EP3246648B1 - Cooling device with pulsed heat pipe - Google Patents

Cooling device with pulsed heat pipe Download PDF

Info

Publication number
EP3246648B1
EP3246648B1 EP17305564.1A EP17305564A EP3246648B1 EP 3246648 B1 EP3246648 B1 EP 3246648B1 EP 17305564 A EP17305564 A EP 17305564A EP 3246648 B1 EP3246648 B1 EP 3246648B1
Authority
EP
European Patent Office
Prior art keywords
cooling device
portions
side edge
support
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17305564.1A
Other languages
German (de)
French (fr)
Other versions
EP3246648A1 (en
Inventor
Jérôme FOUROT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Europhane SA
Original Assignee
Europhane SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Europhane SA filed Critical Europhane SA
Publication of EP3246648A1 publication Critical patent/EP3246648A1/en
Application granted granted Critical
Publication of EP3246648B1 publication Critical patent/EP3246648B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/51Cooling arrangements using condensation or evaporation of a fluid, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present application relates to a passive cooling device capable of cooling a heat source comprising electronic and / or electrical components.
  • the device uses an oscillating heat pipe in which a heat transfer fluid can circulate in a pulsed manner under the effect of heat.
  • a cooling system 12 is used to cool an electronic circuit equipped with light-emitting diodes. More specifically, as represented in figure 1 , the cooling system comprises an oscillating heat pipe 11 comprising a tube in which a heat transfer fluid circulates in a pulsed manner.
  • the tube is a multiport extruded tube comprising channels parallel to each other and stacked in a direction normal to a heat conduction element 13 interposed between the tube and the electronic circuit.
  • the tube has the general shape of a ribbon forming a coil extending along the conduction element 13.
  • the oscillating heat pipe comprises a hot part located below the conduction element 13 and cold parts located in lateral zones of the coil, disposed on either side of the hot part.
  • the heat conduction element 13 transmits the heat produced by the electronic circuit to the hot parts of the heat pipe.
  • the heat is then transported by the oscillations of the heat transfer fluid to the cold zones.
  • the cold zones then dissipate the heat to the environment by a phenomenon of convection with the ambient air.
  • the performance of the cooling device depends directly on this convection phenomenon.
  • the document FR3007122A1 proposes the use of heat exchange fins 15 placed between the coils of the coil which are formed by the tube (see figure 2 ). This effective solution nevertheless has the disadvantages of making the manufacture of the device more complex and of increasing its bulk.
  • means for moving the ambient air can be used to establish a forced convection of air at the cold areas.
  • This solution has the disadvantage of the use of fans that consume energy and in turn produce heat.
  • a fan failure significantly degrades the capabilities of the device.
  • the operating time of a light emitting diode is much higher than the operating time of a fan. Therefore, it is necessary to perform regular checks of their proper operation to ensure that the light source is properly cooled to prevent damage to said source. This is why the use of a fan is not an ideal solution for cooling a cooling device.
  • the solutions currently proposed are therefore not fully satisfactory.
  • the present application therefore aims to propose a cooling device solving the disadvantages mentioned above.
  • the present application aims to provide a cooling device comprising a pulsed heat pipe less expensive to manufacture, more economical and more reliable use, with increased performance for the same volume given the state of the technical.
  • the present application proposes a cooling device capable of cooling a heat source comprising electronic and / or electrical components.
  • the cooling system is characterized in that it comprises a support composed of a first plate joined to a second plate.
  • the first plate has two large opposite faces interconnected by means of lateral edges.
  • the first plate comprises at a first large face at least one groove extending between a first lateral edge and a second opposite lateral edge, the groove comprises first portions parallel or substantially parallel to the first side edge connected by seconds.
  • the groove is covered by the second plate so as to form an oscillating heat pipe in which circulates a heat transfer fluid state change.
  • the carrier is bent to form at least one conduit extending from the first side edge to the second opposite side edge, and at least one duct is partially closed by a plate in contact with the first lateral edge so as to allow a natural flow of the ambient air in the duct or ducts formed by the support.
  • the oscillating heat pipe is thus delimited by the first and the second plate, and not by a tube as described by the document FR3007122A1 .
  • This difference allows the heat transported by the heat transfer fluid to diffuse inside the two plates to the two large opposite faces of the support.
  • This diffusion phenomenon makes it possible to distribute the heat on all the faces of the support in order to advantageously increase the heat exchange surface between the cooling device and the ambient air, without it being necessary for this to be used. fins of heat exchange.
  • the duct or ducts formed by the support promote a phenomenon of natural convection of the ambient air along the support, without it being necessary to use a fan.
  • the present application advantageously makes it possible to cool more efficiently and more simply a heat source more economically, for the same volume of occupation, compared with the state of the art.
  • At least one duct delimited by the support has a height favoring a natural convection movement of the ambient air in the duct.
  • height is meant a distance along an axis normal to the plate closing a conduit.
  • the height of a duct is chosen so that the pressure differential between the inside and the outside of the duct is greater than the phenomenon of pressure drops experienced by the air flowing in the duct. The value of the height therefore depends on the power of the heat source and the ambient temperature.
  • the first edge and the second lateral edge of the first plate are separated by a distance of between 1 mm and 500 mm, preferably between 10 mm and 500 mm.
  • the phenomenon of pressure losses mentioned above also depends on the distance between two adjacent turns delimited by the support, that is to say, the width duct formed by said turns.
  • the term "width" means a distance along an axis normal to the height of the conduit.
  • the distance between two adjacent turns may be between 1mm and 300mm.
  • the value of this distance may also vary depending on the power of the heat source, the ambient temperature and the desired compactness of the device.
  • the total length of the first portions is greater than the total length of the second portions.
  • the gap between two adjacent first portions of a groove is selected so as to allow homogeneous diffusion of heat at the surface defining a conduit.
  • the duct surface tends to have a substantially homogeneous temperature which favors a greater flow of air in the ducts.
  • the difference between two adjacent first portions depends in particular on the amount of heat to be dissipated, the dimensions of the grooves and the thermal conductivity coefficient of the plates.
  • the difference between two adjacent first portions may be between 1mm and 50mm, preferably between 1mm and 30mm. The skilled person may consider other values according to the parameters mentioned above.
  • the gap between two adjacent first portions may vary between the first side face and the second side face, so that the oscillating heat pipe can diffuse a greater amount of heat at the portions of the support which are the further away from the thermal conduction plate.
  • This embodiment is particularly advantageous when the coefficient of thermal conductivity of the support is low.
  • the gaps between the first sections can be adapted to compensate for a limited diffusion of heat in the support.
  • the length of the second portions is less than 30 mm.
  • the second portions may be longer than the gap between two adjacent first portions so as to form curved portions.
  • the second portions have a radius of curvature favoring the flow of the coolant in the oscillating heat pipe.
  • the radius of curvature can be between 1mm and 50mm, preferably between 5mm and 25mm.
  • the diameter of the heat pipe is chosen so that the capillary forces exerted on the phase change fluid are greater than the forces exerted on said fluid by the gravity.
  • the diameter of the heat pipe depends on the characteristics of the coolant, for example its viscosity.
  • the hydraulic diameter of the passage section of the heat pipe may be greater than 1 mm and / or less than a diameter equivalent to a number of Eötvös of 4 for the heat transfer fluid chosen.
  • the first plate comprises at a second large face at least one groove extending from the first lateral edge to the second opposite lateral edge, forming several bends.
  • the groove comprises first portions parallel or substantially parallel to a lateral edge connected by second portions.
  • the groove is covered by a third plate so as to form an oscillating heat pipe in which circulates a heat transfer fluid state change.
  • the total length of the first portions is less than the total length of the second portions.
  • the first portions of the groove of a large face are then parallel to a first lateral edge of the first turntable while the first portions of the groove of the other major face are normal to the first edge of the first turntable.
  • the first large face promotes a dissipation of the heat produced by the heat source in a direction parallel or substantially parallel to the first side edge of the first plate.
  • the second large face promotes a dissipation of heat in a normal direction or substantially normal to said first side edge. This variant therefore favors the dissipation of heat in different directions on each large face of the first plate, which makes it possible to optimize a more homogeneous distribution of heat at the outer faces of the support.
  • the first plate may comprise several separate grooves so as to form at least one independent heat pipe at each duct formed by the support.
  • the coolant fills between 30% and 70% of the volume of the heat pipe.
  • the support is curved so as to form a coil with parallel and / or square and / or circular turns, each turn delimiting a duct allowing a flow of ambient air along the support.
  • the cooling device may comprise one or more means for moving the ambient air so as to increase more or less punctually the flow of air in the ducts.
  • these means make it possible to increase episodically, for example, the cooling capacities of the device in order to respond to a peak of heat produced by said source.
  • the present application also relates to a cooling device described above, the plate of which is in contact with a heat source comprising electronic and / or electrical components.
  • the heat source has a thermal power of between 10W and 300W.
  • the figures illustrating various embodiments of the invention each comprise an orthonormal reference with a lateral direction X, a longitudinal direction Y perpendicular to the direction X and a vertical direction Z perpendicular to the plane defined by the X and Y directions.
  • FIG. figure 3 presents an embodiment of a cooling device 200 comprising a coil-shaped support 210, on which rests a heat conduction plate 220 intended to be in contact with a heat source 300 to be cooled.
  • the support 210 comprises a first large surface 211 and a second large surface 212, both of flat surface and interconnected by lateral edges so that said large faces are parallel to each other.
  • the support 210 is curved so as to form parallel turns in the longitudinal direction Y. More specifically, each turn forms a conduit 213 defined alternately by the first major face 211 and the second major face 212.
  • the duct 213 forms a chimney.
  • the thermal conduction plate 220 is of rectangular shape and intended to be in contact at an upper face 221 with a heat source 300.
  • the plate 220 is fixed at a lower face 222 at an upper lateral edge 214 of the support 210.
  • the function of the plate is to transmit the heat produced by the heat source 300 to the support 210.
  • the plate 220 is attached to the support 210 by brazing, welding, bonding or any equivalent means and adapted to the desired function.
  • the heat source 300 heats through the plate 220 the parts of the support 210 located below the plate.
  • the support comprises so-called hot parts below the plate 220, in a central zone of the coil in the longitudinal direction Y, and two so-called cold portions not covered by the plate which are arranged on either side of the plate the hot part in the lateral direction X.
  • the figure 5 now shows a longitudinal section of the support 210, in a plane defined by the directions Y and Z.
  • the support comprises a first plate 230 and a second plate 240, joined together at their first large face, respectively 231 and 241.
  • the first plate comprises at its first large face 231 a groove 232 covered by the first large face 241 of the second plate, so as to form a single channel 250.
  • the figure 6 presents a flattened view of the first plate 230 to facilitate the reader's understanding of the arrangement of the groove 232 on the first large surface 231.
  • the groove 232 extends between two opposite lateral edges delimiting the first large face 231. More specifically, the groove extends between a first lateral edge 233 in contact with the plate 220 and a second opposite lateral edge 234.
  • the groove comprises first portions 235 parallel or substantially parallel to the first side edge 233 connected by second portions 236.
  • the groove 232 thus has a serpentine configuration.
  • the total length of the first portions is greater than the total length of the second portions.
  • the second portions form bends but they could also have a straight portion normal to the first portions.
  • the present application proposes a cooling device comprising a pulsed heat pipe, less expensive to produce, more economical to use and more efficient, for the same given volume, compared to the state of the art.
  • the height "H” may for example be between 10mm and 1000mm, preferably between 100mm and 500mm, when the heat source has a power between 10W and 300W.
  • the total length of the support 210 is chosen so that the surface of its first large face 211 and of its second large face 212 is between 90mm and 4000mm, it is preferably equal to or less than 1350mm, when the heat source has a power between 10W and 300W.
  • the values mentioned above depend on external parameters such as, for example, the power of the heat source and the ambient temperature, but also parameters intrinsic to the device, for example its thermal conductivity coefficient. Therefore, the invention is not limited to the ranges of values mentioned above.
  • the distance "B” depends on the ambient temperature and the power of the heat source to be cooled.
  • the distance “B” may for example be between 1 mm and 300 mm, preferably between 5mm and 100mm, when the heat source has a power between 10W and 300W.
  • the thermal conduction plate 220 partially covers each duct 213 to allow evacuation of the air present in the ducts 213.
  • Each duct has a length "C" in the lateral direction X greater than the length "C" of the plate 220.
  • the ratio between the lengths "C” and “C” may be greater than 0.02, preferably between 0.03 and 0.5.
  • the plate can cover less than 50% of the surface of each conduit 213, preferably covering between 10% and 40% of their surface.
  • the thermal conduction plate 220 transmits the heat produced by the heat source 300 to the support 210.
  • the latter comprises a channel 250 delimited by the first plate 230 and the second 240. More precisely, the channel 250 with a rectangular section as illustrated in FIG. figure 5 however, the section of the channel may have other shapes, although less favorable to a flow of a liquid in the channel, of circular, oval or triangular type.
  • the hydraulic diameter of the channel 250 is chosen so that the capillary forces acting on a fluid present in said channel, dominate with respect to the gravitational forces.
  • the hydraulic diameter of the channel is chosen so that the channel 250 is characterized by a number of Eotvos at most equal to 4.
  • the hydraulic diameter of the channel 250 may be less than 3 mm, preferably included between 500 ⁇ m and 2mm.
  • the channel 250 comprises first portions 235 parallel or substantially parallel to the first lateral edge 233 of the first plate 230.
  • the distance between two adjacent first portions is chosen so as to promote a homogeneous diffusion of the heat produced by the heat source 300 at the large faces 211 and 212 of the support.
  • the distance between two first portions is chosen so as to minimize the non-isothermality or, in other words, to guarantee a uniform temperature between the first portions. More precisely, the value of this distance is chosen so that the temperature gradient between two first adjacent portions 235 does not exceed 5K.
  • the value of this distance "T" is according to the present example, between 10mm and 150mm, preferably between 50mm and 120mm.
  • the total length of the channel 250 is chosen so as to sufficiently dissipate the heat produced by the heat source 300 at the support 210.
  • this total length depends on external parameters, such as for example the power of the heat source. and the ambient temperature, but also parameters intrinsic to the device such as its surface, the number of ducts formed and its coefficient of thermal conductivity.
  • the total length of the channel 250 may be between 180mm and 4000mm, it is preferably equal to or less than 300mm.
  • the channel 250 contains a heat transfer fluid 251 to change state to form an oscillating heat pipe 252, also known by the name of "heat pipe” or under the acronym “PHP” for "pulsating heat pipe” in English terminology.
  • the channel 250 is partially filled with heat transfer fluid which naturally takes the form of a succession of vapor bubbles and liquid plugs when heated.
  • the heat transfer fluid 251 is according to the present example of acetone, filling 50% of the volume of the channel at room temperature, that is to say at a temperature of about 20 ° C.
  • This phase separation results mainly from surface tension forces.
  • the oscillating heat pipe 252 is heated in a hot part and cooled in a cold part, the resulting temperature differences generate both temporal and spatial pressure fluctuations, which are themselves associated with the generation and growth of vapor bubbles. in the evaporator and their implosion in the condenser. These fluctuations act as a pumping system to transport liquid and vapor bubbles between hot and cold parts.
  • the hot parts of the oscillating heat pipe are located opposite the plate 220.
  • the plates 230 and 240 are made from the same material.
  • the thickness of the plates is as thin as possible to minimize the amount of material used and allow easier folding of the support 210 after the two plates are joined together.
  • the thickness of the first plate is sufficient to allow the machining of the channel 250 in the first large face 231 of the first plate 230.
  • a second channel may be formed in a first large face 241 of the second plate 240 so that said channels are superimposed and form a single channel 250.
  • the plates used to form the support 210 have a high coefficient of thermal conductivity, preferably greater than 150 W.m -1 .K -1 in order to quickly dissipate the heat produced by the heat source 300 in the support 210.
  • a support characterized by a high coefficient of thermal conductivity makes it possible to space the first portions of the channel 250 more widely. As a result, the total length of the channel can be reduced, which saves time and cost. during its production, this also makes it possible to use less heat transfer fluid 251.
  • the plate is advantageously metallic: it may preferably consist of aluminum or an alloy of aluminum or copper.
  • a cooling device is characterized by several parameters described above which depend on the ambient temperature as well as the thermal power dissipated by the heat source 300.
  • Table 1 shown in FIG. figure 7 illustrates several embodiments of the invention from a device as described above. More specifically, each of the examples mentioned in Table 1 comprises an aluminum thermal conduction plate 210, whose thickness is 3 mm. Of course, the plate is centered in the middle of the ducts as shown in FIG. figure 4 .
  • the cooling devices described in Table 1 are also characterized by a channel 250 of square section of 1.5 mm side, filled with an ethanol-type heat transfer fluid. The first and second platinum each have a thickness equal to 1.5mm.
  • the other technical characteristics of each embodiment are mentioned in Table 1. Of course, other embodiments can be envisaged as a function of other heat source powers and other ambient temperature ranges, so that the This application is not limited to these examples.
  • the support 210 may advantageously be manufactured by a three-dimensional printing technique, preferably from one of the materials mentioned above.
  • This method of manufacture offers the advantage of being able to produce elaborate shapes of coils without it being necessary for this purpose to mechanically bend the support 210.
  • This method of manufacture thus makes it possible to produce more complex serpentine shapes while limiting the risk of damage to the support 210 during its shaping.
  • the materials generally used for three-dimensional printing are materials based on synthetic or artificial polymers, characterized by a low coefficient of thermal conductivity thereby limiting the diffusion of heat at the large faces of the support 210
  • the figure 8 shows an embodiment of a cooling device 400 according to the invention. It should be noted that the numbers comprising the same tens designate elements whose functions are identical or similar to the device 200 described above.
  • the figure 8 shows a longitudinal section of the support 410, in a plane defined by the directions Y and Z.
  • the cooling device 400 is similar to the cooling device 200 described above, except that the support 410 comprises a second groove 437 on the second major face 438 of the first turntable 430.
  • the second groove 437 is closed by a third turntable 460 joined to the first turntable 430.
  • the support 400 comprises a second channel 451 present between the first turntable 430 and the Third platen 460.
  • the second channel advantageously allows the heat produced by the heat source 300 to heat homogeneously the support 410 when its coefficient of thermal conductivity is low.
  • the shape of the second channel 451 is preferably identical to that of the first channel 450. However, their shape and their arrangement may be different or complementary.
  • the plates covering the grooves present on each side of the first plate 430 are of thickness thinner than the thickness of the first plate in order to promote the diffusion of heat on the surface of the support 410.
  • the second and the third stage can be made from materials whose thermal diffusion coefficient is greater than that of the first platinum.
  • the first platen 430 may be made from polymers and the second and third platinum metal based such as aluminum.
  • a thermal interface material may be interposed between one or more elements composing a cooling device described above.
  • the thermal interface material may be interposed between the two plates 230 and 240 and / or between the plate 220 and the support 210.
  • a heat source 300 mentioned above may designate at least one of the following elements: a lighting device comprising power LEDs, a photovoltaic device, an electronic circuit, a thyristor type electronic power component or a insulated gate bipolar transistor, a battery, a fuel cell or any other power system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

Domaine technique de l'inventionTechnical field of the invention

La présente demande concerne un dispositif de refroidissement passif apte à refroidir une source de chaleur comprenant des composants électroniques et/ou électriques. Pour cela, le dispositif utilise un caloduc oscillant dans lequel un fluide caloporteur peut circuler de manière pulsée sous l'effet de la chaleur.The present application relates to a passive cooling device capable of cooling a heat source comprising electronic and / or electrical components. For this, the device uses an oscillating heat pipe in which a heat transfer fluid can circulate in a pulsed manner under the effect of heat.

État de la techniqueState of the art

Il est connu de l'état de la technique l'emploi de dispositifs de refroidissement utilisant un caloduc oscillant pour refroidir une source de chaleur.It is known from the state of the art the use of cooling devices using an oscillating heat pipe to cool a heat source.

Le document FR3007122A1 décrit un exemple de ce type. Selon cet exemple, un système de refroidissement 12 est employé pour refroidir un circuit électronique équipé de diodes électroluminescentes. Plus précisément, comme représenté à la figure 1, le système de refroidissement comprend un caloduc oscillant 11 comportant un tube dans lequel un fluide caloporteur circule de manière puisée. Le tube est un tube extrudé multiport comprenant des canaux parallèles entre eux et empilés selon une direction normale à un élément de conduction thermique 13 interposé entre le tube et le circuit électronique. Le tube présente la forme générale d'un ruban formant un serpentin s'étendant le long de l'élément de conduction 13.The document FR3007122A1 describes an example of this type. According to this example, a cooling system 12 is used to cool an electronic circuit equipped with light-emitting diodes. More specifically, as represented in figure 1 , the cooling system comprises an oscillating heat pipe 11 comprising a tube in which a heat transfer fluid circulates in a pulsed manner. The tube is a multiport extruded tube comprising channels parallel to each other and stacked in a direction normal to a heat conduction element 13 interposed between the tube and the electronic circuit. The tube has the general shape of a ribbon forming a coil extending along the conduction element 13.

Le caloduc oscillant comprend une partie chaude située en dessous de l'élément de conduction 13 et des parties froides situées dans des zones latérales du serpentin, disposées de part et d'autre de la partie chaude. L'élément de conduction thermique 13 transmet la chaleur produite par le circuit électronique aux parties chaudes du caloduc. La chaleur est ensuite transportée par les oscillations du fluide caloporteur jusqu'aux zones froides. Les zones froides dissipent alors la chaleur à l'environnement par un phénomène de convection avec l'air ambiant. Les performances du dispositif de refroidissement dépendent directement de ce phénomène de convection.The oscillating heat pipe comprises a hot part located below the conduction element 13 and cold parts located in lateral zones of the coil, disposed on either side of the hot part. The heat conduction element 13 transmits the heat produced by the electronic circuit to the hot parts of the heat pipe. The heat is then transported by the oscillations of the heat transfer fluid to the cold zones. The cold zones then dissipate the heat to the environment by a phenomenon of convection with the ambient air. The performance of the cooling device depends directly on this convection phenomenon.

Afin d'améliorer les performances du dispositif de refroidissement, le document FR3007122A1 propose l'utilisation d'ailettes d'échange thermique 15 placées entre les spires du serpentin qui sont formées par le tube (voir figure 2). Cette solution efficace a néanmoins les inconvénients de complexifier la fabrication du dispositif et d'augmenter son encombrement.In order to improve the performance of the cooling device, the document FR3007122A1 proposes the use of heat exchange fins 15 placed between the coils of the coil which are formed by the tube (see figure 2 ). This effective solution nevertheless has the disadvantages of making the manufacture of the device more complex and of increasing its bulk.

Selon une solution alternative, des moyens de mise en mouvement de l'air ambiant peuvent être employés pour établir une convection forcée de l'air au niveau des zones froides. Cette solution a pour inconvénient l'emploi de ventilateurs qui consomment de l'énergie et produisent à leur tour de la chaleur. De plus, une panne d'un ventilateur dégrade de manière significative les capacités du dispositif. Or, la durée de fonctionnement d'une diode électroluminescente est bien supérieure actuellement au temps de fonctionnement d'un ventilateur. De ce fait, il est nécessaire d'effectuer des contrôles réguliers de leur bon fonctionnement afin de s'assurer que la source lumineuse est correctement refroidie pour prévenir toute détérioration de ladite source. C'est pourquoi l'utilisation de ventilateur n'est pas non plus une solution idéale pour refroidir un dispositif de refroidissement. Les solutions actuellement proposées ne sont donc pas pleinement satisfaisantes.According to an alternative solution, means for moving the ambient air can be used to establish a forced convection of air at the cold areas. This solution has the disadvantage of the use of fans that consume energy and in turn produce heat. In addition, a fan failure significantly degrades the capabilities of the device. However, the operating time of a light emitting diode is much higher than the operating time of a fan. Therefore, it is necessary to perform regular checks of their proper operation to ensure that the light source is properly cooled to prevent damage to said source. This is why the use of a fan is not an ideal solution for cooling a cooling device. The solutions currently proposed are therefore not fully satisfactory.

La présente demande vise donc à proposer un dispositif de refroidissement résolvant les inconvénients mentionnés ci-dessus. En particulier, la présente demande a pour objectif de présenter un dispositif de refroidissement comprenant un caloduc pulsé moins coûteux à fabriquer, plus économique d'utilisation et plus fiable, avec une performance accrue pour un même volume donné par rapport à l'état de la technique.The present application therefore aims to propose a cooling device solving the disadvantages mentioned above. In particular, the present application aims to provide a cooling device comprising a pulsed heat pipe less expensive to manufacture, more economical and more reliable use, with increased performance for the same volume given the state of the technical.

Description de l'inventionDescription of the invention

Pour cela, la présente demande propose un dispositif de refroidissement apte à refroidir une source de chaleur comprenant des composants électroniques et/ou électriques.For this, the present application proposes a cooling device capable of cooling a heat source comprising electronic and / or electrical components.

Le système de refroidissement se caractérise en ce qu'il comprend un support composé d'une première platine jointe à une deuxième platine. La première platine comporte deux grandes faces opposées reliées entre elles par l'intermédiaire de bords latéraux. La première platine comporte au niveau d'une première grande face au moins une rainure s'étendant entre un premier bord latéral et un deuxième bord latéral opposé, la rainure comprend des premières portions parallèles ou sensiblement parallèles au premier bord latéral raccordées par des secondes. La rainure est recouverte par la deuxième platine de sorte à former un caloduc oscillant dans lequel circule un fluide caloporteur à changement d'état. Le support est courbé de manière à former au moins un conduit s'étendant du premier bord latéral jusqu'au deuxième bord latéral opposé, et au moins un conduit est partiellement obturé par une plaque en contact avec le premier bord latéral de sorte à permettre un écoulement naturel de l'air ambiant dans le ou les conduits formés par le support.The cooling system is characterized in that it comprises a support composed of a first plate joined to a second plate. The first plate has two large opposite faces interconnected by means of lateral edges. The first plate comprises at a first large face at least one groove extending between a first lateral edge and a second opposite lateral edge, the groove comprises first portions parallel or substantially parallel to the first side edge connected by seconds. The groove is covered by the second plate so as to form an oscillating heat pipe in which circulates a heat transfer fluid state change. The carrier is bent to form at least one conduit extending from the first side edge to the second opposite side edge, and at least one duct is partially closed by a plate in contact with the first lateral edge so as to allow a natural flow of the ambient air in the duct or ducts formed by the support.

Le caloduc oscillant est donc délimité par la première et la deuxième platine, et non pas par un tube tel que décrit par le document FR3007122A1 . Cette différence permet à la chaleur transportée par le fluide caloporteur de se diffuser à l'intérieur des deux platines jusqu'aux deux grandes faces opposées du support. Ce phénomène de diffusion permet de répartir la chaleur au niveau de toutes les faces du support pour augmenter de façon avantageuse la surface d'échange thermique entre le dispositif de refroidissement et l'air ambiant, sans qu'il soit pour cela nécessaire d'utiliser des ailettes d'échange thermique. Selon un autre avantage, le ou les conduits formés par le support favorisent un phénomène de convection naturel de l'air ambiant le long du support, sans qu'il soit pour cela nécessaire d'utiliser un ventilateur. La présente demande permet avantageusement de refroidir plus efficacement et plus simplement une source de chaleur de façon plus économique, pour un même volume d'occupation, par rapport à l'état de la technique.The oscillating heat pipe is thus delimited by the first and the second plate, and not by a tube as described by the document FR3007122A1 . This difference allows the heat transported by the heat transfer fluid to diffuse inside the two plates to the two large opposite faces of the support. This diffusion phenomenon makes it possible to distribute the heat on all the faces of the support in order to advantageously increase the heat exchange surface between the cooling device and the ambient air, without it being necessary for this to be used. fins of heat exchange. According to another advantage, the duct or ducts formed by the support promote a phenomenon of natural convection of the ambient air along the support, without it being necessary to use a fan. The present application advantageously makes it possible to cool more efficiently and more simply a heat source more economically, for the same volume of occupation, compared with the state of the art.

De préférence, au moins un conduit délimité par le support a une hauteur favorisant un mouvement de convection naturel de l'air ambiant dans le conduit. Par le terme « hauteur », on entend une distance selon un axe normal à la plaque obturant un conduit. Pour cela, la hauteur d'un conduit est choisie de sorte que le différentiel de pression entre l'intérieur et l'extérieur du conduit soit supérieur au phénomène de pertes de charge subit par l'air s'écoulant dans le conduit. La valeur de la hauteur dépend donc de la puissance de la source de chaleur et de la température ambiante. Selon un mode de réalisation de l'invention, le premier bord et le deuxième bord latéral de la première platine sont écartés d'une distance comprise entre 1mm et 500mm, de préférence entre 10mm et 500mm. Les plages de valeurs mentionnées ci-dessus sont particulièrement adaptées pour refroidir une source de chaleur dont la puissance est comprise entre 10W et 300W, lorsque la température ambiante est inférieure à 90°C. L'homme du métier pourra aisément adapter la hauteur du conduit en fonction d'autres plages de valeurs souhaitées de façon empirique.Preferably, at least one duct delimited by the support has a height favoring a natural convection movement of the ambient air in the duct. By the term "height" is meant a distance along an axis normal to the plate closing a conduit. For this, the height of a duct is chosen so that the pressure differential between the inside and the outside of the duct is greater than the phenomenon of pressure drops experienced by the air flowing in the duct. The value of the height therefore depends on the power of the heat source and the ambient temperature. According to one embodiment of the invention, the first edge and the second lateral edge of the first plate are separated by a distance of between 1 mm and 500 mm, preferably between 10 mm and 500 mm. The ranges of values mentioned above are particularly suitable for cooling a heat source whose power is between 10W and 300W, when the ambient temperature is below 90 ° C. Those skilled in the art can easily adjust the height of the duct according to other ranges of values desired empirically.

Le phénomène de pertes de charge mentionné ci-dessus dépend également de la distance entre deux spires adjacentes délimitées par le support, c'est-à-dire, de la largeur du conduit formé par lesdites spires. Par le terme « largeur », on entend une distance selon un axe normal à la hauteur du conduit. Afin de minimiser ce phénomène et avoir un dispositif compact, on opte pour un compromis entre la largeur du conduit et la largeur du dispositif de refroidissement. À titre d'exemple, la distance entre deux spires adjacentes peut être comprise entre 1mm et 300mm. Bien entendu, la valeur de cette distance peut également varier en fonction de la puissance de la source de chaleur, de la température ambiante et de la compacité souhaitée du dispositif.The phenomenon of pressure losses mentioned above also depends on the distance between two adjacent turns delimited by the support, that is to say, the width duct formed by said turns. The term "width" means a distance along an axis normal to the height of the conduit. In order to minimize this phenomenon and to have a compact device, a compromise is made between the width of the duct and the width of the cooling device. For example, the distance between two adjacent turns may be between 1mm and 300mm. Of course, the value of this distance may also vary depending on the power of the heat source, the ambient temperature and the desired compactness of the device.

Afin de favoriser une dissipation de la chaleur sur toute la largeur du dispositif de refroidissement, la longueur totale des premières portions est supérieure à la longueur totale des secondes portions.In order to promote a dissipation of heat over the entire width of the cooling device, the total length of the first portions is greater than the total length of the second portions.

De préférence, l'écart entre deux premières portions adjacentes d'une rainure est choisi de manière à permettre une diffusion homogène de la chaleur au niveau de la surface délimitant un conduit. Ainsi, la surface du conduit tend à avoir une température sensiblement homogène ce qui favorise un débit plus important d'air dans les conduits. Bien entendu, l'écart entre deux premières portions adjacentes dépend notamment de la quantité de chaleur à dissiper, des dimensions des rainures et du coefficient de conductivité thermique des platines. À titre indicatif, l'écart entre deux premières portions adjacentes peut être compris entre 1mm et 50mm, de préférence entre 1mm et 30mm. L'homme du métier peut envisager d'autres valeurs en fonctions des paramètres mentionnés ci-dessus.Preferably, the gap between two adjacent first portions of a groove is selected so as to allow homogeneous diffusion of heat at the surface defining a conduit. Thus, the duct surface tends to have a substantially homogeneous temperature which favors a greater flow of air in the ducts. Of course, the difference between two adjacent first portions depends in particular on the amount of heat to be dissipated, the dimensions of the grooves and the thermal conductivity coefficient of the plates. As an indication, the difference between two adjacent first portions may be between 1mm and 50mm, preferably between 1mm and 30mm. The skilled person may consider other values according to the parameters mentioned above.

Selon une variante de réalisation, l'écart entre deux premières portions adjacentes peut varier entre la première face latérale et la deuxième face latérale, de sorte que le caloduc oscillant puisse diffuser une plus grande quantité de chaleur au niveau des parties du support qui sont les plus éloignées de la plaque de conduction thermique. Ce mode de réalisation est particulièrement avantageux lorsque le coefficient de conductivité thermique du support est faible. En d'autres termes, les écarts entre les premières sections peuvent être adaptés de sorte à compenser une diffusion limitée de la chaleur dans le support.According to an alternative embodiment, the gap between two adjacent first portions may vary between the first side face and the second side face, so that the oscillating heat pipe can diffuse a greater amount of heat at the portions of the support which are the further away from the thermal conduction plate. This embodiment is particularly advantageous when the coefficient of thermal conductivity of the support is low. In other words, the gaps between the first sections can be adapted to compensate for a limited diffusion of heat in the support.

Selon une autre variante de réalisation, la longueur des deuxièmes portions est inférieure à 30mm. En d'autres termes, les deuxièmes portions peuvent être plus longues que l'écart entre deux premières portions adjacentes de manière à former des portions courbes. De préférence, les deuxièmes portions ont un rayon de courbure favorisant l'écoulement du fluide caloporteur dans le caloduc oscillant. À titre d'exemple, le rayon de courbure peut être compris entre 1mm et 50mm, de préférence entre 5mm et 25mm.According to another variant embodiment, the length of the second portions is less than 30 mm. In other words, the second portions may be longer than the gap between two adjacent first portions so as to form curved portions. Preferably, the second portions have a radius of curvature favoring the flow of the coolant in the oscillating heat pipe. For example, the radius of curvature can be between 1mm and 50mm, preferably between 5mm and 25mm.

Afin que les performances du dispositif de refroidissement ne dépendent pas de son orientation, le diamètre du caloduc est choisi de sorte que les forces capillaires s'exerçant sur le fluide à changement de phase soient supérieures aux forces exercées sur ledit fluide par la gravité. Bien entendu, le diamètre du caloduc dépend des caractéristiques du fluide caloporteur, par exemple de sa viscosité. À titre d'exemple, le diamètre hydraulique de la section de passage du caloduc peut être supérieur à 1mm et/ou inférieur à un diamètre équivalent à un nombre d'Eötvös de 4 pour le fluide caloporteur choisi.In order that the performance of the cooling device does not depend on its orientation, the diameter of the heat pipe is chosen so that the capillary forces exerted on the phase change fluid are greater than the forces exerted on said fluid by the gravity. Of course, the diameter of the heat pipe depends on the characteristics of the coolant, for example its viscosity. For example, the hydraulic diameter of the passage section of the heat pipe may be greater than 1 mm and / or less than a diameter equivalent to a number of Eötvös of 4 for the heat transfer fluid chosen.

Selon un autre mode de réalisation de l'invention, la première platine comporte au niveau d'une deuxième grande face au moins une rainure s'étendant du premier bord latéral au deuxième bord latéral opposé, en formant plusieurs coudes. La rainure comprend des premières portions parallèles ou sensiblement parallèles à un bord latéral raccordées par des secondes portions. La rainure est recouverte par une troisième platine de sorte à former un caloduc oscillant dans lequel circule un fluide caloporteur à changement d'état. Ce mode de réalisation est particulièrement avantageux lorsque le coefficient de conductivité thermique et/ou l'épaisseur de la première platine ne permet pas au caloduc oscillant de chauffer de façon homogène les grandes faces opposées du support.According to another embodiment of the invention, the first plate comprises at a second large face at least one groove extending from the first lateral edge to the second opposite lateral edge, forming several bends. The groove comprises first portions parallel or substantially parallel to a lateral edge connected by second portions. The groove is covered by a third plate so as to form an oscillating heat pipe in which circulates a heat transfer fluid state change. This embodiment is particularly advantageous when the coefficient of thermal conductivity and / or the thickness of the first plate does not allow the oscillating heat pipe to heat homogeneously the large opposite faces of the support.

Selon une variante de réalisation, au niveau de la deuxième grande face, la longueur totale des premières portions est inférieure à la longueur totale des secondes portions. Les premières portions de la rainure d'une grande face sont alors parallèles à un premier bord latéral de la première platine tandis que les premières portions de la rainure de l'autre grande face sont normales au premier bord de la première platine. Ainsi, la première grande face favorise une dissipation de la chaleur produite par la source de chaleur dans une direction parallèle ou sensiblement parallèle au premier bord latéral de la première platine. À l'inverse, la deuxième grande face favorise une dissipation de la chaleur dans une direction normale on sensiblement normale audit premier bord latéral. Cette variante favorise donc la dissipation de la chaleur dans des directions différentes sur chaque grande face de la première platine, ce qui permet d'optimiser une répartition plus homogène de la chaleur au niveau des faces externes du support.According to an alternative embodiment, at the level of the second large face, the total length of the first portions is less than the total length of the second portions. The first portions of the groove of a large face are then parallel to a first lateral edge of the first turntable while the first portions of the groove of the other major face are normal to the first edge of the first turntable. Thus, the first large face promotes a dissipation of the heat produced by the heat source in a direction parallel or substantially parallel to the first side edge of the first plate. Conversely, the second large face promotes a dissipation of heat in a normal direction or substantially normal to said first side edge. This variant therefore favors the dissipation of heat in different directions on each large face of the first plate, which makes it possible to optimize a more homogeneous distribution of heat at the outer faces of the support.

Selon un autre mode de réalisation, la première platine peut comporter plusieurs rainures distinctes de sorte à former au moins un caloduc oscillant indépendant au niveau de chaque conduit formé par le support.According to another embodiment, the first plate may comprise several separate grooves so as to form at least one independent heat pipe at each duct formed by the support.

Selon une autre variante de réalisation, à température ambiante, le fluide caloporteur remplit entre 30% et 70% du volume du caloduc.According to another embodiment, at ambient temperature, the coolant fills between 30% and 70% of the volume of the heat pipe.

Selon un autre mode de réalisation, le support est courbé de sorte à former un serpentin à spires parallèles et/ou carrées et/ou circulaires, chaque spire délimitant un conduit permettant un écoulement de l'air ambiant le long du support.According to another embodiment, the support is curved so as to form a coil with parallel and / or square and / or circular turns, each turn delimiting a duct allowing a flow of ambient air along the support.

Selon un autre mode de réalisation, le dispositif de refroidissement peut comprendre un ou plusieurs moyens de mis en mouvement de l'air ambiant de sorte à augmenter de façon plus ou moins ponctuelle le débit de l'air dans les conduits. De façon avantageuse, ces moyens permettent d'augmenter de manière épisodique, par exemple, les capacités de refroidissement du dispositif afin de répondre à un pic de chaleur produite par ladite source.According to another embodiment, the cooling device may comprise one or more means for moving the ambient air so as to increase more or less punctually the flow of air in the ducts. Advantageously, these means make it possible to increase episodically, for example, the cooling capacities of the device in order to respond to a peak of heat produced by said source.

La présente demande concerne également un dispositif de refroidissement décrit ci-dessus, dont la plaque est en contact avec une source de chaleur comprenant des composants électroniques et/ou électriques. De préférence, la source de chaleur a une puissance thermique comprise entre 10W et 300W.The present application also relates to a cooling device described above, the plate of which is in contact with a heat source comprising electronic and / or electrical components. Preferably, the heat source has a thermal power of between 10W and 300W.

Bien entendu, les caractéristiques, différentes variantes et formes de réalisation de l'invention peuvent être associées les unes aux autres selon diverses combinaisons, dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres.Of course, the features, different variants and embodiments of the invention may be associated with each other in various combinations, to the extent that they are not incompatible or exclusive of each other.

Description des figuresDescription of figures

Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaîtront plus clairement à la lecture des exemples de réalisation ci-dessous, en se référant aux dessins annexés suivants :

  • la figure 1 illustre un système de refroidissement connu de l'état de la technique, utilisant un caloduc oscillant formé par un tube dans lequel un fluide caloporteur circule de manière puisée ;
  • la figure 2 illustre une variante du dispositif de refroidissement de la figure 1, dans laquelle des ailettes d'échange thermique sont placées entre les spires formées par le tube ;
  • la figure 3 illustre un premier mode de réalisation d'un dispositif de refroidissement selon l'invention, comprenant un support enroulé en forme de serpentin, sur lequel repose une plaque de conduction thermique destinée à être en contact avec une source de chaleur à refroidir ;
  • la figure 4 illustre une vue de dessus du dispositif de refroidissement représenté à la figure 3 ;
  • la figure 5 illustre une coupe longitudinale du dispositif de refroidissement représenté aux figures 3 et 4 ;
  • la figure 6 illustre une vue aplanie d'une platine formant le support du dispositif de refroidissement représenté aux figures 3 à 5 ;
  • la figure 7 comprend un tableau dans lequel figurent les caractéristiques de plusieurs modes de réalisation de dispositifs de refroidissement selon l'invention ;
  • la figure 8 illustre une autre variante de réalisation d'un dispositif de refroidissement selon la présente demande.
The characteristics of the invention mentioned above, as well as others, will emerge more clearly on reading the examples of embodiment below, with reference to the following appended drawings:
  • the figure 1 illustrates a cooling system known from the state of the art, using an oscillatory heat pipe formed by a tube in which a heat transfer fluid circulates in a pulsed manner;
  • the figure 2 illustrates a variant of the cooling device of the figure 1 wherein heat exchange fins are placed between the turns formed by the tube;
  • the figure 3 illustrates a first embodiment of a cooling device according to the invention, comprising a wound coil-shaped support, on which rests a heat conduction plate intended to be in contact with a heat source to be cooled;
  • the figure 4 illustrates a top view of the cooling device shown in FIG. figure 3 ;
  • the figure 5 illustrates a longitudinal section of the cooling device shown in Figures 3 and 4 ;
  • the figure 6 illustrates a flattened view of a plate forming the support of the cooling device shown in FIGS. Figures 3 to 5 ;
  • the figure 7 comprises a table showing the characteristics of several embodiments of cooling devices according to the invention;
  • the figure 8 illustrates another variant embodiment of a cooling device according to the present application.

Description détaillée de l'inventionDetailed description of the invention

Pour faciliter la compréhension de l'invention, les figures illustrant différents modes de réalisation de l'invention comprennent chacune un repère orthonormé avec une direction latérale X, une direction longitudinale Y perpendiculaire à la direction X et une direction verticale Z perpendiculaire au plan défini par les directions X et Y.To facilitate the understanding of the invention, the figures illustrating various embodiments of the invention each comprise an orthonormal reference with a lateral direction X, a longitudinal direction Y perpendicular to the direction X and a vertical direction Z perpendicular to the plane defined by the X and Y directions.

Un premier exemple de réalisation de l'invention est illustré à la figure 3. Plus précisément, la figure 3 présente un mode de réalisation d'un dispositif de refroidissement 200 comprenant un support 210 enroulé en forme de serpentin, sur lequel repose une plaque 220 de conduction thermique destinée à être en contact avec une source de chaleur 300 à refroidir.A first embodiment of the invention is illustrated in FIG. figure 3 . More specifically, the figure 3 presents an embodiment of a cooling device 200 comprising a coil-shaped support 210, on which rests a heat conduction plate 220 intended to be in contact with a heat source 300 to be cooled.

Le support 210 comprend une première grande face 211 et une deuxième grande face 212, toutes deux de surface plane et reliées entre elles par l'intermédiaire de bords latéraux de sorte que lesdites grandes faces soient parallèles entre elles. Le support 210 est courbé de manière à former des spires parallèles selon la direction longitudinale Y. Plus précisément, chaque spire forme un conduit 213 délimité alternativement par la première grande face 211 et la deuxième grande face 212. Lors de la mise en oeuvre du dispositif de refroidissement selon l'invention le conduit 213 forme une cheminée.The support 210 comprises a first large surface 211 and a second large surface 212, both of flat surface and interconnected by lateral edges so that said large faces are parallel to each other. The support 210 is curved so as to form parallel turns in the longitudinal direction Y. More specifically, each turn forms a conduit 213 defined alternately by the first major face 211 and the second major face 212. During the implementation of the device According to the invention, the duct 213 forms a chimney.

Comme illustré à la figure 4, la plaque 220 de conduction thermique est de forme rectangulaire et destinée à être en contact au niveau d'une face supérieure 221 avec une source de chaleur 300. La plaque 220 est fixée au niveau d'une face inférieure 222 à un bord latéral supérieur 214 du support 210. La plaque a pour fonction de transmettre la chaleur produite par la source de chaleur 300 au support 210. De ce fait, la plaque 220 est attachée au support 210 par brasage, soudure, collage ou tout moyen équivalent et adapté à la fonction recherchée.As illustrated in figure 4 the thermal conduction plate 220 is of rectangular shape and intended to be in contact at an upper face 221 with a heat source 300. The plate 220 is fixed at a lower face 222 at an upper lateral edge 214 of the support 210. The function of the plate is to transmit the heat produced by the heat source 300 to the support 210. As a result, the plate 220 is attached to the support 210 by brazing, welding, bonding or any equivalent means and adapted to the desired function.

Ainsi, la source de chaleur 300 chauffe par l'intermédiaire de la plaque 220 les parties du support 210 situées en dessous de la plaque. De ce fait, le support comprend des parties dites chaudes en dessous de la plaque 220, dans une zone centrale du serpentin selon la direction longitudinale Y, et deux parties dites froides non recouvertes par la plaque qui sont disposées de part et d'autre de la partie chaude selon la direction latérale X.Thus, the heat source 300 heats through the plate 220 the parts of the support 210 located below the plate. As a result, the support comprises so-called hot parts below the plate 220, in a central zone of the coil in the longitudinal direction Y, and two so-called cold portions not covered by the plate which are arranged on either side of the plate the hot part in the lateral direction X.

La figure 5 montre à présent une coupe longitudinale du support 210, dans un plan défini par les directions Y et Z. Le support comprend une première platine 230 et une deuxième platine 240, jointes ensemble au niveau de leur première grande face, respectivement 231 et 241. La première platine comporte au niveau de sa première grande face 231 une rainure 232 recouverte par la première grande face 241 de la deuxième platine, de sorte à former un même canal 250.The figure 5 now shows a longitudinal section of the support 210, in a plane defined by the directions Y and Z. The support comprises a first plate 230 and a second plate 240, joined together at their first large face, respectively 231 and 241. The first plate comprises at its first large face 231 a groove 232 covered by the first large face 241 of the second plate, so as to form a single channel 250.

La figure 6 présente une vue aplanie de la première platine 230 afin de faciliter la compréhension pour le lecteur de l'agencement de la rainure 232 sur la première grande face 231. La rainure 232 s'étend entre deux bords latéraux opposés délimitant la première grande face 231. Plus précisément, la rainure s'étend entre un premier bord latéral 233 en contact avec la plaque 220 et un deuxième bord latéral 234 opposé. La rainure comprend des premières portions 235 parallèles ou sensiblement parallèles au premier bord latéral 233 reliées par des secondes portions 236. La rainure 232 présente ainsi une configuration en serpentin. De préférence, la longueur totale des premières portions est supérieure à la longueur totale des secondes portions. Dans le cas présent, les secondes portions forment des coudes mais elles pourraient aussi présenter une partie rectiligne normale aux premières portions.The figure 6 presents a flattened view of the first plate 230 to facilitate the reader's understanding of the arrangement of the groove 232 on the first large surface 231. The groove 232 extends between two opposite lateral edges delimiting the first large face 231. More specifically, the groove extends between a first lateral edge 233 in contact with the plate 220 and a second opposite lateral edge 234. The groove comprises first portions 235 parallel or substantially parallel to the first side edge 233 connected by second portions 236. The groove 232 thus has a serpentine configuration. Preferably, the total length of the first portions is greater than the total length of the second portions. In the present case, the second portions form bends but they could also have a straight portion normal to the first portions.

Pour rappel, la présente demande propose un dispositif de refroidissement comprenant un caloduc pulsé, moins coûteux à réaliser, plus économique d'utilisation et plus performant, pour un même volume donné, par rapport à l'état de la technique.As a reminder, the present application proposes a cooling device comprising a pulsed heat pipe, less expensive to produce, more economical to use and more efficient, for the same given volume, compared to the state of the art.

Un dispositif de refroidissement selon l'invention est plus économique d'utilisation car il privilégie un refroidissement du support 210 par un phénomène de convection naturel de l'air ambiant le long du support. Pour cela, la hauteur « H » du support 210, définie selon la direction verticale Z et représentée sur la figure 5, est choisie de sorte que le différentiel de pression entre l'air ambiant se trouvant à proximité du support et l'air s'écoulant dans les conduits 213 soit supérieur au phénomène de pertes de charge subit par l'air s'écoulant dans les conduits 213. Ainsi, la hauteur « H » du support 210 est déterminée à partir de l'équation 1 suivante : DP statique = 0.5 ρ entrée ρ sortie . g . H > DP friction

Figure imgb0001
où,

  • DPstatique correspond à la différence de pression de l'air ambiant au niveau du premier bord latéral 233 et au niveau du bord latéral 234 opposé de la première platine ;
  • ρentrée correspond à la masse volumique de l'air à l'entrée des conduits 213 ;
  • ρsortie correspond à la masse volumique de l'air à la sortie des conduits 213 ;
  • g correspond au champ de pesanteur;
  • H correspond à la hauteur du support 210 ;
  • DPfriction correspond au phénomène de pertes de charge subit par l'air ambiant s'écoulant dans les conduits 213.
A cooling device according to the invention is more economical to use because it favors a cooling of the support 210 by a phenomenon of natural convection of the ambient air along the support. For this, the height "H" of the support 210, defined in the vertical direction Z and shown in FIG. figure 5 , is chosen so that the pressure differential between the ambient air being close to the support and the air flowing in the ducts 213 is greater than the phenomenon of pressure drops experienced by the air flowing in the Thus, the height "H" of the support 210 is determined from the following equation 1: DP static = 0.5 ρ Entrance - ρ exit . g . H > DP friction
Figure imgb0001
or,
  • Static DP corresponds to the difference in ambient air pressure at the first lateral edge 233 and at the opposite side edge 234 of the first plate;
  • ρ input corresponds to the density of the air at the entrance of the ducts 213;
  • ρ output corresponds to the density of the air at the outlet of conduits 213;
  • g is the gravitational field;
  • H corresponds to the height of the support 210;
  • DP friction corresponds to the phenomenon of pressure drops experienced by the ambient air flowing in the ducts 213.

À partir de l'équation 1, on peut aisément définir une hauteur « H » pour le support 210 qui soit optimale pour refroidir le dispositif de refroidissement tout en limitant son encombrement. La hauteur « H » peut par exemple être comprise entre 10mm et 1000mm, de préférence comprise entre 100mm et 500mm, lorsque la source de chaleur à une puissance comprise entre 10W et 300W.From Equation 1, it is easy to define a height "H" for the support 210 which is optimal for cooling the cooling device while limiting its size. The height "H" may for example be between 10mm and 1000mm, preferably between 100mm and 500mm, when the heat source has a power between 10W and 300W.

À partir de la valeur de la hauteur, on peut déduire la longueur totale « L » du support 210 (représentée sur la figure 6) de manière à dissiper la chaleur produite par la source de chaleur 300 au niveau de ses grandes faces 211 et 212. À titre d'exemple, la longueur totale du support 210 est choisie de sorte que la surface de sa première grande face 211 et de sa deuxième grande face 212 soit comprise entre 90mm et 4000mm, elle est de préférence égale ou inférieure à 1350mm, lorsque la source de chaleur à une puissance comprise entre 10W et 300W.From the value of the height, it is possible to deduce the total length "L" of the support 210 (represented on the figure 6 ) so as to dissipate the heat produced by the heat source 300 at its large faces 211 and 212. By way of example, the total length of the support 210 is chosen so that the surface of its first large face 211 and of its second large face 212 is between 90mm and 4000mm, it is preferably equal to or less than 1350mm, when the heat source has a power between 10W and 300W.

Bien entendu, les valeurs mentionnées ci-dessus dépendent de paramètres extérieurs comme par exemple de la puissance de la source de chaleur et de la température ambiante, mais aussi des paramètres intrinsèques au dispositif comme par exemple de son coefficient de conductivité thermique. De ce fait, l'invention ne se limite pas aux plages de valeurs mentionnées ci-dessus.Of course, the values mentioned above depend on external parameters such as, for example, the power of the heat source and the ambient temperature, but also parameters intrinsic to the device, for example its thermal conductivity coefficient. Therefore, the invention is not limited to the ranges of values mentioned above.

Afin d'optimiser le phénomène d'écoulement naturel de l'air ambiant dans les conduits 213 ou cheminées, on adapte l'écartement entre les spires formées par le support 210 en fonction des conditions de fonctionnement du dispositif de refroidissement. Par le terme écartement, on entend la distance « B » telle qu'illustrée à la figure 5, séparant deux faces du support 210 en vis-à-vis. L'écartement optimal « B » est défini par les équations suivantes 2 et 3 : B optimal = 2.71 Ra B 3 H 1 4

Figure imgb0002
avec, Ra = g β T s T a B 3
Figure imgb0003
où,

  • Ra correspond au nombre de Rayleigh ;
  • H correspond à la hauteur du support 210 ;
  • β correspond au coefficient d'expansion thermique de l'air présent dans les conduits 213 ;
  • Ts correspond à la température du support ;
  • Ta correspond à la température ambiante ;
  • v correspond à la viscosité cinématique de l'air ambiant ;
  • α correspond au coefficient de diffusivité thermique de l'air dans les conduits 213.
In order to optimize the phenomenon of natural flow of the ambient air in the ducts 213 or chimneys, the spacing between the turns formed by the support 210 is adapted according to the operating conditions of the cooling device. By the term "spacing" is meant the distance "B" as illustrated in FIG. figure 5 separating two faces of the support 210 vis-a-vis. The optimal spacing "B" is defined by the following equations 2 and 3: B optimal = 2.71 Ra B 3 H - 1 4
Figure imgb0002
with, Ra = g β T s - T at B 3
Figure imgb0003
or,
  • Ra is the Rayleigh number;
  • H corresponds to the height of the support 210;
  • β corresponds to the coefficient of thermal expansion of the air present in the ducts 213;
  • Ts is the temperature of the support;
  • Ta corresponds to the ambient temperature;
  • v is the kinematic viscosity of the ambient air;
  • α corresponds to the coefficient of thermal diffusivity of the air in the ducts 213.

Ainsi, à partir des équations 2 et 3, on peut facilement définir une distance « B » optimale entre les faces délimitant chaque spire de sorte qu'un flux d'air suffisant passe à travers les conduits 213 pour refroidir le support 210. Bien entendu, la distance « B » dépend de la température ambiante et de la puissance de la source de chaleur à refroidir. La distance « B » peut par exemple être comprise entre 1mm et 300mm, de préférence entre 5mm et 100mm, lorsque la source de chaleur à une puissance comprise entre 10W et 300W.Thus, from equations 2 and 3, it is easy to define an optimum distance "B" between the faces delimiting each turn so that a sufficient air flow passes through the ducts 213 to cool the support 210. Of course , the distance "B" depends on the ambient temperature and the power of the heat source to be cooled. The distance "B" may for example be between 1 mm and 300 mm, preferably between 5mm and 100mm, when the heat source has a power between 10W and 300W.

Comme illustré à la figure 4, la plaque 220 de conduction thermique recouvre partiellement chaque conduit 213 afin de permettre une évacuation de l'air présent dans les conduits 213. Chaque conduit à une longueur « C » selon la direction latérale X supérieure à la longueur « C' » de la plaque 220. Le rapport entre les longueurs « C » et « C' » peut être supérieur à 0,02, de préférence compris entre 0,03 et 0,5. En d'autres termes, la plaque peut recouvrir moins de 50% de la surface de chaque conduit 213, de préférence recouvrir entre 10% et 40% de leur surface.As illustrated in figure 4 , the thermal conduction plate 220 partially covers each duct 213 to allow evacuation of the air present in the ducts 213. Each duct has a length "C" in the lateral direction X greater than the length "C" of the plate 220. The ratio between the lengths "C" and "C" may be greater than 0.02, preferably between 0.03 and 0.5. In other words, the plate can cover less than 50% of the surface of each conduit 213, preferably covering between 10% and 40% of their surface.

La plaque 220 de conduction thermique transmet la chaleur produite par la source de chaleur 300 au support 210. Afin de favoriser une répartition homogène de la chaleur dans le support 210, celui-ci comprend un canal 250 délimité par la première platine 230 et la deuxième platine 240. Plus précisément, le canal 250 à une section rectangulaire comme illustrée à la figure 5, néanmoins la section du canal peut avoir d'autres formes, bien que moins favorable à un écoulement d'un liquide dans le canal, de type circulaire, ovale ou triangulaire.The thermal conduction plate 220 transmits the heat produced by the heat source 300 to the support 210. In order to promote a homogeneous distribution of the heat in the support 210, the latter comprises a channel 250 delimited by the first plate 230 and the second 240. More precisely, the channel 250 with a rectangular section as illustrated in FIG. figure 5 however, the section of the channel may have other shapes, although less favorable to a flow of a liquid in the channel, of circular, oval or triangular type.

Afin de permettre un fonctionnement optimal du dispositif de refroidissement 200 quel que soit son orientation, le diamètre hydraulique du canal 250 est choisi de sorte que les forces capillaires s'exerçant sur un fluide présent dans ledit canal, dominent par rapport aux forces de gravité. De préférence, le diamètre hydraulique du canal est choisi pour que le canal 250 se caractérise par un nombre d'Eotvos au maximum égal à 4. À titre d'exemple, le diamètre hydraulique du canal 250 peut être inférieur à 3mm, de préférence compris entre 500µm et 2mm.In order to allow optimal operation of the cooling device 200 whatever its orientation, the hydraulic diameter of the channel 250 is chosen so that the capillary forces acting on a fluid present in said channel, dominate with respect to the gravitational forces. Preferably, the hydraulic diameter of the channel is chosen so that the channel 250 is characterized by a number of Eotvos at most equal to 4. For example, the hydraulic diameter of the channel 250 may be less than 3 mm, preferably included between 500μm and 2mm.

Comme illustré à la figure 6, le canal 250 comporte des premières portions 235 parallèles ou sensiblement parallèles au premier bord latéral 233 de la première platine 230. La distance entre deux premières portions adjacentes est choisie de manière à favoriser une diffusion homogène de la chaleur produite par la source de chaleur 300 au niveau des grandes faces 211 et 212 du support. Autrement dit, la distance entre deux premières portions est choisie de manière à minimiser la non-isothermalité ou, en d'autres termes, garantir une température uniforme entre les premières portions. Plus précisément, la valeur de cette distance est choisie de sorte que le gradient de température entre deux premières portions 235 adjacentes ne dépasse pas 5K. La valeur de cette distance « T » est selon le présent exemple, comprise entre 10mm et 150mm, de préférence comprise entre 50mm et 120mm.As illustrated in figure 6 , the channel 250 comprises first portions 235 parallel or substantially parallel to the first lateral edge 233 of the first plate 230. The distance between two adjacent first portions is chosen so as to promote a homogeneous diffusion of the heat produced by the heat source 300 at the large faces 211 and 212 of the support. In other words, the distance between two first portions is chosen so as to minimize the non-isothermality or, in other words, to guarantee a uniform temperature between the first portions. More precisely, the value of this distance is chosen so that the temperature gradient between two first adjacent portions 235 does not exceed 5K. The value of this distance "T" is according to the present example, between 10mm and 150mm, preferably between 50mm and 120mm.

La longueur totale du canal 250 est choisie de manière à dissiper suffisamment la chaleur produite par la source de chaleur 300 au niveau du support 210. Bien entendu, cette longueur totale dépend de paramètres extérieurs, comme par exemple de la puissance de la source de chaleur et de la température ambiante, mais aussi des paramètres intrinsèques au dispositif comme par exemple de sa surface, du nombre de conduits formés et de son coefficient de conductivité thermique. À titre d'exemple, la longueur totale du canal 250 peut être comprise entre 180mm et 4000mm, elle est de préférence égale ou inférieure à 300mm.The total length of the channel 250 is chosen so as to sufficiently dissipate the heat produced by the heat source 300 at the support 210. Of course, this total length depends on external parameters, such as for example the power of the heat source. and the ambient temperature, but also parameters intrinsic to the device such as its surface, the number of ducts formed and its coefficient of thermal conductivity. For example, the total length of the channel 250 may be between 180mm and 4000mm, it is preferably equal to or less than 300mm.

Le canal 250 renferme un fluide caloporteur 251 à changement d'état afin de former un caloduc oscillant 252, aussi connu sous la dénomination de « caloduc puisé » ou sous l'acronyme « PHP » pour « pulsating heat pipe » en terminologie anglaise. Le canal 250 est partiellement rempli de fluide caloporteur qui prend naturellement la forme d'une succession de bulles de vapeur et de bouchons de liquide lorsqu'il est chauffé. Le fluide caloporteur 251 est selon le présent exemple de l'acétone, remplissant 50% du volume du canal à température ambiante, c'est-à-dire à une température de l'ordre de 20°C.The channel 250 contains a heat transfer fluid 251 to change state to form an oscillating heat pipe 252, also known by the name of "heat pipe" or under the acronym "PHP" for "pulsating heat pipe" in English terminology. The channel 250 is partially filled with heat transfer fluid which naturally takes the form of a succession of vapor bubbles and liquid plugs when heated. The heat transfer fluid 251 is according to the present example of acetone, filling 50% of the volume of the channel at room temperature, that is to say at a temperature of about 20 ° C.

Cette séparation de phases résulte principalement des forces de tension superficielle. Lorsque le caloduc oscillant 252 est chauffé dans une partie chaude et refroidi dans une partie froide, les écarts de température résultants génèrent des fluctuations de pression à la fois temporelles et spatiales, elles-mêmes associées à la génération et à la croissance de bulles de vapeur dans l'évaporateur et à leur implosion dans le condenseur. Ces fluctuations agissent comme un système de pompage permettant de transporter le liquide et les bulles de vapeur entre les parties chaudes et froides. Selon le présent exemple, les parties chaudes du caloduc oscillant se situent en vis-à-vis la plaque 220.This phase separation results mainly from surface tension forces. When the oscillating heat pipe 252 is heated in a hot part and cooled in a cold part, the resulting temperature differences generate both temporal and spatial pressure fluctuations, which are themselves associated with the generation and growth of vapor bubbles. in the evaporator and their implosion in the condenser. These fluctuations act as a pumping system to transport liquid and vapor bubbles between hot and cold parts. According to the present example, the hot parts of the oscillating heat pipe are located opposite the plate 220.

Afin de permettre une diffusion homogène de la chaleur dans le support 210, les platines 230 et 240 sont réalisées à partir d'un même matériau. De préférence, l'épaisseur des platines est la plus fine possible afin de minimiser la quantité de matière utilisée et permettre un pliage plus aisé du support 210 après que les deux platines soient jointes ensemble. Bien entendu, l'épaisseur de la première platine est suffisante pour permettre l'usinage du canal 250 dans la première grande face 231 de la première platine 230.In order to allow a homogeneous diffusion of the heat in the support 210, the plates 230 and 240 are made from the same material. Preferably, the thickness of the plates is as thin as possible to minimize the amount of material used and allow easier folding of the support 210 after the two plates are joined together. Of course, the thickness of the first plate is sufficient to allow the machining of the channel 250 in the first large face 231 of the first plate 230.

Selon une alternative non représentée, un deuxième canal peut être réalisé dans une première grande face 241 de la deuxième platine 240 de sorte que lesdits canaux se superposent et forment un même canal 250. Cette alternative permet avantageusement d'usiner des canaux moins profonds dans les platines, ce qui permet l'utilisation de platine de moindre épaisseur.According to an alternative not shown, a second channel may be formed in a first large face 241 of the second plate 240 so that said channels are superimposed and form a single channel 250. This alternative advantageously makes it possible to machine less deep channels in the turntables, which allows the use of platinum of lesser thickness.

De préférence, les platines utilisées pour former le support 210 ont un coefficient de conductivité thermique élevé, de préférence supérieur à 150W.m-1.K-1 afin de dissiper rapidement la chaleur produite par la source de chaleur 300 dans le support 210. Selon un autre avantage, un support caractérisé par un coefficient de conductivité thermique important permet d'espacer plus largement les premières portions du canal 250. De ce fait, la longueur totale du canal peut être réduite ce qui offre une économie de temps et de coût lors de sa réalisation, cela permet également d'utiliser moins de fluide caloporteur 251. La platine est avantageusement métallique : elle peut être constituée préférentiellement d'aluminium ou d'un alliage d'aluminium ou de cuivre.Preferably, the plates used to form the support 210 have a high coefficient of thermal conductivity, preferably greater than 150 W.m -1 .K -1 in order to quickly dissipate the heat produced by the heat source 300 in the support 210. According to another advantage, a support characterized by a high coefficient of thermal conductivity makes it possible to space the first portions of the channel 250 more widely. As a result, the total length of the channel can be reduced, which saves time and cost. during its production, this also makes it possible to use less heat transfer fluid 251. The plate is advantageously metallic: it may preferably consist of aluminum or an alloy of aluminum or copper.

Comme mentionné ci-dessus, un dispositif de refroidissement selon l'invention se caractérise par plusieurs paramètres décrits ci-dessus qui dépendent de la température ambiante ainsi que la puissance thermique dissipée par la source de chaleur 300. Le tableau 1 représenté à la figure 7 illustre plusieurs exemples de réalisation de l'invention à partir d'un dispositif tel que décrit ci-dessus. Plus précisément, chacun des exemples mentionnés dans le tableau 1 comprend une plaque 210 de conduction thermique en aluminium, dont l'épaisseur est de 3mm. Bien entendu, la plaque est centrée au milieu des conduits comme représenté à la figure 4. Les dispositifs de refroidissement décrit dans le tableau 1 se caractérisent également par un canal 250 de section carrée de 1,5mm de côté, rempli par un fluide caloporteur de type éthanol. La première et la deuxième platine ont chacune une épaisseur égale à 1,5mm. Les autres caractéristiques techniques de chaque mode de réalisation sont mentionnées dans le tableau 1. Bien entendu, d'autres modes de réalisation sont envisageables en fonction d'autres puissances de source de chaleur et d'autres plages de température ambiante, de sorte que la présente demande ne se limite pas à ces exemples.As mentioned above, a cooling device according to the invention is characterized by several parameters described above which depend on the ambient temperature as well as the thermal power dissipated by the heat source 300. Table 1 shown in FIG. figure 7 illustrates several embodiments of the invention from a device as described above. More specifically, each of the examples mentioned in Table 1 comprises an aluminum thermal conduction plate 210, whose thickness is 3 mm. Of course, the plate is centered in the middle of the ducts as shown in FIG. figure 4 . The cooling devices described in Table 1 are also characterized by a channel 250 of square section of 1.5 mm side, filled with an ethanol-type heat transfer fluid. The first and second platinum each have a thickness equal to 1.5mm. The other technical characteristics of each embodiment are mentioned in Table 1. Of course, other embodiments can be envisaged as a function of other heat source powers and other ambient temperature ranges, so that the This application is not limited to these examples.

Selon une variante de réalisation, le support 210 peut avantageusement être fabriqué par une technique d'impression en trois dimensions, de préférence à partir de l'un des matériaux mentionnés ci-dessus. Ce mode de fabrication offre l'avantage de pouvoir réaliser des formes élaborées de serpentins sans qu'il soit pour cela nécessaire de courber mécaniquement le support 210. De ce fait, ce mode de fabrication permet la réalisation de formes de serpentin plus complexes tout en limitant le risque d'endommagement du support 210 lors de sa mise en forme.According to an alternative embodiment, the support 210 may advantageously be manufactured by a three-dimensional printing technique, preferably from one of the materials mentioned above. This method of manufacture offers the advantage of being able to produce elaborate shapes of coils without it being necessary for this purpose to mechanically bend the support 210. This method of manufacture thus makes it possible to produce more complex serpentine shapes while limiting the risk of damage to the support 210 during its shaping.

Toutefois, les matériaux généralement utilisés pour l'impression en trois dimensions sont des matériaux à base de polymères synthétiques ou artificiels, se caractérisant par un coefficient de conductivité thermique faible limitant de ce fait la diffusion de la chaleur au niveau des grandes faces du support 210. Afin de résoudre cet inconvénient, la figure 8 montre un mode de réalisation d'un dispositif de refroidissement 400 selon l'invention. Il est à noter que les numéros comportant les mêmes dizaines désignent des éléments dont les fonctions sont identiques ou similaires au dispositif 200 décrit ci-dessus.However, the materials generally used for three-dimensional printing are materials based on synthetic or artificial polymers, characterized by a low coefficient of thermal conductivity thereby limiting the diffusion of heat at the large faces of the support 210 In order to solve this problem, the figure 8 shows an embodiment of a cooling device 400 according to the invention. It should be noted that the numbers comprising the same tens designate elements whose functions are identical or similar to the device 200 described above.

Plus précisément, la figure 8 montre une coupe longitudinale du support 410, dans un plan défini par les directions Y et Z. Le dispositif de refroidissement 400 est similaire au dispositif de refroidissement 200 décrit ci-dessus, excepté le fait que le support 410 comprend une deuxième rainure 437 sur la deuxième grande face 438 de la première platine 430. La deuxième rainure 437 est obturée par une troisième platine 460 jointe à la première platine 430. En d'autres termes, le support 400 comprend un deuxième canal 451 présent entre la première platine 430 et la troisième platine 460. Le deuxième canal permet avantageusement à la chaleur produite par la source de chaleur 300 de chauffer de façon homogène le support 410 lorsque son coefficient de conductivité thermique est faible. La forme du deuxième canal 451 est de préférence identique à celui du premier canal 450. Toutefois, leur forme ainsi que leur agencement peuvent être différents ou complémentaires. De préférence, les platines recouvrant les rainures présentes de chaque côté de la première platine 430, sont d'épaisseur plus mince que l'épaisseur de la première platine afin de favoriser la diffusion de la chaleur à la surface du support 410.More specifically, the figure 8 shows a longitudinal section of the support 410, in a plane defined by the directions Y and Z. The cooling device 400 is similar to the cooling device 200 described above, except that the support 410 comprises a second groove 437 on the second major face 438 of the first turntable 430. The second groove 437 is closed by a third turntable 460 joined to the first turntable 430. In other words, the support 400 comprises a second channel 451 present between the first turntable 430 and the Third platen 460. The second channel advantageously allows the heat produced by the heat source 300 to heat homogeneously the support 410 when its coefficient of thermal conductivity is low. The shape of the second channel 451 is preferably identical to that of the first channel 450. However, their shape and their arrangement may be different or complementary. Preferably, the plates covering the grooves present on each side of the first plate 430, are of thickness thinner than the thickness of the first plate in order to promote the diffusion of heat on the surface of the support 410.

Selon une autre alternative, la deuxième et la troisième platine peuvent être fabriquées à partir de matériaux dont le coefficient de diffusion thermique est supérieur à celui de la première platine. Par exemple, la première platine 430 peut être réalisée à base de polymères et les deuxième et troisième platines à base de métal tel que l'aluminium.According to another alternative, the second and the third stage can be made from materials whose thermal diffusion coefficient is greater than that of the first platinum. For example, the first platen 430 may be made from polymers and the second and third platinum metal based such as aluminum.

Afin de favoriser une meilleure diffusion de la chaleur dans le dispositif de refroidissement, un matériau d'interface thermique (graisse thermique, polymère conducteur thermique ou toute solution équivalente) peut être interposé entre un ou plusieurs éléments composant un dispositif de refroidissement décrit ci-dessus. À titre d'exemple, le matériau d'interface thermique peut être interposé entre les deux platines 230 et 240 et/ou entre la plaque 220 et le support 210.In order to promote a better diffusion of the heat in the cooling device, a thermal interface material (thermal grease, thermal conductive polymer or any equivalent solution) may be interposed between one or more elements composing a cooling device described above. . By way of example, the thermal interface material may be interposed between the two plates 230 and 240 and / or between the plate 220 and the support 210.

Une source de chaleur 300 mentionnée ci-dessus peut désigner au moins l'un des éléments suivants : un dispositif d'éclairage comprenant des diodes électroluminescentes de puissance, un dispositif photovoltaïque, un circuit électronique, un composant électronique de puissance de type thyristor ou un transistor bipolaire à grille isolée, une batterie, une pile à combustible ou tout autre système de puissance.A heat source 300 mentioned above may designate at least one of the following elements: a lighting device comprising power LEDs, a photovoltaic device, an electronic circuit, a thyristor type electronic power component or a insulated gate bipolar transistor, a battery, a fuel cell or any other power system.

Bien entendu, diverses autres modifications au dispositif selon l'invention peuvent être envisagées dans le cadre des revendications annexées.Of course, various other modifications to the device according to the invention can be envisaged within the scope of the appended claims.

Claims (14)

  1. A cooling device (200, 400) able to cool a heat source (300) comprising electronic and/or electric components, characterized in that it comprises a support (210, 410) consisting of a first bracket (230, 430) connected to a second bracket (240, 440), the first bracket (230, 430) includes two opposite large faces connected together through side edges, the first bracket (230, 430) comprises, at a first large face (231, 431), at least one groove (232, 432) which extends from a first side edge (233, 433) and a second opposite side edge (234, 434), the groove comprises first portions (235, 435) which are parallel or substantially parallel to the first side edge (233, 433) connected by second portions (236, 436), the groove (232, 432) is covered by the second bracket (240, 440) so as to form an oscillating heat pipe (252, 452) wherein a latent heat transfer fluid (251, 451) circulates, the support (210, 410) is curved so as to form at least one duct (213, 413) which extends from the first side edge (233, 433) to the second side edge (234, 434), at least one duct is partially closed by a heat conduction plate (220, 420) in contact with the first side edge (233, 433) so as to enable a natural flow of ambient air in the duct(s) (213, 413) formed by the support (210, 410).
  2. A cooling device according to the preceding claim, characterized in that the first side edge (233, 433) and the second side edge (234, 434) of the first bracket (210, 410) are separated by a distance ranging from 1mm to 500mm.
  3. A cooling device according to one of the preceding claims, characterized in that the distance between two adjacent turns ranges from 1mm to 300mm.
  4. A cooling device according to one of the preceding claims, characterized in that the total length of the first portions (235, 435) is greater than the total length of the second portions (236, 436), at the first large face (231, 431).
  5. A cooling device according to the preceding claim, characterized in that the space between two first adjacent portions (235, 435) ranges from 1mm to 50mm.
  6. A cooling device according to the preceding claim, characterized in that the space between two first adjacent portions (235, 435) varies between the first side edge (233, 433) and the second side edge (234, 434).
  7. A cooling device according to the preceding claim, characterized in that the length of the second portions is less than 30mm.
  8. A cooling device according to one of the preceding claims, characterized in that the diameter of the oscillating heat pipe (252, 452) is so selected that the capillary forces exerted on the heat transfer fluid (251, 451) are higher than the gravity forces exerted on said fluid.
  9. A cooling device according to one of the preceding claims, characterized in that the first bracket (430) includes, at the second large face (438), at least one groove (437) which extends from the first side edge (433) to the second opposite side edge (434), while forming one or more bend(s), and in that the groove (437) comprises first portions (436) which are parallel or substantially parallel to the first side edge (433) and connected by second portions (437), and in that the groove (437) is covered by a third bracket (460) so as to form an oscillating heat pipe wherein a latent heat transfer fluid (451) circulates.
  10. A cooling device according to the preceding claim, characterized in that the total length of the first portions (436) is smaller than the total length of the second portions (437), at the second large face (438).
  11. A cooling device according to one of the preceding claims, characterized in that, at room temperature, the heat transfer fluid (251, 451) fills from 30% to 70% of the oscillating heat pipe volume.
  12. A cooling device according to one of the preceding claims, characterized in that the support (210, 410) is curved so as to form a coil with parallel and/or square and/or circular turns, with each turn defining a duct (213, 413) enabling a natural flow of ambient air along the support (210, 410).
  13. A cooling device according to one of the preceding claims, characterized in that the heat conduction plate (220, 420) is in contact with a heat source (300) comprising electronic and/or electric components.
  14. A cooling device according to the preceding claim, characterized in that the heat source has a thermal output power ranging from 10W to 300W.
EP17305564.1A 2016-05-17 2017-05-16 Cooling device with pulsed heat pipe Active EP3246648B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1654384A FR3051548B1 (en) 2016-05-17 2016-05-17 COOLING DEVICE WITH PULSE CALODUC

Publications (2)

Publication Number Publication Date
EP3246648A1 EP3246648A1 (en) 2017-11-22
EP3246648B1 true EP3246648B1 (en) 2019-08-28

Family

ID=57348758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17305564.1A Active EP3246648B1 (en) 2016-05-17 2017-05-16 Cooling device with pulsed heat pipe

Country Status (4)

Country Link
EP (1) EP3246648B1 (en)
ES (1) ES2755905T3 (en)
FR (1) FR3051548B1 (en)
PT (1) PT3246648T (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914875A (en) * 1995-06-29 1997-01-17 Akutoronikusu Kk Porous flat metal tube heat pipe type heat exchanger
CN100572908C (en) * 2006-11-17 2009-12-23 富准精密工业(深圳)有限公司 Led lamp
FR3007122B1 (en) * 2013-06-18 2017-09-08 Commissariat Energie Atomique COOLING OF ELECTRONIC AND / OR ELECTRICAL COMPONENTS BY PULSE CALODUC AND THERMAL CONDUCTION ELEMENT

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2755905T3 (en) 2020-04-24
FR3051548B1 (en) 2018-05-25
FR3051548A1 (en) 2017-11-24
PT3246648T (en) 2019-11-22
EP3246648A1 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
EP2770809B1 (en) Electronic card
EP3011249B1 (en) Cooling of electronic and/or electrical components by pulsed heat pipe and heat conduction element
EP2223583B1 (en) Device for cooling an electronic card by conduction comprising heat pipes, and corresponding method of fabrication
EP2081422B1 (en) Housing made of metallic extruded multiposition profils for manufactoring a waterproof eletronic power device
EP2795226B1 (en) Cooling device
FR3024770A1 (en) THERMAL EXCHANGE PLATE FOR THERMAL MANAGEMENT OF BATTERY PACK
FR3076085A1 (en) COVER FOR ELECTROCHEMICAL ELEMENT WITH REINFORCED THERMAL CONDUCTION
FR3016479A1 (en) THERMAL EXCHANGE PLATE FOR THERMAL BATTERY MANAGEMENT AND METHOD OF MANUFACTURING THE SAME
FR3056290A1 (en) THERMAL CONTROL DEVICE
EP3008772B1 (en) Battery pack for a motor vehicle
EP3246648B1 (en) Cooling device with pulsed heat pipe
EP2988364A1 (en) Thermal Control Device for a Battery Pack
WO2018060604A1 (en) Temperature regulating device
WO2018020139A1 (en) Heat exchanger, particularly for the thermal regulation of an energy-reserve unit, and assembly formed of said exchanger and of said unit
WO2013156554A1 (en) Heat regulation device for a battery module
FR3062522A1 (en) COOLED BATTERY AND SYSTEM COMPRISING SUCH A BATTERY
EP2591513B1 (en) Device for generating current and/or voltage based on a thermoelectric module placed in a flowing fluid
FR3056829A1 (en) THERMAL BATTERY CONTROL DEVICE
FR3056828A1 (en) THERMAL CONTROL DEVICE
EP3394552B1 (en) Device for setting the temperature of an object
FR3073612B1 (en) HEAT EXCHANGER TUBE WITH PERTURBATION DEVICE
EP3341977B1 (en) Thermally transparent thermoelectric converter
FR3079354A1 (en) THERMAL CONTROL SYSTEM OF AT LEAST ONE ELECTRIC ENERGY STORAGE MODULE
FR3064117A1 (en) DEVICE FOR THERMALLY CONTROLLING ELECTRIC ENERGY STORAGE CELLS COMPRISING AT LEAST TWO IMBRIC THERMAL EXCHANGERS
FR3113336A1 (en) Device for cooling two electrochemical cells, electrochemical assembly and corresponding method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180314

RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20180314

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 15/02 20060101AFI20180712BHEP

Ipc: F21V 29/00 20150101ALI20180712BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180817

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EUROPHANE SAS

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1172932

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017006568

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABREMA AGENCE BREVETS ET MARQUES, GANGUILLET, CH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3246648

Country of ref document: PT

Date of ref document: 20191122

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20191113

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190828

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191129

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191228

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1172932

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2755905

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017006568

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: EUROPHANE SAS, FR

Free format text: FORMER OWNER: EUROPHANE SAS, FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017006568

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200516

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

VS25 Lapsed in a validation state [announced via postgrant information from nat. office to epo]

Ref country code: MA

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200517

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828