EP3234512B1 - Differential pressure type flowmeter - Google Patents

Differential pressure type flowmeter Download PDF

Info

Publication number
EP3234512B1
EP3234512B1 EP15797080.7A EP15797080A EP3234512B1 EP 3234512 B1 EP3234512 B1 EP 3234512B1 EP 15797080 A EP15797080 A EP 15797080A EP 3234512 B1 EP3234512 B1 EP 3234512B1
Authority
EP
European Patent Office
Prior art keywords
differential pressure
pressure
measuring signal
characteristic parameter
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15797080.7A
Other languages
German (de)
French (fr)
Other versions
EP3234512A1 (en
Inventor
Max JEHLE
Davide Parrotto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of EP3234512A1 publication Critical patent/EP3234512A1/en
Application granted granted Critical
Publication of EP3234512B1 publication Critical patent/EP3234512B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Definitions

  • the present invention relates to a flow measuring arrangement based on the differential pressure measuring principle with a high and low pressure line and a method for detecting a clogged high or low pressure line.
  • Flow measuring arrangements based on the differential pressure measuring principle with high and low pressure lines are used in particular for flow measurement or filter monitoring, the high and low pressure lines being connected in the direction of flow above and below a differential pressure transducer, for example an orifice or a Venturi nozzle, or a filter to a media-carrying line, around the To transmit differential pressure by means of the medium to a differential pressure transducer of the flow measuring arrangement.
  • a differential pressure transducer for example an orifice or a Venturi nozzle, or a filter to a media-carrying line, around the To transmit differential pressure by means of the medium to a differential pressure transducer of the flow measuring arrangement.
  • blockages of the high and / or low pressure line can occur, as a result of which a reliable measurement is impaired. Efforts are therefore known to
  • U.S. 5,680,109 A describes a differential pressure sensor which has a high pressure pulse line and a low pressure pulse line, which are each connected to a process connection.
  • An absolute pressure sensor is connected to the high pressure pulse line and the low pressure pulse line.
  • a noise signal is determined from the corresponding absolute pressure sensor.
  • a variance of the noise signal is determined and compared with a threshold value. If the variance is less than the threshold, impulse line blockage is indicated.
  • US 2004/249583 A1 discloses a flow measurement arrangement in which the evaluation of the power spectrum of a differential pressure measurement signal is used to detect a blockage of the pressure line.
  • US 2006/277000 A1 discloses a flow measuring arrangement with an evaluation unit which uses a relationship between a differential pressure measuring signal and a noise of the differential pressure measuring signal to detect a blockage of the pressure line.
  • the object is achieved according to the invention by the flow measuring arrangement according to claim 1 and the method according to claim 4.
  • the noise or fluctuation is considered as a function of the differential pressure measurement signal. If the function has a negative linear coefficient, the high pressure line is blocked. If, on the other hand, the function has a significantly larger linear coefficient than the function of a non-clogged flow measuring arrangement, then the low-pressure line is clogged.
  • the detection of a blockage by means of the flow measuring arrangement according to the invention is particularly advantageous in the case of very dynamic processes.
  • the monotonically increasing or decreasing relation between the differential pressure measurement signal and the characteristic parameter is approximately modeled by a linearly increasing or decreasing function, the significantly more monotonously increasing relation being an approximately linearly increasing function, the linear coefficient of which is significant is greater than the corrected linear coefficient of a linearly increasing function of an unclogged flow measuring arrangement.
  • the monotonically increasing or decreasing relation between the differential pressure measurement signal and the characteristic parameter is approximately quadratic increasing or decreasing function is modeled, whereby the significantly more monotonously increasing relation is an approximately quadratically increasing function whose coefficient of the square term is significantly greater than the error-adjusted coefficient of the square term of a quadratically increasing function of an unclogged flow measurement arrangement.
  • the object of the invention is also achieved by a method.
  • the method includes a method for monitoring a flow measuring arrangement, in particular according to one of the preceding claims, comprising the method steps: at least temporarily recording a time profile of the differential pressure measurement signal and a characteristic parameter of a noise or a fluctuation of the differential pressure measurement signal, establishing a relationship between the differential pressure measurement signal and a characteristic parameter of a noise or a fluctuation of the differential pressure measurement signal, the determination of a monotonically falling relation between the differential pressure measurement signal and the characteristic parameter being evaluated as an indication of a clogged high pressure line, and the determination of a monotonically increasing relation between the differential pressure measurement signal and the characteristic parameter, its monotonous one increasing relation is significantly stronger than the monotonically increasing relation between the differential pressure measurement signal (22) and the characteristic parameter in the case of an unclogged flow measurement arrangement, is interpreted as an indication of a clogged low-pressure line.
  • Fig. 1 shows an exemplary embodiment of a flow measuring arrangement 1 according to the invention, comprising a differential pressure measuring transducer 5.
  • the differential pressure measuring transducer 5 has an evaluation unit 10, which is designed as an electronics module.
  • the differential pressure transducer 5 measures a differential pressure between a high pressure inlet 7 and a low pressure inlet 9 of the differential pressure transducer 5, the high pressure inlet 7 and the low pressure inlet 9 being designed as a high pressure side process connection flange or a low pressure side process connection flange.
  • the differential pressure transducer 5 also has a sensor module 11 that holds the evaluation unit 10. Signals from the sensor module 11 are processed by the evaluation unit 10.
  • the evaluation unit 10 is connected to a process control system 13 via a two-wire line 12, the evaluation unit 10 communicating and being supplied with energy via the two-wire line 12.
  • the two-wire line 12 can in particular be operated as a field bus according to the Profibus or Foundation Fieldbus standard or according to the HART standard.
  • Such differential pressure transducers are known per se and are manufactured and marketed by the applicant, for example, under the brand name Deltabar.
  • the flow measuring arrangement 5 further comprises a differential pressure transducer 4 for installation in a measuring tube 3.
  • the differential pressure transducer 4 comprises a diaphragm 14, a high-pressure-side pressure tapping channel 15 on a high-pressure side of the Orifice 14 and a low-pressure side pressure tapping channel 16 on a low-pressure side of the orifice 14.
  • the terms "high-pressure side” and “low-pressure side” relate to a pressure difference 17 generated by a flow (from left to right in the drawing), this being proportional to the square of the flow rate and, for example, of the order of a few 10 to 100 mbar.
  • the static pressure on which this flow-dependent pressure difference is superimposed can be, for example, from 1 bar to a few 100 bar.
  • the pressure difference is detected with a sensor element of the sensor module 11, the sensor module 11 outputting a sensor module signal dependent on the detected pressure difference to the evaluation unit 10, the processing circuit of the evaluation unit 10 using the sensor module signal to generate a differential pressure measurement signal representing the pressure difference and to be sent via the two-wire line 12 to the Process control system 13 outputs.
  • Time series of the differential pressure measurement signal and / or of fluctuations in the differential pressure measurement signal can be stored in a data memory of the evaluation unit 10 and / or in the process control system 13.
  • the invention now contributes to avoiding misdiagnosis of a blocked high or low pressure line due to increasing or decreasing fluctuations in the differential pressure measurement signal.
  • Fig. 2a shows a graphic representation in which the differential pressure measurement signal 22 of the differential pressure .DELTA.p is shown in mbar as a function of time for an unclogged flow measurement arrangement.
  • the flow in the measuring tube 3 is increased from 0.7 m 3 per hour to 1 m 3 per hour.
  • the differential pressure measurement signal 22 of the differential pressure ⁇ p increases in this case from approximately 50 mbar to approximately 100 mbar. It can be clearly seen that the noise or the fluctuation ⁇ of the differential pressure measurement signal 22 of the differential pressure ⁇ p after doubling is also doubled.
  • Figure 2b shows a further graphic representation in which the differential pressure measurement signal 22 of the differential pressure ⁇ p is shown in mbar as a function of time for a clogged low-pressure line.
  • the flow rate in the measuring tube 3 was increased from approx. 0.7 m 3 per hour to approx. 1 m 3 per hour.
  • the differential pressure measurement signal 22 of the differential pressure ⁇ p from approx. 50 mbar is doubled to almost 140 mbar.
  • This is an increase in the differential pressure measurement signal 22 of the differential pressure ⁇ p by almost three times. It can be deduced from this that in the case of a clogged low-pressure line, an increase in the noise or fluctuation ⁇ is associated with a significantly greater increase in the differential pressure measurement signal 22 of the differential pressure ⁇ p.
  • Figure 2c shows a further graphic representation in which the differential pressure measurement signal 22 of the differential pressure .DELTA.p is shown in mbar as a function of time for a clogged high pressure line. Again, at about the same time as in Fig. 2a respectively.
  • Figure 2c the flow rate in the measuring tube 3 increased from approx. 0.7 m 3 per hour to approx. 1 m 3 per hour. It can be clearly seen that when the noise or fluctuation ⁇ doubles, the differential pressure measurement signal 22 of the differential pressure ⁇ p drops from approx. 50 mbar to approx. 30 mbar. This is a reduction in the differential pressure measurement signal 22 of the differential pressure ⁇ p by almost half. It can be deduced from this that, in the case of a blocked high-pressure line, an increase in the noise or fluctuation ⁇ is associated with a reduction in the differential pressure measurement signal 22 of the differential pressure ⁇ p.
  • Fig. 3 shows a graphic representation in which the mean noise or the mean fluctuation ⁇ of the differential pressure measurement signal 22 of the differential pressure ⁇ p is shown as a function of the differential pressure measurement signal 22 of the differential pressure ⁇ p for four different states.
  • the relations of all four states are modeled by linear functions 18, 19, 20, 21.
  • Each linear function describes a state of the high pressure line and the low pressure line. These four states are: high pressure line and low pressure line open (function 18), high pressure line blocked and low pressure line open (function 19), high pressure line open and Low pressure line clogged (function 20), high pressure line and low pressure line clogged (function 21).
  • function 19 of the state “high pressure line blocked and low pressure line open” has a negative linear coefficient (-0.003).
  • function 20 with the state “high pressure line open and low pressure line blocked” has a linear coefficient (+0.012) that is significantly greater than the linear coefficient of function 18 (+0.003) with the state “high pressure line and low pressure line open”.
  • the linear coefficient of function 20 is approximately four times greater than the linear coefficient of function 18.
  • Function 21, in which both the high pressure line and the low pressure line are clogged, has a linear coefficient of zero. Consequently, all states can be identified based on their characteristic linear coefficients.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Description

Die vorliegende Erfindung betrifft eine Durchflussmessanordnung nach dem Differenzdruckmessprinzip mit einer Hoch- und Niederdruckleitung und ein Verfahren zum Erkennen einer verstopften Hoch- oder Niederdruckleitung. Durchflussmessanordnungen nach dem Differenzdruckmessprinzip mit Hoch- und Niederdruckleitungen dienen insbesondere zur Durchflussmessung oder Filterüberwachung, wobei die Hoch- und Niederdruckleitung in Strömungsrichtung oberhalb und unterhalb eines Wirkdruckgebers, beispielsweise einer Blende oder einer Venturi Düse, oder eines Filters an eine medienführende Leitung angeschlossen sind, um den Wirkdruck mittels des Mediums zu einem Differenzdruckmesswandler der Durchflussmessanordnung zu übertragen. Beim Betrieb dieser Messanordnungen kann es zu Verstopfungen der Hoch- und/oder Niederdruckleitung kommen, wodurch eine zuverlässige Messung beeinträchtigt wird. Es sind daher Bemühungen bekannt, die Verstopfung von Hoch- und Niederdruckleitung frühzeitig zu erkennen.The present invention relates to a flow measuring arrangement based on the differential pressure measuring principle with a high and low pressure line and a method for detecting a clogged high or low pressure line. Flow measuring arrangements based on the differential pressure measuring principle with high and low pressure lines are used in particular for flow measurement or filter monitoring, the high and low pressure lines being connected in the direction of flow above and below a differential pressure transducer, for example an orifice or a Venturi nozzle, or a filter to a media-carrying line, around the To transmit differential pressure by means of the medium to a differential pressure transducer of the flow measuring arrangement. During the operation of these measuring arrangements, blockages of the high and / or low pressure line can occur, as a result of which a reliable measurement is impaired. Efforts are therefore known to identify the blockage of high and low pressure lines at an early stage.

US 5,680,109 A beschreibt einen Differenzdrucksensor, der eine Hochdruckimpulsleitung und eine Niederdruckimpulsleitung aufweist, die jeweils an einem Prozessanschluss angeschlossen sind. An der Hochdruckimpulsleitung und Niederdruckimpulsleitung ist jeweils ein Absolutdrucksensor angeschlossen. Um festzustellen, ob die Hochdruckimpulsleitung oder die Niederdruckimpulsleitung blockiert ist, wird ein Rauschsignal aus dem entsprechenden Absolutdrucksensor ermittelt. Eine Varianz des Rauschsignals wird bestimmt und mit einem Schwellenwert verglichen. Wenn die Varianz kleiner als der Schwellenwert ist, wird eine Impulsleitungsblockierung angegeben. U.S. 5,680,109 A describes a differential pressure sensor which has a high pressure pulse line and a low pressure pulse line, which are each connected to a process connection. An absolute pressure sensor is connected to the high pressure pulse line and the low pressure pulse line. In order to determine whether the high pressure pulse line or the low pressure pulse line is blocked, a noise signal is determined from the corresponding absolute pressure sensor. A variance of the noise signal is determined and compared with a threshold value. If the variance is less than the threshold, impulse line blockage is indicated.

Der obige Ansatz, Fluktuationen zu analysieren, ist an sich zielführend, ist jedoch sehr aufwändig, da zusätzliche Sensoren erforderlich sind.The above approach of analyzing fluctuations is effective in itself, but is very complex, since additional sensors are required.

US 2004/249583 A1 offenbart eine Durchflussmessanordnung, bei der die Auswertung des Leistungsspektrums eines Differenzdruckmesssignals zur Erkennung einer Verstopfung der Druckleitung verwendet wird. US 2006/277000 A1 offenbart eine Durchflussmessanordnung mit einer Auswerteeinheit, die einen Zusammenhang zwischen einem Differenzdruckmesssignal und einem Rauschen des Differenzdruckmesssignals zur Erkennung einer Verstopfung der Druckleitung heranzieht. US 2004/249583 A1 discloses a flow measurement arrangement in which the evaluation of the power spectrum of a differential pressure measurement signal is used to detect a blockage of the pressure line. US 2006/277000 A1 discloses a flow measuring arrangement with an evaluation unit which uses a relationship between a differential pressure measuring signal and a noise of the differential pressure measuring signal to detect a blockage of the pressure line.

Es ist daher die Aufgabe der vorliegenden Erfindung eine Durchflussmessanordnung nach dem Differenzdruckmessprinzip und ein Verfahren bereitzustellen, welche es ermöglichen einfacher zu erkennen, ob die Hochdruckleitung oder die Niederdruckleitung verstopft ist. Die Aufgabe wird erfindungsgemäß gelöst durch die Durchflussmessanordnung gemäß Patentanspruch 1 und das Verfahren gemäß Patentanspruch 4.It is therefore the object of the present invention to provide a flow measuring arrangement based on the differential pressure measuring principle and a method which make it possible to identify more easily whether the high pressure line or the low pressure line is blocked. The object is achieved according to the invention by the flow measuring arrangement according to claim 1 and the method according to claim 4.

Die erfindungsgemäße Durchflussmessanordnung zur Messung eines Durchflusses eines Mediums durch ein Messrohr, umfasst mindestens einen im Messrohr befindlichen Wirkdruckgeber, der insbesondere eine Reduzierung einer vom Medium durchströmten Querschnittsfläche im Inneren des Messrohrs im Bereich des Wirkdruckgebers und damit ein von den Abmessungen des Wirkdruckgebers und vom Durchfluss abhängiges Gefälle des Mediendrucks bewirkt,

  • einen Differenzdruckmesswandler zum Erfassen einer Differenz zwischen einem hochdruckseitigen Mediendruck und einem niederdruckseitigen Mediendruck und zum Bereitstellen eines Differenzdruckmesssignals, welches von der Differenz zwischen dem hochdruckseitigen Mediendruck und dem niederdruckseitigen Mediendruck abhängt, wobei die Differenz zwischen dem hochdruckseitigen Mediendruck und dem niederdruckseitigen Mediendruck ein Maß für den Durchfluss des Mediums ist,
  • eine Hochdruckleitung, welche an einen Hochdruckeingang des Differenzdruckmesswandlers angeschlossen ist, um den Differenzdruckmesswandler mit dem hochdruckseitigen Mediendruck zu beaufschlagen,
  • eine Niederdruckleitung, welche an einen Niederdruckeingang des Differenzdruckmesswandlers angeschlossen ist um den Differenzdruckmesswandler mit dem niederdruckseitigen Mediendruck zu beaufschlagen,
  • eine Auswerteeinheit zum Auswerten des Differenzdruckmesssignals,
  • wobei die Auswerteeinheit dazu eingerichtet ist,
    • eine Relation zwischen dem Differenzdruckmesssignal und einem charakteristischen Parameter eines Rauschens oder einer Fluktuation des Differenzdruckmesssignals festzustellen,
    • die Feststellung einer monoton fallenden Relation zwischen dem Differenzdruckmesssignal und dem charakteristischen Parameter als Hinweis auf eine verstopfte Hochdruckleitung zu werten, und
    • die Feststellung einer monoton steigenden Relation zwischen dem Differenzdruckmesssignal und dem charakteristischen Parameter, dessen monoton steigende Relation signifikant stärker ist als die monoton steigende Relation zwischen dem Differenzdruckmesssignal (22) und dem charakteristischen Parameter bei einer unverstopften Durchflussmessanordnung, als Hinweis auf eine verstopfte Niederdruckleitung zu werten.
The flow measuring arrangement according to the invention for measuring a flow of a medium through a measuring tube comprises at least one differential pressure transducer located in the measuring tube, which in particular reduces a cross-sectional area through which the medium flows in the interior of the measuring tube in the area of the differential pressure transducer and thus a function of the dimensions of the differential pressure transducer and the flow rate Causes the gradient of the media pressure,
  • a differential pressure transducer for detecting a difference between a medium pressure on the high pressure side and a medium pressure on the low pressure side and for providing a differential pressure measurement signal which depends on the difference between the medium pressure on the high pressure side and the medium pressure on the low pressure side, the difference between the medium pressure on the high pressure side and the medium pressure on the low pressure side being a measure of the flow of the medium is
  • a high pressure line which is connected to a high pressure inlet of the differential pressure transducer in order to apply the high pressure side medium pressure to the differential pressure transducer,
  • a low-pressure line, which is connected to a low-pressure input of the differential pressure transducer in order to apply the medium pressure on the low-pressure side to the differential pressure transducer,
  • an evaluation unit for evaluating the differential pressure measurement signal,
  • wherein the evaluation unit is set up to
    • determine a relation between the differential pressure measurement signal and a characteristic parameter of a noise or a fluctuation of the differential pressure measurement signal,
    • to evaluate the detection of a monotonically falling relation between the differential pressure measurement signal and the characteristic parameter as an indication of a clogged high pressure line, and
    • the determination of a monotonically increasing relation between the differential pressure measurement signal and the characteristic parameter, the monotonically increasing relation of which is significantly stronger than the monotonically increasing relation between the differential pressure measurement signal (22) and the characteristic parameter in the case of an unclogged flow measurement arrangement, as an indication of a clogged low pressure line.

Für die Entscheidung, ob die Hoch- oder die Niederdruckleitung verstopft ist, wird das Rauschen bzw. Fluktuation als Funktion des Differenzdruckmesssignals betrachtet. Weist die Funktion einen negativen Linearkoeffizienten auf, dann ist die Hochdruckleitung verstopft. Weist dagegen die Funktion einen signifikant größeren Linearkoeffizienten auf, als die Funktion einer nicht verstopften Durchflussmessanordnung, dann ist die Niederdruckleitung verstopft. Die Erkennung einer Verstopfung mittels der erfindungsgemäßen Durchflussmessanordnung ist insbesondere bei sehr dynamischen Prozessen vorteilhaft.To decide whether the high or low pressure line is blocked, the noise or fluctuation is considered as a function of the differential pressure measurement signal. If the function has a negative linear coefficient, the high pressure line is blocked. If, on the other hand, the function has a significantly larger linear coefficient than the function of a non-clogged flow measuring arrangement, then the low-pressure line is clogged. The detection of a blockage by means of the flow measuring arrangement according to the invention is particularly advantageous in the case of very dynamic processes.

In einer alternativen Ausgestaltung der Erfindung ist die monoton steigende bzw. fallende Relation zwischen dem Differenzdruckmesssignal und dem charakteristischen Parameter näherungsweise durch eine linear steigende bzw. fallende Funktion modelliert, wobei die signifikant stärker monoton steigende Relation, eine näherungsweise linear steigende Funktion ist, deren Linearkoeffizient signifikant größer ist als der fehlerbereinigte Linearkoeffizient einer linear steigenden Funktion einer unverstopften Durchflussmessanordnung.In an alternative embodiment of the invention, the monotonically increasing or decreasing relation between the differential pressure measurement signal and the characteristic parameter is approximately modeled by a linearly increasing or decreasing function, the significantly more monotonously increasing relation being an approximately linearly increasing function, the linear coefficient of which is significant is greater than the corrected linear coefficient of a linearly increasing function of an unclogged flow measuring arrangement.

In einer alternativen Ausgestaltung der Erfindung ist die monoton steigende bzw. fallende Relation zwischen dem Differenzdruckmesssignal und dem charakteristischen Parameter näherungsweise durch eine quadratisch steigende bzw. fallende Funktion modelliert, wobei die signifikant stärker monoton steigende Relation, eine näherungsweise quadratisch steigende Funktion ist, deren Koeffizient des quadratischen Glieds signifikant größer ist als der fehlerbereinigte Koeffizient des quadratischen Glieds einer quadratisch steigenden Funktion einer unverstopften Durchflussmessanordnung.In an alternative embodiment of the invention, the monotonically increasing or decreasing relation between the differential pressure measurement signal and the characteristic parameter is approximately quadratic increasing or decreasing function is modeled, whereby the significantly more monotonously increasing relation is an approximately quadratically increasing function whose coefficient of the square term is significantly greater than the error-adjusted coefficient of the square term of a quadratically increasing function of an unclogged flow measurement arrangement.

Die Aufgabe der Erfindung wird ebenfalls durch ein Verfahren gelöst. Das Verfahren beinhaltet, ein Verfahren zum Überwachen einer Durchflussmessanordnung, insbesondere nach einem der vorhergehenden Ansprüche, umfassend die Verfahrensschritte: zumindest zeitweises Erfassen eines zeitlichen Verlaufs des Differenzdruckmesssignals und eines charakteristischen Parameters eines Rauschens oder einer Fluktuation des Differenzdruckmesssignals, Feststellen einer Relation zwischen dem Differenzdruckmesssignal und einem charakteristischen Parameter eines Rauschens oder einer Fluktuation des Differenzdruckmesssignals, wobei die Feststellung einer monoton fallenden Relation zwischen dem Differenzdruckmesssignal und dem charakteristischen Parameter als Hinweis auf eine verstopfte Hochdruckleitung gewertet wird, und die Feststellung einer monoton steigenden Relation zwischen dem Differenzdruckmesssignal und dem charakteristischen Parameter, dessen monoton steigende Relation signifikant stärker ist als die monoton steigende Relation zwischen dem Differenzdruckmesssignal (22) und dem charakteristischen Parameter bei einer unverstopften Durchflussmessanordnung, als Hinweis auf eine verstopfte Niederdruckleitung gewertet wird.The object of the invention is also achieved by a method. The method includes a method for monitoring a flow measuring arrangement, in particular according to one of the preceding claims, comprising the method steps: at least temporarily recording a time profile of the differential pressure measurement signal and a characteristic parameter of a noise or a fluctuation of the differential pressure measurement signal, establishing a relationship between the differential pressure measurement signal and a characteristic parameter of a noise or a fluctuation of the differential pressure measurement signal, the determination of a monotonically falling relation between the differential pressure measurement signal and the characteristic parameter being evaluated as an indication of a clogged high pressure line, and the determination of a monotonically increasing relation between the differential pressure measurement signal and the characteristic parameter, its monotonous one increasing relation is significantly stronger than the monotonically increasing relation between the differential pressure measurement signal (22) and the characteristic parameter in the case of an unclogged flow measurement arrangement, is interpreted as an indication of a clogged low-pressure line.

Die Erfindung wird anhand der nachfolgenden Zeichnungen näher erläutert.The invention is explained in more detail with reference to the following drawings.

Es zeigt:

  • Fig. 1: einen skizzierten Längsschnitt einer erfindungsgemäßen Durchflussmessanordnung,
  • Fig. 2a: eine graphische Darstellung des Differenzdruckmesssignals als Funktion der Zeit bei einer unverstopften Durchflussmessanordnung,
  • Fig. 2b: eine graphische Darstellung des Differenzdruckmesssignals als Funktion der Zeit bei einer verstopften Niederdruckleitung,
  • Fig. 2c: eine graphische Darstellung des Differenzdruckmesssignals als Funktion der Zeit bei einer verstopften Hochdruckleitung, und
  • Fig. 3: eine graphische Darstellung der Fluktuation bzw. Rauschen des Differenzdruckmesssignals als Funktion des Differenzdruckmesssignals bei mehreren Zuständen.
It shows:
  • Fig. 1 : a sketched longitudinal section of a flow measurement arrangement according to the invention,
  • Fig. 2a : a graphic representation of the differential pressure measurement signal as a function of time with an unclogged flow measurement arrangement,
  • Figure 2b : a graphic representation of the differential pressure measurement signal as a function of time in the case of a clogged low pressure line,
  • Figure 2c : a graphical representation of the differential pressure measurement signal as a function of time in the case of a blocked high pressure line, and
  • Fig. 3 : a graphical representation of the fluctuation or noise of the differential pressure measurement signal as a function of the differential pressure measurement signal for several states.

Fig. 1 zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Durchflussmessanordnung 1, umfassend einen Differenzdruckmessumformer 5. Der Differenzdruckmessumformer 5 weist eine Auswerteeinheit 10 auf, die als Elektronikmodul ausgestaltet ist. Der Differenzdruckmessumformer 5 misst einen Differenzdruck zwischen einem Hochdruckeingang 7 und einem Niederdruckeingang 9 des Differenzdruckmessumformers 5, wobei der Hochdruckeingang 7 bzw. der Niederdruckeingang 9 als hochdruckseitigen Prozessanschlussflansch bzw. niederdruckseitigen Prozessanschlussflansch ausgestaltet sind. Fig. 1 shows an exemplary embodiment of a flow measuring arrangement 1 according to the invention, comprising a differential pressure measuring transducer 5. The differential pressure measuring transducer 5 has an evaluation unit 10, which is designed as an electronics module. The differential pressure transducer 5 measures a differential pressure between a high pressure inlet 7 and a low pressure inlet 9 of the differential pressure transducer 5, the high pressure inlet 7 and the low pressure inlet 9 being designed as a high pressure side process connection flange or a low pressure side process connection flange.

Ferner weist der Differenzdruckmessumformer 5 ein Sensormodul 11 auf, das die Auswerteeinheit 10 hält. Signale des Sensormoduls 11 werden von der Auswerteeinheit 10 verarbeitet. Die Auswerteeinheit 10 ist über eine Zweidrahtleitung 12 an ein Prozessleitsystem 13 angeschlossen, wobei die Auswerteeinheit 10 über die Zweidrahtleitung 12 kommuniziert und mit Energie versorgt wird. Die Zweidrahtleitung 12 kann insbesondere als Feldbus nach dem Profibus- bzw. Foundation Fieldbus-Standard oder nach dem HART-Standard betrieben werden. Derartige Differenzdruckmessumformer sind an sich bekannt und werden beispielsweise unter der Marke Deltabar von der Anmelderin hergestellt und in Verkehr gebracht.The differential pressure transducer 5 also has a sensor module 11 that holds the evaluation unit 10. Signals from the sensor module 11 are processed by the evaluation unit 10. The evaluation unit 10 is connected to a process control system 13 via a two-wire line 12, the evaluation unit 10 communicating and being supplied with energy via the two-wire line 12. The two-wire line 12 can in particular be operated as a field bus according to the Profibus or Foundation Fieldbus standard or according to the HART standard. Such differential pressure transducers are known per se and are manufactured and marketed by the applicant, for example, under the brand name Deltabar.

Die Durchflussmessanordnung 5 umfasst weiterhin einen Wirkdruckgeber 4 zum Einbau in ein Messrohr 3. Der Wirkdruckgeber 4 umfasst eine Blende 14, einen hochdruckseitigen Druckabgriffkanal 15 auf einer Hochdruckseite der Blende 14 und einen niederdruckseitigen Druckabgriffkanal 16 auf einer Niederdruckseite der Blende 14. Der Hochdruckeingang 7 ist über eine Hochdruckleitung 6 an den hochdruckseitigen Druckabgriffkanal 15 angeschlossen, und der Niederdruckeingang 9 ist über eine Niederdruckleitung 8 an den niederdruckseitigen Druckabgriffkanal 16 angeschlossen. Die Begriffe "hochdruckseitig" und "niederdruckseitig" beziehen sich auf eine durch einen Durchfluss (in der Zeichnung von links nach rechts) erzeugte Druckdifferenz 17, wobei diese proportional zum Quadrat der Durchflussgeschwindigkeit ist und beispielsweise in der Größenordnung von einigen 10 bis 100 mbar beträgt.The flow measuring arrangement 5 further comprises a differential pressure transducer 4 for installation in a measuring tube 3. The differential pressure transducer 4 comprises a diaphragm 14, a high-pressure-side pressure tapping channel 15 on a high-pressure side of the Orifice 14 and a low-pressure side pressure tapping channel 16 on a low-pressure side of the orifice 14. The terms "high-pressure side" and "low-pressure side" relate to a pressure difference 17 generated by a flow (from left to right in the drawing), this being proportional to the square of the flow rate and, for example, of the order of a few 10 to 100 mbar.

Der statische Druck, dem diese durchflussabhängige Druckdifferenz überlagert ist, kann beispielsweise von 1 bar bis zu einigen 100 bar betragen. Die Druckdifferenz wird mit einem Sensorelement des Sensormoduls 11 erfasst, wobei das Sensormodul 11 ein von der erfassten Druckdifferenz abhängiges Sensormodulsignal an die Auswerteeinheit 10 ausgibt, wobei die Verarbeitungsschaltung der Auswerteeinheit 10 anhand des Sensormodulsignals ein die Druckdifferenz repräsentierendes Differenzdruckmesssignal generiert und über die Zweidrahtleitung 12 an das Prozessleitsystem 13 ausgibt.The static pressure on which this flow-dependent pressure difference is superimposed can be, for example, from 1 bar to a few 100 bar. The pressure difference is detected with a sensor element of the sensor module 11, the sensor module 11 outputting a sensor module signal dependent on the detected pressure difference to the evaluation unit 10, the processing circuit of the evaluation unit 10 using the sensor module signal to generate a differential pressure measurement signal representing the pressure difference and to be sent via the two-wire line 12 to the Process control system 13 outputs.

Zeitreihen des Differenzdruckmesssignals und/oder von Fluktuationen des Differenzdruckmesssignals können in einem Datenspeicher der Auswerteeinheit 10 und/oder im Prozessleitsystem 13 gespeichert werden.Time series of the differential pressure measurement signal and / or of fluctuations in the differential pressure measurement signal can be stored in a data memory of the evaluation unit 10 and / or in the process control system 13.

Grundsätzlich ist davon auszugehen, dass Fluktuationen bzw. Rauschen des Drucks in einem strömenden Medium mit zunehmender Fließgeschwindigkeit des Mediums größer werden. Bei einer intakten Durchflussmessanordnung werden diese Fluktuationen aber über die Hoch- und Niederdruckleitung zum Differenzdruckmessumformer gelangen, und sich dort gegenseitig zu einem gewissen Grad kompensieren.Basically, it can be assumed that fluctuations or noise of the pressure in a flowing medium increase with increasing flow velocity of the medium. With an intact flow measurement arrangement, however, these fluctuations will reach the differential pressure transducer via the high and low pressure lines, and there they will compensate each other to a certain extent.

Wenn nun die Hoch- oder Niederdruckleitung verstopft, wird mit der Zeit diese Kompensation schwächer werden, so dass die Fluktuationen bzw. das Rauschen des Differenzdruckmesssignals ab- oder zunehmen. Hierbei geht es insbesondere um Fluktuationen in einem Frequenzbereich von mehr als 1 Hz, insbesondere mehr als 10 Hz bzw. mehr als 100 Hz.If the high or low pressure line is clogged, this compensation will become weaker over time, so that the fluctuations or the Noise of the differential pressure measurement signal decreases or increases. This particularly concerns fluctuations in a frequency range of more than 1 Hz, in particular more than 10 Hz or more than 100 Hz.

Wenn also bei einem gegebenen Durchfluss bzw. mittleren Differenzdruck die Fluktuation des Differenzdruckmesssignals im Vergleich zu Referenzdaten, die bei offenen Wirkdruckleitungen erfasst wurden, zugenommen hat, ist dies ein erstes Indiz für eine ganz oder teilweise verstopfte Hoch- oder Niederdruckleitung.If, for a given flow rate or mean differential pressure, the fluctuation of the differential pressure measurement signal has increased compared to reference data that was recorded with open differential pressure lines, this is a first indication of a completely or partially clogged high or low pressure line.

Die Erfindung trägt nun dazu bei, Fehldiagnosen einer verstopften Hoch- oder Niederdruckleitung aufgrund zu- oder abnehmender Fluktuationen des Differenzdruckmesssignals zu vermeiden.The invention now contributes to avoiding misdiagnosis of a blocked high or low pressure line due to increasing or decreasing fluctuations in the differential pressure measurement signal.

Fig. 2a zeigt eine graphische Darstellung, in welcher das Differenzdruckmesssignal 22 des Differenzdrucks Δp in mbar als Funktion der Zeit für eine unverstopfte Durchflussmessanordnung dargestellt ist. Ungefähr zu einem mittleren Zeitpunkt wird der Durchfluss in dem Messrohr 3 von 0,7 m3 pro Stunde auf 1 m3 pro Stunde angehoben. Dies resultiert in eine Änderung des Differenzdruckmesssignals 22 des Differenzdrucks Δp zwischen der Hoch- und Niederdruckseite des Wirkgebers. Das Differenzdruckmesssignal 22 des Differenzdrucks Δp steigt in diesem Fall von ca. 50 mbar auf ca. 100 mbar. Deutlich zu erkennen ist, dass das Rauschen bzw. die Fluktuation σ des Differenzdruckmesssignals 22 des Differenzdrucks Δp nach der Verdoppelung, ebenfalls verdoppelt ist. Fig. 2a shows a graphic representation in which the differential pressure measurement signal 22 of the differential pressure .DELTA.p is shown in mbar as a function of time for an unclogged flow measurement arrangement. At about a middle point in time, the flow in the measuring tube 3 is increased from 0.7 m 3 per hour to 1 m 3 per hour. This results in a change in the differential pressure measurement signal 22 of the differential pressure Δp between the high and low pressure sides of the active transmitter. The differential pressure measurement signal 22 of the differential pressure Δp increases in this case from approximately 50 mbar to approximately 100 mbar. It can be clearly seen that the noise or the fluctuation σ of the differential pressure measurement signal 22 of the differential pressure Δp after doubling is also doubled.

Fig. 2b zeigt eine weitere graphische Darstellung, bei welcher das Differenzdruckmesssignal 22 des Differenzdrucks Δp in mbar als Funktion der Zeit für eine verstopfte Niederdruckleitung dargestellt ist. Ungefähr zum gleichen Zeitpunkt wie in Fig. 2a, wurde der Durchfluss in dem Messrohr 3 von ca. 0,7 m3 pro Stunde auf ca. 1 m3 pro Stunde angehoben. Deutlich zu erkennen ist, dass bei einer Verdoppelung des Rauschens bzw. der Fluktuation σ, das Differenzdruckmesssignal 22 des Differenzdrucks Δp von ca. 50 mbar auf fast 140 mbar verdoppelt ist. Dies ist eine Steigerung des Differenzdruckmesssignals 22 des Differenzdrucks Δp um beinahe das dreifache. Daraus lässt sich ableiten, dass bei einer verstopften Niederdruckleitung eine Erhöhung des Rauschens bzw. der Fluktuation σ mit einer signifikant größeren Erhöhung des Differenzdruckmesssignals 22 des Differenzdrucks Δp einhergeht. Figure 2b shows a further graphic representation in which the differential pressure measurement signal 22 of the differential pressure Δp is shown in mbar as a function of time for a clogged low-pressure line. Around the same time as in Fig. 2a , the flow rate in the measuring tube 3 was increased from approx. 0.7 m 3 per hour to approx. 1 m 3 per hour. It can be clearly seen that when the noise or fluctuation σ doubles, the differential pressure measurement signal 22 of the differential pressure Δp from approx. 50 mbar is doubled to almost 140 mbar. This is an increase in the differential pressure measurement signal 22 of the differential pressure Δp by almost three times. It can be deduced from this that in the case of a clogged low-pressure line, an increase in the noise or fluctuation σ is associated with a significantly greater increase in the differential pressure measurement signal 22 of the differential pressure Δp.

Fig. 2c zeigt eine weitere graphische Darstellung, bei welcher das Differenzdruckmesssignal 22 des Differenzdrucks Δp in mbar als Funktion der Zeit für eine verstopfte Hochdruckleitung dargestellt ist. Auch hier wurde ungefähr zum gleichen Zeitpunkt wie in Fig. 2a bzw. Fig. 2c, der Durchfluss in dem Messrohr 3 von ca. 0,7 m3 pro Stunde auf ca. 1 m3 pro Stunde angehoben. Deutlich zu erkennen ist, dass bei einer Verdoppelung des Rauschens bzw. der Fluktuation σ, das Differenzdruckmesssignal 22 des Differenzdrucks Δp von ca. 50 mbar auf ca. 30 mbar absinkt. Dies ist eine Reduzierung des Differenzdruckmesssignals 22 des Differenzdrucks Δp um beinahe die Hälfte. Daraus lässt sich ableiten, dass bei einer verstopften Hochdruckleitung eine Erhöhung des Rauschens bzw. der Fluktuation σ mit einer Verringerung des Differenzdruckmesssignals 22 des Differenzdrucks Δp einhergeht. Figure 2c shows a further graphic representation in which the differential pressure measurement signal 22 of the differential pressure .DELTA.p is shown in mbar as a function of time for a clogged high pressure line. Again, at about the same time as in Fig. 2a respectively. Figure 2c , the flow rate in the measuring tube 3 increased from approx. 0.7 m 3 per hour to approx. 1 m 3 per hour. It can be clearly seen that when the noise or fluctuation σ doubles, the differential pressure measurement signal 22 of the differential pressure Δp drops from approx. 50 mbar to approx. 30 mbar. This is a reduction in the differential pressure measurement signal 22 of the differential pressure Δp by almost half. It can be deduced from this that, in the case of a blocked high-pressure line, an increase in the noise or fluctuation σ is associated with a reduction in the differential pressure measurement signal 22 of the differential pressure Δp.

Fig. 3 zeigt eine graphische Darstellung, bei der das mittlere Rauschen bzw. die mittlere Fluktuation σ des Differenzdruckmesssignals 22 des Differenzdrucks Δp als Funktion des Differenzdruckmesssignals 22 des Differenzdrucks Δp für vier verschiedene Zustände dargestellt ist. Die Relationen aller vier Zustände sind durch lineare Funktionen 18, 19, 20, 21 modelliert. Fig. 3 shows a graphic representation in which the mean noise or the mean fluctuation σ of the differential pressure measurement signal 22 of the differential pressure Δp is shown as a function of the differential pressure measurement signal 22 of the differential pressure Δp for four different states. The relations of all four states are modeled by linear functions 18, 19, 20, 21.

Jede lineare Funktion beschreibt einen Zustand der Hochdruckleitung und der Niederdruckleitung. Diese vier Zustände sind: Hochdruckleitung und Niederdruckleitung offen (Funktion 18), Hochdruckleitung verstopft und Niederdruckleitung offen (Funktion 19), Hochdruckleitung offen und Niederdruckleitung verstopft (Funktion 20), Hochdruckleitung und Niederdruckleitung verstopft (Funktion 21).Each linear function describes a state of the high pressure line and the low pressure line. These four states are: high pressure line and low pressure line open (function 18), high pressure line blocked and low pressure line open (function 19), high pressure line open and Low pressure line clogged (function 20), high pressure line and low pressure line clogged (function 21).

Deutlich zu sehen ist, dass die Funktion 19 des Zustands "Hochdruckleitung verstopft und Niederdruckleitung offen" einen negativen Linearkoeffizienten (-0,003) aufweist. Des Weiteren weist die Funktion 20 mit dem Zustand "Hochdruckleitung offen und Niederdruckleitung verstopft" einen Linearkoeffizienten (+0,012) auf, der signifikant größer ist als der Linearkoeffizient der Funktion 18 (+0,003) mit dem Zustand "Hochdruckleitung und Niederdruckleitung offen". Der Linearkoeffizient der Funktion 20 ist ca. vier Mal größer als der Linearkoeffizient der Funktion 18. Die Funktion 21, bei dem sowohl die Hochdruckleitung als auch die Niederdruckleitung verstopft ist, weist einen Linearkoeffizienten von Null auf. Folglich lassen sich sämtliche Zustände anhand ihrer charakteristischen Linearkoeffizienten erkennen.It can be clearly seen that function 19 of the state “high pressure line blocked and low pressure line open” has a negative linear coefficient (-0.003). Furthermore, function 20 with the state “high pressure line open and low pressure line blocked” has a linear coefficient (+0.012) that is significantly greater than the linear coefficient of function 18 (+0.003) with the state “high pressure line and low pressure line open”. The linear coefficient of function 20 is approximately four times greater than the linear coefficient of function 18. Function 21, in which both the high pressure line and the low pressure line are clogged, has a linear coefficient of zero. Consequently, all states can be identified based on their characteristic linear coefficients.

BezugszeichenlisteList of reference symbols

11
DurchflussmessanordnungFlow measurement arrangement
22
Mediummedium
33
MessrohrMeasuring tube
44th
WirkdruckgeberDifferential pressure transducer
55
DifferenzdruckmesswandlerDifferential pressure transducer
66th
HochdruckleitungHigh pressure line
77th
HochdruckeingangHigh pressure inlet
88th
NiederdruckleitungLow pressure line
99
NiederdruckeingangLow pressure inlet
1010
AuswerteeinheitEvaluation unit
1111
SensormodulSensor module
1212th
ZweidrahtleitungTwo-wire line
1313th
ProzessleitsystemProcess control system
1414th
Blendecover
1515th
hochdruckseitiger Druckabgriffkanalhigh pressure side pressure tapping channel
1616
niederdruckseitiger DruckabgriffkanalPressure tap on the low pressure side
1717th
DruckdifferenzPressure difference
1818th
Hochdruckleitung und Niederdruckleitung offenHigh pressure line and low pressure line open
1919th
Hochdruckleitung verstopft und Niederdruckleitung offenHigh pressure line blocked and low pressure line open
2020th
Hochdruckleitung offen und Niederdruckleitung verstopftHigh pressure line open and low pressure line blocked
2121
Hochdruckleitung und Niederdruckleitung verstopftClogged high pressure line and low pressure line
2222nd
DifferenzdruckmesssignalDifferential pressure measurement signal

Claims (4)

  1. Flow measurement arrangement designed to measure a flow of a medium (2) through a measuring tube (3), comprising at least a differential pressure sensor (4) located in the measuring tube (3), said sensor particularly causing a reduction in the cross-sectional area, through which the medium (2) flows, inside the measuring tube (1) in the area of the differential pressure sensor (4) and, therefore, a medium pressure gradient that depends on the dimensions of the differential pressure sensor (4) and the flow, said measurement arrangement comprising:
    a differential pressure transducer (5) designed to measure a difference between a medium pressure on the high-pressure side and a medium pressure on the low-pressure side and to provide a differential pressure measuring signal (22) which depends on the difference between the medium pressure on the high-pressure side and the medium pressure on the low-pressure side, wherein the difference between the medium pressure on the high-pressure side and the medium pressure on the low-pressure side is an indicator for the flow of the medium (2),
    a high-pressure pipe (6), which is connected to a high-pressure inlet (7) of the differential pressure transducer (5) in order to subject the differential pressure transducer (5) to the medium pressure on the high-pressure side,
    a low-pressure pipe (8), which is connected to a low-pressure inlet (9) of the differential pressure transducer (5) in order to subject the differential pressure transducer (5) to the medium pressure on the low-pressure side,
    an evaluation unit (10) designed to evaluate the differential pressure measuring signal (22), wherein the evaluation unit (10) is designed to determine a relation between the differential pressure measuring signal (22) and a characteristic parameter of a noise or a fluctuation of the differential pressure measuring signal (22),
    characterized in that
    - the determination of a monotonically decreasing relationship between the differential pressure measuring signal (22) and the characteristic parameter is assessed as an indication of a blocked high-pressure pipe (6), and
    - the determination of a monotonically increasing relationship between the differential pressure measuring signal (22) and the characteristic parameter, whose monotonically increasing relationship is significantly greater than the monotonically increasing relationship between the differential pressure measuring signal and the characteristic parameter of the noise when the measuring arrangement is not blocked, is assessed as an indication of a blocked low-pressure pipe (8).
  2. Flow measurement arrangement as claimed in Claim 1, wherein the monotonically increasing or decreasing relationship between the differential pressure measuring signal (22) and the characteristic parameter is approximately modelled by a linearly increasing or decreasing function, and wherein the significantly more monotonically increasing relationship is an approximately linearly increasing function whose linear coefficient is significantly greater than the linear coefficient, corrected of errors, of a linearly increasing function of an unblocked flow measurement arrangement.
  3. Flow measurement arrangement as claimed in Claim 1 or 2, wherein the monotonically increasing or decreasing relationship between the differential pressure measuring signal (22) and the characteristic parameter is approximately modelled by a quadratically increasing or decreasing function, and wherein the significantly more monotonically increasing relationship is an approximately quadratically increasing function whose coefficient of the quadratic element is significantly greater than the coefficient, corrected of errors, of the quadratic element of a quadratically increasing function of an unblocked flow measurement arrangement.
  4. Procedure to monitor a flow measurement arrangement, particularly as claimed in one of the previous claims, comprising the following procedural steps:
    At least temporary detection of a pattern, over time, of the differential pressure measuring signal (22) and of a characteristic parameter of a noise or a fluctuation of the differential pressure measuring signal (22),
    Determination of a relation between the differential pressure measuring signal (22) and a characteristic parameter of a noise or a fluctuation of the differential pressure measuring signal (22),
    characterized in that the determination of a monotonically decreasing relationship between the differential pressure measuring signal (22) and the characteristic parameter is assessed as an indication of a blocked high-pressure pipe (6), and
    the determination of a monotonically increasing relationship between the differential pressure measuring signal (22) and the characteristic parameter, whose monotonically increasing relationship is significantly greater than the monotonically increasing relationship between the differential pressure measuring signal and the characteristic parameter of the noise in the case of an unblocked flow measurement arrangement, is assessed as an indication of a blocked low-pressure pipe (8).
EP15797080.7A 2014-12-19 2015-11-18 Differential pressure type flowmeter Active EP3234512B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014119240.0A DE102014119240A1 (en) 2014-12-19 2014-12-19 Flow measuring device according to the differential pressure measuring principle for measuring a flow of a medium
PCT/EP2015/076902 WO2016096296A1 (en) 2014-12-19 2015-11-18 Flow-rate measurement assembly according to the differential-pressure measurement principle

Publications (2)

Publication Number Publication Date
EP3234512A1 EP3234512A1 (en) 2017-10-25
EP3234512B1 true EP3234512B1 (en) 2021-11-10

Family

ID=54557418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15797080.7A Active EP3234512B1 (en) 2014-12-19 2015-11-18 Differential pressure type flowmeter

Country Status (5)

Country Link
US (1) US10006790B2 (en)
EP (1) EP3234512B1 (en)
CN (1) CN107110675B (en)
DE (1) DE102014119240A1 (en)
WO (1) WO2016096296A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10576514B2 (en) 2013-11-04 2020-03-03 Loci Controls, Inc. Devices and techniques relating to landfill gas extraction
US10029290B2 (en) 2013-11-04 2018-07-24 Loci Controls, Inc. Devices and techniques relating to landfill gas extraction
DE102014119240A1 (en) 2014-12-19 2016-06-23 Endress + Hauser Gmbh + Co. Kg Flow measuring device according to the differential pressure measuring principle for measuring a flow of a medium
WO2017151766A1 (en) * 2016-03-01 2017-09-08 Loci Controls, Inc. Designs for enhanced reliability and calibration of landfill gas measurement and control devices
US10705063B2 (en) * 2016-03-01 2020-07-07 Loci Controls, Inc. Designs for enhanced reliability and calibration of landfill gas measurement and control devices
DE102017012067A1 (en) 2017-12-29 2019-07-04 Endress+Hauser Flowtec Ag Pipe for a transducer, transducer with such a tube and thus formed measuring system
US10946420B2 (en) 2018-03-06 2021-03-16 Loci Controls, Inc. Landfill gas extraction control system
DE102018110456A1 (en) 2018-05-02 2019-11-07 Endress + Hauser Flowtec Ag Measuring system and method for measuring a measured variable of a flowing fluid
KR20210109643A (en) * 2019-01-25 2021-09-06 램 리써치 코포레이션 DIFFERENTIAL-PRESSURE-BASED FLOW METERS
CA3168631A1 (en) 2020-01-29 2021-08-05 Loci Controls, Inc. Automated compliance measurement and control for landfill gas extraction systems
US11623256B2 (en) 2020-07-13 2023-04-11 Loci Controls, Inc. Devices and techniques relating to landfill gas extraction

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7949495B2 (en) * 1996-03-28 2011-05-24 Rosemount, Inc. Process variable transmitter with diagnostics
US7630861B2 (en) * 1996-03-28 2009-12-08 Rosemount Inc. Dedicated process diagnostic device
US8290721B2 (en) * 1996-03-28 2012-10-16 Rosemount Inc. Flow measurement diagnostics
US6654697B1 (en) * 1996-03-28 2003-11-25 Rosemount Inc. Flow measurement with diagnostics
US7254518B2 (en) * 1996-03-28 2007-08-07 Rosemount Inc. Pressure transmitter with diagnostics
US5680109A (en) 1996-06-21 1997-10-21 The Foxboro Company Impulse line blockage detector systems and methods
DE60029196T2 (en) * 1999-02-25 2007-06-28 Rosemount Inc., Eden Prairie FLOW MEASUREMENT WITH DIAGNOSTIC MEANS
US6904386B2 (en) * 2002-10-07 2005-06-07 Honeywell International Inc. Control system and method for detecting plugging in differential pressure cells
US6813588B1 (en) * 2003-03-31 2004-11-02 Honeywell International Inc. Control system and method for detecting plugging in differential pressure cells
US7523667B2 (en) * 2003-12-23 2009-04-28 Rosemount Inc. Diagnostics of impulse piping in an industrial process
JP4609025B2 (en) * 2004-10-04 2011-01-12 横河電機株式会社 Pressure detector and clogging diagnosis method for pressure detector
US7577543B2 (en) * 2005-03-11 2009-08-18 Honeywell International Inc. Plugged impulse line detection
JP4804798B2 (en) * 2005-05-27 2011-11-02 横河電機株式会社 Pressure detector and clogging diagnosis method for pressure detector
JP4970820B2 (en) 2006-03-27 2012-07-11 横河電機株式会社 Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method
WO2008061551A1 (en) * 2006-11-23 2008-05-29 Siemens Aktiengesellschaft Method for the diagnosis of a blockage of a pulse transfer in a pressure transducer, and a pressure transducer
CN101256106B (en) * 2007-02-26 2011-11-09 横河电机株式会社 Impulse line-clogging detecting unit and impulse line-clogging detecting method
US8752433B2 (en) * 2012-06-19 2014-06-17 Rosemount Inc. Differential pressure transmitter with pressure sensor
DE102014119240A1 (en) 2014-12-19 2016-06-23 Endress + Hauser Gmbh + Co. Kg Flow measuring device according to the differential pressure measuring principle for measuring a flow of a medium
DE102016114846A1 (en) * 2016-08-10 2018-02-15 Endress+Hauser Gmbh+Co. Kg Differential pressure measuring arrangement and method for detecting clogged differential pressure lines

Also Published As

Publication number Publication date
CN107110675A (en) 2017-08-29
EP3234512A1 (en) 2017-10-25
US20170328750A1 (en) 2017-11-16
WO2016096296A1 (en) 2016-06-23
DE102014119240A1 (en) 2016-06-23
US10006790B2 (en) 2018-06-26
CN107110675B (en) 2019-11-15

Similar Documents

Publication Publication Date Title
EP3234512B1 (en) Differential pressure type flowmeter
EP3044559B1 (en) Flow measuring assembly having effective-pressure lines and method for detecting plugged effective-pressure lines
DE102009002682B4 (en) Device and method for residual evaluation of a residual for detecting system errors in the system behavior of a system of an aircraft
DE102009046758A1 (en) Self-monitoring flowmeter assembly and method of operation
EP3222980B1 (en) Flow meter with error detection
DE102009003020A1 (en) Runtime measurement correction in a flow sensor
DE102012112976A1 (en) Method and vortex flow meter for determining the mass flow ratio of a multiphase flow
EP3325923B1 (en) Flow meter according to the vortex counting principle
DE102005020900B3 (en) Mechanical, electromechanical, and fluidic components diagnosing method for valve, involves subsampling measuring signal, and generating error message signal if intensity of subsampled measuring signal exceeds defined threshold value
WO2018028931A1 (en) Differential pressure measurement arrangement and method for identifying blocked differential pressure lines
EP3676579A1 (en) Differential pressure measuring arrangement
EP3084359B1 (en) Process and assembly for differential pressure measurements with zero-point calibration
EP4341649A1 (en) Method for flow measurement that is subject to interference, magneto-inductive flowmeter and computer program product
EP4042111B1 (en) Method for monitoring a measuring device system
DE102010006429A1 (en) Coriolis mass flow measuring device for mounting pipe line in processing plant, has evaluating device formed to monitor acceleration signal based on predetermined criterion and to output signal for displaying error condition
DE102020116702A1 (en) Pressure gauge
EP3076249B1 (en) Method for operating a field device and corresponding field device
EP1979724B1 (en) Method and device for detecting a pulsed mechanical effect on a plant component
WO2010091700A1 (en) Method for the operation of a coriolis mass flowmeter, and coriolis mass flowmeter
WO2014206923A1 (en) Method for avoiding pulsation-related measurement errors when determining the mass flow
DE102020123162A1 (en) Method for operating a measuring arrangement with a Coriolis measuring device and measuring arrangement
EP3812645A1 (en) Device for determining the consumption of a gas from a gas bottle at least partially filled with gas
AT510675A2 (en) METHOD FOR IDENTIFYING THE TRANSMISSION BEHAVIOR OF A SYSTEM, AND ULTRASONIC RUNNING METHOD FOR DETERMINING THE FLOW SPEED IN A MEDIUM
DE102019207657A1 (en) Sensor module and method for providing an analog sensor module signal
DE19541149A1 (en) Measuring physical parameter esp. temp.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ENDRESS+HAUSER SE+CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210702

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1446488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015015398

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220310

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220310

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220210

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220211

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015015398

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220811

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211118

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220110

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1446488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220210

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231121

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110