EP3250870A1 - Diphasic cooling loop with satellite evaporators - Google Patents

Diphasic cooling loop with satellite evaporators

Info

Publication number
EP3250870A1
EP3250870A1 EP15766100.0A EP15766100A EP3250870A1 EP 3250870 A1 EP3250870 A1 EP 3250870A1 EP 15766100 A EP15766100 A EP 15766100A EP 3250870 A1 EP3250870 A1 EP 3250870A1
Authority
EP
European Patent Office
Prior art keywords
main
main circuit
loop
evaporator
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15766100.0A
Other languages
German (de)
French (fr)
Other versions
EP3250870B1 (en
Inventor
Vincent Dupont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euro Heat Pipes SA
Original Assignee
Euro Heat Pipes SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Euro Heat Pipes SA filed Critical Euro Heat Pipes SA
Publication of EP3250870A1 publication Critical patent/EP3250870A1/en
Application granted granted Critical
Publication of EP3250870B1 publication Critical patent/EP3250870B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0216Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having particular orientation, e.g. slanted, or being orientation-independent

Definitions

  • the invention relates to heat transfer systems and more particularly to two-phase cooling loops. This type of system is used to cool various devices and in particular to cool one or more processors of an electronic card.
  • main circuit in a fluid loop the main circuit being devoid of mechanical or capillary or gravity pumping means, with a fluid loop circulation direction
  • At least one evaporator assembly arranged as a bypass of the main circuit with:
  • At least one intake pipe drawing liquid fluid from the main circuit
  • an evaporator including a porous capillary pumping element coupled to a hot source to be cooled, at least one outlet pipe having an ejection nozzle which injects the predominantly vapor phase fluid into the main circuit at least in the loop circulation direction,
  • At least one heat exchanger comprising a portion of the main loop circuit and a heat exchanger coupled to a cold source, for evacuating calories.
  • the injection of steam from the outlet pipe into the main circuit causes a drive effect by transfer of momentum.
  • the jet of steam forms a motor effect for the main loop circuit and a forced circulation of the working fluid in the main loop is obtained.
  • the fluid can be according to a first application case in substantially two-phase form in the main loop circuit, namely in vapor form and in liquid form, the cooling exchanger being in this case a conventional condenser assembly.
  • the cooling exchanger being in this case a conventional condenser assembly.
  • the fluid may be in a second application case in essentially liquid form in the main loop circuit and the heat exchanger is then a sub-cooling exchanger; which has the advantage of minimizing the pressure drop of circulation of fluids low pressures in the main loop circuit; condensation of the vapor exiting the ejector occurs in the portion of the immediately adjacent main circuit downstream of the vapor injection point.
  • the sub-cooling exchanger ensures sufficient subcooling so that the liquid phase in the main circuit remains liquid even in the presence of parasitic thermal leaks.
  • the advantage of having essentially liquid in the main circuit is that the operation of the system is very little affected by accelerations undergone, for example in a vehicle with changing directions and an eminently variable intensity and that it allows to use low pressure fluids without causing loss of prohibitive charges.
  • evaporator assemblies can be arranged, each arranged as a bypass of the main circuit; it is thus possible to cool two or more processors of an electronic card, and / or a plurality of dissipative heat sources; there is also an effect of addition of the drive due to the steam injections of each evaporator assembly.
  • the main loop circuit may advantageously extend in a substantially horizontal plane with respect to gravity; advantageously the fluid can circulate in the main loop without using a thermosiphon effect, the motor effect in the main circuit being obtained by injections of vapor from the evaporator (s).
  • the evaporator (s) is (are) positioned below the main circuit;
  • a local siphon effect for supplying liquid from the main pipe to the porous element, and incidentally the rise of vapor bubbles and / or non-condensable gas towards the main pipe is promoted.
  • the evaporator (s) can (can) be positioned above the main circuit so as to ensure a minimum presence of vapor in contact with the porous element of the evaporator during the start-up phase. .
  • a secondary wick interposed between the porous element (also called primary wick) and the main pipe; this allows a good evacuation of vapor bubbles and / or non-condensable gas (NCG) by a capillary link, even in the absence of gravity, while ensuring the supply of liquid primary wick.
  • NCG non-condensable gas
  • the ejection nozzle may be disposed in the main circuit line, namely inside the pipe itself. This optimizes the drive effect and momentum transfer.
  • the ejection nozzle may be disposed parietalally on the wall of the main pipe.
  • a Y-shaped connection piece easy to implement from the point of view of sealing.
  • the system may further include a common reservoir connected to the main loop; It is thus possible to control the operating conditions of the loop by controlling the saturation temperature Tsat, and this also provides a role of expansion vessel, it is thus possible to avoid providing a reservoir function in each evaporator assembly.
  • the main pipe may comprise a portion formed by a plurality of sub-channels arranged in parallel, in order to limit the hydraulic head losses through this portion belonging to to the condenser assembly.
  • the system may further include one or more thermal bridge (s) thermally connecting the main pipe with one or more additional heat source (s).
  • thermal bridge thermally connecting the main pipe with one or more additional heat source (s).
  • FIG. 1 is a block diagram of the system according to a first embodiment of the invention, with moreover only one evaporator assembly,
  • FIG. 2 is a schematic diagram of the system according to the invention with several evaporator assemblies
  • FIG. 3 is a sectional view of an evaporator according to a first arrangement
  • FIG. 4 is a more detailed partial sectional view of the evaporator of FIG. 3
  • FIGS. 5A and 5B are sectional views of FIG. outlet pipe forming an injector at the point where it joins the main loop circuit
  • FIG. 6 is a sectional view of an evaporator according to a second arrangement
  • FIG. 7 is a diagram illustrating the use of the thermal transfer system according to the invention in a multiprocessor server board
  • FIG. 8 shows an example of configuration of the main pipe at a condenser
  • FIG. 9 is similar to FIG. 1 and shows a second embodiment which is in fact a variant in which the fluid is essentially in the liquid phase in the main loop,
  • FIG. 10 is similar to FIG. 2 but according to the second embodiment, namely with the fluid essentially in the liquid phase in the main loop,
  • FIG. 11 illustrates the mass flow equations
  • FIG. 12 gives an example of result charts for different fluids.
  • Figure 1 shows a heat transfer system 10 using a two-phase working fluid 7 for taking heat from a hot source 9 and discharging them away from the hot source. More specifically, the heat transfer system 10 comprises a main loop circuit 1. The heat transfer system 10 contains in one volume interior, sealed from the external environment, a given amount of working fluid 7.
  • main circuit 1 loop a pipe or pipe 11 which re-loop on itself thus forming a closed circuit for the working fluid 7, so we speak of "main pipe” as opposed to the other pipes used to connect the evaporators arranged in parallel.
  • the main circuit is also called “thermal bus” and / or "general thermal collector”.
  • the main circuit generally does not contain any obstructing element which may impede the free circulation of the working fluid, which circulation occurs in a preferred circulation direction represented by the marker F.
  • the working fluid which circulates in the main circuit generally comprises the two phases, that is to say liquid phase and vapor phase, without excluding the fact that there are where the fluid is essentially liquid 7L and other places where the fluid is essentially vapor 7V.
  • the working fluid circulating in the main circuit is essentially in the liquid phase 7L.
  • the main circuit itself is devoid of mechanical pumping means or capillary or gravity.
  • the main circuit forms a loop which can have a circular, rectangle, square or any other general shape; similarly, the main circuit can be formed in two dimensions (that is to say essentially flat) or can be formed in three dimensions that is to say not flat.
  • the section of the pipeline can be substantially constant; however, it is not excluded that the section of the pipe may vary along the main circuit.
  • This evaporator assembly 2 comprises:
  • an evaporator 4 including a porous element 3 forming capillary pumping and coupled to a hot source to be cooled,
  • At least one outlet pipe 22 having at least one ejection nozzle that injects the predominantly vapor phase fluid in the main circuit in the F loop circulation direction.
  • the hydraulic interface of the evaporator assembly 2 with the main circuit 1 is limited to a liquid fluid sampling connection and to a liquid share a steam injection outlet.
  • the steam injection into the main pipe may be parietal as shown in Figure 5B or disposed completely within the main pipe section as shown in Figure 5A.
  • the steam injection occurs at a high speed which causes a transfer of momentum to the surrounding working fluid in the main pipe, as will be illustrated in more detail below.
  • the intake pipe 21 is distinct from the outlet pipe 22, so that the evaporator assembly is similar to a loop called 'CPL' (Capillary Pumped Loop) according to a classification known to the man of the 'art.
  • 'CPL' Capillary Pumped Loop
  • the intake ducts 21 and outlet 22 could be contiguous or contiguous.
  • each of the inlet and outlet pipes 21 and 21 could be reduced to a simple passage without necessarily that there is a tubular pipe or equivalent; in Figure 3 it is drawn in dashed lines a case in which the main pipe is adjacent to the evaporator and in this case one and / or the other of the inlet pipe 21 and outlet 22 could be reduced to a simple passage.
  • the sampling point 25 of liquid via the inlet pipe 21 is upstream (with respect to the flow direction F) with respect to the outlet point 26 of steam of the outlet pipe in the main pipe 11.
  • the system includes a condenser assembly 5 which vents the calories transported by the main line away from the hot source (s).
  • the condenser assembly 5 is formed by a portion of the main pipe itself and a heat exchanger coupled to a cold source; this heat exchanger is deliberately not detailed here, it can be of any type known in the art, for example an air exchanger with fins, optionally with a forced convection with a fan, it can also be for example a liquid exchanger, for example a cross-flow exchanger with another liquid, for example water.
  • the main circuit removes the calories formed at the processor level, away from the server board, in a conventional water circulation circuit (Fig. 7).
  • the amount of working fluid inside the heat transfer system is constant because the system has an overall tightness with respect to the environment.
  • the two-phase flow regime in the main pipeline can be either stratified, annular, laminar or turbulent, with pockets of larger size vapor. or less important.
  • the flow regime and design of the injection zone will be selected to achieve the most efficient driving effect by minimizing viscous losses for the intended temperature and power ranges.
  • the main pipe may be, in certain portions, of a section such that the vapor and liquid phases separate, stratify, naturally either by the action of gravity or by the action of a centrifugal force or any other separation devices that would be implemented depending on the environmental conditions under gravity or weightlessness and depending on the characteristics of the flow.
  • the advantage of this separation of the phases is to allow the conveyance of large volume flows of vapor, at high vapor speed, compared to the low liquid volume flow rate as generally required in two-phase transport systems. This separation of the phases makes it possible to appreciably reduce the pressure drop of the main pipe.
  • the theoretical ratio of the vapor flow / liquid flow is proportional to the density ratio between the liquid and that of the vapor.
  • the injectors would preferably be arranged in the vapor phase, which by direct effect or drive communicates part of the momentum to the liquid phase.
  • the two-phase pipeline could be of any shape to allow this phase separation. Since an ovoid shape that would allow the steam to locate preferentially in the widened part of the top of the pipe and the liquid part in the narrowed part of the bottom of the pipe.
  • the main pipe could even consist of several parts in parallel. A steam pipe and another liquid.
  • the vapor pressure losses would exert a pumping effect on line sections arranged parallel to the main pipe.
  • the parallel line or lines at low speed of circulation, being arranged to be occupied preferentially liquid while allowing the entrainment of any vapor bubbles.
  • the heat transfer system makes it possible to evacuate the calories from several hot sources 9 by means of several respective evaporator assemblies 2,2 'which are identical or merely similar in principle. It will be noted that these evaporator assemblies are all arranged in shunt of the main pipe, at different successive positions along this main circuit.
  • evaporator assemblies are all arranged in shunt of the main pipe, at different successive positions along this main circuit.
  • evaporator assemblies 4 on the main circuit; in one example, one can alternately have an evaporator followed by a condenser and so on, and of course it is understood from Figure 2 that the number of condensers can be any vis-à-vis the number of evaporators. Similarly, the order and relative position of the various evaporators and condensers, and the space between them, can be arbitrary.
  • the evaporator 4 comprises a hot plate 40 receiving calories from the hot source 9 and in which grooves 31 or steam channels have been made facilitating the evacuation of the vapor 7V which is formed at this point. spot by spray.
  • the porous element 3 also called primary wick, is in contact with the hot plate 40 (groove side). It provides a pumping effect as known in the art due to the filling of the interstices of the porous structure 3 with fluid in the liquid phase.
  • the porous element 3 can be made of stainless steel, nickel, ceramic or even copper (see below).
  • the fluid in the liquid phase comes from the intake pipe 21; a concern known in the art is to prevent a plug of vapor phase and non-condensable gas blocking the intake of liquid, and thus drains the supply of liquid phase of the vaporization zone and defuses the capillary pumping.
  • vapor bubbles can be formed in the liquid arrival zone either because of a poor capillary sealing or because of a parasitic heat flow (parasitic heating 'liquid side).
  • the parasitic flux can be considered as an auxiliary heat source which requires in the devices known to those skilled in the art a liquid flow undercooled to prevent defusing or temperature rise of saturation. As a result in the known devices, it follows a degradation of the overall conductance of the device.
  • the vapor and / or the non-condensable gas are naturally vented to the main circuit via the steam core of the secondary capillary link without the need for subcooling.
  • the overall conductance of the device is maintained by the present invention even when the evaporator has parasitic leaks or non-condensable gas.
  • the system becomes more robust than the capillary devices (CPL and LHP) known to those skilled in the art.
  • gravity can be used if it prevails in the place of application, forming a local siphon in which the gas bubbles rise and the liquid goes down, as shown in Figure 3.
  • водород wick 32 which is located on the opposite side of the primary wick with respect to the hot plate 40.
  • This secondary wick 32 extends into the body of the evaporator. and may also extend into the intake duct 21 at least in part; in fact, the secondary wick 32 is interposed between the primary wick 3 and the pipe 11 of the main circuit.
  • This secondary wick 32 forms a channel for evacuating any gas bubbles that would have formed at this point, that is to say on the wrong side of the primary wick 3; in this way it is avoided that a possible steam plug prevents the continuous supply of liquid fluid from the main pipe to the primary wick 3 of the evaporator 4.
  • the secondary wick 32 may be formed by a wire mesh as shown in Figure 4. It is formed, in the corners or at the intersections of the mesh son of the secondary wick, meniscus 39 of liquid that ensure good supply of liquid from the primary wick.
  • a parasitic heat flux irrespective of the orientation of the evaporator, can be compensated by the management of the evacuation of the vapor bubbles formed on the inlet side of the porous element and without the need for a flow rate of subcooled liquid.
  • the hot plate 40 is located above the hot source 9 to be cooled, the porous element 3 is above the hot plate 40, and the liquid arrival zone 30 containing the optional secondary wick is above the porous element 3.
  • the evaporator comprises the hot plate 40 receiving calories arranged on the top, with the grooves 31 placed below in contact with the porous element 3 and again below the secondary wick 32.
  • the liquid inlet to the porous element is marked by the arrows 38a, 38b, while the evacuation of any bubbles of vapor and / or non-condensable gas reaches the vapor pocket 12 according to the arrows marked 37b, 37a .
  • the parasitic heat flux is tolerated by the system and has no impact on its performance.
  • the orientation of the evaporator relative to the gravity can be arbitrary, because of the presence of the secondary wick 32 which provides the liquid feed by capillary pumping and incidentally the steam outlet (cf. above).
  • the absence of impact of the thermal conductivity characteristics on the parasitic flux of the porous wick 3 makes it possible to use copper (which is disadvised in the prior art because it is too good as a thermal conductor) as a porous element, which greatly improves performance of the spray area.
  • the relative positions of the evaporator assembly 2 and the main pipe 11 may be such that, as shown in FIG. 6, at the time of starting, the grooves of the evaporator are not filled with liquid . So, starting is facilitated by the presence of steam in the grooves.
  • the secondary wick contributes to the good liquid supply of the liquid arrival zone and the return of steam bubbles to the main pipe.
  • the invention presented here can be used in a microgravity situation, that is to say in space, but also of course in gravity (terrestrial application).
  • the invention can of course be used on board transport equipment (road, rail, air, etc.) that undergo accelerations in one or more directions, the secondary wick 32 for managing the supply of liquid fluid and the return of any vapor bubbles.
  • the outlet pipe may be connected by a Y-shaped connection shape marked 63; as shown in FIG. 5A, the outlet pipe can be connected with a perpendicular inlet 61 and a bend 62.
  • the direction of injection of the vapor G has a main component in the circumferential direction F, even if it also comprises another component, radial, as in the case of Figure 5B.
  • the injection of steam is by means of an ejection nozzle 60, which may have a cylindrical shape or a conical shape.
  • the injector 60 at the outlet of the evaporator could advantageously consist of a self-adjusting section orifice allowing both to develop a maximum amount of movement at low flow rates, low thermal loads, the evaporator while limiting its pressure drop below the capillary pumping pressure of the evaporator for large flow rates.
  • This self-adjustment can be usefully obtained by the spring effect of a closing blade of the injector, the thermal expansion of a bimetallic strip, or by any other device producing the same effect.
  • the injection nozzles may be formed by the ends of the vapor collecting grooves 31 of the evaporator, which open obliquely directly into the main pipe; thus one could have as many injection nozzles as 31 collector grooves.
  • this optional tank serves as an expansion vessel for the excess working fluid depending on the operating temperature; this tank is also used to actively control if necessary the Tsat saturation temperature prevailing at the vapor-liquid interface in this tank, and which consequently affects the temperature and equilibrium pressure throughout the system.
  • auxiliary hot-springs 98 of lesser power instead of adding a capillary evaporator to them, it is also possible to form a thermal bridge 8, by a part with a good coefficient of thermal conduction, a conventional thermal bridge or by a conventional heat pipe .
  • the calories are transferred to the working fluid 7 mainly by convective boiling at the contact between the thermal bridge 8 and the main pipe 11; this convective boiling takes place with a good heat exchange coefficient.
  • FIG. 7 illustrates the use of a heat transfer system as explained above in the case of its application to a multiprocessor server card 90, which comprises several processors 9 to be cooled by capillary evaporator and optionally also secondary components as memories 98 to cool by thermal bridge 8.
  • each processor 9 is surmounted by an evaporator assembly 2, 2A, 2B, 2C, the main circuit 11 extends along the card 90 and passes in the vicinity of each of the evaporators, either on the side, either on the top. Moreover, thermal bridges thermally connect the memory strips 98 to the main circuit 11. Moreover, a condenser 5 is disposed on one end of the card 90 and allows a heat exchange between the working fluid 7 of the main circuit and a control circuit.
  • common general water 95 for example several server cards.
  • a modular system that is to say a main circuit that can be standardized on which can be grafted in parallel a variable number of evaporators according to the configuration of the server card to be processed.
  • an evaporator assembly can be added or removed without changing the design and design of the rest of the system.
  • the transverse dimension of the main pipe may range from 2 mm to 25 mm and its cross section may range from 3 mm 2 to 10 cm 2 ; the transverse dimension of the injection nozzle may be of the same size, of smaller size, or of a significantly smaller size.
  • the ratio between the section of the nozzle and the section of the main pipe can range from 1 to 1/30.
  • the speed of the two-phase flow in the general pipe can range from 1m / s to 100m / s.
  • the fluid used may be methanol, ethanol, acetone, R245fa, HFE-7200, R134A, or their equivalents.
  • FIG. 8 illustrates a portion of the main circuit 11 which belongs to a condenser assembly 5; in this portion, the main pipe is subdivided into several sub-channels 50, which increases the heat exchange by limiting the pressure losses hydraulic through this area.
  • the distribution of the two-phase flow coming from the main pipe is carried out by a distributor 51 according to the state of the art so as to ensure the most homogeneous distribution possible of the liquid and vapor phases in each of the branches 50 (vapor head ).
  • FIGS. 9 and 10 illustrate a second embodiment of the present invention, in which the fluid flowing in the main loop is generally undercooled relative to the condensing temperature Tsat, and consequently the fluid is essentially in the liquid phase except for the exit areas of the ejection nozzles 22,26.
  • the heat exchanger of the system which discharges the calories to the outside here 5 ' is a' Sub Cooler 'type of exchanger device (ie say a sub-cooling exchanger) which cools the liquid 7L-SC below the condensing temperature Tsat.
  • the change of state from the vapor phase to the liquid phase occurs in a portion of the main circuit line just downstream of the ejection nozzle which forms the outlet of the evaporator 4.
  • This condensation occurs in contact with the undercooled liquid that arrives from the upstream flow due to the circulation F, and also potentially in contact with the wall of the pipe which itself is at a temperature close to TcondOUT corresponding to that of the liquid under cooled 7L-SC.
  • the steam is propelled in the form of a jet at the exit of the ejection nozzle, in some cases for example in the form of steam bubbles which are propelled in turbulent regime; and the size and number of bubbles decrease as one moves away from the ejection nozzle due to the condensation process.
  • FIG 9 there is illustrated a configuration with a single evaporator assembly 2 and a single heat exchanger undercooler 5 '.
  • FIG. 10 a configuration with four evaporator sets 2.2 'is illustrated. and two exchangers under cooler 5 ', the other elements being similar to what has already been described for FIG. 2.
  • a condensation zone 15 is noted downstream of each steam outlet coming from an evaporator assembly.
  • the mass flow rates for the configuration with an evaporator assembly are studied and a heat exchanger under cooler, in steady state.
  • the mass flow is defined in the main circuit:
  • the mass flow in parallel of the evaporator is defined:
  • coefficient ⁇ characterizes the mass amplification effect provided by the high speed ejection in the main circuit.
  • the mass flow rate in the main circuit is ⁇ times greater than the mass flow rate in the evaporator.
  • the concept of acceleration also refers to the acceleration of the gravity that is to say that the relative position of the heat exchanger relative to the evaporator. This position has a limited impact on the performance of the system when the main circuit is mainly occupied by the liquid. It should be noted that, as regards the first embodiment, it is also possible to define a coefficient ⁇ which varies between 5 and 50, preferably between 10 and 25, and generally less than that of the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Heat-transfer system (10) comprising a main circuit (1) as a fluid loop, the main circuit having no mechanical or capillary pumping means, at least one evaporator assembly (2) arranged as a tapping off the main circuit with an inlet pipe (21) tapping liquid fluid from the main loop, an evaporator (4) including a porous capillary pumping element coupled to a hot source that is to be cooled, an outlet pipe (22) having an ejection nozzle that injects the fluid chiefly in the vapour phase into the main circuit at least in the loop circulation direction, at least one cooling exchanger (5; 5') comprising a portion of the main loop circuit and a heat exchanger coupled to a cold source, for removing heat energy.

Description

Boucle diphasique de refroidissement à évaporateurs satellites  Two-phase cooling loop with satellite evaporators
L'invention concerne les systèmes de transfert thermique et plus particulièrement les boucles diphasiques de refroidissement. Ce type de systèmes est utilisé pour refroidir divers appareils et en particulier pour refroidir un ou plusieurs processeurs d'une carte électronique. The invention relates to heat transfer systems and more particularly to two-phase cooling loops. This type of system is used to cool various devices and in particular to cool one or more processors of an electronic card.
Il est connu dans l'art d'utiliser avantageusement la circulation d'un fluide diphasique avec un évaporateur et un condenseur, des changements de phase permettant de transporter efficacement de la chaleur d'un point à un autre ; la circulation du fluide de travail dans la boucle étant générée par un effet de thermosiphon ou par une mèche poreuse assurant un pompage capillaire.  It is known in the art to advantageously use the circulation of a two-phase fluid with an evaporator and a condenser, phase changes for efficiently transporting heat from one point to another; the circulation of the working fluid in the loop being generated by a thermosiphon effect or by a porous wick ensuring a capillary pumping.
Il est connu d'utiliser ce genre de système pour refroidir des cartes électroniques, notamment des cartes serveurs de 'data center'.  It is known to use this kind of system for cooling electronic cards, including server cards 'data center'.
Dans certaines cartes électroniques, on doit refroidir non pas un seul, mais plusieurs processeurs ou composants électroniques. Au lieu de multiplier les boucles diphasiques, certains ont proposé dans le cas de deux processeurs de disposer en série deux évaporateurs et deux condenseurs, comme dans le document US2012132402. Toutefois, cette solution est mal adaptée si les charges thermiques ne sont pas homogènes, et de plus le démarrage peut poser des problèmes, on constate aussi des instabilités dans le fonctionnement d'une telle boucle. Une autre solution consiste à placer plusieurs évaporateurs dans une disposition « en parallèle » sur une boucle diphasique, comme connu du document US2002/0007937, mais dans une telle configuration, chaque évaporateur vient accroître les pertes de charges dans la boucle sans accroître l'effet moteur sur la boucle et il s'ensuit une limitation des performances.  In some electronic cards, we must not cool one, but several processors or electronic components. Instead of multiplying the two-phase loops, some have proposed in the case of two processors to have in series two evaporators and two condensers, as in the document US2012132402. However, this solution is poorly adapted if the thermal loads are not homogeneous, and moreover the startup can cause problems, there are also instabilities in the operation of such a loop. Another solution is to place several evaporators in a "parallel" arrangement on a two-phase loop, as known from US2002 / 0007937, but in such a configuration, each evaporator increases the pressure losses in the loop without increasing the effect motor on the loop and it follows a performance limitation.
Il est donc apparu un besoin de proposer une solution plus souple qui puisse convenir pour le refroidissement de un ou plusieurs processeurs ou composants électroniques dissipatifs.  It has therefore appeared a need to provide a more flexible solution that may be suitable for cooling one or more processors or dissipative electronic components.
A cet effet, il est proposé un système de transfert thermique comprenant :  For this purpose, it is proposed a heat transfer system comprising:
- un circuit principal en boucle de fluide, le circuit principal étant dépourvu de moyens de pompage mécanique ou capillaire ou gravitaire, avec une direction de circulation de boucle de fluide, a main circuit in a fluid loop, the main circuit being devoid of mechanical or capillary or gravity pumping means, with a fluid loop circulation direction,
- au moins un ensemble évaporateur agencé en dérivation du circuit principal avec : at least one evaporator assembly arranged as a bypass of the main circuit with:
- au moins une canalisation d'admission, prélevant du fluide liquide sur le circuit principal, at least one intake pipe, drawing liquid fluid from the main circuit,
- un évaporateur incluant un élément poreux à pompage capillaire couplé à une source chaude à refroidir, - au moins une canalisation de sortie ayant une buse d'éjection qui injecte le fluide en phase principalement vapeur dans le circuit principal au moins selon la direction de circulation de boucle, an evaporator including a porous capillary pumping element coupled to a hot source to be cooled, at least one outlet pipe having an ejection nozzle which injects the predominantly vapor phase fluid into the main circuit at least in the loop circulation direction,
- au moins un échangeur refroidis seur, comprenant une portion du circuit principal de boucle et un échangeur de chaleur couplé à une source froide, pour évacuer des calories.  at least one heat exchanger, comprising a portion of the main loop circuit and a heat exchanger coupled to a cold source, for evacuating calories.
Grâce à ces dispositions, l'injection de la vapeur depuis la canalisation de sortie dans le circuit principal provoque un effet d'entraînement par transfert de quantité de mouvement. Le jet de vapeur forme un effet moteur pour le circuit principal en boucle et on obtient une circulation forcée du fluide de travail dans la boucle principale.  Thanks to these provisions, the injection of steam from the outlet pipe into the main circuit causes a drive effect by transfer of momentum. The jet of steam forms a motor effect for the main loop circuit and a forced circulation of the working fluid in the main loop is obtained.
Dans des modes de réalisation du dispositif selon l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes. In embodiments of the device according to the invention, one can optionally also resort to one and / or the other of the following provisions.
Le fluide peut être selon un premier cas d'application sous forme essentiellement diphasique dans le circuit principal en boucle, à savoir sous forme vapeur et sous forme liquide, l'échangeur refroidisseur étant dans ce cas un ensemble condenseur conventionnel. Ainsi il n'est nul besoin de sous refroidir au niveau du (des) condenseur(s) ; L'absence de besoin de sous refroidissement permet de limiter voire diminuer la taille nécessaire du condenseur ou des condenseurs. Il est bien connu de l'art antérieur, que le liquide sous- refroidi est nécessaire pour compenser le flux thermique parasite au niveau de l'évaporateur en provenance de la mèche poreuse, de l'environnement, d'éventuelles fuites capillaires, etc. Ce premier cas d'application permet donc d'éviter cette contrainte de sous-refroidissement.  The fluid can be according to a first application case in substantially two-phase form in the main loop circuit, namely in vapor form and in liquid form, the cooling exchanger being in this case a conventional condenser assembly. Thus there is no need to cool under the (the) condenser (s); The absence of the need for subcooling makes it possible to limit or even reduce the necessary size of the condenser or condensers. It is well known in the prior art that the subcooled liquid is necessary to compensate for the parasitic heat flux at the evaporator from the porous wick, the environment, possible capillary leakage, etc. This first application case therefore avoids this subcooling constraint.
Le fluide peut être selon un deuxième cas d'application sous forme essentiellement liquide dans le circuit principal en boucle et l'échangeur refroidisseur est alors un échangeur de sous refroidissement ; ce qui a pour avantage de minimiser les pertes de charge vapeur de circulation des fluides basses pressions dans le circuit principal en boucle ; la condensation de la vapeur qui sort de l'éjecteur se produit dans la portion du circuit principal immédiatement adjacente, en aval au point d'injection de vapeur. L'échangeur de sous refroidissement assure un sous refroidissement suffisant pour que la phase liquide dans le circuit principal reste liquide même en présence de fuites thermiques parasites. L'avantage d'avoir essentiellement du liquide dans le circuit principal est que le fonctionnement du système est très peu impacté par des accélérations subies, par exemple dans un véhicule avec des directions changeantes et une intensité éminemment variable et qu'il permet d'utiliser des fluides basses pressions sans occasionner des pertes de charges rédhibitoires.  The fluid may be in a second application case in essentially liquid form in the main loop circuit and the heat exchanger is then a sub-cooling exchanger; which has the advantage of minimizing the pressure drop of circulation of fluids low pressures in the main loop circuit; condensation of the vapor exiting the ejector occurs in the portion of the immediately adjacent main circuit downstream of the vapor injection point. The sub-cooling exchanger ensures sufficient subcooling so that the liquid phase in the main circuit remains liquid even in the presence of parasitic thermal leaks. The advantage of having essentially liquid in the main circuit is that the operation of the system is very little affected by accelerations undergone, for example in a vehicle with changing directions and an eminently variable intensity and that it allows to use low pressure fluids without causing loss of prohibitive charges.
On peut disposer plusieurs ensembles évaporateur, chacun agencé en dérivation du circuit principal ; on peut ainsi refroidir deux ou plus de deux processeurs d'une carte électronique, et/ou une pluralité de sources chaudes dissipatives ; on bénéficie aussi d'un effet d'addition de l'entraînement dû aux injections de vapeur de chaque ensemble évaporateur. Several evaporator assemblies can be arranged, each arranged as a bypass of the main circuit; it is thus possible to cool two or more processors of an electronic card, and / or a plurality of dissipative heat sources; there is also an effect of addition of the drive due to the steam injections of each evaporator assembly.
Dans le cas où le système est soumis à l'accélération de la gravité, le circuit principal en boucle peut s'étendre avantageusement dans un plan sensiblement horizontal par rapport à la gravité ; avantageusement le fluide peut circuler dans la boucle principale sans utiliser d'effet de thermosiphon, l'effet moteur dans le circuit principal étant obtenu par des injections de vapeur en provenance d'évaporateur(s).  In the case where the system is subjected to the acceleration of gravity, the main loop circuit may advantageously extend in a substantially horizontal plane with respect to gravity; advantageously the fluid can circulate in the main loop without using a thermosiphon effect, the motor effect in the main circuit being obtained by injections of vapor from the evaporator (s).
Le (ou les) évaporateur(s) est (sont) positionné(s) en contrebas du circuit principal; Avantageusement on peut tirer bénéfice d'un effet de siphon local pour l'alimentation de liquide de la conduite principale vers l'élément poreux, et accessoirement on favorise la remontée de bulles de vapeur et/ou de gaz non condensable vers la conduite principale.  The evaporator (s) is (are) positioned below the main circuit; Advantageously, it is possible to benefit from a local siphon effect for supplying liquid from the main pipe to the porous element, and incidentally the rise of vapor bubbles and / or non-condensable gas towards the main pipe is promoted.
Le (ou les) évaporateur(s) peut (peuvent) être positionné(s) au-dessus du circuit principal de façon à assurer une présence minimale de vapeur au contact de l'élément poreux de l'évaporateur lors de la phase de démarrage.  The evaporator (s) can (can) be positioned above the main circuit so as to ensure a minimum presence of vapor in contact with the porous element of the evaporator during the start-up phase. .
Il peut être prévu dans un ou plusieurs évaporateurs une mèche secondaire interposée entre l'élément poreux (aussi nommé mèche primaire) et la conduite principale ; ceci permet une bonne évacuation des bulles de vapeur et/ou de gaz non condensables (NCG) par un lien capillaire, même en l'absence de gravité, tout en assurant l'approvisionnement en liquide la mèche primaire.  It may be provided in one or more evaporators a secondary wick interposed between the porous element (also called primary wick) and the main pipe; this allows a good evacuation of vapor bubbles and / or non-condensable gas (NCG) by a capillary link, even in the absence of gravity, while ensuring the supply of liquid primary wick.
La buse d'éjection peut être disposée dans la conduite du circuit principal, à savoir à l'intérieur même de la canalisation. Ceci permet d'optimiser l'effet d'entraînement et le transfert de quantité de mouvement.  The ejection nozzle may be disposed in the main circuit line, namely inside the pipe itself. This optimizes the drive effect and momentum transfer.
La buse d'éjection peut être disposée de manière pariétale sur la paroi de la canalisation principale. Avantageusement, on peut alors utiliser une pièce de raccordement en forme de Y facile à mettre en œuvre du point de vue de l'étanchéité.  The ejection nozzle may be disposed parietalally on the wall of the main pipe. Advantageously, one can then use a Y-shaped connection piece easy to implement from the point of view of sealing.
Le système peut comprendre en outre un réservoir commun branché sur la boucle principale ; On peut ainsi contrôler les conditions opérationnelles de la boucle en maîtrisant la température de saturation Tsat, et cela fournit par ailleurs un rôle de vase d'expansion, on peut ainsi éviter de prévoir une fonction réservoir dans chaque ensemble évaporateur.  The system may further include a common reservoir connected to the main loop; It is thus possible to control the operating conditions of the loop by controlling the saturation temperature Tsat, and this also provides a role of expansion vessel, it is thus possible to avoid providing a reservoir function in each evaporator assembly.
Au niveau de l'un des ensembles condenseur (ou de sous refroidissement), la conduite principale peut comprendre une portion formée par une pluralité de sous-canaux arrangés en parallèle, en vue de limiter les pertes de charge hydraulique au travers de cette portion appartenant à l'ensemble condenseur. Le système peut comprendre en outre un ou plusieurs pont(s) thermique(s) reliant thermiquement la conduite principale avec une ou plusieurs source(s) de chaleur annexe(s). On peut ainsi traiter des sources chaudes auxiliaires comme des mémoires, certes moins dissipatives que les processeurs, mais qu'il convient également de refroidir. At one of the condenser (or sub-cooling) assemblies, the main pipe may comprise a portion formed by a plurality of sub-channels arranged in parallel, in order to limit the hydraulic head losses through this portion belonging to to the condenser assembly. The system may further include one or more thermal bridge (s) thermally connecting the main pipe with one or more additional heat source (s). One can thus treat auxiliary hot springs as memories, certainly less dissipative than the processors, but it is also appropriate to cool.
D'autres aspects, buts et avantages de l'invention apparaîtront à la lecture de la description suivante d'un mode de réalisation de l'invention, donné à titre d'exemple non limitatif. L'invention sera également mieux comprise en regard des dessins joints sur lesquels: la figure 1 est un schéma de principe du système selon un premier mode de réalisation de l'invention, avec de plus un seul ensemble évaporateur, Other aspects, objects and advantages of the invention will appear on reading the following description of an embodiment of the invention, given by way of non-limiting example. The invention will also be better understood with reference to the accompanying drawings in which: FIG. 1 is a block diagram of the system according to a first embodiment of the invention, with moreover only one evaporator assembly,
la figure 2 est un schéma de principe du système selon l'invention avec plusieurs ensembles évaporateurs,  FIG. 2 is a schematic diagram of the system according to the invention with several evaporator assemblies,
la figure 3 est une vue en coupe d'un évaporateur selon une première disposition, la figure 4 est une vue en coupe partielle plus détaillée de l'évaporateur de la figure 3, - les figures 5A et 5B sont des vues en coupe de la canalisation de sortie formant injecteur à l'endroit où elle rejoint le circuit principal en boucle,  FIG. 3 is a sectional view of an evaporator according to a first arrangement, FIG. 4 is a more detailed partial sectional view of the evaporator of FIG. 3; FIGS. 5A and 5B are sectional views of FIG. outlet pipe forming an injector at the point where it joins the main loop circuit,
la figure 6 est une vue en coupe d'un évaporateur selon une deuxième disposition, la figure 7 est un schéma illustrant l'utilisation du système de transfert thermique selon l'invention dans une carte serveur multiprocesseur,  FIG. 6 is a sectional view of an evaporator according to a second arrangement, FIG. 7 is a diagram illustrating the use of the thermal transfer system according to the invention in a multiprocessor server board,
- la figure 8 montre un exemple de configuration de la canalisation principale au niveau d'un condenseur,  FIG. 8 shows an example of configuration of the main pipe at a condenser,
la figure 9 est analogue à la figure 1 et présente un second mode de réalisation qui est en fait une variante selon laquelle le fluide est essentiellement en phase liquide dans la boucle principale,  FIG. 9 is similar to FIG. 1 and shows a second embodiment which is in fact a variant in which the fluid is essentially in the liquid phase in the main loop,
- la figure 10 est analogue à la figure 2 mais selon le second mode de réalisation, à savoir avec le fluide essentiellement en phase liquide dans la boucle principale,  FIG. 10 is similar to FIG. 2 but according to the second embodiment, namely with the fluid essentially in the liquid phase in the main loop,
- la figure 11 illustre les équations de débit massique,  FIG. 11 illustrates the mass flow equations,
- la figure 12 donne un exemple d'abaques de résultats pour différents fluides.  FIG. 12 gives an example of result charts for different fluids.
Sur les différentes figures, les mêmes références désignent des éléments identiques ou similaires.  In the different figures, the same references designate identical or similar elements.
La figure 1 montre un système de transfert thermique 10 utilisant un fluide de travail diphasique 7 destiné à prélever des calories d'une source chaude 9 et à les évacuer à distance de la source chaude. Plus précisément, le système de transfert thermique 10 comprend un circuit principal 1 en boucle. Le système de transfert thermique 10 contient dans un volume intérieur, isolé de manière étanche de l'environnement extérieur, une quantité donnée de fluide de travail 7. Figure 1 shows a heat transfer system 10 using a two-phase working fluid 7 for taking heat from a hot source 9 and discharging them away from the hot source. More specifically, the heat transfer system 10 comprises a main loop circuit 1. The heat transfer system 10 contains in one volume interior, sealed from the external environment, a given amount of working fluid 7.
Dans la présente description, on entend par « circuit principal 1 en boucle » une conduite ou une canalisation 11 qui se re-boucle sur elle-même formant ainsi un circuit fermé pour le fluide de travail 7, on parle donc de « conduite principale » par opposition aux autres canalisations utilisées pour raccorder les évaporateurs agencés en parallèle. Le circuit principal est aussi appelé « bus thermique » et/ou « collecteur thermique général ».  In the present description, the term "main circuit 1 loop" a pipe or pipe 11 which re-loop on itself thus forming a closed circuit for the working fluid 7, so we speak of "main pipe" as opposed to the other pipes used to connect the evaporators arranged in parallel. The main circuit is also called "thermal bus" and / or "general thermal collector".
Il est entendu que le circuit principal ne contient généralement aucun élément d'obstruction qui puisse gêner la libre circulation du fluide de travail, laquelle circulation se produit dans une direction de circulation privilégiée représentée par le repère F.  It should be understood that the main circuit generally does not contain any obstructing element which may impede the free circulation of the working fluid, which circulation occurs in a preferred circulation direction represented by the marker F.
Selon un premier mode de réalisation de la présente invention, le fluide de travail qui circule dans le circuit principal, comprend généralement les deux phases c'est-à-dire phase liquide et phase vapeur, sans pour autant exclure qu'il y ait des endroits où le fluide soit essentiellement liquide 7L et d'autres endroits où le fluide soit essentiellement vapeur 7V.  According to a first embodiment of the present invention, the working fluid which circulates in the main circuit, generally comprises the two phases, that is to say liquid phase and vapor phase, without excluding the fact that there are where the fluid is essentially liquid 7L and other places where the fluid is essentially vapor 7V.
Selon un second mode de réalisation, qui sera décrit en détail plus loin, le fluide de travail qui circule dans le circuit principal est essentiellement en phase liquide 7L.  According to a second embodiment, which will be described in detail below, the working fluid circulating in the main circuit is essentially in the liquid phase 7L.
Selon la présente invention, le circuit principal lui-même est dépourvu de moyens de pompage mécanique ou capillaire ou encore gravitaire. Le circuit principal forme une boucle qui peut avoir une forme générale circulaire, rectangle, carrée ou tout autre ; de même, le circuit principal peut être formé en deux dimensions (c'est-à-dire essentiellement à plat) ou peut être formé en trois dimensions c'est-à-dire non à plat. La section de la canalisation peut être substantiellement constante ; toutefois, il n'est pas exclu que la section de la canalisation puisse varier le long du circuit principal.  According to the present invention, the main circuit itself is devoid of mechanical pumping means or capillary or gravity. The main circuit forms a loop which can have a circular, rectangle, square or any other general shape; similarly, the main circuit can be formed in two dimensions (that is to say essentially flat) or can be formed in three dimensions that is to say not flat. The section of the pipeline can be substantially constant; however, it is not excluded that the section of the pipe may vary along the main circuit.
Pour prélever des calories de la source chaude 9, il est prévu un ensemble évaporateur 2 agencé en dérivation du circuit principal. Cet ensemble évaporateur 2 comprend :  To take heat from the hot source 9, there is provided an evaporator assembly 2 arranged as a bypass of the main circuit. This evaporator assembly 2 comprises:
- au moins une canalisation d'admission 21, prélevant du fluide liquide sur la boucle principale,  at least one intake pipe 21, taking liquid fluid from the main loop,
- un évaporateur 4 incluant un élément poreux 3 formant pompage capillaire et couplé à une source chaude à refroidir,  an evaporator 4 including a porous element 3 forming capillary pumping and coupled to a hot source to be cooled,
- au moins une canalisation de sortie 22 ayant au moins une buse d'éjection qui injecte le fluide en phase principalement vapeur dans le circuit principal selon la direction de circulation de boucle F. - At least one outlet pipe 22 having at least one ejection nozzle that injects the predominantly vapor phase fluid in the main circuit in the F loop circulation direction.
On remarque que l'interface hydraulique de l'ensemble évaporateur 2 avec le circuit principal 1 se borne à d'une part un raccordement de prélèvement de fluide liquide et d'autre part une sortie d'injection de vapeur. L'injection de vapeur dans la conduite principale peut être pariétale comme ceci est illustré à la figure 5B ou disposée complètement à l'intérieur de la section de la conduite principale comme ceci est illustré à la figure 5A. L'injection de vapeur se produit à vitesse élevée ce qui provoque un transfert de quantité de mouvement vers le fluide de travail environnant dans la canalisation principale, comme cela sera illustré plus en détail plus loin. It should be noted that the hydraulic interface of the evaporator assembly 2 with the main circuit 1 is limited to a liquid fluid sampling connection and to a liquid share a steam injection outlet. The steam injection into the main pipe may be parietal as shown in Figure 5B or disposed completely within the main pipe section as shown in Figure 5A. The steam injection occurs at a high speed which causes a transfer of momentum to the surrounding working fluid in the main pipe, as will be illustrated in more detail below.
Dans l'exemple illustré, la canalisation d'admission 21 est distincte de la canalisation de sortie 22, ainsi l'ensemble évaporateur est analogue à une boucle dite 'CPL' (Capillary Pumped Loop) selon une classification connue de l'homme de l'art. Toutefois on note que les canalisations d'admission 21 et de sortie 22 pourraient être accolées ou contiguës. Également, chacune des canalisations d'admission 21 et de sortie 22 pourraient se réduire à un simple passage sans forcément qu'il y ait une conduite tubulaire ou équivalent ; sur la figure 3 il est dessiné en traits pointillés un cas de figure où la canalisation principale est adjacente à l'évaporateur et dans ce cas l'une et/ou l'autre des canalisations d'admission 21 et de sortie 22 pourrait se réduire à un simple passage.  In the illustrated example, the intake pipe 21 is distinct from the outlet pipe 22, so that the evaporator assembly is similar to a loop called 'CPL' (Capillary Pumped Loop) according to a classification known to the man of the 'art. However it is noted that the intake ducts 21 and outlet 22 could be contiguous or contiguous. Also, each of the inlet and outlet pipes 21 and 21 could be reduced to a simple passage without necessarily that there is a tubular pipe or equivalent; in Figure 3 it is drawn in dashed lines a case in which the main pipe is adjacent to the evaporator and in this case one and / or the other of the inlet pipe 21 and outlet 22 could be reduced to a simple passage.
Le point de prélèvement 25 de liquide par la canalisation d'admission 21 se situe en amont (par rapport au sens de circulation F) vis-à-vis du point de sortie 26 de vapeur de la canalisation de sortie dans la conduite principale 11.  The sampling point 25 of liquid via the inlet pipe 21 is upstream (with respect to the flow direction F) with respect to the outlet point 26 of steam of the outlet pipe in the main pipe 11.
De plus, le système comprend un ensemble condenseur 5 qui évacue les calories transportées par la conduite principale à distance de(s) la source(s) chaude(s). L'ensemble condenseur 5 est formé par une portion de la conduite principale elle-même et un échangeur de chaleur couplé à une source froide ; cet échangeur de chaleur n'est volontairement pas détaillé ici, il peut être de tout type connu dans l'art, par exemple un échangeur à air avec des ailettes, optionnellement avec une convection forcée avec un ventilateur, cela peut être aussi par exemple un échangeur à liquide par exemple un échangeur à flux croisés avec un autre liquide, par exemple de l'eau.  In addition, the system includes a condenser assembly 5 which vents the calories transported by the main line away from the hot source (s). The condenser assembly 5 is formed by a portion of the main pipe itself and a heat exchanger coupled to a cold source; this heat exchanger is deliberately not detailed here, it can be of any type known in the art, for example an air exchanger with fins, optionally with a forced convection with a fan, it can also be for example a liquid exchanger, for example a cross-flow exchanger with another liquid, for example water.
Dans un exemple typique de cartes serveur, on évacue grâce au circuit principal les calories formées au niveau des processeurs, à distance de la carte serveur, dans un circuit de circulation d'eau conventionnel (Fig. 7).  In a typical example of server boards, the main circuit removes the calories formed at the processor level, away from the server board, in a conventional water circulation circuit (Fig. 7).
La quantité de fluide de travail à l'intérieur du système de transfert thermique est constante car le système présente une étanchéité globale vis-à-vis de l'environnement. En fonction du volume disponible dans le circuit et les évaporateurs, ainsi que la quantité de remplissage initial, le régime d'écoulement diphasique dans la canalisation principale peut être soit stratifié, soit annulaire, laminaire ou turbulent, avec des poches de vapeur de taille plus ou moins importante. Le régime d'écoulement et le design de la zone d'injection seront choisis de façon à obtenir l'effet d'entraînement le plus efficace possible en minimisant les pertes visqueuses pour les gammes de température et de puissance envisagées. The amount of working fluid inside the heat transfer system is constant because the system has an overall tightness with respect to the environment. Depending on the volume available in the circuit and the evaporators, as well as the initial filling quantity, the two-phase flow regime in the main pipeline can be either stratified, annular, laminar or turbulent, with pockets of larger size vapor. or less important. The flow regime and design of the injection zone will be selected to achieve the most efficient driving effect by minimizing viscous losses for the intended temperature and power ranges.
En particulier, selon le premier mode de réalisation, la conduite principale peut être, sur certaines portions, d'une section telle que les phases vapeurs et liquides se séparent, se stratifient, naturellement soit par l'action de la gravité soit par l'action d'une force centrifuge ou de tout autres dispositifs de séparation qui seraient mis en œuvre en fonction des conditions d'environnement sous gravité ou en apesanteur et en fonction des caractéristiques de l'écoulement. L'intérêt de cette séparation des phases est de permettre de véhiculer des grands débits volume de vapeur, à grande vitesse vapeur, par rapport au faible débit volume liquide tel que généralement requis dans les systèmes de transport diphasique. Cette séparation des phases permet de diminuer de façon appréciable la perte de charge de la conduite principale. Le ratio théorique du débit vapeur / débit liquide est proportionnel au rapport de densité entre le liquide et celui de la vapeur. On comprend l'avantage qu'apport cette séparation des phases sachant que le rapport de densité pour les fluides hautes pressions peut être de 10 alors que pour les fluides basses pressions il peut monter à 100 voire 1000. Dans les boucles diphasiques, c'est souvent la perte de charge vapeur qui est prédominante. Les injecteurs seraient préférentiellement disposés dans la phase vapeur, laquelle par effet direct ou d'entraînement communique une partie de la quantité de mouvement à la phase liquide. La canalisation diphasique pourrait être de forme quelconque pour permettre cette séparation des phases. Depuis une forme ovoïde qui permettrait à la vapeur de se localiser préférentiellement dans la partie élargie du haut de la canalisation et la partie liquide dans la partie rétrécie du bas de la canalisation. La canalisation principale pourrait même se composer de plusieurs parties en parallèles. Une canalisation vapeur et une autre liquide. Dans ce cas particulier, les pertes de charges vapeurs exerceraient un effet de pompage sur des sections de ligne disposées parallèlement à la conduite principale. Le ou les lignes secondaires parallèles, à basse vitesse de circulation, étant aménagées pour être occupées préférentiellement de liquide tout en permettant l'entraînement d'éventuelles bulles vapeurs.  In particular, according to the first embodiment, the main pipe may be, in certain portions, of a section such that the vapor and liquid phases separate, stratify, naturally either by the action of gravity or by the action of a centrifugal force or any other separation devices that would be implemented depending on the environmental conditions under gravity or weightlessness and depending on the characteristics of the flow. The advantage of this separation of the phases is to allow the conveyance of large volume flows of vapor, at high vapor speed, compared to the low liquid volume flow rate as generally required in two-phase transport systems. This separation of the phases makes it possible to appreciably reduce the pressure drop of the main pipe. The theoretical ratio of the vapor flow / liquid flow is proportional to the density ratio between the liquid and that of the vapor. We understand the advantage of this phase separation knowing that the density ratio for high pressure fluids can be 10 while for low pressure fluids it can rise to 100 or even 1000. In two-phase loops, it is often the pressure drop that is predominant. The injectors would preferably be arranged in the vapor phase, which by direct effect or drive communicates part of the momentum to the liquid phase. The two-phase pipeline could be of any shape to allow this phase separation. Since an ovoid shape that would allow the steam to locate preferentially in the widened part of the top of the pipe and the liquid part in the narrowed part of the bottom of the pipe. The main pipe could even consist of several parts in parallel. A steam pipe and another liquid. In this particular case, the vapor pressure losses would exert a pumping effect on line sections arranged parallel to the main pipe. The parallel line or lines, at low speed of circulation, being arranged to be occupied preferentially liquid while allowing the entrainment of any vapor bubbles.
Comme illustré dans un cas plus complet à la figure 2, le système de transfert thermique permet d'évacuer les calories de plusieurs sources chaudes 9 au moyen de plusieurs ensembles évaporateur respectifs 2,2', identiques ou simplement similaires dans le principe. On note que ces ensembles évaporateur sont tous disposés en dérivation de la conduite principale, à des positions différentes successives le long de ce circuit principal. Avantageusement, grâce à cette configuration, on obtient une addition des effets d'entraînement par les injections de vapeur rapides, qui sont disposées en série le long du circuit principal (à l'inverse de la configuration des évaporateurs agencés en parallèle de l'art antérieur). As illustrated in a more complete case in FIG. 2, the heat transfer system makes it possible to evacuate the calories from several hot sources 9 by means of several respective evaporator assemblies 2,2 'which are identical or merely similar in principle. It will be noted that these evaporator assemblies are all arranged in shunt of the main pipe, at different successive positions along this main circuit. Advantageously, thanks to this configuration, we obtain an addition of the effects driven by the fast steam injections, which are arranged in series along the main circuit (unlike the configuration of the evaporators arranged in parallel of the prior art).
De plus, il s'avère que, grâce à cette invention, on peut utiliser comme fluide de travail des fluides diélectriques conventionnels de type réfrigérant permettant ainsi de remplacer les fluides classiques de l'art antérieur, utilisés dans les boucles diphasiques, qui sont soit inflammables soit risqués pour l'environnement. En effet la faible chaleur latente de ces fluides est un atout pour atteindre une vitesse de phase vapeur importante au niveau de l'éjecteur qui peut être combiné avec la possibilité d'utiliser plusieurs éjecteurs sur un même évaporateur. Il est ainsi possible d'utiliser une plus large variété de fluides diphasiques, sur une plage donnée de températures opérationnelles prescrites.  Moreover, it turns out that, thanks to this invention, it is possible to use conventional refrigerant-type dielectric fluids as working fluid, thus making it possible to replace the conventional fluids of the prior art used in diphasic loops, which are either flammable or dangerous for the environment. Indeed the low latent heat of these fluids is an asset to achieve a high vapor phase velocity at the ejector that can be combined with the possibility of using multiple ejectors on the same evaporator. It is thus possible to use a wider variety of two-phase fluids over a given range of prescribed operational temperatures.
On peut aussi prévoir plusieurs ensembles évaporateur 4 sur le circuit principal ; dans un exemple, on peut avoir en alternance un évaporateur suivi d'un condenseur et ainsi de suite, et bien entendu on comprend de la figure 2 que le nombre de condenseurs peut être quelconque vis-à-vis du nombre d'évaporateurs. De même, l'ordre et la position relative des différents évaporateurs et condenseurs, ainsi que l'espace qui les sépare, peuvent être quelconques.  It is also possible to provide several evaporator assemblies 4 on the main circuit; in one example, one can alternately have an evaporator followed by a condenser and so on, and of course it is understood from Figure 2 that the number of condensers can be any vis-à-vis the number of evaporators. Similarly, the order and relative position of the various evaporators and condensers, and the space between them, can be arbitrary.
Comme illustré à la figure 3, l'évaporateur 4 comprend une plaque chaude 40 recevant des calories de la source chaude 9 et dans laquelle on a pratiqué des rainures 31 ou canaux de vapeur facilitant l'évacuation de la vapeur 7V qui se forme à cet endroit par vaporisation.  As illustrated in FIG. 3, the evaporator 4 comprises a hot plate 40 receiving calories from the hot source 9 and in which grooves 31 or steam channels have been made facilitating the evacuation of the vapor 7V which is formed at this point. spot by spray.
L'élément poreux 3, aussi appelé mèche primaire, se trouve au contact de la plaque chaude 40 (côté rainures). Il procure un effet de pompage comme connu dans l'art du fait du remplissage des interstices de la structure poreuse 3 par du fluide en phase liquide. L'élément poreux 3 peut être fabriqué en inox, en nickel, en céramique ou même en cuivre (cf. plus loin).  The porous element 3, also called primary wick, is in contact with the hot plate 40 (groove side). It provides a pumping effect as known in the art due to the filling of the interstices of the porous structure 3 with fluid in the liquid phase. The porous element 3 can be made of stainless steel, nickel, ceramic or even copper (see below).
Dans la zone d'arrivée de liquide 30, le fluide en phase liquide provient de la canalisation d'admission 21 ; un souci connu dans l'art est d'empêcher qu'un bouchon de phase vapeur et de gaz non-condensable ne bloque l'admission de liquide, et tarisse ainsi l'approvisionnement en phase liquide de la zone de vaporisation et ne désamorce le pompage capillaire. En effet, des bulles de vapeur peuvent se former dans la zone d'arrivée du liquide soit en raison d'une mauvaise étanchéité capillaire soit en raison d'un flux thermique parasite (échauffement 'parasite' coté liquide). Ainsi le flux parasite peut être considéré comme une source de chaleur annexe qui requiert dans les dispositifs connus de l'homme de l'art d'un débit de liquide sous-refroidi pour éviter le désamorçage ou la montée en température de saturation. En conséquence dans les dispositifs connus, il s'ensuit une dégradation de la conductance globale du dispositif. Dans la présente invention la vapeur et / ou le gaz non- condensable s'évacuent naturellement vers le circuit principal via le cœur vapeur du lien capillaire secondaire sans avoir besoin de sous-refroidissement. La conductance globale du dispositif est maintenue grâce à la présente invention même lorsque l'évaporateur comporte des fuites parasites ou du gaz non-condensable. Le système devient plus robuste que les dispositifs capillaires (CPL et LHP) connus de l'homme de l'art. In the liquid arrival zone 30, the fluid in the liquid phase comes from the intake pipe 21; a concern known in the art is to prevent a plug of vapor phase and non-condensable gas blocking the intake of liquid, and thus drains the supply of liquid phase of the vaporization zone and defuses the capillary pumping. Indeed, vapor bubbles can be formed in the liquid arrival zone either because of a poor capillary sealing or because of a parasitic heat flow (parasitic heating 'liquid side). Thus the parasitic flux can be considered as an auxiliary heat source which requires in the devices known to those skilled in the art a liquid flow undercooled to prevent defusing or temperature rise of saturation. As a result in the known devices, it follows a degradation of the overall conductance of the device. In the present invention, the vapor and / or the non-condensable gas are naturally vented to the main circuit via the steam core of the secondary capillary link without the need for subcooling. The overall conductance of the device is maintained by the present invention even when the evaporator has parasitic leaks or non-condensable gas. The system becomes more robust than the capillary devices (CPL and LHP) known to those skilled in the art.
Dans l'art connu, on essaie au maximum d'empêcher que des bulles de vapeur se forment du côté admission de l'élément poreux afin d'éviter la rupture de l'alimentation liquide de la mèche principale de l'évaporateur par la formation d'un bouchon vapeur ; mais ici, compte tenu de la configuration avec le circuit principal en boucle, on peut tolérer la formation de telles bulles de vapeur et de gaz non condensable, à condition qu'elles puissent 'remonter le courant' de la canalisation d'admission 21 pour revenir vers la conduite principale 11.  In the known art, maximum efforts are made to prevent vapor bubbles from forming on the inlet side of the porous element in order to prevent the liquid feed of the main wick of the evaporator from being broken by the formation. a steam cap; but here, taking into account the configuration with the main circuit in loop, one can tolerate the formation of such bubbles of vapor and non-condensable gas, provided that they can 'upstream the current' of the intake pipe 21 to return to the main pipe 11.
À cet effet on peut utiliser la gravité si elle règne dans le lieu d'application, en formant un siphon en local dans lequel les bulles de gaz remontent et le liquide descend, comme ceci est illustré à la figure 3.  For this purpose gravity can be used if it prevails in the place of application, forming a local siphon in which the gas bubbles rise and the liquid goes down, as shown in Figure 3.
On peut aussi prévoir, alternativement ou en plus, une mèche secondaire 32, optionnelle, qui se trouve du côté opposé de la mèche primaire par rapport à la plaque chaude 40. Cette mèche secondaire 32 s'étend dans le corps de l'évaporateur, et peut s'étendre également dans la canalisation d'admission 21 au moins en partie ; en fait, la mèche secondaire 32 est interposée entre la mèche primaire 3 et la conduite 11 du circuit principal.  It is also possible, alternatively or additionally, to provide an optional secondary wick 32 which is located on the opposite side of the primary wick with respect to the hot plate 40. This secondary wick 32 extends into the body of the evaporator. and may also extend into the intake duct 21 at least in part; in fact, the secondary wick 32 is interposed between the primary wick 3 and the pipe 11 of the main circuit.
Cette mèche secondaire 32 forme un canal pour évacuer les éventuelles bulles de gaz qui se seraient formées à cet endroit c'est-à-dire du mauvais côté de la mèche primaire 3 ; ainsi on évite qu'un éventuel bouchon de vapeur empêche l'alimentation continue en fluide liquide depuis la conduite principale jusqu'à la mèche primaire 3 de l'évaporateur 4.  This secondary wick 32 forms a channel for evacuating any gas bubbles that would have formed at this point, that is to say on the wrong side of the primary wick 3; in this way it is avoided that a possible steam plug prevents the continuous supply of liquid fluid from the main pipe to the primary wick 3 of the evaporator 4.
La mèche secondaire 32 peut être formée par un treillis métallique comme ceci est illustré à la figure 4. Il se forme, dans les coins ou au niveau des intersections des fils de maille de la mèche secondaire, des ménisques 39 de liquide qui assurent une bonne alimentation en liquide de la mèche primaire.  The secondary wick 32 may be formed by a wire mesh as shown in Figure 4. It is formed, in the corners or at the intersections of the mesh son of the secondary wick, meniscus 39 of liquid that ensure good supply of liquid from the primary wick.
Comme on tolère la formation de bulles de vapeur du côté admission (liquide) de l'élément poreux, avantageusement il n'est pas nécessaire de prévoir une étanchéité capillaire parfaite pour séparer les espaces de part et d'autre de l'élément poreux 3. Par conséquent, les contraintes de fabrication et le coût de l'évaporateur peuvent être diminués. Un flux de chaleur parasite, quelle que soit l'orientation de l'évaporateur, peut être compensé par la gestion de l'évacuation des bulles de vapeur formées du côté admission de l'élément poreux et cela sans avoir besoin d'un débit de liquide sous-refroidi. Since it is tolerated the formation of vapor bubbles on the inlet (liquid) side of the porous element, advantageously it is not necessary to provide a perfect capillary seal for separating the spaces on either side of the porous element 3 Therefore, the manufacturing constraints and the cost of the evaporator can be decreased. A parasitic heat flux, irrespective of the orientation of the evaporator, can be compensated by the management of the evacuation of the vapor bubbles formed on the inlet side of the porous element and without the need for a flow rate of subcooled liquid.
De même, lors des phases de démarrage, il n'est nul besoin de pressuriser le circuit principal car même si des bulles de vapeur se forment dans l'évaporateur du mauvais côté de l'élément poreux, ces bulles seront ramenées vers le circuit principal, puis condensées dans le circuit principal.  Similarly, during the start-up phase, there is no need to pressurize the main circuit because even if vapor bubbles form in the evaporator on the wrong side of the porous element, these bubbles will be returned to the main circuit , then condensed in the main circuit.
Sur la configuration illustrée à la figure 3, la plaque chaude 40 se trouve au-dessus de la source chaude 9 à refroidir, l'élément poreux 3 se trouve au-dessus de la plaque chaude 40, et la zone d'arrivée de liquide 30 contenant la mèche secondaire optionnelle se trouve au- dessus de l'élément poreux 3.  In the configuration illustrated in FIG. 3, the hot plate 40 is located above the hot source 9 to be cooled, the porous element 3 is above the hot plate 40, and the liquid arrival zone 30 containing the optional secondary wick is above the porous element 3.
Sur la figure 6, selon une autre disposition de l'évaporateur globalement inversée par rapport à la figure 4, l'évaporateur comprend la plaque chaude 40 recevant des calories agencée sur le dessus, avec les rainures 31 disposées en dessous au contact de l'élément poreux 3 puis encore en dessous la mèche secondaire 32.  In FIG. 6, according to another arrangement of the evaporator generally reversed with respect to FIG. 4, the evaporator comprises the hot plate 40 receiving calories arranged on the top, with the grooves 31 placed below in contact with the porous element 3 and again below the secondary wick 32.
L'arrivée de liquide vers l'élément poreux est repérée par les flèches 38a, 38b, alors que l'évacuation d'éventuelles bulles de vapeur et/ou de gaz non condensable rejoint la poche de vapeur 12 selon les flèches repérées 37b, 37a.  The liquid inlet to the porous element is marked by the arrows 38a, 38b, while the evacuation of any bubbles of vapor and / or non-condensable gas reaches the vapor pocket 12 according to the arrows marked 37b, 37a .
Comme exposé ci-dessus, et contrairement aux dispositions de l'art antérieur, le flux thermique parasite est toléré par le système et n'a pas de conséquences sur ses performances. Avantageusement, comme illustré, l'orientation de l'évaporateur par rapport à la gravité peut être quelconque, du fait de la présence de la mèche secondaire 32 qui assure l'alimentation liquide par pompage capillaire et accessoirement l'échappement de vapeur (cf. ci-dessus). De même, l'absence d'impact des caractéristiques de conductivité thermique sur le flux parasite de la mèche poreuse 3 permet d'utiliser du cuivre (déconseillé dans l'art antérieur car trop bon conducteur thermique) comme élément poreux ce qui améliore fortement les performances de la zone de vaporisation.  As explained above, and contrary to the provisions of the prior art, the parasitic heat flux is tolerated by the system and has no impact on its performance. Advantageously, as illustrated, the orientation of the evaporator relative to the gravity can be arbitrary, because of the presence of the secondary wick 32 which provides the liquid feed by capillary pumping and incidentally the steam outlet (cf. above). Similarly, the absence of impact of the thermal conductivity characteristics on the parasitic flux of the porous wick 3 makes it possible to use copper (which is disadvised in the prior art because it is too good as a thermal conductor) as a porous element, which greatly improves performance of the spray area.
Avantageusement selon la présente invention, les positions relatives de l'ensemble évaporateur 2 et de la canalisation principale 11 peuvent être telles que, comme illustré à la figure 6, au moment du démarrage, les rainures de l'évaporateur ne sont pas remplies de liquide. Alors, le démarrage est facilité par la présence de vapeur dans les rainures. La mèche secondaire contribue quant à elle à la bonne alimentation en liquide de la zone d'arrivée de liquide et au retour des bulles de vapeur vers la conduite principale.  Advantageously according to the present invention, the relative positions of the evaporator assembly 2 and the main pipe 11 may be such that, as shown in FIG. 6, at the time of starting, the grooves of the evaporator are not filled with liquid . So, starting is facilitated by the presence of steam in the grooves. The secondary wick contributes to the good liquid supply of the liquid arrival zone and the return of steam bubbles to the main pipe.
L'invention présentée ici peut être utilisée en situation de microgravité c'est-à-dire dans l'espace, mais aussi bien sûr en situation de gravité (application terrestre). L'invention peut bien entendu être utilisée à bord d'engins de transport (routier, ferroviaire, aérien,..) qui subissent des accélérations dans une ou plusieurs directions, la mèche secondaire 32 permettant de gérer l'alimentation en fluide liquide et le retour d'éventuelles bulles de vapeur. The invention presented here can be used in a microgravity situation, that is to say in space, but also of course in gravity (terrestrial application). The invention can of course be used on board transport equipment (road, rail, air, etc.) that undergo accelerations in one or more directions, the secondary wick 32 for managing the supply of liquid fluid and the return of any vapor bubbles.
Comme illustré à la figure 5B, la canalisation de sortie peut être raccordée par une forme de raccord en Y repérée 63 ; comme illustré à la figure 5A, la canalisation de sortie peut être raccordée avec une arrivée perpendiculaire 61 et un coude 62.  As illustrated in FIG. 5B, the outlet pipe may be connected by a Y-shaped connection shape marked 63; as shown in FIG. 5A, the outlet pipe can be connected with a perpendicular inlet 61 and a bend 62.
On remarque que pour obtenir l'effet d'entraînement recherché, il suffit que la direction d'injection de la vapeur G ait une composante principale selon la direction circonférentielle F, même si elle comporte aussi une autre composante, radiale, comme dans le cas de figure 5B.  Note that to obtain the desired drive effect, it is sufficient that the direction of injection of the vapor G has a main component in the circumferential direction F, even if it also comprises another component, radial, as in the case of Figure 5B.
L'injection de vapeur se fait au moyen d'une buse d'éjection 60, qui peut présenter une forme cylindrique ou une forme conique.  The injection of steam is by means of an ejection nozzle 60, which may have a cylindrical shape or a conical shape.
L'injecteur 60 en sortie d'évaporateur pourrait être avantageusement constitué d'un orifice à section auto-ajustable permettant à la fois de développer un maximum de quantité de mouvement lors des faibles débits, faibles charges thermiques, de l'évaporateur tout en limitant sa perte de charge en deçà de la pression de pompage capillaire de l'évaporateur pour les grands débits. Cet auto-ajustement peut être obtenu utilement par l'effet ressort d'une lame de fermeture de l'injecteur, par la dilatation thermique d'un bilame, ou par tout autre dispositif produisant le même effet.  The injector 60 at the outlet of the evaporator could advantageously consist of a self-adjusting section orifice allowing both to develop a maximum amount of movement at low flow rates, low thermal loads, the evaporator while limiting its pressure drop below the capillary pumping pressure of the evaporator for large flow rates. This self-adjustment can be usefully obtained by the spring effect of a closing blade of the injector, the thermal expansion of a bimetallic strip, or by any other device producing the same effect.
On peut aussi avoir plusieurs buses d'injection. Dans une variante, non représentée aux figures, les buses d'injection peuvent être formées par les extrémités des rainures 31 collectrices de vapeur de l'évaporateur, qui débouchent en oblique directement dans la conduite principale ; ainsi on pourrait avoir autant de buses d'injection que de rainures 31 collectrices.  One can also have several injection nozzles. In a variant, not shown in the figures, the injection nozzles may be formed by the ends of the vapor collecting grooves 31 of the evaporator, which open obliquely directly into the main pipe; thus one could have as many injection nozzles as 31 collector grooves.
Dans une configuration particulière, on peut prévoir un réservoir 6 (cf. Fig. 2) raccordé fluidiquement à la conduite principale ; ce réservoir optionnel sert de vase d'expansion pour l'excédent de fluide de travail en fonction de la température opérationnelle ; ce réservoir sert également pour pouvoir contrôler activement le cas échéant la température de saturation Tsat qui prévaut à l'interface vapeur-liquide dans ce réservoir, et qui influe par conséquent sur les température et pression d'équilibre dans l'ensemble du système.  In a particular configuration, it is possible to provide a reservoir 6 (see FIG.2) fluidly connected to the main pipe; this optional tank serves as an expansion vessel for the excess working fluid depending on the operating temperature; this tank is also used to actively control if necessary the Tsat saturation temperature prevailing at the vapor-liquid interface in this tank, and which consequently affects the temperature and equilibrium pressure throughout the system.
Pour des sources chaudes auxiliaires 98 de moindre puissance, au lieu de leur adjoindre un évaporateur capillaire, on a aussi la possibilité de former un pont thermique 8, par une pièce à bon coefficient de conduction thermique, un pont thermique classique ou par un caloduc classique. Les calories sont transférées vers le fluide de travail 7 principalement par ébullition convective au niveau du contact entre le pont thermique 8 et la canalisation principale 11; cette ébullition convective s'opère avec un bon coefficient d'échange thermique. For auxiliary hot-springs 98 of lesser power, instead of adding a capillary evaporator to them, it is also possible to form a thermal bridge 8, by a part with a good coefficient of thermal conduction, a conventional thermal bridge or by a conventional heat pipe . The calories are transferred to the working fluid 7 mainly by convective boiling at the contact between the thermal bridge 8 and the main pipe 11; this convective boiling takes place with a good heat exchange coefficient.
La figure 7 illustre l'utilisation d'un système de transfert thermique tel qu'expliqué ci- dessus dans le cas de son application à une carte serveur 90 multiprocesseurs, qui comprend plusieurs processeurs 9 à refroidir par évaporateur capillaire et optionnellement aussi des composants secondaires comme des mémoires 98 à refroidir par pont thermique 8.  FIG. 7 illustrates the use of a heat transfer system as explained above in the case of its application to a multiprocessor server card 90, which comprises several processors 9 to be cooled by capillary evaporator and optionally also secondary components as memories 98 to cool by thermal bridge 8.
Comme illustré sur la figure 7, chaque processeur 9 est surmonté d'un ensemble évaporateur 2, 2A, 2B, 2C, le circuit principal 11 s'étend le long de la carte 90 et passe au voisinage de chacun des évaporateurs, soit sur le côté, soit sur le dessus. Par ailleurs, des ponts thermiques relient thermiquement les barrettes mémoire 98 au circuit principal 11. Par ailleurs, un condenseur 5 est disposé sur une extrémité de la carte 90 et permet un échange thermique entre le fluide de travail 7 du circuit principal et un circuit d'eau général 95 commun par exemple à plusieurs cartes serveur.  As illustrated in FIG. 7, each processor 9 is surmounted by an evaporator assembly 2, 2A, 2B, 2C, the main circuit 11 extends along the card 90 and passes in the vicinity of each of the evaporators, either on the side, either on the top. Moreover, thermal bridges thermally connect the memory strips 98 to the main circuit 11. Moreover, a condenser 5 is disposed on one end of the card 90 and allows a heat exchange between the working fluid 7 of the main circuit and a control circuit. common general water 95 for example several server cards.
Toutefois, il faut bien noter que l'invention peut être appliquée dans un système de type quelconque, électronique ou autre, stationnaire ou mobile, dans tous domaines techniques.  However, it should be noted that the invention can be applied in any type of system, electronic or other, stationary or mobile, in all technical fields.
Avantageusement selon la présente invention, on propose un système modulaire c'est- à-dire un circuit principal qui peut être standardisé sur lequel on peut venir greffer en parallèle un nombre variable d'évaporateurs selon la configuration de la carte serveur à traiter. Comme ceci est notamment illustré par les figures 1 et 2, on peut ajouter ou retirer un ensemble évaporateur sans changer la conception et le design du reste du système.  Advantageously according to the present invention, there is provided a modular system that is to say a main circuit that can be standardized on which can be grafted in parallel a variable number of evaporators according to the configuration of the server card to be processed. As shown in particular in FIGS. 1 and 2, an evaporator assembly can be added or removed without changing the design and design of the rest of the system.
Selon de possibles implémentations, la dimension transversale de la conduite principale peut aller de 2 mm à 25 mm et sa section peut aller de 3 mm2 à 10 cm2 ; la dimension transversale de la buse d'injection peut être de même dimension, de dimension plus petite, ou de dimension significativement plus petite. Le rapport entre la section de la buse et la section de la conduite principale peut aller de 1 à 1/30. According to possible implementations, the transverse dimension of the main pipe may range from 2 mm to 25 mm and its cross section may range from 3 mm 2 to 10 cm 2 ; the transverse dimension of the injection nozzle may be of the same size, of smaller size, or of a significantly smaller size. The ratio between the section of the nozzle and the section of the main pipe can range from 1 to 1/30.
Selon de possibles implémentations, la vitesse de l'écoulement diphasique dans la conduite générale peut aller de lm/s à 100 m/s.  According to possible implementations, the speed of the two-phase flow in the general pipe can range from 1m / s to 100m / s.
Selon de possibles implémentations, le fluide utilisé peut être du méthanol, de l'éthanol, de l'acétone, du R245fa, du HFE-7200, du R134A, ou leurs équivalents.  According to possible implementations, the fluid used may be methanol, ethanol, acetone, R245fa, HFE-7200, R134A, or their equivalents.
La figure 8 illustre une portion du circuit principal 11 qui appartient à un ensemble condenseur 5 ; dans cette portion, la canalisation principale est subdivisée en plusieurs sous- canaux 50, ce qui permet d'accroître les échanges thermiques en limitant les pertes de charge hydraulique au travers de cette zone. La distribution de l'écoulement diphasique en provenance de la conduite principale est réalisée par un distributeur 51 suivant l'état de l'art de manière à assurer la répartition la plus homogène possible des phases liquide et vapeur dans chacune des branches 50 (titre vapeur). FIG. 8 illustrates a portion of the main circuit 11 which belongs to a condenser assembly 5; in this portion, the main pipe is subdivided into several sub-channels 50, which increases the heat exchange by limiting the pressure losses hydraulic through this area. The distribution of the two-phase flow coming from the main pipe is carried out by a distributor 51 according to the state of the art so as to ensure the most homogeneous distribution possible of the liquid and vapor phases in each of the branches 50 (vapor head ).
Second mode de réalisation Second embodiment
Les figures 9 et 10 illustrent un second mode de réalisation de la présente invention, dans lequel le fluide circulant dans la boucle principale est généralement sous refroidi par rapport à la température de condensation Tsat, et par conséquent le fluide est essentiellement en phase liquide excepté les zones de sortie des buses d'éjection 22,26.  FIGS. 9 and 10 illustrate a second embodiment of the present invention, in which the fluid flowing in the main loop is generally undercooled relative to the condensing temperature Tsat, and consequently the fluid is essentially in the liquid phase except for the exit areas of the ejection nozzles 22,26.
L'agencement et le fonctionnement de l'ensemble évaporateur 2 et de l'évaporateur 4 lui-même est similaire identique à ce qui a été décrit pour le premier mode, et ne sera donc pas répété ici. Seules les caractéristiques qui diffèrent du premier mode de réalisation sont présentées ci-dessous.  The arrangement and operation of the evaporator assembly 2 and the evaporator 4 itself is similar to that described for the first mode, and thus will not be repeated here. Only the features that differ from the first embodiment are shown below.
En lieu et place de l'ensemble condenseur conventionnel du premier mode, l'échangeur refroidisseur du système qui évacue les calories à l'extérieur, repérer ici 5' est un dispositif échangeur de type 'Sub Cooler' (c'est-à-dire un échangeur de sous refroidissement) qui sous refroidit le liquide 7L-SC en dessous de la température de condensation Tsat.  In place of the conventional condenser unit of the first mode, the heat exchanger of the system which discharges the calories to the outside, here 5 'is a' Sub Cooler 'type of exchanger device (ie say a sub-cooling exchanger) which cools the liquid 7L-SC below the condensing temperature Tsat.
Le changement d'état de la phase vapeur vers la phase liquide se produit dans une portion 15 de la conduite du circuit principal juste en aval de la buse d'éjection qui forme la sortie de l'évaporateur 4.  The change of state from the vapor phase to the liquid phase occurs in a portion of the main circuit line just downstream of the ejection nozzle which forms the outlet of the evaporator 4.
Cette condensation se produit au contact du liquide sous refroidi qui arrive du flux amont du fait de la circulation F, et aussi potentiellement au contact de la paroi de la canalisation qui elle-même est à une température proche de TcondOUT correspondant à celle du liquide sous refroidi 7L-SC.  This condensation occurs in contact with the undercooled liquid that arrives from the upstream flow due to the circulation F, and also potentially in contact with the wall of the pipe which itself is at a temperature close to TcondOUT corresponding to that of the liquid under cooled 7L-SC.
La vapeur est propulsée sous forme de jet à la sortie de la buse d'éjection, dans certains cas par exemple sous forme de bulles de vapeur qui sont propulsées en régime turbulent ; et la taille et le nombre des bulles diminuent au fur et à mesure que l'on s'éloigne de la buse d'éjection, du fait du processus de condensation.  The steam is propelled in the form of a jet at the exit of the ejection nozzle, in some cases for example in the form of steam bubbles which are propelled in turbulent regime; and the size and number of bubbles decrease as one moves away from the ejection nozzle due to the condensation process.
Par conséquent, c'est la portion de conduite repérée 15 qui fait office de condenseur Therefore, it is the identified driving portion 15 that acts as a condenser
(« zone de condensation ») dans ce système. ("Condensation zone") in this system.
Sur la figure 9, on illustre une configuration avec un seul ensemble évaporateur 2 et un seul échangeur sous refroidisseur 5'.  In Figure 9, there is illustrated a configuration with a single evaporator assembly 2 and a single heat exchanger undercooler 5 '.
Sur la figure 10, on illustre une configuration avec quatre ensembles évaporateur 2,2' et deux échangeurs sous refroidisseur 5', les autres éléments étant similaire à ce qui a déjà été décrit pour la figure 2. On remarque une zone de condensation 15 en aval de chaque sortie de vapeur provenant d'un ensemble évaporateur. In FIG. 10, a configuration with four evaporator sets 2.2 'is illustrated. and two exchangers under cooler 5 ', the other elements being similar to what has already been described for FIG. 2. A condensation zone 15 is noted downstream of each steam outlet coming from an evaporator assembly.
En référence à la figure 11, on étudie les débits massiques pour la configuration avec un ensemble évaporateur est un échangeur sous refroidisseur, en régime établi. With reference to FIG. 11, the mass flow rates for the configuration with an evaporator assembly are studied and a heat exchanger under cooler, in steady state.
On écrit notamment pour le débit massique de vapeur en sortie de l'évaporateur It is written in particular for the mass flow rate of steam at the outlet of the evaporator
• Qvap , dmvap n • Qvap, dmvap n
lîlvap = ou autrement écrit : = Qvap / hhLV rilvap étant le débit massique de vapeur qui sort de l'ensemble évaporateur, Qvap la puissance vaporisée et AhLV la chaleur latente de vaporisation lîlvap = or otherwise written: = Qvap / LV rilvap hh being the vapor mass flow coming out of the evaporator, the vaporized Q vap AhLV power and the latent heat of vaporization
On définit le débit massique dans le circuit principal :  The mass flow is defined in the main circuit:
1TT-total= W-vap+ ΠΤ-add =Y ΠΤ-ναρ 1TT-total = W-vap + ΠΤ-add = Y ΠΤ-ναρ
On définit le débit massique dans l'échangeur refroidisseur : riiœnd = rhtotai / Utube , avec ntube nombre de flux parallèles  The mass flow rate in the cooling exchanger is defined: rii-ind = rhtotal / Utube, with ntube number of parallel flows
On définit le débit massique en parallèle de l'évaporateur :  The mass flow in parallel of the evaporator is defined:
_ γ-ΐ . _ γ-ΐ.
Hadd Htotal  Hadd Htotal
Ύ  Ύ
On remarque que le coefficient γ caractérise l'effet d'amplification massique fourni par l'éjection à grande vitesse dans le circuit principal.  Note that the coefficient γ characterizes the mass amplification effect provided by the high speed ejection in the main circuit.
Le débit massique dans le circuit principal est γ fois plus important que le débit massique dans l'évaporateur.  The mass flow rate in the main circuit is γ times greater than the mass flow rate in the evaporator.
Alors on peut écrire les équations suivantes qui conduisent à exprimer le coefficient γ en fonction du sous refroidissement. Then we can write the following equations that lead to express the coefficient γ as a function of sub cooling.
Qin= Qout = rilvap hiv, (dans un cas idéal sans flux thermique parasite) Qin = Qout = rilvap hiv, (in an ideal case without parasitic heat flux)
Qsub = y rilvap Cpi (Tsat-TcondOUT), Qsub exprimant la puissance évacuée sur l'échangeur sous refroidisseur 5' .  Qsub = y rilvap Cpi (Tsat-TcondOUT), Qsub expressing the power discharged on the exchanger under cooler 5 '.
I sub = Tsat - TcondOUT  I sub = Tsat - TcondOUT
ÂhLV  ÂhLV
alors nous écrivons : Y =  then we write: Y =
' CpL . ATsub  'CpL. ATSUB
Sur la figure 12, on présente des résultats permettant de caractériser la relation entre le besoin de sous refroidissement ÂTsub et le coefficient γ. Des courbes sont données pour le fluide eau (repéré WF1), pour WF2 le méthanol, pour WF3 le l'acétone, pour WF4 le HFE200 et pour WF5 le R245fa. In Figure 12, results are presented to characterize the relationship between the need of sub-cooling ÂTsub and the coefficient γ. Curves are given for the water fluid (labeled WF1), for WF2 for methanol, for WF3 for acetone, for WF4 for HFE200 and for WF5 for R245fa.
On voit que le coefficient γ varie entre 5 et 50 pour certains fluides, entre 10 et 50 pour d'autres. De façon appréciable on constate que selon l'invention il est plus intéressant d'utiliser des fluides à faible chaleur latente de vaporisation non seulement pour diminuer le besoin de sous-refroidissement mais également pour générer de plus grand effet de pompage par les injecteurs.  We see that the coefficient γ varies between 5 and 50 for some fluids, between 10 and 50 for others. Significantly it is found that according to the invention it is more advantageous to use low latent heat vaporization fluids not only to reduce the need for subcooling but also to generate greater pumping effect by the injectors.
Un avantage important conféré par la présence de liquide prépondérante dans l'ensemble du circuit principal en boucle est le comportement du système soumis à un régime d'accélération(s), notamment variable. C'est le cas si le système est embarqué à bord d'un véhicule terrestre, maritime ou aérien, comme un matériel de transport urbain, métro ou tramway, un matériel de transport aérien de type avion ou drone. En effet, à l'inverse, si une partie du circuit principal comprend une part importante de phase gazeuse comme c'est le cas dans les boucles capillaires actuellement connues de l'homme de l'art, alors les effets de la pression hydrostatique sous l'accélération subie a tendance à déplacer la phase liquide plus dense dans la direction de l'accélération, ce qui peut s'avérer être contraire au sens de circulation normale du fluide de travail dans la boucle. Ce genre de perturbations est éliminé si toute la boucle contient majoritairement du liquide.  An important advantage conferred by the presence of predominant liquid throughout the main loop circuit is the behavior of the system subjected to a regime of acceleration (s), including variable. This is the case if the system is on board a land, sea or air vehicle, such as urban transport equipment, metro or tramway, plane or drone type air transport equipment. In fact, conversely, if a portion of the main circuit comprises a large portion of gas phase as is the case in the capillary loops currently known to those skilled in the art, then the effects of hydrostatic pressure under the acceleration undergone tends to displace the denser liquid phase in the direction of acceleration, which may be contrary to the normal flow direction of the working fluid in the loop. This kind of disturbance is eliminated if the whole loop contains mostly liquid.
La notion d'accélération fait également référence à l'accélération de la gravité c'est-à- dire que la position relative de l'échangeur de chaleur par rapport à l'évaporateur. Cette position à un impact limité sur les performances du système lorsque le circuit principal est principalement occupé par le liquide. II faut remarquer que, en ce qui concerne le premier mode de réalisation, on peut aussi définir un coefficient γ qui varie entre 5 et 50, préférentiellement entre 10 et 25, et généralement inférieur à celui du second mode de réalisation.  The concept of acceleration also refers to the acceleration of the gravity that is to say that the relative position of the heat exchanger relative to the evaporator. This position has a limited impact on the performance of the system when the main circuit is mainly occupied by the liquid. It should be noted that, as regards the first embodiment, it is also possible to define a coefficient γ which varies between 5 and 50, preferably between 10 and 25, and generally less than that of the second embodiment.

Claims

REVENDICATIONS
1. Système de transfert thermique (10) comprenant : A heat transfer system (10) comprising:
- un circuit principal (1) en boucle de fluide, le circuit principal étant dépourvu de moyens de pompage mécanique ou capillaire ou gravitaire, avec une direction de circulation (F) de boucle de fluide,  a main circuit (1) in a fluid loop, the main circuit being devoid of mechanical or capillary or gravity pumping means, with a circulation direction (F) of a fluid loop,
- au moins un ensemble évaporateur (2) agencé en dérivation du circuit principal avec  at least one evaporator assembly (2) arranged as a bypass of the main circuit with
- au moins une canalisation d'admission (21), prélevant du fluide liquide sur le circuit principal,  at least one intake pipe (21) taking liquid fluid from the main circuit,
- un évaporateur (4) incluant un élément poreux (3) à pompage capillaire couplé à une source chaude à refroidir,  an evaporator (4) including a porous element (3) with capillary pumping coupled to a hot source to be cooled,
- au moins une canalisation de sortie (22) ayant une buse d'éjection qui injecte le fluide en phase principalement vapeur dans le circuit principal au moins selon la direction de circulation de boucle,  at least one outlet pipe (22) having an ejection nozzle which injects the predominantly vapor phase fluid into the main circuit at least in the loop circulation direction,
- au moins un échangeur refroidisseur (5 ; 5'), comprenant une portion du circuit principal de boucle et un échangeur de chaleur couplé à une source froide, pour évacuer des calories. at least one cooling exchanger (5; 5 '), comprising a portion of the main loop circuit and a heat exchanger coupled to a cold source, for evacuating calories.
2. Système selon la revendication 1, dans lequel le fluide est sous forme essentiellement diphasique dans le circuit principal (1) en boucle, à savoir sous forme vapeur et sous forme liquide, et l'échangeur refroidisseur étant alors un ensemble condenseur conventionnel (5). 2. System according to claim 1, wherein the fluid is in substantially two-phase form in the main circuit (1) loop, namely in vapor form and in liquid form, and the heat exchanger then being a conventional condenser assembly (5). ).
3. Système selon la revendication 1, dans lequel le fluide est sous forme essentiellement liquide dans le circuit principal (1) en boucle et l'échangeur refroidisseur étant alors un échangeur de sous refroidissement (5'). 3. System according to claim 1, wherein the fluid is in essentially liquid form in the main loop circuit (1) and the heat exchanger then being a sub-cooling exchanger (5 ').
4. Système selon la revendication 3, dans lequel le changement d'état de la phase vapeur vers la phase liquide se produit dans une portion (15) de la conduite du circuit principal juste en aval de la buse d'éjection. 4. System according to claim 3, wherein the change of state of the vapor phase to the liquid phase occurs in a portion (15) of the main circuit line just downstream of the ejection nozzle.
5. Système selon l'une des revendications 1-4, dans lequel on trouve plusieurs ensembles évaporateur (2,2') agencés en dérivation du circuit principal. 5. System according to one of claims 1-4, wherein there are several evaporator assemblies (2,2 ') arranged in branch of the main circuit.
6. Système selon l'une des revendications 1-5, soumis à la gravité terrestre, dans lequel le circuit principal (1) en boucle s'étend dans un plan sensiblement horizontal par rapport à la gravité, 6. System according to one of claims 1-5, subjected to Earth's gravity, wherein the main circuit (1) in a loop extends in a substantially horizontal plane relative to the gravity,
7. Système selon la revendication 6, dans lequel le (ou les) évaporateur(s) est (sont) positionné(s) en contrebas du circuit principal. 7. System according to claim 6, wherein the (or) evaporator (s) is (are) positioned (s) below the main circuit.
8. Système selon la revendication 6, dans lequel le (ou les) évaporateur(s) est (sont) positionné(s) au-dessus du circuit principal. 8. System according to claim 6, wherein the (or) evaporator (s) is (are) positioned (s) above the main circuit.
9. Système selon l'une des revendications 1-8, dans lequel il est prévu dans un ou plusieurs évaporateurs une mèche secondaire (32) interposée entre l'élément poreux et la conduite principale. 9. System according to one of claims 1-8, wherein there is provided in one or more evaporators a secondary wick (32) interposed between the porous element and the main pipe.
10. Système selon l'une des revendications 1-9, dans lequel la buse d'éjection (60) est disposée à l'intérieur de la conduite principale. 10. System according to one of claims 1-9, wherein the ejection nozzle (60) is disposed within the main pipe.
11. Système selon l'une des revendications 1-9, dans lequel la buse d'éjection (60) est disposée de manière pariétale sur la paroi de la conduite principale. 11. System according to one of claims 1-9, wherein the ejection nozzle (60) is disposed parietalally on the wall of the main pipe.
12. Système selon l'une des revendications 1-11, comportant en outre un réservoir (6) commun branché sur la boucle principale. 12. System according to one of claims 1-11, further comprising a reservoir (6) common connected to the main loop.
13. Système selon l'une des revendications 1-12, dans lequel, au niveau de l'un des échangeurs refroidis seurs (5 ; 5'), la conduite principale comprend une portion formée par une pluralité de sous-canaux (50) arrangés en parallèle. 13. System according to one of claims 1-12, wherein, at one of the cooling exchangers (5; 5 '), the main pipe comprises a portion formed by a plurality of sub-channels (50). arranged in parallel.
14. Système selon l'une des revendications 1-13, comportant en outre un ou plusieurs pont(s) thermique(s) (8) reliant thermiquement la conduite principale avec une ou plusieurs source(s) de chaleur annexe(s) (98). 14. System according to one of claims 1-13, further comprising one or more thermal bridge (s) (8) thermally connecting the main pipe with one or more heat source (s) annex (s) ( 98).
EP15766100.0A 2015-01-27 2015-09-11 Diphasic cooling loop with satellite evaporators Active EP3250870B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550591A FR3032027B1 (en) 2015-01-27 2015-01-27 DIPHASIC COOLING BUCKLE WITH SATELLITE EVAPORATORS
PCT/EP2015/070883 WO2016119921A1 (en) 2015-01-27 2015-09-11 Diphasic cooling loop with satellite evaporators

Publications (2)

Publication Number Publication Date
EP3250870A1 true EP3250870A1 (en) 2017-12-06
EP3250870B1 EP3250870B1 (en) 2018-10-10

Family

ID=53269647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15766100.0A Active EP3250870B1 (en) 2015-01-27 2015-09-11 Diphasic cooling loop with satellite evaporators

Country Status (7)

Country Link
US (1) US10352623B2 (en)
EP (1) EP3250870B1 (en)
JP (1) JP6578361B2 (en)
CN (1) CN107208980B (en)
ES (1) ES2699092T3 (en)
FR (1) FR3032027B1 (en)
WO (1) WO2016119921A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108662932A (en) * 2017-03-29 2018-10-16 深圳市迈安热控科技有限公司 Cyclic annular porous heat pipe and heat-exchange device
CN108089618B (en) 2017-12-11 2019-06-18 北京空间机电研究所 A kind of energy-saving temperature control loop circuit heat pipe device of space flight optical remote sensor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492266A (en) * 1981-10-22 1985-01-08 Lockheed Missiles & Space Company, Inc. Manifolded evaporator for pump-assisted heat pipe
US4898231A (en) * 1985-09-30 1990-02-06 Kabushiki Kaisha Toshiba Heat-pipe system and method of and apparatus for controlling a flow rate of a working fluid in a liquid pipe of the heat pipe system
JPH05283571A (en) * 1992-03-31 1993-10-29 Toshiba Corp Heat transfer apparatus
US5725049A (en) * 1995-10-31 1998-03-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Capillary pumped loop body heat exchanger
CN2413255Y (en) * 2000-01-25 2001-01-03 陈东 Heat loop
US6889754B2 (en) * 2000-06-30 2005-05-10 Swales & Associates, Inc. Phase control in the capillary evaporators
US7549461B2 (en) * 2000-06-30 2009-06-23 Alliant Techsystems Inc. Thermal management system
WO2011007604A1 (en) * 2009-07-13 2011-01-20 富士通株式会社 Loop heat pump and startup method therefor
WO2012059975A1 (en) * 2010-11-01 2012-05-10 富士通株式会社 Loop-shaped heat pipe and electronic device equipped with same
US20120198859A1 (en) * 2011-02-03 2012-08-09 Iberica del Espacio, S.A., Thermal control device

Also Published As

Publication number Publication date
WO2016119921A1 (en) 2016-08-04
US20180023900A1 (en) 2018-01-25
ES2699092T3 (en) 2019-02-07
CN107208980B (en) 2019-04-12
JP6578361B2 (en) 2019-09-18
US10352623B2 (en) 2019-07-16
CN107208980A (en) 2017-09-26
FR3032027A1 (en) 2016-07-29
EP3250870B1 (en) 2018-10-10
FR3032027B1 (en) 2017-01-13
JP2018503053A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
EP1293428B1 (en) Heat exchanger
EP0832411B1 (en) Capillary pumped heat transfer loop
EP0855013B1 (en) Capillary evaporator for diphasic loop of energy transfer between a hot source and a cold source
EP3355019B1 (en) Cooling device
FR2599131A1 (en) PANEL AND THERMAL TRANSFER SYSTEM WITH CAPILLARITY PUMPING
EP3207324B1 (en) Flat heat pipe with reservoir function
EP1366990B1 (en) Heat transfer device for satellite comprising an evaporator
WO2017072095A1 (en) Computer system with cooled electric power supply unit
EP2181301B1 (en) Thermal regulation passive device with fluid micro loop and capillary pumping
EP2756252B1 (en) Heat transfer device using capillary pumping
FR2903222A1 (en) PASSIVE THERMAL CONTROL ARRANGEMENT BASED ON DIPHASIC FLUID LOOP WITH CAPILLARY PUMPING WITH THERMAL CAPACITY.
FR2965903A3 (en) HEAT TRANSFER SYSTEM
EP3250870B1 (en) Diphasic cooling loop with satellite evaporators
FR3115017A1 (en) THERMAL MANAGEMENT SYSTEM AND METHOD FOR COOLING A HYBRID ELECTRIC AIRCRAFT PROPULSION SYSTEM
WO2021123554A1 (en) Device for thermally regulating an electronic component
FR2990061A1 (en) ENERGY SOURCE AND METHOD FOR POWERING A AUTARTIC SYSTEM OF ELECTRIC CONSUMERS AND METHOD OF USING THE SAME
EP3975677A1 (en) Electric power module with cooling system
FR2741427A1 (en) Two-phase heat transfer circuit for refrigeration appts.
EP3194874A1 (en) Heat pipe and method for making a heat pipe
WO2019220035A1 (en) Evaporator for a fluid circuit and fluid circuit comprising such an evaporator
FR2850453A1 (en) Heat exchanger and temperaure controller for spacecraft, e.g. satellite, has one or more axial grooves in inner wall of duct divided by separator for inccreased heat transfer
WO2015121179A1 (en) System for cooling a hot source
WO2023222971A1 (en) System for generating cold and for supplying electrical power from seawater and the sun
WO2014177359A1 (en) Rectifier for thermodynamic absorption machine having a connection device acting as a siphon

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DUPONT, VINCENT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180525

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1051737

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015017959

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2699092

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190207

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1051737

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190111

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015017959

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

26N No opposition filed

Effective date: 20190711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190911

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190911

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210913

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210916

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220823

Year of fee payment: 8

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 9

Ref country code: DE

Payment date: 20230911

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231006

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20231001