP2771618B8 (de) 2011-10-26 2012-10-25 Ringförmige brennkammerwand mit verbesserter kühlung an den primär- und/oder verdünnungsluftlöchern

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP12790620.4A Division EP2771618B8 (de) 2011-10-26 2012-10-25 Ringförmige brennkammerwand mit verbesserter kühlung an den primär- und/oder verdünnungsluftlöchern
EP12790620.4A Division-Into EP2771618B8 (de) 2011-10-26 2012-10-25 Ringförmige brennkammerwand mit verbesserter kühlung an den primär- und/oder verdünnungsluftlöchern

Publications (3)

Publication Number Publication Date
EP3267111A2 EP3267111A2 (de) 2018-01-10
EP3267111A3 EP3267111A3 (de) 2018-02-28
EP3267111B1 true EP3267111B1 (de) 2022-02-16

Family

ID=47221481

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12790620.4A Active EP2771618B8 (de) 2011-10-26 2012-10-25 Ringförmige brennkammerwand mit verbesserter kühlung an den primär- und/oder verdünnungsluftlöchern
EP17175880.8A Active EP3267111B1 (de) 2011-10-26 2012-10-25 Ringförmige brennkammerwand mit verbesserter kühlung an den primär- und/oder verdünnungsluftlöchern

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP12790620.4A Active EP2771618B8 (de) 2011-10-26 2012-10-25 Ringförmige brennkammerwand mit verbesserter kühlung an den primär- und/oder verdünnungsluftlöchern

Country Status (9)

Country Link
US (1) US10551064B2 (de)
EP (2) EP2771618B8 (de)
JP (1) JP6177785B2 (de)
CN (2) CN203147824U (de)
BR (1) BR112014010215A8 (de)
CA (1) CA2852393C (de)
FR (1) FR2982008B1 (de)
IN (1) IN2014DN03138A (de)
WO (1) WO2013060987A2 (de)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982008B1 (fr) * 2011-10-26 2013-12-13 Snecma Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution
FR3019270B1 (fr) * 2014-03-31 2016-04-15 Snecma Paroi annulaire de chambre de combustion a orifices de refroidissement ameliores au niveau des jonctions brides
CN104791848A (zh) * 2014-11-25 2015-07-22 西北工业大学 一种采用叶栅通道多斜孔冷却方式的燃烧室火焰筒壁面
US20160258623A1 (en) * 2015-03-05 2016-09-08 United Technologies Corporation Combustor and heat shield configurations for a gas turbine engine
FR3037107B1 (fr) * 2015-06-03 2019-11-15 Safran Aircraft Engines Paroi annulaire de chambre de combustion a refroidissement optimise
US10520193B2 (en) 2015-10-28 2019-12-31 General Electric Company Cooling patch for hot gas path components
US10041677B2 (en) 2015-12-17 2018-08-07 General Electric Company Combustion liner for use in a combustor assembly and method of manufacturing
JP6026028B1 (ja) * 2016-03-10 2016-11-16 三菱日立パワーシステムズ株式会社 燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法
US10641175B2 (en) 2016-03-25 2020-05-05 General Electric Company Panel fuel injector
US10584880B2 (en) 2016-03-25 2020-03-10 General Electric Company Mounting of integrated combustor nozzles in a segmented annular combustion system
US10641491B2 (en) 2016-03-25 2020-05-05 General Electric Company Cooling of integrated combustor nozzle of segmented annular combustion system
US10584876B2 (en) 2016-03-25 2020-03-10 General Electric Company Micro-channel cooling of integrated combustor nozzle of a segmented annular combustion system
US10605459B2 (en) 2016-03-25 2020-03-31 General Electric Company Integrated combustor nozzle for a segmented annular combustion system
US10520194B2 (en) 2016-03-25 2019-12-31 General Electric Company Radially stacked fuel injection module for a segmented annular combustion system
US10830442B2 (en) 2016-03-25 2020-11-10 General Electric Company Segmented annular combustion system with dual fuel capability
US10563869B2 (en) 2016-03-25 2020-02-18 General Electric Company Operation and turndown of a segmented annular combustion system
US11428413B2 (en) 2016-03-25 2022-08-30 General Electric Company Fuel injection module for segmented annular combustion system
US10337738B2 (en) * 2016-06-22 2019-07-02 General Electric Company Combustor assembly for a turbine engine
CN106247402B (zh) * 2016-08-12 2019-04-23 中国航空工业集团公司沈阳发动机设计研究所 一种火焰筒
US11156362B2 (en) 2016-11-28 2021-10-26 General Electric Company Combustor with axially staged fuel injection
US10690350B2 (en) 2016-11-28 2020-06-23 General Electric Company Combustor with axially staged fuel injection
US10753283B2 (en) * 2017-03-20 2020-08-25 Pratt & Whitney Canada Corp. Combustor heat shield cooling hole arrangement
US10816202B2 (en) * 2017-11-28 2020-10-27 General Electric Company Combustor liner for a gas turbine engine and an associated method thereof
US10890327B2 (en) 2018-02-14 2021-01-12 General Electric Company Liner of a gas turbine engine combustor including dilution holes with airflow features
US11255543B2 (en) 2018-08-07 2022-02-22 General Electric Company Dilution structure for gas turbine engine combustor
US11029027B2 (en) 2018-10-03 2021-06-08 Raytheon Technologies Corporation Dilution/effusion hole pattern for thick combustor panels
FR3090746B1 (fr) * 2018-12-20 2021-06-11 Safran Aircraft Engines Tuyere de post combustion comportant une chemise a perforation obliques
FR3098569B1 (fr) 2019-07-10 2021-07-16 Safran Aircraft Engines Paroi annulaire pour chambre de combustion de turbomachine comprenant des trous primaires, des trous de dilution et des orifices de refroidissement inclines
US20210222879A1 (en) * 2020-01-17 2021-07-22 United Technologies Corporation Convection cooling at low effusion density region of combustor panel
US11371702B2 (en) 2020-08-31 2022-06-28 General Electric Company Impingement panel for a turbomachine
US11614233B2 (en) 2020-08-31 2023-03-28 General Electric Company Impingement panel support structure and method of manufacture
US11460191B2 (en) 2020-08-31 2022-10-04 General Electric Company Cooling insert for a turbomachine
US11994292B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus for turbomachine
US11994293B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus support structure and method of manufacture
US11255545B1 (en) 2020-10-26 2022-02-22 General Electric Company Integrated combustion nozzle having a unified head end
CN112607040A (zh) * 2020-12-31 2021-04-06 西北工业大学 一种用以飞行器高温部件的壁面交错斜孔射流冷却技术
US11767766B1 (en) 2022-07-29 2023-09-26 General Electric Company Turbomachine airfoil having impingement cooling passages

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923371A (en) * 1988-04-01 1990-05-08 General Electric Company Wall having cooling passage
GB2221979B (en) * 1988-08-17 1992-03-25 Rolls Royce Plc A combustion chamber for a gas turbine engine
US5241827A (en) * 1991-05-03 1993-09-07 General Electric Company Multi-hole film cooled combuster linear with differential cooling
US5261223A (en) * 1992-10-07 1993-11-16 General Electric Company Multi-hole film cooled combustor liner with rectangular film restarting holes
US5289686A (en) * 1992-11-12 1994-03-01 General Motors Corporation Low nox gas turbine combustor liner with elliptical apertures for air swirling
US6145319A (en) * 1998-07-16 2000-11-14 General Electric Company Transitional multihole combustion liner
US6205789B1 (en) * 1998-11-13 2001-03-27 General Electric Company Multi-hole film cooled combuster liner
US6408629B1 (en) * 2000-10-03 2002-06-25 General Electric Company Combustor liner having preferentially angled cooling holes
US6513331B1 (en) * 2001-08-21 2003-02-04 General Electric Company Preferential multihole combustor liner
US6568187B1 (en) * 2001-12-10 2003-05-27 Power Systems Mfg, Llc Effusion cooled transition duct
JP2004257335A (ja) * 2003-02-27 2004-09-16 Kawasaki Heavy Ind Ltd ポーラス金属を用いたガスタービン部品及びその製造方法
US7216485B2 (en) * 2004-09-03 2007-05-15 General Electric Company Adjusting airflow in turbine component by depositing overlay metallic coating
US7614235B2 (en) * 2005-03-01 2009-11-10 United Technologies Corporation Combustor cooling hole pattern
FR2892180B1 (fr) * 2005-10-18 2008-02-01 Snecma Sa Amelioration des perfomances d'une chambre de combustion par multiperforation des parois
US7546737B2 (en) * 2006-01-24 2009-06-16 Honeywell International Inc. Segmented effusion cooled gas turbine engine combustor
US7669422B2 (en) * 2006-07-26 2010-03-02 General Electric Company Combustor liner and method of fabricating same
US8522557B2 (en) * 2006-12-21 2013-09-03 Siemens Aktiengesellschaft Cooling channel for cooling a hot gas guiding component
US7905094B2 (en) * 2007-09-28 2011-03-15 Honeywell International Inc. Combustor systems with liners having improved cooling hole patterns
US8104288B2 (en) * 2008-09-25 2012-01-31 Honeywell International Inc. Effusion cooling techniques for combustors in engine assemblies
US9897320B2 (en) * 2009-07-30 2018-02-20 Honeywell International Inc. Effusion cooled dual wall gas turbine combustors
FR2982008B1 (fr) * 2011-10-26 2013-12-13 Snecma Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution

Also Published As

Publication number Publication date
RU2014121037A (ru) 2015-12-10
WO2013060987A2 (fr) 2013-05-02
FR2982008B1 (fr) 2013-12-13
BR112014010215A2 (pt) 2017-06-13
JP6177785B2 (ja) 2017-08-09
US10551064B2 (en) 2020-02-04
US20140260257A1 (en) 2014-09-18
CN103958970A (zh) 2014-07-30
CA2852393C (fr) 2020-08-04
EP2771618B1 (de) 2017-06-14
JP2014531015A (ja) 2014-11-20
BR112014010215A8 (pt) 2017-06-20
EP3267111A3 (de) 2018-02-28
CA2852393A1 (fr) 2013-05-02
FR2982008A1 (fr) 2013-05-03
EP2771618B8 (de) 2017-08-16
EP3267111A2 (de) 2018-01-10
CN203147824U (zh) 2013-08-21
CN103958970B (zh) 2016-08-24
EP2771618A2 (de) 2014-09-03
WO2013060987A3 (fr) 2014-02-20
IN2014DN03138A (de) 2015-05-22

Similar Documents

Publication Publication Date Title
EP3267111B1 (de) Ringförmige brennkammerwand mit verbesserter kühlung an den primär- und/oder verdünnungsluftlöchern
EP3303774B1 (de) Ringförmige wand einer brennkammer mit optimierter kühlung
EP1777458B1 (de) Leistungsverbesserung einer Brennkammer durch vielfache Perforierung der Wände
CA2782661C (fr) Chambre de combustion pour turbomachine
EP2042806B1 (de) Brennkammer einer Strömungsmaschine
FR2599821A1 (fr) Chambre de combustion pour turbomachines a orifices de melange assurant le positionnement de la paroi chaude sur la paroi froide
EP3569929A1 (de) Einheit für eine brennkammer eines turbotriebwerks
FR3021351B1 (fr) Paroi de turbomachine comportant une partie au moins d'orifices de refroidissement obtures
FR2982009A1 (fr) Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et/ou de dilution
CA2843690A1 (fr) Paroi de chambre de combustion
FR3072448B1 (fr) Chambre de combustion de turbomachine
FR3019270A1 (fr) Paroi annulaire de chambre de combustion a orifices de refroidissement ameliores au niveau des jonctions brides
FR3015010A1 (fr) Paroi annulaire pour chambre de combustion de turbomachine comprenant des orifices de refroidissement a effet contra-rotatif
EP4179256B1 (de) Ringbrennkammer für eine flugzeugturbomaschine
WO2013045802A1 (fr) Chambre de combustion de turbomachine
FR3081974A1 (fr) Chambre de combustion d'une turbomachine
FR3061948A1 (fr) Chambre de combustion de turbomachine a haute permeabilite
EP3262348B1 (de) Gasturbinenbrennkammer eines turbinenmotors mit einem durchgangsteil mit einer öffnung
FR3098569A1 (fr) Paroi annulaire pour chambre de combustion de turbomachine comprenant des trous primaires, des trous de dilution et des orifices de refroidissement inclines
FR2999277A1 (fr) Paroi annulaire de chambre de combustion en aval d'un compresseur centrifuge
FR3121473A1 (fr) Fixation de viroles dans une turbomachine
FR3140122A1 (fr) Ensemble pour turbomachine d’aeronef comprenant un echangeur de chaleur du type sacoc, de conception ameliore
FR3101915A1 (fr) Anneau de turbine de turbomachine comprenant des conduites internes de refroidissement
FR3085743A1 (fr) Chambre annulaire de combustion pour une turbomachine
FR3090746A1 (fr) Tuyere de post combustion comportant une chemise a perforation obliques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2771618

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/06 20060101AFI20180122BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180828

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210127

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210914

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2771618

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012077704

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1469101

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220216

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1469101

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220516

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220517

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012077704

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216