EP3230531B1 - Verfahren und vorrichtungen zur baugrundverbesserung - Google Patents

Verfahren und vorrichtungen zur baugrundverbesserung Download PDF

Info

Publication number
EP3230531B1
EP3230531B1 EP15825602.4A EP15825602A EP3230531B1 EP 3230531 B1 EP3230531 B1 EP 3230531B1 EP 15825602 A EP15825602 A EP 15825602A EP 3230531 B1 EP3230531 B1 EP 3230531B1
Authority
EP
European Patent Office
Prior art keywords
drilling tool
hollow
subsoil
turbine
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15825602.4A
Other languages
English (en)
French (fr)
Other versions
EP3230531A1 (de
Inventor
Maik KETTNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3230531A1 publication Critical patent/EP3230531A1/de
Application granted granted Critical
Publication of EP3230531B1 publication Critical patent/EP3230531B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/46Concrete or concrete-like piles cast in position ; Apparatus for making same making in situ by forcing bonding agents into gravel fillings or the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
    • E02D3/054Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil involving penetration of the soil, e.g. vibroflotation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
    • E02D3/074Vibrating apparatus operating with systems involving rotary unbalanced masses
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/56Screw piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/02Placing by driving
    • E02D7/06Power-driven drivers

Definitions

  • the invention relates to a method for producing bored piles and a boring tool. Furthermore, a deep vibrator and a method for displacing and solidifying a building material are objects of the present invention.
  • a building site survey usually describes the properties of the soil. Dead loads, payloads and climatically-related loads must be transferred permanently, safely and with little settlement to the subsoil. If the subsoil is not suitable to withstand the planned loads, a technical adaptation of the properties of the subsoil to the requirements can be considered.
  • One way to improve the properties of the subsoil in construction projects is to produce pile-like foundation elements in the subsoil, which can be used to transfer relatively high loads.
  • the manufacture of bored piles is one way of making pile foundations.
  • a drilling tool is sunk into the ground with the application of a vertical force and a drilling torque. Additional material that forms the bored pile is introduced into the resulting bore.
  • the additional material can be introduced through a hollow core of the drilling tool, in this case also called a hollow drilling tool, or can be filled separately into the bore.
  • a continuous hollow auger is used in the partial displacement drilling process.
  • This consists of a drill pipe, which is provided on the outside with a screw helix and is closed at a lower end by a footplate.
  • Conventional hollow augers for such applications are about 3 to 50 m long and have a diameter of about 300 to 1100 mm. Applying a vertical force and a torque, the hollow auger is sunk into the ground. The surrounding ground is displaced and compacted at the same time. Due to the external helix attached to the drill pipe, also called hollow core, there is additional conveyance of building material.
  • a so-called reinforcement is sometimes inserted into the hollow core.
  • concrete or an alternative filling material such as mortar for the displacement bored pile is pumped in or filled in while simultaneously withdrawing the hollow auger.
  • the base plate usually remains in the ground if the reinforcement is to be installed before pulling.
  • a drill pipe at the end of which a beginner tip, usually with screw gears, is attached, is sunk into the ground by exerting a vertical force and a torque.
  • Conventional full displacement drilling tools for such applications are about 3 to 50 m long and have a diameter of about 200 to 1000 mm.
  • the tip almost completely displaces the ground in a lateral direction, thereby compacting the soil that surrounds the later pile. There is no significant vertical soil extraction to the surface of the earth. If the drill pipe has penetrated into the load-bearing subsurface, some reinforcement is introduced into the drill pipe. The concrete is then pumped in or poured while pulling the drill pipe.
  • the diameter of displacement bored piles is usually in the range of 200 to 1000 mm.
  • drilling tools in which the tip can remain in the ground or in which the tip can be pulled out of the ground with the drilling tool.
  • drilling tools in which the drill helix is optionally provided at the tip, the drill pipe or at the tip and the drill pipe. Drilling tools without a helix are also possible, in which the drilling torque can be transferred to the ground, for example, via an outer surface with corresponding friction properties. Any combinations of these and other known variants are also conceivable.
  • Deep vibration processes Another way to improve the properties of the subsoil in construction projects is in so-called deep vibration processes. These generally relate to methods for compacting and consolidating subsoil, with a tool, a so-called deep vibrator, displacing the subsoil and thereby consolidating it.
  • This method and the associated tools, the deep vibrators are generally known to the person skilled in the art.
  • the deep vibrator is sunk into the ground with the application of a vertical force and generates horizontal vibrations during the sinking.
  • Conventional deep vibrators for such purposes are about 2 to 5 m long, have a diameter of about 300 to 900 mm and weigh about 1 to 6 t. Its length is adapted to the intended working depth using attachment tubes.
  • the deep vibrators are guided by cranes, excavators or specially developed carrier devices.
  • a frequency of the vibrations generated by conventional deep vibrators is in the range of the natural frequency of the subsoil, typically between 25 and 60 Hz.
  • the vibrations exist both as a dynamic horizontal deflection of the deep vibrator and in the form of a dynamic horizontal force that is exerted by the deep vibrator on the surrounding area Soil is exercised. Since such mechanical relationships are sufficiently known to the person skilled in the art, no distinction will be made in the following between a force and a deflection vibration, because a force that acts on a body always exerts an acceleration on this body, which leads to a certain deflection of the body Consequence. The horizontal vibrations are therefore transmitted to the surrounding ground. If the material of the subsoil is compressible, the horizontal vibrations lead to displacement and thus compaction of the subsoil itself. The compaction results in a consolidation of the subsoil.
  • the so-called vibrating pressure method an embodiment of the deep vibrating method, is discussed, in which the deep vibrator is sunk into the ground several times and at certain intervals and then withdrawn again.
  • the vibrations of the deep vibrator briefly reduce the frictional force between the building blocks.
  • the grains of the building ground material can then change to a denser storage state as soon as the deep vibrator is withdrawn from an area of the building ground displaced by it.
  • existing voids in the ground can be reduced or closed completely.
  • Coarse-grained building sites which consist for example of coarse sand, gravel or small stones, are particularly suitable for such compaction. Since there is a decrease in volume as a result of the compression, this usually has to be compensated for by superficial refilling of material. The result is a solidified subsoil with the same height level, which is suitable for carrying larger loads.
  • the so-called vibrating plug process is described as an example. It is suitable for building materials with small grain sizes, such as silt or clay, as well as organic materials. With such materials, it is no longer possible to sufficiently compact the subsoil itself.
  • a deep vibrator is used in alternating steps. With the deep vibrator sunk into the subsoil, an additional material, such as gravel or crushed stone or concrete, is introduced into the subsoil, which after completion has a higher rigidity than the surrounding soil. The additional material emerges at the tip of the deep vibrator when it is lifting.
  • the additional material on the surface of the earth is fed into the deep vibrator through a lock and guided into the working depth of the deep vibrator by an external hollow core.
  • the leaked additional material is compacted during the lowering movement of the deep vibrator following the lifting movement and displaced laterally into the ground. In this way, so-called stuffing columns are gradually created, which, together with the ground, are suitable for transferring the loads.
  • Deep vibrators are well known to those skilled in the art. They have a linkage that consists of one or several extension tubes. Through them, the deep vibrator can be sunk to the desired depth. In the case of deep vibrators for the vibrating tamping process, a hollow core can additionally be provided for guiding the additional material.
  • the head of the deep vibrator is connected to the linkage via an elastic coupling.
  • the head usually consists of an elongated housing, in the interior of which a mechanism and a drive energy source for generating horizontal vibrations are arranged.
  • the mechanics consist of a mass with an eccentric center of gravity, in other words an unbalance as well as a bearing and a drive shaft.
  • the bearing limits the degrees of freedom of the drive shaft and imbalance to a rotational degree of freedom.
  • an electric or hydraulic motor is provided as the drive energy source, which is usually operatively connected to the drive shaft via a positive-locking gear.
  • the motor with gearbox and the mechanics together form a drive train. If the motor supplies drive energy to the drive shaft with the unbalance, it begins to rotate. Dynamic centrifugal forces occur on the mass with an eccentric center of gravity, which result in lateral acceleration of the entire mechanics. The mechanics are thus set in horizontal vibrations. The vibrations are transferred to the housing of the deep vibrator via the bearing.
  • DE 10 006 973 A1 discloses an apparatus for the manufacture of bored piles using the displacement rotary drilling method.
  • a vibration generator is arranged at an end end of a drill pipe, which is separated from an upper section of the pipe via an elastic joint.
  • DE 199 30 884 A1 discloses a method for compacting soils using a deep vibrator.
  • a size of the moved unbalance mass is changed to change the effective impact force during the vibration process.
  • An object of the present invention is to provide a method for producing To supply bored piles and a corresponding boring tool of the type mentioned at the outset for the production of bores and bored piles, the boring tool also being designed to be simple and adaptable flexibly to the respective building ground, and the efficiency of the method and of the boring tool being improved.
  • Another object of the invention is to provide a method for displacing and consolidating building material and a deep vibrator of the aforementioned types, which is simple in construction and can be flexibly adapted to the respective building ground.
  • the present invention relates to a method for producing bored piles.
  • a drilling tool is sunk into the ground with the application of a drilling torque and a vertical force, withdrawn again and an additional material is introduced into the resulting hole.
  • the drilling tool is vibrated by one or more actuators while it is being sunk into the ground and / or while the drilling tool is being withdrawn, a resulting oscillation amplitude having at least a horizontal portion.
  • Actuators are preferably used which generate an oscillation with an amplitude in the range from 0.01 mm to 5 mm, further preferably 0.02 mm to 3 mm and particularly preferably 0.03 mm to 2 mm with respect to a horizontal or radial deflection of the drilling tool .
  • An amplitude with respect to a horizontal or radial force is preferably 0.5 kN to 1000 kN, further preferably 1 kN to 700 kN and particularly preferably 25 kN to 400 kN.
  • the actuators are preferably designed as one or more independent flow machines, particularly preferably as one or more pneumatic turbines, in each of which one or more imbalances are integrated.
  • the pneumatic turbines are preferably operated at speeds of 1 rpm to 100,000 rpm, particularly preferably 1 rpm to 50,000 rpm and particularly preferably 1 rpm to 30,000 rpm.
  • pneumatic turbines are to be operated at different speeds, for example turbines with adjustable turbine blades can be used.
  • Means for influencing the air flow can also be used, such as valves, flaps or suitably designed housing elements of the drilling tool. Fundamentally, the person skilled in the art is aware of procedures for operating several turbines that are independent of one another.
  • a hollow drilling tool is used as the drilling tool, which has at least one hollow core and that the additional material is filled into the bore through the hollow core of the hollow drilling tool, before the start and / or during and / or after the withdrawal of the hollow drilling tool.
  • reinforcement is introduced into the hollow core of the hollow drilling tool before the filling material is filled into the hollow core of the hollow drilling tool.
  • the drilling tool has at least one turbomachine, at least one imbalance being integrated in at least one rotor of the at least one turbomachine and the rotor being rotatably mounted in the drilling tool about a longitudinal axis of the drilling tool, so that a resulting oscillation can be generated, the oscillation of which Vibration amplitude has at least a horizontal portion.
  • a drilling tool is any device with which a drilling torque, in other words a circumferential force, can be transmitted to the surrounding ground via an outer surface of the device.
  • the turbomachine can preferably be operated at speeds from 1 rpm to 100,000 rpm, particularly preferably from 1 rpm to 50,000 rpm and particularly preferably from 1 rpm to 30,000 rpm.
  • the unbalance is preferably designed and integrated in the rotor of the turbomachine in such a way that the drilling tool is designed, in operation a vibration with an amplitude in the range from 0.01 mm to 5 mm, further preferably 0.02 mm to 3 mm and particularly preferably 0.03 mm to 2 mm with respect to a horizontal or radial deflection of the drilling tool or an oscillation with an amplitude with respect to a horizontal or radial force of preferably 0.5 kN to 1000 kN, further preferably 1 kN to 700 kN and particularly preferably 25 kN up to 400 kN.
  • This offers the advantage that the turbomachine can be operated at a high speed, which has a positive effect on the efficiency of the turbomachine.
  • the drilling tool is provided at least in sections with a helix and / or a tip with screw threads.
  • the drilling tool is a hollow drilling tool, having at least one hollow core.
  • the at least one turbomachine is designed as at least one pneumatic turbine.
  • pneumatic turbines are to be operated at different speeds, they can have, for example, adjustable turbine blades.
  • Means for influencing the air flow can also be provided in the drilling tool, such as valves, flaps or suitably designed housing elements.
  • valves, flaps or suitably designed housing elements In principle, the person skilled in the art knows how to design turbines or the system that provides the operating fluid so that they can be operated at different speeds.
  • At least one impeller with turbine blades is mounted on a hollow shaft which is designed as a hollow core.
  • a further aspect of the present invention relates to a deep vibrator for displacing and solidifying a building material, having at least one rotationally movable unbalance, the deep vibrator having at least one turbo machine as a drive for the unbalance and the at least one turbo machine comprising at least one pneumatically driven turbine.
  • the at least a pneumatically driven turbine with which at least one imbalance is operatively connected via at least one induction clutch is provided.
  • a pneumatic turbine can advantageously be designed to be operated permanently with a maximum torque. Differences in speed between the turbine and imbalance can advantageously be compensated for by the induction coupling, so that no mechanical gearbox based on positive locking is required. Frictional losses can thereby advantageously be avoided. This also leads to a reduced maintenance effort.
  • the design for air as the operating fluid for the turbine also offers the advantage that storage and permanent processing of the operating fluid can be omitted.
  • the induction coupling belongs to the class of externally operated switchable couplings with a force-locking principle.
  • the transmission of force or moment is based on the principle of a changing magnetic field that acts on a passive electrical conductor.
  • the drive side of the clutch can generate the magnetic field, for example, and is referred to below as the active side.
  • Both permanent magnets and electromagnets can be used to generate the magnetic field. If an electromagnet is used, it can consist of one or more electrical conductors through which a controllable current can flow.
  • the passive side With induction couplings, there is no physical contact between the drive side (active side) and the output side (passive side), hereinafter referred to as the passive side.
  • the passive side can preferably have a short-circuited electrical conductor that is not actively supplied with an electrical voltage. If there is a speed difference between the active and passive side, this results in a relative movement between the active and passive side. The magnetic field generated by the active side is thus moved relative to the short-circuited conductor on the passive side. As a result, the Lorenz force acts on the short-circuited conductor, whereby a torque can be transmitted from the drive side (active side) to the output side (passive side) of the induction coupling. The torque can preferably be achieved by regulating the electrical current that flows through the electrical conductor of the active drive side. Swapping the active and passive side is also possible. It is also possible to use two active pages. These constructive modifications are carried out independently by the specialist if required.
  • the induction coupling enables operation with a permanent speed difference between the input and output side.
  • An induction clutch is preferably used, which is designed to transmit torques of more than 1 Nm on the drive side.
  • the torque values that can be transmitted on the drive side are preferably in the range from 5 Nm to 100 Nm, particularly preferably from 10 Nm to 40 Nm.
  • the induction clutch is preferred in the speed range on the drive side between 500 rpm (revolutions per minute) and 50,000 rpm, preferably between 10,000 rpm and 40,000 rpm and particularly preferably between 10,000 rpm and 30,000 rpm operated.
  • a mechanical power that can be transmitted by the induction coupling is preferably in the range from 5 kW to 200 kW, particularly preferably from 10 kW to 60 kW and particularly preferably from 20 kW to 50 kW.
  • An induction coupling with permanent magnets is preferably used.
  • an induction coupling with an electromagnet is preferably used.
  • the drive side of the induction clutch in other words the side of the induction clutch facing the pneumatic turbine, is designed as a passive side and that the driven side, that is to say the side facing the unbalance, is designed as an active side.
  • An arrangement of a plurality of induction clutches connected in series is also preferred.
  • a mass of the rotationally movable unbalance is preferably between 1 kg and 200 kg, particularly preferably between 5 kg and 60 kg.
  • a center of gravity of the rotationally movable unbalance is, based on an axis of rotation, preferably at a maximum radial distance from the axis of rotation. An available installation space acts as a limiting boundary condition.
  • the pneumatic turbine can preferably be operated at speeds of 500 rpm and 50,000 rpm, preferably between 10,000 rpm and 40,000 rpm and particularly preferably between 10,000 rpm and 30,000 rpm.
  • a torque that can be generated by the pneumatic turbine is preferably in the range from 1 Nm to 100 Nm, particularly preferably from 10 Nm to 40 Nm, particularly preferably from 15 Nm to 25 Nm.
  • a pressure difference of an amount of air that can be used to operate the pneumatic turbine, from a turbine inlet to a turbine outlet, is preferably between 1 bar and 30 bar, further preferably 2 bar and 20 bar and particularly preferably between 3 bar and 15 bar. This has the advantage that the pneumatic turbine can provide high torque with high efficiency.
  • the induction coupling is designed with rotational frequencies on the drive side (drive shaft) in rotational frequencies of preferably between 5 Hz and 120 Hz, particularly preferably between 15 Hz and 90 Hz and particularly preferably between 25 Hz and 60 Hz on the To convert shaft on the output side (output shaft) of the induction coupling.
  • a method for displacing and solidifying a building material wherein a deep vibrator is sunk into the ground by applying a vertical force and the deep vibrator is set in vibration during the sinking, a resulting vibration amplitude having at least a horizontal portion ,
  • vibrations are generated by at least two kinematically independent, rotationally moved unbalances, the resulting vibration being adjustable by superimposing the individual vibrations of the independent unbalances.
  • the rotational frequencies of the respective rotationally moved unbalances are preferably between 20 Hz and 600 Hz, particularly preferably between 30 Hz and 500 Hz and particularly preferably between 50 Hz and 450 Hz.
  • the frequency of the resulting superimposed vibration is preferably between 5 Hz and 120 Hz, particularly preferably between 15 Hz and 90 Hz and particularly preferably between 25 Hz and 60 Hz.
  • a dynamic resulting centrifugal force is furthermore preferably generated by the rotating unbalances.
  • a maximum amount of the resulting centrifugal force is preferably 25 kN to 700 kN, further preferably 50 kN to 600 kN and particularly preferably 100 kN to 500 kN.
  • the rotational movement of the unbalances is brought about by at least one turbomachine.
  • turbomachines offer particular advantages when generating high centrifugal forces.
  • At least one pneumatic turbine is used as the at least one turbomachine.
  • the pneumatic turbine is preferably operated at speeds from 500 rpm to 50,000 rpm, particularly preferably from 10,000 rpm to 40,000 rpm and particularly preferably from 10,000 rpm to 30,000 rpm.
  • a torque generated by the pneumatic turbine is preferably in the range from 1 Nm to 100 Nm, particularly preferably from 10 Nm to 40 Nm and particularly preferably from 15 Nm to 25 Nm.
  • a pressure difference from an amount of air used to operate the pneumatic turbine, from a turbine inlet to a turbine outlet, is preferably between 1 bar and 30 bar, further preferably between 2 bar and 20 bar and particularly preferably between 3 bar and 15 bar.
  • pneumatic turbines are to be operated at different speeds, for example turbines with adjustable turbine blades can be used.
  • Means can also be used to influence the air flow, such as valves, flaps or suitably designed housing elements of the deep vibrator. Fundamentally, the person skilled in the art is aware of procedures for operating several turbines that are independent of one another.
  • a deep vibrator for displacing and solidifying a building material which has one or more rotationally movable unbalances. According to the invention it is provided that the unbalances are integrated in an associated pneumatic turbine.
  • the unbalances are arranged in one or more impellers of the pneumatic turbine. It is also possible to arrange the unbalances in one shaft each, in the event that all turbine stages are mounted on a separate shaft.
  • Both variants offer the advantage that a mass distribution of the unbalances can be designed specifically and precisely. Furthermore, a decentralized arrangement of the unbalances in the turbine enables a partial conversion in order to specifically change the mass properties of the turbine or the unbalances.
  • pneumatic turbines are to be operated at different speeds, they can have, for example, adjustable turbine blades.
  • Means for influencing the air flow in the deep vibrator can also be provided, such as valves, flaps or suitably designed housing elements.
  • valves, flaps or suitably designed housing elements In principle, the person skilled in the art knows how to design turbines or the system that provides the operating fluid so that they can be operated at different speeds.
  • the masses of the rotationally movable unbalances are preferably between 0.1 kg and 3 kg, particularly preferably between 0.2 kg and 2 kg.
  • a center of gravity of the rotationally movable unbalance is, with respect to an axis of rotation, preferably at a maximum radial distance from the axis of rotation.
  • An available installation space acts as a limiting boundary condition.
  • the pneumatic turbines with the unbalances can preferably be operated at speeds of 1 rpm to 100,000 rpm, particularly preferably from 1 rpm to 50,000 rpm and particularly preferably from 1 rpm to 30,000 rpm.
  • FIG. 1 shows a preferred embodiment of a method according to the invention for the production of displacement bored piles in a schematic representation.
  • a hollow drilling tool 47 is sunk into the ground 28 by applying a drilling torque 48 about an axis of rotation R and a vertical force 50 along an axis of rotation R.
  • the hollow drilling tool 47 is moved by actuators 56 in the form of two mutually independent pneumatic turbines 42 with integrated unbalances 76 while it is in the ground 28 is sunk, set into vibration 58. Initially, a plurality of vibrations 36 are generated by the two unbalances 76 which are rotated with the turbines 42.
  • the resulting vibration 58 can be set by superimposing the individual vibrations 36 of the independently rotating unbalances 76.
  • a resulting oscillation amplitude has a horizontal component 62, which makes up more than 95% of the total oscillation amplitude.
  • the rotational frequencies of the two rotationally moved unbalances 76 are 200 Hz and 300 Hz, the assignment being freely selectable in a design.
  • an oscillation 58 is generated which corresponds to a dynamic resulting centrifugal force F which has a maximum amount of 175 kN.
  • the vibration 58 corresponds to a dynamic radial or horizontal deflection W of the hollow drilling tool 47 with a maximum amount of 0.2 mm.
  • FIG 2 shows a schematic representation of a preferred embodiment of a hollow drilling tool 47 according to the invention.
  • the hollow drilling tool is particularly suitable for the in Figure 1 described method.
  • the hollow drilling tool 47 is provided with a drilling helix 66 over an outer surface and has a hollow core 54.
  • the hollow drilling tool 47 also has two independent pneumatic turbines 80, the impellers 82 of which are supported with turbine blades on a common longitudinal axis 78 which forms the hollow core 54.
  • An unbalance 76 is integrated into the impellers 82 of the turbines 80.
  • the turbines 80 are designed for a nominal speed of 25,000 rpm.
  • the unbalances 76 are designed and integrated into the impellers 82 of the turbines 80 in such a way that the hollow drilling tool 47 is designed to carry out an oscillation with a maximum amplitude of 0.4 mm during operation with respect to a horizontal or radial deflection of the hollow drilling tool 47, or an oscillation with a maximum amplitude with regard to a horizontal or radial force of 150 kN.
  • FIG 3 shows a schematic representation of a preferred embodiment of a deep vibrator 10 according to the invention with a pneumatic turbine 16 and induction coupling 18.
  • the deep vibrator 10 has a rotationally movable imbalance 12.
  • the unbalance is 12 driven by a turbomachine, which is designed as a two-stage pneumatically driven turbine 16.
  • Two impellers 84 of the turbine 16 are arranged on a common shaft 86 with an axis of rotation R.
  • One end of the shaft 86 is a drive shaft 20 for the induction clutch 18.
  • the induction clutch 18 is designed to transmit a nominal torque of 25 Nm, at a nominal speed of 20,000 rpm on the drive shaft 20 and 50 Hz on an output shaft 22.
  • a mechanical power which can be transmitted by the induction clutch 18 is in the range of 60 kW.
  • the induction coupling 18 has permanent magnets in the active side 88, which are designed to generate an induction magnetic field.
  • a mass of the rotationally movable imbalance 12 is 20 kg.
  • the pneumatic turbine 16 is designed for a nominal speed of 20,000 rpm and a nominal torque of 25 Nm.
  • a nominal power that can be provided by the pneumatic turbine 16 is 60 kW.
  • a pressure difference of an air volume flow 100 that can be used to operate the pneumatic turbine 16 is 7 bar at a nominal operating point.
  • FIG. 4 shows a schematic representation of a preferred embodiment of a method according to the invention for displacing and solidifying a building material.
  • the chronological sequence of the method steps is evident from the description below.
  • a deep vibrator 24 is sunk into the ground 28 by applying a vertical force 26.
  • the deep vibrator 24 is set in vibration 30 during the sinking.
  • Several vibrations 36 are generated by two kinematically independent rotational imbalances 38.
  • the rotational movement of the unbalances 38 is brought about by two pneumatic turbines 42.
  • the resulting vibration 30 can be set by superimposing the individual vibrations 36 of the independent unbalances 38.
  • a resulting oscillation amplitude has a horizontal component 34, which makes up more than 95% of the total oscillation amplitude.
  • a resulting vibration 30 is generated, which corresponds to a dynamic resulting centrifugal force F of the rotating unbalance 38 with an amount of 150 kN. Furthermore, the resulting vibration 30 corresponds to a dynamic radial or horizontal deflection W of the deep vibrator 24. A maximum amount of the resulting radial or horizontal deflection W of the deep vibrator 24 is 8 mm.
  • FIG. 5 shows a schematic representation of a preferred embodiment of a deep vibrator 44 according to the invention with two independent pneumatic turbines 42 with integrated unbalances 38.
  • the unbalances 38 are integrated in an associated pneumatic turbine 42 or are each integrated in an impeller 118 of the associated turbine 42.
  • the wheels 118 are mounted on a common axis of rotation R.
  • Masses of the rotationally movable unbalances 38 are 0.25 kg and 0.5 kg, the assignment of the masses to the unbalances 38 being freely selectable in a design.
  • a resulting center of gravity S of the rotationally movable unbalances 38 lies in relation to the axis of rotation R at a maximum possible radial distance d, which is limited by an available installation space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Earth Drilling (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Bohrpfählen und ein Bohrwerkzeug. Weiterhin sind ein Tiefenrüttler sowie ein Verfahren zur Verdrängung und Verfestigung eines Baugrundmaterials Gegenstände der vorliegenden Erfindung.
  • Bei der Errichtung von Bauwerken kommt der Beschaffenheit des Baugrunds eine wichtige Bedeutung zu. Insbesondere bei großen und massereichen Gebäuden werden hohe Anforderungen an die Stabilität, beziehungsweise Belastbarkeit des Baugrunds gestellt. Üblicherweise beschreibt ein Baugrundgutachten die Eigenschaften des Bodens. Eigenlasten, Nutzlasten und klimatisch bedingte Lasten müssen dauerhaft, sicher und setzungsarm auf den Baugrund übertragen werden. Ist der Baugrund nicht geeignet, den geplanten Beanspruchungen zu widerstehen, so kommt eine technische Anpassung der Eigenschaften des Baugrunds an die Anforderungen in Betracht.
  • Das Tiefenrütteln zur Verdrängung und Verdichtung des Baugrunds sowie das Herstellen von Bohrpfählen als zusätzliche stabilitätsfördernde Strukturelemente stellen hier etablierte Verfahren dar.
  • Eine Möglichkeit, die Eigenschaften des Baugrunds bei Bauvorhaben zu verbessern besteht darin, pfahlartige Gründungselemente im Baugrund herzustellen, über die verhältnismäßig hohe Lasten abgetragen werden können. Eine Möglichkeit zur Herstellung von Pfahlgründungen bietet das Herstellen von Bohrpfählen. Allgemein wird bei diesem Verfahren ein Bohrwerkzeug unter Aufbringung einer Vertikalkraft und eines Bohrmoments in den Baugrund abgeteuft. In die entstandene Bohrung wird ein Zusatzmaterial eingebracht, das den Bohrpfahl ausbildet. Das Zusatzmaterial kann durch eine Hohlseele des Bohrwerkzeugs, in diesem Fall auch Hohlbohrwerkzeug genannt, eingebracht werden oder aber separat in die Bohrung gefüllt werden.
  • Exemplarisch wird auf das Teil- und Vollverdrängungsbohrverfahren eingegangen. Weitere Verfahrensausprägungen sind dem Fachmann bekannt und werden daher nicht gesondert betrachtet.
  • Beim Teilverdrängungsbohrverfahren wird eine durchgehende Hohlbohrschnecke verwendet. Diese besteht aus einem Bohrrohr, das außen mit einer Schneckenwendel versehen ist und an einem unteren Ende durch eine Fußplatte verschlossen ist. Konventionelle Hohlbohrschnecken für derartige Einsatzzwecke sind etwa 3 bis 50 m lang und haben einen Durchmesser von etwa 300 bis 1100 mm. Unter Aufbringung einer Vertikalkraft und eines Drehmoments wird die Hohlbohrschnecke in den Baugrund abgeteuft. Der umgebende Baugrund wird verdrängt und gleichzeitig verdichtet. Durch die am Bohrrohr, auch Hohlseele genannte, außen angebrachte Schneckenwendel findet zusätzlich eine Förderung von Baugrundmaterial statt. Wenn die Hohlbohrschnecke bis in einen tragfähigen Bereich des Baugrunds vorgedrungen ist, wird teilweise eine sogenannte Bewehrung in die Hohlseele eingebracht. Anschließend wird Beton oder ein alternatives Füllmaterial wie zum Beispiel Mörtel für den Verdrängungsbohrpfahl unter gleichzeitigem Zurückziehen der Hohlbohrschnecke eingepumpt oder eingefüllt. Dabei verbleibt üblicherweise die Fußplatte im Baugrund, wenn die Bewehrung vor dem Ziehen eingebracht werden soll.
  • Beim Vollverdrängungsbohrverfahren wird ein Bohrrohr, an dessen Ende eine Anfängerspitze, üblicherweise mit Schraubengängen, angebracht ist, unter Ausübung einer Vertikalkraft und eines Drehmoments in den Boden abgeteuft. Dabei haben sich mehrere Varianten etabliert, welche sich hauptsächlich durch die Form der Bohrspitze und dem im Boden verbleibenden Teil der Spitze unterscheiden. Konventionelle Vollverdrängungsbohrwerkzeuge für derartige Einsatzzwecke sind etwa 3 bis 50 m lang und haben einen Durchmesser von etwa 200 bis 1000 mm. Die Spitze verdrängt dabei den Boden nahezu vollständig in seitlicher Richtung und verdichtet dadurch das Erdreich, das den späteren Pfahl umgibt. Eine nennenswerte vertikale Bodenförderung bis zur Erdoberfläche findet hier nicht statt. Ist das Bohrrohr bis in den tragfähigen Untergrund vorgedrungen, wird teilweise Bewehrung in das Bohrrohr eingebracht. Anschließend wird der Beton unter gleichzeitigem Ziehen des Bohrrohres eingepumpt oder geschüttet.
  • Der Durchmesser von Verdrängungsbohrpfählen liegt üblicherweise im Bereich von 200 bis 1000 mm.
  • Wenn im Zusammenhang mit der hier beschriebenen Erfindung von Verdrängungsbohrpfählen, Hohlbohrwerkzeugen oder allgemein Bohrwerkzeugen gesprochen wird, sind stets alle bekannten Ausführungsvarianten an Verfahren und entsprechenden Werkzeugen eingeschlossen.
  • Neben den oben beschriebenen Varianten von Bohrwerkzeugen bilden auch alle sonstigen bekannten Varianten von Bohrwerkzeugen den technologischen Hintergrund für die in dieser Anmeldung beschriebene Erfindung. So gibt es beispielsweise Bohrwerkzeuge, bei denen die Spitze im Baugrund verbleiben kann oder bei denen die Spitze mit dem Bohrwerkzeug wieder aus dem Baugrund herausziehbar ist. Ferner gibt es Bohrwerkzeuge, bei denen die Bohrwendel wahlweise an der Spitze, dem Bohrrohr oder an der Spitze und dem Bohrrohr vorgesehen ist. Auch Bohrwerkzeuge ohne Bohrwendel, bei denen das Bohrmoment beispielsweise über eine äußere Oberfläche mit entsprechenden Reibungseigenschaften auf den Baugrund übertragbar ist, sind möglich. Ferner sind beliebige Kombinationen dieser und anderer bekannter Varianten denkbar.
  • Eine weitere Möglichkeit, die Eigenschaften des Baugrunds bei Bauvorhaben zu verbessern besteht in sogenannten Tiefenrüttelverfahren. Diese betreffen im Allgemeinen Verfahren zur Verdichtung und Verfestigung von Baugründen, wobei mit einem Werkzeug, einem sogenannten Tiefenrüttler, der Baugrund verdrängt und dabei verfestigt wird. Dieses Verfahren und die zugehörigen Werkzeuge, die Tiefenrüttler, sind dem Fachmann allgemein bekannt. Der Tiefenrüttler wird dabei unter Aufbringung einer Vertikalkraft in den Untergrund abgeteuft und erzeugt während des Abteufens horizontale Schwingung. Konventionelle Tiefenrüttler für derartige Einsatzzwecke sind etwa 2 bis 5 m lang, haben einen Durchmesser von etwa 300 bis 900 mm und sind circa 1 bis 6 t schwer. Ihre Länge wird mit Aufsatzrohren an die vorgesehene Arbeitstiefe angepasst. Dabei werden die Tiefenrüttler von Kränen, Baggern oder speziell entwickelten Trägergeräten geführt. Eine Frequenz der durch konventionelle Tiefenrüttler erzeugten Schwingungen liegt im Bereich der Eigenfrequenz des Baugrundes, typischerweise zwischen 25 und 60 Hz. Die Schwingungen liegen sowohl als dynamische horizontale Auslenkung des Tiefenrüttlers vor, als auch in Form einer dynamischen horizontalen Kraft, die vom Tiefenrüttler auf das umliegende Erdreich ausgeübt wird. Da solche mechanischen Zusammenhänge dem Fachmann hinreichend bekannt sind, wird in Folgenden nicht mehr zwischen einer Kraft- und Auslenkungsschwingung unterschieden, denn eine Kraft, die auf einen Körper wirkt, übt auch immer eine Beschleunigung auf diesen Körper aus, was eine bestimmte Auslenkung des Körpers zur Folge hat. Die horizontalen Schwingungen übertragen sich also auf den umliegenden Baugrund. Ist das Material des Baugrunds kompressibel, führen die horizontalen Schwingungen zu einer Verdrängung und damit Verdichtung des Untergrunds in sich selbst. Aus der Verdichtung resultiert eine Verfestigung des Baugrunds.
  • Exemplarisch wird auf das sogenannten Rütteldruckverfahren, eine Ausprägungsform des Tiefenrüttelverfahrens, eingegangen, bei dem der Tiefenrüttler mehrfach und in bestimmten Abständen in den Baugrund abgeteuft und wieder zurückgezogen wird. Durch die Schwingungen des Tiefenrüttlers wird die Reibungskraft zwischen den Baugrundkörnern untereinander kurzzeitig reduziert. Infolge der Schwerkraft können die Körner des Baugrundmaterials dann in einen dichteren Lagerungszustand übergehen, sobald der Tiefenrüttler aus einem durch ihn verdrängten Bereich des Baugrunds zurückgezogen wird. Auf diese Weise können vorhandene Hohlräume im Baugrund verkleinert oder ganz geschlossen werden. Besonders grobkörnige Baugründe, die zum Beispiel aus grobem Sand, Kies oder kleinen Steinen bestehen, eignen sich gut für eine derartige Verdichtung. Da es in Folge der Verdichtung zu einer Volumenabnahme kommt, muss diese in der Regel durch oberflächliches Nachschütten von Material ausgeglichen werden. Es ergibt sich ein verfestigter Baugrund mit gleichem Höhenniveau, der geeignet ist, größere Lasten abzutragen.
  • Weiterhin exemplarisch wird eine weitere Ausprägungsform des Tiefenrüttelverfahrens beschrieben, das sogenannte Rüttelstopfverfahren. Es eignet sich für Baugrundmaterialien mit geringen Korngrößen, wie zum Beispiel Schluff oder Ton sowie organischen Materialien. Bei solchen Materialien ist eine Verdichtung des Baugrunds in sich selbst nicht mehr in ausreichendem Maße möglich. Beim Rüttelstopfverfahren wird mit einem Tiefenrüttler in alternierenden Schritten gearbeitet. Mit dem in den Baugrund abgeteuften Tiefenrüttler wird ein Zusatzmaterial, zum Beispiel Kies oder Schotter oder auch Beton, in den Baugrund eingebracht, welches nach der Fertigstellung eine höhere Steifigkeit als der umgebende Boden aufweist. Das Zusatzmaterial tritt an der Spitze des Tiefenrüttlers aus, wenn dieser eine Hubbewegung ausführt. In der Regel wird das Zusatzmaterial an der Erdoberfläche durch eine Schleuse in den Tiefenrüttler gegeben und durch eine außenliegende Hohlseele in die Arbeitstiefe des Tiefenrüttlers geführt. Das ausgetretene Zusatzmaterial wird bei der auf die Hubbewegung folgenden Absenkbewegung des Tiefenrüttlers verdichtet sowie seitlich in den Baugrund verdrängt. Auf diese Weise entstehen sukzessive sogenannte Stopfsäulen, die im Verbund mit dem Baugrund geeignet sind, die Lasten abzutragen.
  • Im Folgenden sind, wenn von Tiefenrüttelverfahren oder Tiefenrüttlern gesprochen wird, stets alle bekannten Ausführungsvarianten eingeschlossen.
  • Exemplarisch wird ein konventioneller Tiefenrüttler beschrieben. Tiefenrüttler sind dem Fachmann allgemein und hinreichend bekannt. Sie weisen ein Gestänge auf, das aus einem oder mehreren Verlängerungsrohren besteht. Durch sie kann der Tiefenrüttler in die gewünschte Tiefe abgeteuft werden. Bei Tiefenrüttlern für das Rüttelstopfverfahren kann zusätzlich eine Hohlseele zur Führung des Zusatzmaterials vorgesehen sein. Über eine elastische Kupplung ist der Kopf des Tiefenrüttlers mit dem Gestänge verbundene. Der Kopf besteht in der Regel aus einem länglichen Gehäuse, in dessen Innern eine Mechanik und ein Antriebsenergiequelle zur Erzeugung horizontaler Schwingungen angeordnet sind. Die Mechanik besteht aus einer Masse mit exzentrischem Massenschwerpunkt, mit anderen Worten einer Unwucht sowie einer Lagerung und einer Antriebswelle. Die Lagerung schränkt die Freiheitsgrade von Antriebswelle und Unwucht bis auf einen rotatorischen Freiheitsgrad ein. Bei konventionellen Tiefenrüttlern ist als Antriebsenergiequelle ein Elektro- oder Hydraulikmotor vorgesehen, der meist über ein formschlüssiges Getriebe mit der Antriebswelle wirkverbunden ist. Der Motor mit Getriebe und die Mechanik bilden zusammen einen Antriebsstrang. Liefert der Motor Antriebsenergie an die Antriebswelle mit der Unwucht, so beginnt diese zu rotieren. An der Masse mit exzentrischem Schwerpunkt treten dynamische Fliehkräfte auf, die eine Querbeschleunigung der gesamten Mechanik zur Folge haben. Die Mechanik wird also in horizontale Schwingungen versetzt. Über die Lagerung übertragen sich die Schwingungen auf das Gehäuse des Tiefenrüttlers.
  • Die bekannten Antriebskonzepte weisen jedoch einige Nachteile auf. So entwickeln elektrische Antriebe ein hohes Maß an Abwärme. Die Systemkosten und der Wartungsaufwand werden ebenfalls negativ beeinflusst. Bei hydraulischen Antrieben besteht der Nachteil in der notwendigen Speicherung und permanenten Aufbereitung der Hydraulikflüssigkeit. Leckageverluste und Druckverluste in Rohr- und Schlauchleitungen stellen weitere negative Aspekte dar.
  • DE 10 006 973 A1 offenbart eine Vorrichtung zur Herstellung von Bohrpfählen nach dem Verdrängungsdrehbohrverfahren. Hierbei ist an einem endseitigen Ende eines Bohrrohres, welches über ein elastisches Gelenk von einem oberen Abschnitt des Rohres getrennt ist, ein Schwingungserzeuger angeordnet.
  • DE 199 30 884 A1 offenbart ein Verfahren zur Verdichtung von Böden mittels eines Tiefenrüttlers. Hierbei wird eine Größe der bewegten Unwuchtmasse zur Veränderung der effektiven Schlagkraft währen des Rüttelvorgangs verändert.
  • Eine Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zur Herstellung von Bohrpfählen und ein entsprechendes Bohrwerkzeug der eingangs genannten Gattung zur Herstellung von Bohrungen und Bohrpfählen zu liefern, wobei das Bohrwerkzeug zudem einfach aufgebaut und flexibel an den jeweiligen Baugrund anpassbar sein soll, und wobei die Effizienz des Verfahrens sowie des Bohrwerkzeugs verbessert sind.
  • Eine weitere Aufgabe der Erfindung ist es, ein Verfahren zur Verdrängung und Verfestigung von Baugrundmaterial sowie einen Tiefenrüttler der eingangs genannten Gattungen zu schaffen, der einfach aufgebaut und flexibel an den jeweiligen Baugrund anpassbar ist.
  • Die Aufgaben werden durch die Gegenstände mit den Merkmalen der unabhängigen Ansprüche 1 und 4 gelöst.
  • Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Bohrpfählen. Ein Bohrwerkzeug wird dabei unter Aufbringung eines Bohrmoments und einer Vertikalkraft in den Baugrund abgeteuft, wieder zurückgezogen und es wird ein Zusatzmaterial in die entstandene Bohrung eingebracht. Erfindungsgemäß ist vorgesehen, dass das Bohrwerkzeug, während dieses in den Baugrund abgeteuft wird und/oder während des Zurückziehens des Bohrwerkzeugs, durch einen oder mehrere Aktoren in Schwingung versetzt wird, wobei eine resultierende Schwingungsamplitude zumindest einen horizontalen Anteil aufweist.
  • Dies bietet den Vorteil, dass die Reibung zwischen dem Baugrund und dem Bohrwerkzeug reduziert wird und damit die Kräfte, die für eine Verdrängung und/oder Förderung des Baugrundes durch das Bohrwerkzeug erforderlich sind, reduziert werden und auf den Baugrund eine horizontal radial nach außen wirkende Kraft aufgebracht wird. Der Verschleiß des Bohrwerkzeugs wird dadurch gesenkt. Eine Verdichtung des Baugrundmaterials wird begünstigt.
  • Bevorzugt werden Aktoren verwendet, die eine Schwingung mit einer Amplitude im Bereich von 0,01 mm bis 5 mm, weiterhin bevorzugt 0,02 mm bis 3 mm und besonders bevorzugt 0,03 mm bis 2 mm hinsichtlich einer horizontalen beziehungsweise radialen Auslenkung des Bohrwerkzeugs erzeugen. Eine Amplitude hinsichtlich einer horizontalen beziehungsweise radialen Kraft beträgt vorzugsweise 0,5 kN bis 1000 kN, weiterhin bevorzugt 1 kN bis 700 kN und besonders bevorzugt 25 kN bis 400 kN. Dies bietet den Vorteil, dass eine seitliche Verdrängung von Baugrund nur soweit erfolgt, wie es für die Reduktion der Reibung zwischen dem Baugrund und dem Bohrwerkzeug erforderlich ist und gegebenenfalls eine stattfindende vertikale Förderung von Baugrundmaterial nicht beeinträchtigt wird. Weiterhin wird ein Energiebedarf der Aktoren vorteilhaft gering gehalten.
  • Bevorzugt sind die Aktoren als eine oder mehrere voneinander unabhängige Strömungsmaschinen, besonders bevorzugt als eine oder mehrere pneumatische Turbinen ausgeführt, in denen jeweils eine oder mehrere Unwuchten integriert sind.
  • Dies bietet die Vorteile, dass eine große Bandbreite an Betriebsfrequenzen und erzeugbaren Fliehkräften zu Verfügung steht und daher eine vergleichsweise flexible und kostengünstige Form von Aktoren verwendet wird.
  • Die pneumatischen Turbinen werden vorzugsweise bei Drehzahlen von 1 U/min bis 100.000 U/min, besonders bevorzugt 1 U/min bis 50.000 U/min und insbesondere bevorzugt 1 U/min bis 30.000 U/min betrieben.
  • Wenn die pneumatischen Turbinen mit unterschiedlichen Drehzahlen betrieben werden sollen, so können zum Beispiel Turbinen mit verstellbaren Turbinenschaufeln verwendet werden. Auch können Mittel zu Beeinflussung des Luftstroms verwendet werden, wie zum Beispiel Ventile, Klappen oder geeignet gestaltete Gehäuseelemente des Bohrwerkzeugs. Grundsätzlich sind dem Fachmann Vorgehensweisen voneinander unabhängigen Betrieb mehrerer Turbinen bekannt.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen genannt.
  • In weiterer bevorzugter Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass als Bohrwerkzeug ein Hohlbohrwerkzeug verwendet wird, das wenigstens eine Hohlseele aufweist und dass das Zusatzmaterial durch die Hohlseele des Hohlbohrwerkzeugs in die Bohrung gefüllt wird, vor Beginn und/oder während und/oder nach dem Zurückziehen des Hohlbohrwerkzeugs.
  • Dies bietet den Vorteil, dass sowohl die Bohrung, als auch der Bohrpfahl in einem Arbeitsgang herstellbar sind.
  • In weiterer bevorzugter Ausgestaltung ist vorgesehen, dass eine Bewehrung in die Hohlseele des Hohlbohrwerkzeugs eingebracht wird, bevor das Füllmaterial in die Hohlseele des Hohlbohrwerkzeugs eingefüllt wird.
  • Dies bietet den Vorteil, dass der Bohrpfahl zusammen mit der Bewehrung in einem Arbeitsvorgang hergestellt werden kann.
  • Ein weiterer Aspekt der vorliegenden Erfindung betrifft ein Bohrwerkzeug zur Herstellung von Bohrungen oder Bohrpfählen in einem Baugrund. Die herstellbaren Bohrungen sind insbesondere geeignet für Bohrpfähle. Erfindungsgemäß ist vorgesehen, dass das Bohrwerkzeug wenigstens eine Strömungsmaschine aufweist, wobei in wenigstens einen Rotor der wenigstens einen Strömungsmaschine wenigstens eine Unwucht integriert ist und der Rotor um eine Längsachse des Bohrwerkzeugs drehbar in dem Bohrwerkzeug gelagert ist, so dass eine resultierende Schwingung erzeugbar ist, deren Schwingungsamplitude zumindest einen horizontalen Anteil aufweist.
  • Bohrwerkzeug im Sinne der Erfindung ist jede Vorrichtung, mit der sich ein Bohrmoment, mit anderen Worten eine Umfangskraft, über eine äußere Oberfläche der Vorrichtung auf den umgebenen Baugrund übertragen lässt.
  • Dies bietet den Vorteil, dass durch entsprechende Auslegung der wenigstens einen Unwucht ein dynamisches Betriebsverhalten des Bohrwerkzeugs einstellbar ist.
  • Die Strömungsmaschine ist vorzugsweise bei Drehzahlen von 1 U/min bis 100.000 U/min, besonders bevorzugt von 1 U/min bis 50.000 U/min und insbesondere bevorzugt von 1 U/min bis 30.000 U/min betreibbar. Die Unwucht ist vorzugsweise derart ausgelegt und in den Rotor der Strömungsmaschine integriert, dass das Bohrwerkzeug ausgebildet ist, im Betrieb eine Schwingung mit einer Amplitude im Bereich von 0,01 mm bis 5 mm, weiterhin bevorzugt 0,02 mm bis 3 mm und besonders bevorzugt 0,03 mm bis 2 mm hinsichtlich einer horizontalen beziehungsweise radialen Auslenkung des Bohrwerkzeugs auszuführen beziehungsweise eine Schwingung mit einer Amplitude hinsichtlich einer horizontalen beziehungsweise radialen Kraft von vorzugsweise 0,5 kN bis 1000 kN, weiterhin bevorzugt 1 kN bis 700 kN und besonders bevorzugt 25 kN bis 400 kN auszuführen. Dies bietet den Vorteil, dass die Strömungsmaschine mit einer hohen Drehzahl betreibbar ist, was sich positiv auf einen Wirkungsgrad der Strömungsmaschine auswirkt.
  • Weitere bevorzugte Ausgestaltungen der vorliegenden Erfindung ergeben sich aus den in den Unteransprüchen genannten Merkmalen.
  • So ist bevorzugt vorgesehen, dass das Bohrwerkzeug zumindest abschnittsweise mit einer Bohrwendel und/oder einer Spitze mit Schraubengängen versehen ist.
  • Dies bietet den Vorteil, dass das Bohrwerkzeug, hinsichtlich seiner Eignung Baugrundmaterial zu fördern und/oder zu verdrängen, flexibel anpassbar ist.
  • In weiterer bevorzugter Ausgestaltung ist vorgesehen, dass das Bohrwerkzeug ein Hohlbohrwerkzeug, aufweisend wenigstens eine Hohlseele, ist.
  • Dies bietet den Vorteil, dass mit dem Hohlbohrwerkzeug Bohrpfähle nach dem erfindungsgemäßen Verfahren zur Herstellung von Bohrpfählen herstellbar sind.
  • Es ist weiterhin bevorzugt, dass die wenigstens eine Strömungsmaschine als wenigstens eine pneumatische Turbine ausgeführt ist.
  • Dies bietet den Vorteil, dass sehr hohe Drehzahlen erreichbar sind und die Turbine mit einem kostengünstigen und risikoarmen Arbeitsfluid betreibbar ist.
  • Wenn die pneumatischen Turbinen mit unterschiedlichen Drehzahlen betreibbar sein sollen, so können diese zum Beispiel verstellbare Turbinenschaufeln aufweisen. Auch können Mittel zu Beeinflussung des Luftstroms im Bohrwerkzeug vorgesehen sein, wie zum Beispiel Ventile, Klappen oder geeignet gestaltete Gehäuseelemente. Grundsätzlich ist dem Fachmann bekannt, wie er Turbinen beziehungsweise das System, das das Betriebsfluid bereitstellt, zu gestalten hat, damit diese bei unterschiedlichen Drehzahlen betreibbar sind.
  • In weiterer bevorzugter Ausgestaltung ist vorgesehen, dass wenigstens ein Laufrad mit Turbinenschaufeln auf einer Hohlachse gelagert ist, die als Hohlseele ausgeführt ist.
  • Dies bietet den Vorteil, dass die Komplexität der Konstruktion reduziert wird.
  • Ein weiterer Aspekt der vorliegenden Erfindung betrifft einen Tiefenrüttler zur Verdrängung und Verfestigung eines Baugrundmaterials, aufweisend zumindest eine rotatorisch bewegbare Unwucht, wobei der Tiefenrüttler wenigstens eine Strömungsmaschine als Antrieb für die Unwucht aufweist und wobei die wenigstens eine Strömungsmaschine wenigstens eine pneumatisch angetriebene Turbine umfasst. Erfindungsgemäß ist vorgesehen, dass die wenigstens eine pneumatisch angetriebene Turbine, mit der zumindest einen Unwucht über zumindest eine Induktionskupplung wirkverbunden ist.
  • Eine pneumatische Turbine kann vorteilhaft ausgebildet sein, permanent mit einem maximalen Drehmoment betrieben werden. Drehzahlunterschiede zwischen Turbine und Unwucht sind durch die Induktionskupplung vorteilhaft ausgleichbar, so dass kein auf Formschluss beruhendes mechanisches Getriebe erforderlich ist. Reibungsverluste können dadurch vorteilhaft vermieden werden. Dies führt auch zu einem verringerten Wartungsaufwand. Die Auslegung auf Luft als Betriebsfluid für die Turbine bietet weiterhin den Vorteil, dass eine Speicherung und permanenten Aufbereitung des Betriebsfluids entfallen kann.
  • Die Induktionskupplung zählt zur Klasse der fremdbetätigten schaltbaren Kupplungen mit kraftschlüssigem Wirkprinzip. Die Kraft- beziehungsweise Momentübertragung beruht dabei auf dem Prinzip eines sich verändernden Magnetfeldes, das auf einen passiven elektrischen Leiter wirkt. Die Antriebsseite der Kupplung kann zum Beispiel das Magnetfeld erzeugen und wird im Folgenden als aktive Seite bezeichnet. Sowohl Permanentmagnete als auch Elektromagnete können verwendet werden, um das Magnetfeld zu erzeugen. Wird ein Elektromagnet verwendet, kann dieser aus einem oder mehreren elektrischen Leitern bestehen, die von einem regelbaren Strom durchflossen werden können. Eine physische Kontaktierung der Antriebsseite (aktive Seite) und der Abtriebsseite (passive Seite), im Folgenden passive Seite genannt, findet bei Induktionskupplungen nicht statt. Die passive Seite kann bevorzugt einen in sich kurzgeschlossenen elektrischen Leiter aufweisen, der nicht aktiv mit einer elektrischen Spannung versorgt wird. Besteht eine Drehzahldifferenz zwischen aktiver und passiver Seite, resultiert daraus eine Relativbewegung zwischen der aktiven und passiven Seite. Das von der aktiven Seite erzeugte Magnetfeld wird also relativ zu dem kurzgeschlossenen Leiter der passiven Seite bewegt. Als Resultat wirkt die Lorenzkraft auf den kurzgeschlossenen Leiter wodurch ein Drehmoment von der Antriebsseite (aktive Seite) auf die Abtriebsseite (passive Seite) der Induktionskupplung übertragbar ist. Das Drehmoment kann bevorzugt durch die Regelung des elektrischen Stroms, der durch den elektrischen Leiter der aktiven Antriebseite fließt, erfolgen. Ein Vertauschen der aktiven und passiven Seite ist ebenfalls möglich. Möglich ist auch eine Verwendung von zwei aktiven Seiten. Diese konstruktiven Abwandlungen werden bei Bedarf durch den Fachmann eigenständig vorgenommen. Die Induktionskupplung ermöglicht einen Betrieb mit einer dauerhaften Drehzahldifferenz zwischen An- und Abtriebsseite.
  • Bevorzugt wird eine Induktionskupplung verwendet, die ausgebildet ist, Drehmomente von mehr als 1 Nm antriebsseitig zu übertragen. Bevorzugt liegen die antriebseitig übertragbaren Drehmomentwerte im Bereich von 5 Nm bis 100 Nm, besonders bevorzugt von 10 Nm bis 40 Nm. Weiterhin bevorzugt ist die Induktionskupplung in Drehzahlbereichen an der Antriebsseite zwischen 500 U/min (Umdrehungen pro Minute) und 50.000 U/min, bevorzugt zwischen 10.000 U/min und 40.000 U/min und insbesondere bevorzugt zwischen 10.000 U/min und 30.000 U/min betreibbar. Eine durch die Induktionskupplung übertragbare mechanische Leistung liegt bevorzugt im Bereich von 5 kW bis 200 kW, besonders bevorzugt von 10 kW bis 60 kW und insbesondere bevorzugt von 20 kW bis 50 kW.
  • Dies bietet den Vorteil, dass große Drehzahlunterschiede zwischen pneumatischer Turbine und rotierender Unwucht ausgeglichen werden können und gleichzeitig ein großes Drehmoment zum Antreiben der Unwucht zur Verfügung steht. Der Platzbedarf der Induktionskupplung bleibt dabei vorteilhaft im Bereich eines Durchmessers konventioneller Tiefenrüttler.
  • Bevorzugt wird eine Induktionskupplung mit Permanentmagneten verwendet.
  • Dies bietet den Vorteil, dass eine aktive Versorgung der Induktionskupplung mit elektrischer Energie entfallen kann.
  • Weiterhin bevorzugt wird eine Induktionskupplung mit Elektromagnet verwendet.
  • Dies bietet den Vorteil, dass das mechanische und thermische Verhalten der Induktionskupplung über den Stromfluss regelbar ist.
  • Weiterhin bevorzugt ist, dass die Antriebsseite der Induktionskupplung, mit anderen Worten die der pneumatischen Turbine zugewandte Seite der Induktionskupplung, als passive Seite ausgeführt ist und dass die Abtriebsseite, also die der Unwucht zugewandten Seite, als aktive Seite ausgeführt ist.
  • Dies bietet den Vorteil, dass in der passiven Seite (Antriebsseite) durch den elektrischen Stromfluss entstehende Widerstandverluste in Form von Wärme abgeführt und der pneumatischen Turbine zugeführt werden können.
  • Weiterhin bevorzugt ist eine Anordnung mehrerer in Reihe geschalteter Induktionskupplungen.
  • Dies bietet den Vorteil, dass für eine effektive Drehmomentübertragung benötigte relative Drehzahlen zwischen An- und Abtriebsseite reduziert werden können.
  • Vorzugsweise beträgt eine Masse der rotatorisch bewegbaren Unwucht zwischen 1 kg und 200 kg, besonders bevorzugt zwischen 5 kg und 60 kg. Ein Massenschwerpunkt der rotatorisch bewegbaren Unwucht liegt, bezogen auf eine Rotationsachse, bevorzugt in einem maximalen radialen Abstand zu der Rotationsachse. Als begrenzende Randbedingung wirkt ein zur Verfügung stehender Bauraum.
  • Dies bietet den Vorteil, dass durch die Rotation der Unwucht mit Drehzahlen, die mit dem Bereich der Eigenfrequenz des Baugrundes korrespondieren, ausreichend große Fliehkräfte beziehungsweise Schwingungsamplituden erzeugbar sind.
  • Die pneumatische Turbine ist vorzugsweise bei Drehzahlen von 500 U/min und 50.000 U/min, bevorzugt zwischen 10.000 U/min und 40.000 U/min und insbesondere bevorzugt zwischen 10.000 U/min und 30.000 U/min betreibbar. Ein von der pneumatischen Turbine erzeugbares Drehmoment liegt bevorzugt im Bereich von 1 Nm bis 100 Nm, besonders bevorzugt von 10 Nm bis 40 Nm, insbesondere bevorzugt bei 15 Nm bis 25 Nm. Eine Druckdifferenz von einer für den Betrieb der pneumatischen Turbine verwendbaren Luftmenge beträgt, von einem Turbineneintritt bis zu einem Turbinenaustritt, bevorzugt zwischen 1 bar und 30 bar, weiterhin bevorzugt 2 bar und 20 bar und besonders bevorzugt zwischen 3 bar und 15 bar. Dies bietet den Vorteil, dass die pneumatische Turbine bei hohem Wirkungsgrad ein großes Drehmoment bereitstellen kann.
  • Weitere bevorzugte Ausgestaltungen der vorliegenden Erfindung ergeben sich durch die in den Unteransprüchen genannten Merkmale.
  • So ist in einer bevorzugten Ausgestaltung vorgesehen, dass die Induktionskupplung ausgebildet ist Rotationsfrequenzen an der Antriebsseite (Antriebswelle) in Rotationsfrequenzen von vorzugsweise zwischen 5 Hz und 120 Hz, besonders bevorzugt zwischen 15 Hz und 90 Hz und insbesondere bevorzugt zwischen 25 Hz und 60 Hz an der Welle auf der Abtriebsseite (Abtriebswelle) der Induktionskupplung zu wandeln.
  • Dies bietet den Vorteil, dass die pneumatische Turbine permanent in einem für sie optimalen Drehzahlbereich betreibbar ist, während die Drehzahl der rotatorisch bewegbaren Unwucht im Eigenfrequenzbereich des Baugrunds angesiedelt sein kann.
  • Gemäß eines weiteren Aspekts der vorliegenden Erfindung wird ein Verfahren zur Verdrängung und Verfestigung eines Baugrundmaterials offenbart, wobei ein Tiefenrüttler unter Aufbringung einer Vertikalkraft in den Baugrund abgeteuft wird und der Tiefenrüttler während des Abteufens in Schwingung versetzt wird, wobei eine resultierende Schwingungsamplitude zumindest einen horizontalen Anteil aufweist. Erfindungsgemäß ist vorgesehen, dass Schwingungen durch wenigstens zwei kinematisch unabhängige rotatorisch bewegte Unwuchten erzeugt werden, wobei die resultierende Schwingung durch Überlagerung der einzelnen Schwingungen der unabhängigen Unwuchten einstellbar ist.
  • Dies bietet den Vorteil, dass auf die Frequenz der resultierenden Schwingung unabhängig von der Rotationsfrequenz der rotatorisch bewegten Unwuchten eingestellt werden kann und der Eigenfrequenz des Baugrunds flexibel angepasst werden kann.
  • Bevorzugt liegen die Rotationsfrequenzen der jeweiligen rotatorisch bewegten Unwuchten zwischen 20 Hz und 600 Hz, besonders bevorzugt zwischen 30 Hz und 500 Hz und insbesondere bevorzugt zwischen 50 Hz und 450 Hz. Die Frequenz der resultierenden Überlagerungsschwingung liegt vorzugsweise zwischen 5 Hz und 120 Hz, besonders bevorzugt zwischen 15 Hz und 90 Hz und insbesondere bevorzugt zwischen 25 Hz und 60 Hz.
  • Dies bietet den Vorteil, dass durch die großen einzelnen Rotationsfrequenzen große Fliehkräfte erzeugt werden können und gleichzeitig die Frequenz der resultierenden Schwingung der geringeren Eigenfrequenz des Baugrunds angepasst werden kann.
  • Weiterhin bevorzugt wird in dem Verfahren eine dynamische resultierende Fliehkraft durch die rotierenden Unwuchten erzeugt. Ein maximaler Betrag der resultierenden Fliehkraft beträgt vorzugsweise 25 kN bis 700 kN, weiterhin bevorzugt 50 kN bis 600 kN und besonders bevorzugt 100 kN bis 500 kN. Weiterhin bevorzugt wird in dem Verfahren eine dynamische resultierende radiale beziehungsweise horizontalen Auslenkung (Amplitude) des Tiefenrüttlers bezogen auf einen Zustand außerhalb des Baugrunds, in dem eine freie Schwingung möglich ist, erzeugt, von der ein maximaler Betrag vorzugsweise 2 mm bis 40 mm, weiterhin bevorzugt 5 mm bis 30 mm und besonders bevorzugt 7 mm bis 20 mm beträgt.
  • Es wurde gefunden, dass diese Prozessparameter eine besonders vorteilhafte Verdichtung von in dem erfindungsgemäßen Verfahren üblicherweise bearbeiteten Baugrundmaterialien ermöglichen.
  • Weitere bevorzugte Ausgestaltungen der vorliegenden Erfindung ergeben sich durch die in den Unteransprüchen genannten Merkmale.
  • In weiterer vorteilhafter Ausgestaltung ist vorgesehen, dass die rotatorische Bewegung der Unwuchten durch wenigstens eine Strömungsmaschine bewirkt wird.
  • Strömungsmaschinen bieten auf Grund ihrer erreichbaren hohen Drehzahlen besondere Vorteile bei der Erzeugung großer Fliehkräfte.
  • In weiterer vorteilhafter Ausgestaltung ist vorgesehen, dass als die wenigstens eine Strömungsmaschine wenigstens eine pneumatische Turbine verwendet wird. Die pneumatische Turbine wird vorzugsweise bei Drehzahlen von 500 U/min bis 50.000 U/min, besonders bevorzugt von 10.000 U/min bis 40.000 U/min und insbesondere bevorzugt von 10.000 U/min bis 30.000 U/min betrieben. Ein von der pneumatischen Turbine erzeugtes Drehmoment liegt bevorzugt im Bereich 1 Nm bis 100 Nm, besonders bevorzugt von 10 Nm bis 40 Nm_und insbesondere bevorzugt bei 15 Nm bis 25 Nm. Eine Druckdifferenz von einer für den Betrieb der pneumatischen Turbine verwendeten Luftmenge beträgt, von einem Turbineneintritt bis zu einem Turbinenaustritt, bevorzugt zwischen 1 bar und 30 bar, weiterhin bevorzugt zwischen 2 bar und 20 bar und besonders bevorzugt zwischen 3 bar und 15 bar.
  • Dies bietet den Vorteil, dass sehr hohe Drehzahlen erreicht werden und die Turbine an einem Arbeitspunkt betrieben wird an dem der Wirkungsgrad hoch ist. Weitere Vorteile ergeben sich aus einem kostengünstigen und risikoarmen Arbeitsfluid in Form von Druckluft.
  • Wenn die pneumatischen Turbinen mit unterschiedlichen Drehzahlen betrieben werden sollen, so können zum Beispiel Turbinen mit verstellbaren Turbinenschaufeln verwendet werden. Auch können Mittel zu Beeinflussung des Luftstroms verwendet werden, wie zum Beispiel Ventile, Klappen oder geeignet gestaltete Gehäuseelemente des Tiefenrüttlers. Grundsätzlich sind dem Fachmann Vorgehensweisen voneinander unabhängigen Betrieb mehrerer Turbinen bekannt.
  • Gemäß eines weiteren Aspekts der vorliegenden Erfindung wird ein Tiefenrüttler zur Verdrängung und Verfestigung eines Baugrundmaterials offenbart, der eine oder mehrere rotatorisch bewegbare Unwuchten aufweist. Erfindungsgemäß ist vorgesehen, dass die Unwuchten in jeweils einer zugehörigen pneumatischen Turbine integriert sind.
  • Dies bietet den Vorteil, dass der Tiefenrüttler eine geringere Anzahl bewegter Komponenten, insbesondere relativ zueinander bewegter Komponenten aufweist. Die Systemkomplexität wird vorteilhaft reduziert.
  • In vorteilhafter Ausgestaltung sind die Unwuchten in einem oder mehreren Laufrädern der pneumatischen Turbine angeordnet. Möglich ist auch eine Anordnung der Unwuchten in jeweils einer Welle, für den Fall, dass alle Turbinenstufen auf einer separaten Welle gelagert sind.
  • Beide Varianten bieten den Vorteil, dass eine Massenverteilung der Unwuchten gezielt und genau auslegbar ist. Weiterhin ermöglicht eine dezentrale Anordnung der Unwuchten in der Turbine einen partiellen Umbau, um Masseeigenschaften der Turbine beziehungsweise der Unwuchten gezielt zu verändern.
  • Wenn die pneumatischen Turbinen mit unterschiedlichen Drehzahlen betreibbar sein sollen, so können diese zum Beispiel verstellbare Turbinenschaufeln aufweisen. Auch können Mittel zu Beeinflussung des Luftstroms im Tiefenrüttler vorgesehen sein, wie zum Beispiel Ventile, Klappen oder geeignet gestaltete Gehäuseelemente. Grundsätzlich ist dem Fachmann bekannt, wie er Turbinen beziehungsweise das System, das das Betriebsfluid bereitstellt, zu gestalten hat, damit diese bei unterschiedlichen Drehzahlen betreibbar sind.
  • Vorzugsweise betragen Massen der rotatorisch bewegbaren Unwuchten jeweils zwischen 0,1 kg und 3 kg, besonders bevorzugt zwischen 0,2 kg und 2 kg. Ein Massenschwerpunkt der rotatorisch bewegbaren Unwucht liegt, bezogen auf eine Rotationsachse bevorzugt in einem maximalen radialen Abstand zu der Rotationsachse. Als begrenzende Randbedingung wirkt ein zur Verfügung stehender Bauraum.
  • Dies bietet den Vorteil, dass durch die Rotation der Unwuchten mit Drehzahlen, die durch die Schwingungsüberlagerung mit dem Bereich der Eigenfrequenz des Baugrundes korrespondieren, ausreichend große Fliehkräfte beziehungsweise Schwingungsamplituden erzeugbar sind.
  • Die pneumatischen Turbinen mit den Unwuchten sind vorzugsweise bei Drehzahlen von 1 U/min bis 100.000 U/min, besonders bevorzugt von 1 U/min bis 50.000 U/min und insbesondere bevorzugt von 1 U/min bis 30.000 U/min betreibbar.
  • Weitere Ausführungsvarianten ergeben sich durch vorteilhafte Kombination der genannten und der in den Ausführungsbeispielen enthaltenen Merkmale. Ferner ist eine Übertragung der offenbarten technischen Lehre auf weitere Verfahren und zugehörige Vorrichtungen zu Verbesserung der mechanischen Baugrundeigenschaften möglich, bei denen eine Erzeugung horizontaler Schwingungen einen spezifischen Vorteil mit sich bringt.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels und dazugehöriger Zeichnungen näher erläutert. Es zeigt:
  • Figur 1
    eine bevorzugte Ausführungsform eines erfindungsgemäßen Verfahrens zur Herstellung von Verdrängungsbohrpfählen;
    Figur 2
    eine bevorzugte Ausführungsform eines erfindungsgemäßen Hohlbohrwerkzeugs;
    Figur 3
    eine bevorzugte Ausführungsform eines erfindungsgemäßen Tiefenrüttlers mit pneumatischer Turbine und Induktionskupplung;
    Figur 4
    eine bevorzugte Ausführungsform eines erfindungsgemäßen Verfahrens zur Verdrängung und Verfestigung eines Baugrundmaterials und
    Figur 5
    eine bevorzugte Ausführungsform eines erfindungsgemäßen Tiefenrüttlers mit zwei unabhängigen pneumatischen Turbinen mit integrierten Unwuchten;
  • Figur 1 zeigt eine bevorzugte Ausführungsform eines erfindungsgemäßen Verfahrens zur Herstellung von Verdrängungsbohrpfählen in schematischer Darstellung. Die zeitliche Abfolge der Verfahrensschritte geht aus der nachfolgenden Beschreibung hervor. Ein Hohlbohrwerkzeug 47 wird dabei unter Aufbringung eines Bohrmoments 48 um eine Rotationsachse R und einer Vertikalkraft 50 entlang einer Rotationsachse R in den Baugrund 28 abgeteuft. Durch Aktoren 56 in Form von zwei voneinander unabhängigen pneumatischen Turbinen 42 mit integrierten Unwuchten 76 wird das Hohlbohrwerkzeug 47, während dieses in den Baugrund 28 abgeteuft wird, in Schwingung 58 versetzt. Dabei werden zunächst mehrere Schwingungen 36 durch die zwei rotatorisch mit den Turbinen 42 bewegten Unwuchten 76 erzeugt. Die resultierende Schwingung 58 ist durch Überlagerung der einzelnen Schwingungen 36 der unabhängig rotatorisch bewegten Unwuchten 76 einstellbar. Eine resultierende Schwingungsamplitude weist einen horizontalen Anteil 62 auf, der mehr als 95 % der gesamten Schwindungsamplitude ausmacht. Die Rotationsfrequenzen der beiden rotatorisch bewegten Unwuchten 76 betragen 200 Hz und 300 Hz, wobei die Zuordnung in einer konstruktiven Ausgestaltung frei wählbar ist. In dem Verfahren wird eine Schwingung 58 erzeugt, die einer dynamischen resultierenden Fliehkraft F entspricht, die einen maximalen Betrag von 175 kN aufweist. Weiterhin entspricht die Schwingung 58 einer dynamischen radialen beziehungsweise horizontalen Auslenkung W des Hohlbohrwerkzeugs 47 mit einem maximalen Betrag von 0,2 mm. Während das Hohlbohrwerkzeug 47 in den Baugrund 28 abgeteuft wird, findet eine vertikale Baugrundförderung 110 über eine Bohrwendel 66 statt, die außen an dem Hohlbohrwerkzeug 47 angeordnet ist. Wenn eine vorgegebene Arbeitstiefe im Baugrund 28 erreicht ist, wird ein Beton als Zusatzmaterial 52 durch eine Hohlseele 54 des Hohlbohrwerkzeugs 47 gefüllt und das Hohlbohrwerkzeug 47 dabei zurückgezogen.
  • Figur 2 zeigt eine schematische Darstellung einer bevorzugten Ausführungsform eines erfindungsgemäßen Hohlbohrwerkzeugs 47. Das Hohlbohrwerkzeug eignet sich insbesondere für das in Figur 1 beschriebene Verfahren. Das Hohlbohrwerkzeug 47 ist über eine äußere Oberfläche mit einer Bohrwendel 66 versehen und weist eine Hohlseele 54 auf. Das Hohlbohrwerkzeug 47 weist zudem zwei voneinander unabhängige pneumatische Turbinen 80 auf, deren Laufräder 82 mit Turbinenschaufeln auf einer gemeinsamen Längsachse 78 gelagert sind, die die Hohlseele 54 bildet. In die Laufräder 82 der Turbinen 80 ist jeweils eine Unwucht 76 integriert. Die Turbinen 80 sind auf eine Nenndrehzahl von 25.000 U/min ausgelegt. Die Unwuchten 76 sind derart ausgelegt und in die Laufräder 82 der Turbinen 80 integriert, dass das Hohlbohrwerkzeug 47 ausgebildet ist, im Betrieb eine Schwingung mit einer maximalen Amplitude von 0,4 mm hinsichtlich einer horizontalen beziehungsweise radialen Auslenkung des Hohlbohrwerkzeugs 47 auszuführen, beziehungsweise eine Schwingung mit einer maximalen Amplitude hinsichtlich einer horizontalen beziehungsweise radialen Kraft von 150 kN auszuführen.
  • Figur 3 zeigt eine schematische Darstellung einer bevorzugten Ausführungsform eines erfindungsgemäßen Tiefenrüttlers 10 mit pneumatischer Turbine 16 und Induktionskupplung 18. Der Tiefenrüttler 10 weist eine rotatorisch bewegbare Unwucht 12 auf. Die Unwucht 12 ist durch eine Strömungsmaschine antreibbar, die als eine zweistufige pneumatisch angetriebene Turbine 16 ausgeführt ist. Zwei Laufräder 84 der Turbine 16 sind auf einer gemeinsamen Welle 86 mit einer Rotationsachse R angeordnet. Ein Ende der Welle 86 ist eine Antriebswelle 20 für die Induktionskupplung 18. Eine Antriebsseite 90 der Induktionskupplung 18, mit anderen Worten eine der pneumatischen Turbine 16 zugewandte Seite der Induktionskupplung 18, ist als passive Seite 94 ausgeführt und eine Abtriebsseite 92, also eine der Unwucht 12 zugewandten Seite, ist als aktive Seite 88 ausgeführt. Die Induktionskupplung 18 ist ausgebildet, ein Nenndrehmoment von 25 Nm zu übertragen, bei einer Nenndrehzahl von 20.000 U/min an der Antriebswelle 20 und 50 Hz an einer Abtriebswelle 22. Eine durch die Induktionskupplung 18 übertragbare mechanische Leistung liegt im Bereich von 60 kW. Die Induktionskupplung 18 verfügt in der aktiven Seite 88 über Permanentmagnete, die ausgebildet sind, ein Induktionsmagnetfeld zu erzeugen. Eine Masse der rotatorisch bewegbaren Unwucht 12 beträgt 20 kg. Die pneumatische Turbine 16 ist auf eine Nenndrehzahl von 20.000 U/min und ein Nenndrehmoment von 25 Nm ausgelegt. Eine durch die pneumatische Turbine 16 bereitstellbare Nennleistung beträgt 60 kW. Eine Druckdifferenz eines für den Betrieb der pneumatischen Turbine 16 verwendbaren Luftvolumenstroms 100 beträgt, von einem Turbineneintritt 104 bis zu einem Turbinenaustritt 102, an einem Nennarbeitspunkt 7 bar.
  • Figur 4 zeigt eine schematische Darstellung einer bevorzugten Ausführungsform eines erfindungsgemäßen Verfahrens zur Verdrängung und Verfestigung eines Baugrundmaterials. Die zeitliche Abfolge der Verfahrensschritte geht aus der nachfolgenden Beschreibung hervor. Ein Tiefenrüttler 24 wird dabei unter Aufbringung einer Vertikalkraft 26 in den Baugrund 28 abgeteuft. Der Tiefenrüttler 24 wird während des Abteufens in Schwingung 30 versetzt. Mehrere Schwingungen 36 werden dabei durch zwei kinematisch unabhängige rotatorisch bewegte Unwuchten 38 erzeugt. Die rotatorische Bewegung der Unwuchten 38 wird durch zwei pneumatische Turbinen 42 bewirkt. Die resultierende Schwingung 30 ist durch Überlagerung der einzelnen Schwingungen 36 der unabhängigen Unwuchten 38 einstellbar. Eine resultierende Schwingungsamplitude weist einen horizontalen Anteil 34 auf, der mehr als 95 % der gesamten Schwindungsamplitude ausmacht. In dem Verfahren wird eine resultierende Schwingung 30 erzeugt, die einer dynamischen resultierenden Fliehkraft F der rotierenden Unwuchten 38 mit einem Betrag von 150 kN entspricht. Weiterhin entspricht die resultierende Schwingung 30 einer dynamischen radialen beziehungsweise horizontalen Auslenkung W des Tiefenrüttlers 24. Ein maximaler Betrag der resultierenden radialen beziehungsweise horizontalen Auslenkung W des Tiefenrüttlers 24 beträgt 8 mm.
  • Figur 5 zeigt eine schematische Darstellung einer bevorzugten Ausführungsform eines erfindungsgemäßen Tiefenrüttlers 44 mit zwei unabhängigen pneumatischen Turbinen 42 mit integrierten Unwuchten 38. Die Unwuchten 38 sind in jeweils einer zugehörigen pneumatischen Turbine 42 integriert, beziehungsweise sind in jeweils einem Laufrad 118 der zugehörigen Turbine 42 integriert. Die Laufräder 118 sind auf einer gemeinsamen Rotationsachse R gelagert. Massen der rotatorisch bewegbaren Unwuchten 38 betragen 0,25 kg und 0,5 kg, wobei die Zuordnung der Massen zu den Unwuchten 38 in einer konstruktiven Ausgestaltung beliebig wählbar ist. Ein resultierender Massenschwerpunkt S der rotatorisch bewegbaren Unwuchten 38 liegt bezogen auf die Rotationsachse R in einem maximal möglichen radialen Abstand d, der durch einen verfügbaren Bauraum begrenzt ist.
  • Bezugszeichenliste
  • 10
    Tiefenrüttler
    12
    Unwucht
    16
    pneumatisch angetriebene Turbine
    18
    Induktionskupplung
    20
    Antriebswelle
    22
    Abtriebswelle
    24
    Tiefenrüttler
    26
    Vertikalkraft
    28
    Baugrund
    30
    Schwingung
    34
    horizontaler Anteil
    36
    Schwingungen
    38
    Unwuchten
    42
    pneumatische Turbine
    44
    Tiefenrüttler
    47
    Hohlbohrwerkzeug
    48
    Bohrmoments
    50
    Vertikalkraft
    52
    Zusatzmaterial
    54
    Hohlseele
    56
    Aktoren
    58
    Schwingung
    62
    horizontaler Anteil
    66
    Bohrwendel
    76
    Unwucht
    78
    Längsachse
    80
    pneumatische Turbine
    82
    Laufräder
    84
    Laufräder
    86
    Welle
    88
    aktive Seite
    90
    Antriebsseite
    92
    Abtriebsseite
    94
    passive Seite
    96
    Kupplungsscheiben
    100
    Luftvolumenstrom
    102
    Turbinenaustritt
    104
    Turbineneintritt
    110
    vertikale Baugrundförderung
    118
    Laufrad
    d
    radialer Abstand
    F
    resultierende Fliehkraft
    R
    Rotationsachse
    S
    Massenschwerpunkt
    W
    Auslenkung

Claims (8)

  1. Verfahren zur Herstellung von Bohrpfählen, wobei ein Bohrwerkzeug unter Aufbringung eines Bohrmoments (48) und einer Vertikalkraft (50) in einen Baugrund (28) abgeteuft wird, wieder zurückgezogen wird und ein Zusatzmaterial (52) in die entstandene Bohrung eingebracht wird,
    dadurch gekennzeichnet, dass
    das Bohrwerkzeug, während dieses in den Baugrund (28) abgeteuft wird und/oder während des Zurückziehens des Bohrwerkzeugs, durch einen oder mehrere Aktoren (56) in seiner Gesamtheit in Schwingung (58) versetzt wird, wobei eine resultierende Schwingungsamplitude zumindest einen horizontalen Anteil (62) aufweist.
  2. Verfahren zur Herstellung von Bohrpfählen nach Anspruch 1,
    dadurch gekennzeichnet, dass
    als Bohrwerkzeug ein Hohlbohrwerkzeug (47) verwendet wird, das wenigstens eine Hohlseele (54) aufweist und dass das Zusatzmaterial (52) durch die Hohlseele (54) des Hohlbohrwerkzeugs (47) in die Bohrung gefüllt wird, vor Beginn und/oder während und/oder nach dem Zurückziehen des Hohlbohrwerkzeugs (47).
  3. Verfahren zur Herstellung von Bohrpfählen nach Anspruch 2,
    dadurch gekennzeichnet, dass
    eine Bewehrung in die Hohlseele (54) des Hohlbohrwerkzeugs (47) eingebracht wird, bevor das Zusatzmaterial (52) in die Hohlseele (54) des Hohlbohrwerkzeugs (47) eingefüllt wird.
  4. Bohrwerkzeug zur Herstellung von Bohrungen oder Bohrpfählen in einem Baugrund (28), wobei das Bohrwerkzeug eine Längsachse (78) und wenigstens eine Strömungsmaschine aufweist, wobei in wenigstens einen Rotor der wenigstens einen Strömungsmaschine wenigstens eine Unwucht (76) integriert ist, dadurch gekennzeichnet, dass der Rotor um eine Längsachse (78) des Bohrwerkzeugs insgesamt drehbar in dem Bohrwerkzeug gelagert ist, so dass eine resultierende Schwingung (58) erzeugbar ist, deren Schwingungsamplitude zumindest einen horizontalen Anteil (62) aufweist.
  5. Bohrwerkzeug nach Anspruch 4,
    dadurch gekennzeichnet, dass
    das Bohrwerkzeug zumindest abschnittsweise mit einer Bohrwendel (66) und/oder einer Spitze mit Schraubengängen versehen ist.
  6. Bohrwerkzeug nach Anspruch 4 oder 5,
    dadurch gekennzeichnet, dass
    das Bohrwerkzeug ein Hohlbohrwerkzeug (47), aufweisend wenigstens eine Hohlseele (54), ist.
  7. Bohrwerkzeug nach einem der Ansprüche 4 bis 6,
    dadurch gekennzeichnet, dass
    die wenigstens eine Strömungsmaschine wenigstens eine pneumatische Turbine (80) ist.
  8. Bohrwerkzeug nach Anspruch 7,
    dadurch gekennzeichnet, dass
    wenigstens ein Laufrad (82) mit Turbinenschaufeln auf einer Hohlachse gelagert ist, die als Hohlseele (54) ausgeführt ist.
EP15825602.4A 2014-12-12 2015-12-11 Verfahren und vorrichtungen zur baugrundverbesserung Active EP3230531B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014225726.3A DE102014225726A1 (de) 2014-12-12 2014-12-12 Verfahren und Vorrichtungen zur Baugrundverbesserung
PCT/EP2015/079428 WO2016092075A1 (de) 2014-12-12 2015-12-11 Verfahren und vorrichtungen zur baugrundverbesserung

Publications (2)

Publication Number Publication Date
EP3230531A1 EP3230531A1 (de) 2017-10-18
EP3230531B1 true EP3230531B1 (de) 2020-02-12

Family

ID=55168216

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15825602.4A Active EP3230531B1 (de) 2014-12-12 2015-12-11 Verfahren und vorrichtungen zur baugrundverbesserung

Country Status (4)

Country Link
US (1) US10774494B2 (de)
EP (1) EP3230531B1 (de)
DE (1) DE102014225726A1 (de)
WO (1) WO2016092075A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11708678B2 (en) 2019-12-18 2023-07-25 Cyntech Anchors Ltd Systems and methods for supporting a structure upon compressible soil
CN114441435B (zh) * 2022-04-07 2022-06-28 水利部交通运输部国家能源局南京水利科学研究院 模拟原位应力状态砂土的无填料振冲试验装置及试验方法

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7330111U (de) * 1975-04-17 Wacker Werke Kg Vorrichtung zum Bilden von Schächten kleineren Durchmessers in allseitig umgebendem Erdreich
US2334228A (en) * 1939-07-01 1943-11-16 Steuermann Sergey Process of producing an intimate mixture between a mass of loose material and fluid or fluids
US2512831A (en) * 1947-02-26 1950-06-27 Holmes Arthur Brannam Production of concrete piles
US2743585A (en) * 1949-11-04 1956-05-01 Berthet Francois Driving and pulling of piles, pile planks, tubing, and the like
US2667749A (en) * 1952-06-25 1954-02-02 Steuerman Sergey Vibrator device
US2897440A (en) * 1955-04-12 1959-07-28 Dresser Ind Earth well casing discontinuity detector
US3168140A (en) * 1956-02-20 1965-02-02 Jr Albert G Bodine Method and apparatus for sonic jarring with fluid drive
US3049185A (en) * 1956-12-26 1962-08-14 Paul O Tobeler Method for oscillating drilling
US2951681A (en) * 1957-07-10 1960-09-06 Degen Wilhelm Internal vibrators and a method of operating the same
US2875988A (en) * 1957-09-03 1959-03-03 Price Brothers Co Mechanical vibrator
US3054463A (en) * 1958-01-24 1962-09-18 Albert G Bodine Acoustic apparatus for driving piles
US2942849A (en) * 1958-06-02 1960-06-28 Albert G Bodine Method for sonic earth boring by use of resonant wave pattern transmitted from ground surface
US3282055A (en) * 1958-07-02 1966-11-01 Richard E Landau Soil settling method
US3245223A (en) * 1960-09-07 1966-04-12 Degen Wilhelm Method of soil compaction
US3309877A (en) * 1960-09-07 1967-03-21 Degen Wilhelm Vibrator for compacting soil
DE1484511A1 (de) * 1961-10-13 1969-05-08 Louis Menard Verfahren zur Herstellung von Betonpfaehlen
US3262329A (en) * 1963-02-09 1966-07-26 Wacker Hermann Means for shifting the direction of vibrations in ground tamping plates or the like
US3455832A (en) * 1963-09-09 1969-07-15 Monsanto Co Schiff bases
US3239005A (en) * 1964-01-28 1966-03-08 Jr Albert G Bodine Method of molding well liners and the like
GB1114711A (en) * 1964-06-02 1968-05-22 John Carnegie Orkney Improvements in or relating to a method of inducing periodic stress and strain in an elongate elastic element
US3277970A (en) * 1965-03-30 1966-10-11 Albert G Bodine Sonic driver with pneumatic capacitance
US3344874A (en) * 1965-05-28 1967-10-03 Albert G Bodine Low-impedance isolator for vibratory pile driver machines
US3375884A (en) * 1965-08-16 1968-04-02 Albert G. Bodine Jr. Sonic method and apparatus for driving casings through earthen formations
US3479829A (en) * 1967-06-21 1969-11-25 Shell Oil Co Method and apparatus for forming end bearing piles
US3611735A (en) * 1968-10-24 1971-10-12 Tech Inc Const Method of making concrete bodies
US3638433A (en) * 1969-03-28 1972-02-01 James L Sherard Method and apparatus for forming structures in the ground
US3633688A (en) * 1970-02-13 1972-01-11 Albert G Bodine Torsional rectifier drilling device
US3742717A (en) * 1971-06-30 1973-07-03 G Wey Process for ground consolidation and reinforcement of stressed anchorage piling increasing the load capacity
DE2133561B2 (de) * 1971-07-06 1973-05-17 Bauer, Karlheinz, Dr Ing , 8898 Schrobenhausen Tiefenruettler zum verdichten des erdreiches und zum herstellen von bohrloechern im erdreich
US3808821A (en) * 1972-09-15 1974-05-07 K Philo Self-powered casing for forming cast-in-place piles
NL7508079A (nl) 1975-07-07 1977-01-11 Kooten Bv V Grondtriller en werkwijze voor het in de grond brengen van een grondtriller.
US4293242A (en) * 1977-04-29 1981-10-06 Stanley Merjan Piles
US4266619A (en) * 1979-08-06 1981-05-12 Bodine Albert G Down hole cycloidal drill drive
US4403665A (en) * 1979-09-17 1983-09-13 Bodine Albert G Sonic system for propelling pilings, drills and the like into the earth employing screw device
US4397588A (en) * 1981-01-23 1983-08-09 Vibroflotation Foundation Company Method of constructing a compacted granular or stone column in soil masses and apparatus therefor
US4667750A (en) * 1985-07-24 1987-05-26 Gas Research Institute Vibratory earth penetrator with synchronized air lance control
CA1338305C (en) * 1987-11-23 1996-05-07 Phoenix Engineering Ltd. Method for densification of particulate masses
DE4234112C1 (de) * 1992-10-09 1993-10-14 Keller Grundbau Gmbh Verfahren zur Gewinnung von Deponieraum durch Müllstopfverdichtung
US5570975A (en) * 1994-06-27 1996-11-05 Reinert, Sr.; Gary L. Metal foundation push-it and installation apparatus and method
US5515922A (en) * 1994-12-09 1996-05-14 Rattler Tools, Inc. Recovery tool
DE19822290C2 (de) * 1998-05-18 2003-01-02 Bul Sachsen Gmbh Verfahren und Einrichtung zur Rütteldruck- und Rüttelstopfverdichtung von bindigem und nichtbindigem Verdichtungsgut
DE19930884B4 (de) 1999-07-05 2009-12-03 Keller Grundbau Gmbh Verfahren und Vorrichtung zur Tiefenverdichtung mit gesteuerter Frequenz- und Unwuchtänderung eines Tiefenrüttlers
DE10006973C2 (de) 2000-02-16 2002-03-14 Bauer Spezialtiefbau Rüttelverdränger-Schnecke
GB0013015D0 (en) * 2000-05-26 2000-07-19 Balfour Beatty Ltd Auger piling
KR100696882B1 (ko) * 2004-09-13 2007-03-20 홍원기 가이드 케이싱을 수직기둥의 일부로 활용하는 기둥시공공법
US20090290940A1 (en) * 2008-05-21 2009-11-26 Martin Sr John Paul Apparatus and method for using multiple tools on a single platform
KR20120033954A (ko) * 2010-09-30 2012-04-09 인석신 헤드부를 갖는 천공장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3230531A1 (de) 2017-10-18
WO2016092075A1 (de) 2016-06-16
DE102014225726A1 (de) 2016-06-16
US10774494B2 (en) 2020-09-15
US20170370067A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
DE69823223T2 (de) Verfahren für bohrungen und gründungspfählen
EP1632637B1 (de) Bodenbearbeitungsgerät und Verfahren zum Einbringen eines Arbeitselementes in den Boden
DE102012223992B3 (de) Vorrichtung und Verfahren zur Bodenverdichtung und/oder Bodenverfestigung
EP3230531B1 (de) Verfahren und vorrichtungen zur baugrundverbesserung
DE19917538A1 (de) Vorrichtung und Verfahren zum Horizontalbohren mit einer Vibrationseinrichtung
EP2650446B1 (de) Verfahren zur Herstellung einer Gründung für eine Offshore-Anlage
EP2925934B1 (de) Verfahren zur herstellung eines pfahls
WO2016102432A1 (de) Tiefenrüttler
EP1134319A2 (de) Verfahren und Vorrichtung zur Herstellung eines Ortbetonpfahls
EP2597249A1 (de) Bohrgerät und Verfahren zum Erstellen einer vertikalen Bohrung
DE19930884B4 (de) Verfahren und Vorrichtung zur Tiefenverdichtung mit gesteuerter Frequenz- und Unwuchtänderung eines Tiefenrüttlers
EP3051028B1 (de) Verfahren zum vibrationsrammen
DE102011087096B4 (de) Werkzeug und Verfahren zum Erstellen von Bohrlöchern mit einem nicht rotationssymmetrischen Querschnitt
DE4303518C2 (de) Verfahren und Vorrichtung zum Verfestigen einer Deponie von vorverdichtetem Altmüll unter Erschließung von zusätzlicher Aufnahmekapazität für Frischmüll
DE102007008373A1 (de) Verfahren und Einrichtung zur Erzeugung von tiefen Bohrungen
DE2406030A1 (de) Verfahren zum herstellen von bohrungen im erdboden durch spuelbohren und maschine zur durchfuehrung des verfahrens
DE102013012279A1 (de) Vorrichtung und Verfahren zur Erstellung einer Gründung im Boden und für eine Gründung im Boden
EP3684981A1 (de) Verfahren zur installation eines pfahls und pfahl
EP2998448B1 (de) Verfahren zur Tragfähigkeitsverbesserung von im Baugrund gesetzten offenen Profilen sowie damit erstelltes System
DE3218995A1 (de) Werkzeug zur herstellung von bohrloechern in lockeren zusammendrueckbaren boeden und verfahren zum herstellen von bohrloechern unter verwendung eines solchen werkzeugs
DE10232314A1 (de) Vorrichtung und Verfahren zum Verdichten von Böden und zur Herstellung von säulenförmigen Körpern im Boden mit Hilfe von Tiefenrüttlern
DE3501252A1 (de) Verfahren zum herstellen eines an ort und stelle gegossenen betonpfahles
DE102013226121B4 (de) Vorrichtung und Verfahren zur Bodenverdichtung und/oder Bodenverfestigung
AT239714B (de) Rüttelmaschine zum Versenken von Pfählen, Stäben usw.
DE904765C (de) Erdbohrvorrichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170612

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181123

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E02D 7/06 20060101ALI20190726BHEP

Ipc: E02D 3/054 20060101AFI20190726BHEP

Ipc: E02D 5/56 20060101ALI20190726BHEP

Ipc: E02D 5/46 20060101ALI20190726BHEP

Ipc: E02D 3/074 20060101ALI20190726BHEP

INTG Intention to grant announced

Effective date: 20190830

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1232257

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011739

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015011739

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201211

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1232257

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240122

Year of fee payment: 9