EP3225937B1 - Vorrichtung für gebäude, die ein speicherelement für ein thermisch wiederaufladbares fluid enthält - Google Patents

Vorrichtung für gebäude, die ein speicherelement für ein thermisch wiederaufladbares fluid enthält Download PDF

Info

Publication number
EP3225937B1
EP3225937B1 EP17164286.1A EP17164286A EP3225937B1 EP 3225937 B1 EP3225937 B1 EP 3225937B1 EP 17164286 A EP17164286 A EP 17164286A EP 3225937 B1 EP3225937 B1 EP 3225937B1
Authority
EP
European Patent Office
Prior art keywords
fluid
circuit
storage element
cold
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17164286.1A
Other languages
English (en)
French (fr)
Other versions
EP3225937A1 (de
Inventor
Pierre Dumoulin
Sébastien VESIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3225937A1 publication Critical patent/EP3225937A1/de
Application granted granted Critical
Publication of EP3225937B1 publication Critical patent/EP3225937B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0039Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material with stratification of the heat storage material

Definitions

  • the invention relates to the field of thermal management within a building.
  • the invention is concerned with a device comprising a storage element configured to store hot and cold, and at least one method for charging cold fluid first and first hot fluid storage parts, in particular to meet the needs at the building level.
  • heating or cooling the building for example to improve the comfort of the building occupants, or for technical reasons in tertiary buildings, and / or such that the supply of domestic hot water within the building.
  • these temperature control needs may be accurate as in hospitals or laboratories.
  • the subject of the invention is a building device having characteristics that make it possible to solve at least part of the needs identified above.
  • a device for building comprising a storage element of a first fluid, a circulation circuit of the first fluid connected to said storage element, and a heat pump comprising an evaporator and a condenser, and in that the circuit has at least one simultaneous charge configuration of a first cold fluid storage portion within the storage element and a first hot fluid storage portion within the storage element.
  • the heat pump in the simultaneous charging configuration is configured to form a cold source at the evaporator for participating in the charge of the first cold fluid storage portion and a hot source at the condenser for participating in the charging of the first hot fluid storage part when the first fluid from the storage element is circulated in the circuit.
  • the circuit is configured such that when the first fluid from the storage element is circulated in the circuit, a first fraction of said first fluid circulating in the circuit undergoes a temperature rise induced by the use of the heat pump before being introduced into the storage element at the level of the first fluid storage part hot, and a second fraction of the first fluid flowing in the circuit undergoes a temperature decrease induced by the use of the heat pump before being introduced into the storage element at the first cold fluid storage portion .
  • the device comprises a circulation loop of a second fluid, said loop being associated with: the evaporator of the heat pump so as to cool the second fluid when the heat pump is used; and a first heat exchanger through which, in the simultaneous charge configuration, the second fraction of the first fluid such that said second fraction of the first fluid undergoes, at said first heat exchanger, said decrease in temperature related to the use of the heat pump with the second fluid after passing through the evaporator.
  • said loop is associated with a second heat exchanger, in particular associated with a fan, for heating the second fluid after its cooperation with the evaporator of the heat pump and before the passage of said second fluid in the first heat exchanger.
  • the heat pump comprises a refrigerant circulating between the evaporator of the pump and the heat and condenser of the heat pump, said heat pump being configured such that the refrigerant: releases its heat at the condenser to the first fraction of the first fluid; and takes heat from the second fluid so that the latter fluid participates in cooling the second fraction of the first fluid.
  • the storage element of the first fluid is thermally stratified and comprises a reservoir having a space filled with the first fluid and comprising both the first hot fluid storage portion and the first cold fluid storage portion whose volumes are adaptable.
  • the reservoir space has a first fluid intermediate storage portion located between the first hot fluid storage portion and the first cold fluid storage portion, and in the simultaneous charge configuration, the device includes a system sampling device configured so that the first fluid from the storage element and flowing in the circuit comes from the intermediate storage part.
  • the circuit is adapted to adopt at least one of the following additional configurations: a charging configuration of the first hot fluid storage part alone in which the circuit is configured so that when first fluid from the storage element circulates in the circuit, said first fluid flowing in the circuit is directed into the circuit so as to undergo a temperature rise induced by the condenser of the heat pump before being introduced into the storage element at the first hot fluid storage portion; a charge configuration of the first cold fluid storage portion alone in which the circuit is configured such that when the first fluid from the storage element flows in the circuit, said first fluid flowing in the circuit is directed in the circuit so as to undergo a temperature decrease caused by a second fluid flowing in a circulation loop of the device before being introduced into the storage element 1 at the level of the first cold fluid storage part, in this charging configuration of the first cold fluid storage part only the heat pump is either turned off or turned on to participate in the temperature decrease; a distribution pattern of the first fluid from the storage element in which the heat pump is deactivated, and wherein the circuit is configured to transmit said first fluid from the storage
  • control module comprises a function taking as input at least one of the following parameters: a parameter representative of a forecast of sunshine; a parameter representative of the outside temperatures of day and night to come; a parameter representative of the cost of the electricity used in the event of fluctuation of said cost over time; a parameter representative of the customers' behavior; a parameter indicating the presence of client (s) within the building; and said function outputs the selected configuration.
  • the circuit comprises an output intended to be connected to an input of a distribution network of the building and an input intended to be connected to an output of the building distribution network, said circuit further comprising: a first section connected, on the one hand, to the storage element and, on the other hand, to the input of the circuit, this first section comprises a first pump and a first branch formed in parallel with the first pump; a second section connected, on the one hand, to the storage element at the first hot fluid storage portion of the storage element, and connected, on the other hand, to the output of the circuit, said second section comprising between the storage element and the output of the circuit the following successive elements: a first valve, a second pump associated with a second branch formed in parallel with the second pump, a second valve, a third pump capable of sending, when it is activated, the first fluid in the distribution network of the building; a third section connected, on the one hand, to the first section and, on the other hand, to the second valve, said third section being associated with the condenser of the heat
  • the invention also relates to a method for managing a building device, said device comprising a storage element for a first fluid, such a method comprises a first mode of operation comprising a step of simultaneously charging a part for storing first cold fluid within the storage element and a first hot fluid storage portion within the storage element, said simultaneous charging step comprising a first fluid sampling step from the storage element so as to circulate it in a circulation circuit of the first fluid and a step of using a heat pump comprising a condenser and an evaporator.
  • the step of simultaneous charging can comprise the following steps: a step of raising the temperature of a first fraction of the first fluid flowing in the circuit induced by the step of using the heat pump followed by a step of introducing the first fraction into the storage element at the first hot fluid storage portion of the storage element; a step of reducing the temperature of a second fraction of the first fluid flowing in the circuit induced by the step of using the heat pump followed by a step of introducing the second fraction into the storage element at the cold first fluid storage portion of the storage element.
  • the method comprises in addition to the first mode of operation, at least one of the following additional operating modes: a second mode of operation comprising a step of charging the hot first fluid storage part only having a step of sampling the first fluid from the storage element so as to circulate it in the circuit so that it undergoes a temperature rise induced by the condenser of the heat pump followed by a step introducing said first fluid taken from the storage element at the first hot fluid storage portion; a third mode of operation comprising a step of charging the cold first fluid storage portion only comprising a first fluid sampling step from the storage element so as to circulate it in the circuit so that it undergoes a temperature decrease during a passage of said first fluid taken from a heat exchanger coupled to a second fluid of temperature lower than that of said first withdrawn fluid, followed by a step of introducing said first fluid taken from the storage element at the level of the part storing first cold fluid of the storage element; a fourth mode of operation in which the heat pump is deactivated, and comprising a step in
  • control step comprises the use of a function taking as input at least one of the following parameters: a parameter representative of a forecast of sunshine; a parameter representative of the day and night temperatures to come; a parameter representative of the cost of the electricity used in the event of fluctuation of said cost over time; a parameter representative of the customers' behavior; a parameter indicating the presence of client (s) within the building, and the function outputs the selected operating mode.
  • the invention also relates to an installation comprising a building provided with a fluid distribution network in particular for heating and / or cooling said building, characterized in that it comprises a device as described connected to the distribution network for distributing the first fluid from the storage element within the distribution network.
  • the device described below differs from the prior art in that it notably proposes the use of a circulation circuit of a first fluid associated with a storage element of the first fluid, this circuit being configured so as to allow simultaneous charging of hot and cold storage element.
  • the storage element has a cold first fluid storage portion and a hot first fluid storage portion. These two storage portions may be delimited by two separate compartments.
  • the storage element is preferably thermally stratified and in this case, the thermal stratification storage element comprises a single compartment - also called reservoir - defining a first fluid storage volume including in particular both the storage portions of first hot fluid and first cold fluid.
  • the thermal stratification makes it possible to have within the same compartment the first cold fluid storage portion and the first hot fluid storage portion without fractionation in two distinct compartments of the first fluid: the principle of the first fluid is then used. density of the fluid as a function of its temperature.
  • the hot and cold first fluid storage portions are variable volumes dependent on the state of the first fluid in the storage element.
  • the notion of hot / cold is to be taken broadly in the sense that it is considered that in the cold first fluid storage part, the first fluid has a temperature lower than the first fluid located in the first fluid storage part. hot.
  • the first fluid in part of storage of first hot fluid, the first fluid preferably has a temperature between 60 ° C and 80 ° C, and in part of cold first fluid storage the first fluid preferably has a temperature between 10 ° C and 20 ° C.
  • the storage portions of first hot fluid and first cold fluid can be separated by a storage portion intermediate of first fluid in particular whose lower temperature is higher than the upper temperature of the cold first fluid storage part and whose upper temperature is lower than the lower temperature of the first hot fluid storage part. In this intermediate zone, the first fluid has a temperature preferably between 20 ° C and 60 ° C.
  • charge of the cold first fluid storage portion or “charge of the first hot fluid storage portion” will be used.
  • charge of the first cold fluid storage part is meant the injection / introduction into the first fluid storage element having a temperature included in, or less than, the temperature range associated with the storage zone of the first fluid. first cold fluid.
  • first cold fluid When we speak of the introduction of first cold fluid into the storage element at a cold first fluid storage part, it is a preferentially direct introduction into this first fluid storage part. cold, especially in the lower part of the storage element if the latter is of thermal stratification type.
  • charge of the hot first fluid storage part is meant the injection / introduction into the fluid storage element having a temperature greater than, or included in, the temperature range associated with the storage portion of the first fluid storage part.
  • first hot fluid When we speak of the introduction of first hot fluid into the storage element at a first hot fluid storage part, it is a preferentially direct introduction into this first fluid storage part. hot, especially in the lower part of the storage element if the latter is of thermal stratification type.
  • the first fluid stored in the storage element may, depending on the needs, be used in a distribution network of a building (individual or collective) to for example heat domestic hot water, circulate in a heating system or air conditioning distribution network, etc.
  • the figure 1 schematically illustrates a device for building, especially for the thermal management of the building.
  • a device comprises a storage element 1 of a first fluid, a circulation circuit 2 for circulating the first fluid connected to said storage element 1, and a fuel pump.
  • heat 3 comprising an evaporator 4 and a condenser 5.
  • the first fluid is preferably water.
  • Circuit 2 has at least one configuration (visible in figure 1 ) simultaneously charging a cold first fluid storage part Z1 within the storage element 1 and a first hot fluid storage part Z2 within the storage element 1 by using the pump heat 3 and circulation of first fluid from the storage element 1 in the circuit 2. This circulation can be achieved by a first pump 6 of the circuit 2.
  • the heat pump 3 is configured to form, in the simultaneous charge configuration, a cold source at the level of the evaporator 4 intended to participate in the charge of the cold first fluid storage part Z1 and a hot source at the condenser 5 intended to participate in the charge of the first hot fluid storage portion Z2 when the first fluid from the storage element 1 is circulated in the circuit 2.
  • circulation of a fluid in particular of the first fluid, is meant a movement or a flow of the first fluid in particular within the circuit 2.
  • the storage element 1 of thermal stratification type preferably further comprising the intermediate storage portion Z3. Due to the density of the first fluid in the storage element the Z2 portion is located above the Z1 portion, and where appropriate the Z3 portion is located between the Z1 and Z2 parts.
  • the storage element 1, in particular when it is thermally stratified, may comprise a ramp 7 for injecting first fluid into the storage element 1 or to collect the first fluid from the storage element 1.
  • the ramp 7 injection or sampling can be of the type selectively allowing to take the first fluid in a suitable zone of the storage element 1 or to inject the first fluid in a suitable zone of the storage element 1. This can be implemented by the use of actuators and temperature sensors, or by known alternative technical solutions exploiting the differences in density of the first fluid stored in the storage element 1 according to its temperature to inject or take the first fluid in the right place.
  • the heat pump 3 is arranged in such a way that its operation induces the heating of a first fraction of the first fluid flowing in the circuit 2 and induces the cooling a second fraction of the first fluid flowing in the circuit 2.
  • the circuit 2 is configured so that, when the first fluid from the storage element 1 is circulated in the circuit 2, a first fraction of said first fluid flowing in the circuit 2 undergoes a temperature rise induced by the use of the heat pump 3 before being introduced into the storage element 1 at the storage portion of the first hot fluid Z2 and a second fraction said first fluid flowing in the circuit 2 undergoes a decrease in temperature induced by the use of the heat pump 3 before being introduced into the storage element 1 at the first cold storage storage portion Z1.
  • the circuit 2 may include, in its simultaneous charging configuration, a first pipe element 8 connected to the storage element 1, in particular to the ramp 7, and associated with the first pump 6 enabling the in circulation of first fluid in the first pipe element 8.
  • This first pipe element 8 is connected, in particular at its end opposite the storage element 1, to a second pipe element 9 intended to receive the first fraction of the first fluid and cooperating with the condenser 5, which results in the temperature increase of the first fraction when the heat pump 3 is active and the first fluid flows in the circuit 2.
  • the second pipe element 9 may comprise two parts each clamped to a heat exchanger of the condenser 5 so as to allow the passage of first fluid through the condenser and more particularly the exchanger t hermetic condenser 5 allowing a heat exchange between the fluid of the heat pump and the first fluid.
  • the second pipe element 9 joined the storage element 1, especially in the upper part to allow the direct introduction of the first fraction of the first fluid into the first hot fluid storage portion Z2.
  • the circuit 2 has in this simultaneous charging configuration a third pipe element 10 connecting the first pipe element 8 to the storage element 1.
  • This third pipe element 10 is intended to receive the second fraction of the first pipe element. fluid and cooperates directly or indirectly with the evaporator 4.
  • the direct cooperation of the third pipe element 10 with the evaporator 4 can be difficult depending on the case in the sense that there is a risk of freezing the second fraction of the first fluid according to the heat pump 3 used.
  • the piping elements of the figure 1 are arrowed to give the indication of circulation of first fluid in the circuit 2.
  • the advantage of the brine is that it freezes at temperatures colder than those of normal water, this being the case in case of hot charge alone as will be described hereinafter in connection with the figure 2 .
  • the second fluid may be subjected to temperatures of the order of -15 ° C and must remain liquid at these temperatures.
  • the additional element that may comprise the device and referred to above may in fact be a circulation loop 11 of the second fluid (the arrows of the figure 1 at the level of the loop 11 indicates the flow direction of the second fluid), the loop 11 being associated with the evaporator 4 of the heat pump 3 so as to cool the second fluid when the heat pump 3 is used (the loop 11 can then pass through the evaporator 4, that is to say be thermally coupled to the evaporator 4).
  • the loop 11 is also associated with a first heat exchanger 14, in particular of liquid-liquid type (that is to say first fluid-second fluid), then traversed by the second fluid and through which passes in the charge configuration simultaneous, the second fraction of the first fluid (especially via the third pipe element 10) so that the second fraction of the first fluid undergoes, at the level of said first heat exchanger 14, said temperature decrease related to the use of the heat pump 3 with the aid of the second fluid after passing through the evaporator 4.
  • the loop 11 can also be associated with a second heat exchanger 12 (that she crosses on the figure 1 ), in particular associated with a fan 13, for heating the second fluid after its cooperation with the evaporator 4 of the heat pump 3 and before it passes through the first heat exchanger 14.
  • the second heat exchanger 12 is notably of the air-cooled type. liquid, where the air may be outside air ventilated by the fan 1 or ventilated air from a VMC).
  • the loop 11 may comprise a bypass 11a of the second fluid in parallel with the second heat exchanger 12, this bypass 11a being configured so as to have a first state in which the second fluid flows. in the bypass but not in the second heat exchanger 12 and a second state in which the second fluid passes into the second heat exchanger 12.
  • the decrease in the temperature of the second fraction is induced by the heat pump. 3 but uses a second fluid as an intermediate as well as heat exchangers.
  • the circulation loop 11 associated with the second exchanger 12 itself associated with the fan 13 provide an aerothermal function of the heat pump 3.
  • This fan 13 may only work in certain cases, for example when looking for to perform a charge of the hot fluid storage portion alone as will be described hereinafter in connection with the figure 2 .
  • the fan 13 can be used to send outside air on the second exchanger 12 or air from a controlled mechanical ventilation (VMC).
  • VMC controlled mechanical ventilation
  • the loop 11 may comprise a pump 15 allowing the circulation of the second fluid so that the latter can cooperate successively with the evaporator 4, if necessary with the second heat exchanger 12 and if necessary with the first heat exchanger 14.
  • "Outside air” means air coming from outside the building.
  • the heat pump comprises a compressor 3a (for increasing the pressure of the refrigerant) and a pressure reducer or expansion member 3b (for lowering the pressure of the refrigerant).
  • the storage element 1 of the first fluid is preferably thermally stratified and comprises a reservoir 1a having a space filled with the first fluid and comprising both the first hot fluid storage part Z2 and the storage part of the first fluid.
  • first cold fluid Z1 whose volumes are adaptable.
  • first cold fluid and the first hot fluid storage portion can be adapted as needed.
  • the reservoir space may comprise the intermediate storage part Z3 of the first fluid situated between the first hot fluid storage part Z2 and the cold first cold storage part Z1, and preferably in the charge configuration simultaneous, the device comprises a sampling system (the ramp 7 mentioned above) configured so that the first fluid from the storage element 1 and flowing in the circuit 2 comes from the intermediate storage part Z3, this allows use part of the first fluid whose temperature is between the temperature of the part Z1 and the temperature of the part Z2 so as to balance the production of hot and cold by limiting the supply of frigories or calories to the first fluid and thus limiting the power consumption during simultaneous charging.
  • a sampling system the ramp 7 mentioned above
  • the storage element 1 may comprise a plurality of storage compartments 1 with thermal stratification in fluid communication (in particular the compartments are preferably in series), the circuit being then able to adapt to recharge all the compartments as needed, which can reduce costs due to the use of existing storage elements.
  • the part of the first fluid taken from the storage element, where appropriate in the intermediate storage zone has a first temperature, in particular between 20 ° C. and 40 ° C.
  • the first fraction of this portion of the first fluid is raised to a second temperature, especially between 60 ° C and 80 ° C, greater than the first temperature, and the second fraction is treated so as to reach a third temperature, in particular between 10 ° C and 20 ° C lower than the first temperature.
  • the second fluid meanwhile is preferably such that at the inlet of the first heat exchanger 14 it has a temperature between 10 ° C and 20 ° C.
  • These temperatures are advantageously compatible for storing hot and cold in order to supply it to a distribution network of the building.
  • the simultaneous charging configuration is implemented in summer where the simultaneous needs of hot and cold within the building can be important. Of course, depending on the needs, this simultaneous charging configuration can also be implemented in other seasons.
  • the configuration referred to above allows the advantageous simultaneous recharge of hot and cold, especially in summer, from the same operating phase of the heat pump 3, it therefore results in a cost limitation and the possibility of achieve a desired state of the storage element more quickly. Moreover, classically by recharging the hot with aerothermal cold is rejected to the ambient air, so we take advantage of this cold rejected to recharge cold without significant additional costs, including power consumption.
  • the circuit 2 can be configured to adopt additional configurations, that is to say complementary to the simultaneous charging configuration, and allowing the implementation of these functions.
  • the circuit is able to adopt at least one of the additional configurations described.
  • the figure 2 illustrates only part of the features of the building device according to the embodiment of the present invention for providing additional configuration - referred to as the load configuration of the first hot fluid storage portion Z2 alone - in which the circuit 2 is configured such that, when the first fluid issuing from the storage element 1 flows in the circuit 2, said first fluid flowing in the circuit 2 is directed into said circuit 2 so as to undergo a temperature rise induced by the condenser 5 of the heat pump 3 before being introduced into the storage element 1 at the first hot fluid storage portion Z2.
  • the circuit 2 may comprise as illustrated in FIG.
  • FIG 2 in its charge configuration of the first hot fluid storage part Z2 alone, the first pipe element 8 connected to the storage element 1, in particular to the ramp 7, and associated with the first pump 6 allowing the implementation of circulation of the first fluid in the first pipe element 8.
  • This first pipe element 8 is connected to the second pipe element 9 intended to receive the first fluid flowing in the circuit and cooperating with the condenser 5, from which it results the temperature increase of the first fluid when the heat pump 3 is active.
  • the second pipe element 9 joins the storage element 1, especially in the upper part, to allow the direct introduction of the first fluid into the first hot fluid storage portion Z2.
  • the evaporator 4 of the latter may be associated with the loop 11, the second fluid of which is circulated by the loop pump 11. This time the loop 11 is associated at the evaporator 4 and at least the second heat exchanger 12 in particular associated with a fan 13 of to warm the second fluid.
  • the first fluid taken from the storage element 1 (where appropriate in the intermediate storage zone) has a temperature of between 20 ° C. and 60 ° C.
  • the second heat exchanger 12 is configured to adjust the temperature of the second fluid after its passage in the evaporator 4 between -10 ° C and 10 ° C to improve the operation of the evaporator 4 during the return of the second fluid through the latter (if the outside temperature is too cold , the fan 13 will not send outside air but rather the recycled air of a VMC to heat the second fluid at the second heat exchanger 12), the condenser 5 then allows to heat the first circulating fluid in the circuit 2 at the condenser 5 at a temperature between 60 ° C and 80 ° C before the latter is injected into the storage element 1 at the first hot fluid storage portion Z2 .
  • the first fluid taken from the storage element where appropriate in the intermediate storage zone, has a temperature between 20 ° C and 40 ° C and the second heat exchanger 12 is configured to adjust the temperature.
  • temperature of the second fluid after its passage through the evaporator 4 between 10 ° C and 20 ° C to improve the operation of the evaporator 4 during the return of the second fluid through the latter.
  • the figure 3 illustrates only a portion of the features of the building device according to the embodiment of the present invention for providing a further additional configuration - also referred to as the load configuration of the cold first storage part Z1 alone or case 1 - in which the circuit 2 is configured such that, when the first fluid from the storage element 1 flows in the circuit 2, said first fluid flowing in the circuit 2 is directed in the circuit 2 so as to undergo a temperature decrease caused by the second fluid flowing in the loop 11, in particular by activation of the loop pump 15, before being introduced into the storage element 1 at the first cold storage part Z1.
  • the device may comprise the second heat exchanger 12 in which the loop 11 passes and configured so as to reduce the temperature of the second fluid before it is increased by heat exchange between the first fluid flowing in the circuit 2 and the second fluid flowing in the loop 11 at the first heat exchanger 14 of the device then crossed by the first and second fluids.
  • the loop 11 passes through the second heat exchanger 12, in particular associated with a fan 13 which ventilates air, especially outside the building, on the second heat exchanger 12, the purpose of which is to cool the second fluid, before this the latter passes into the first heat exchanger 14 which also receives a portion of the circuit 2 so that the first heat exchanger 14 can take heat from the first fluid flowing in the circuit 2 - thus lowering the temperature of the first fluid - to transmit them to the second fluid.
  • the circuit 2 comprises the first pump 6 which makes it possible to take the first fluid from the storage element 1, in particular via the ramp 7, before reinjecting it at the level of the cold first fluid storage part Z1.
  • the circuit 2 may comprise as illustrated in FIG. figure 3 , in its charge configuration of the cold first fluid storage part Z1 alone, the first pipe element 8 connected to the storage element 1, in particular to the ramp 7, and associated with the first pump 6 for the implementation of circulation of the first fluid in the first pipe element 8.
  • This first pipe element 8 is connected to the third pipe element 10 intended to receive the first fluid flowing in the circuit 2 and associated with the first heat exchanger 14, from which it results the decrease in temperature of the first fluid when the circulation loop 11 is active and the fan 13 is active.
  • the arrows shown at the piping elements represent the flow direction of the first fluid in the circuit 2.
  • the arrows shown at the circulation loop 11 represent the flow direction of the second fluid. It is clear that this configuration can only work if the temperature of the second fluid after passing through the second heat exchanger 12 is lower than the temperature of the first fluid flowing in the circuit 2 upstream of the first heat exchanger 14. This is for that this charging configuration of the first cold-fluid storage part alone is preferred in winter or summer when outside temperatures permit it. Alternatively, this configuration also makes it possible to reduce the overall mean temperature of the first fluid in the storage element 1 by reloading the cold fluid storage part with a low efficiency before activating the simultaneous charging configuration with a better efficiency.
  • the first fluid taken from the storage element 1, if necessary from the intermediate storage zone, has a temperature between 20 ° C and 40 ° C while the second heat exchanger 12 is configured to adjust the temperature of the second fluid between 15 ° C and 25 ° C for the latter to cool the first fluid flowing in the circuit at the first heat exchanger 14 at a temperature between a temperature below 20 ° C and a temperature of 30 ° C.
  • ° C more particularly the temperature of the first fluid after its passage in the first heat exchanger will also be greater than 15 ° C to be compatible with the above-mentioned range of temperature of the second fluid
  • the figure 4 illustrates only a part of the features of the building device according to the embodiment of the present invention allowing an alternative embodiment of the charge configuration of the cold first fluid storage part Z1 alone (or case 2) of the figure 3 in which the heat pump 3 is added.
  • the evaporator 4 of the heat pump 3 is associated with the circulation loop 11 between the pump 15 and the second exchanger 12 so as to reduce the temperature of the second fluid more efficiently, and especially even in summer when outside temperatures are incompatible with a cold charging function from aerothermal: elements 12 and 13 of the figure 3 .
  • the loop 11 may comprise the derivation 11a which can be activated to prevent the passage of second fluid through the second heat exchanger 12.
  • the heat pump 3 it is necessary to dissipate the heat from the condenser 5 of the heat pump.
  • an additional loop 100 passing through the condenser 5 and comprising a pump 101 for circulating a third fluid whose direction of flow is arrow in said additional loop 100.
  • the additional loop 100 is also associated with a third heat exchanger 102 associated with a fan 103 so that the fan 103 sends air to cool the third heat exchanger 102 to cool the third fluid before it passes through the condenser 5.
  • this storage element 1 is intended to be used to provide calories or frigories to the building.
  • the circuit 2 can adopt, as illustrated in Figures 5 and 6 , an additional configuration called distribution of the first fluid from the storage element 1 in which the heat pump 3 is deactivated (it is therefore not shown in FIG.
  • circuit 2 is configured to transmit said first fluid from the storage element 1 to a distribution network 16 of the building and to receive said first fluid after it has circulated in the distribution network of the building 16 in order to inject it at least partly into the storage element 1, in particular via the ramp 7 which makes it possible to inject the first return fluid of the distribution network 16 directly into a part of the zone adapted to the temperature of said first fluid to be injected.
  • the figure 5 illustrates only a part of the characteristics of the building device so as to show a first state of the distribution configuration in which it will seek to supply calories to the distribution network 16, for example to heat a hot water tank 17 (particularly in summer and winter) and / or to heat building parts (especially in winter) via a heating system 18.
  • the circuit 2 adopts a configuration such that it takes the first fluid in the part of storage of first hot fluid Z2 and the transfer to the distribution network 16 before recovering it and injecting at least a part of it into the ramp 7, and possibly as illustrated by recirculating a part by reinjecting it after its passage in the distribution network 16 in a pipe element connecting the storage element 1 and the distribution network 16.
  • the arrows indicate the flow direction of the first fluid.
  • the first fluid taken from the first hot fluid storage part Z2 has a temperature between 60 ° C and 80 ° C, and the first fluid returning to the circuit 2 after its journey through the distribution network 16 has a temperature between 20 ° C and 40 ° C.
  • the figure 6 illustrates only a part of the characteristics of the building device so as to show a second state of the distribution configuration in which we will seek to provide frigories to the distribution network 16 especially in summer, for example to cool / cool parts of the building via the heating system 18 which is then called "reversible".
  • the arrows indicate the flow direction of the first fluid.
  • the first fluid taken from the cold first fluid storage part Z1 has a temperature of between 10 ° C. and 20 ° C.
  • the first fluid returning to the circuit 2 after its path in the distribution network 16 has a temperature between 20 ° C and 40 ° C.
  • the first fluid is injected again into the storage element 1, in particular via the ramp 7.
  • the device may comprise a control module 19 configured to select one of said configurations (among those available, that is to say at least the simultaneous charging configuration and at least one (in particular all) additional configurations described) and configured to change the flow of the first fluid within the circuit 2 so as to implement the selected configuration.
  • this control module is shown by way of example by a wireless remote control 19, but any type of module for controlling the states of different components of the circuit 2 and the device can be used.
  • control module 19 comprises a function taking as input at least one of the following parameters: a parameter representative of a forecast of sunshine; a parameter representative of the outside temperatures of day and night to come; a representative parameter the cost of the electricity used in the event of fluctuation of the said cost over time; a parameter representative of the customers'behavior; an indicator parameter the presence of client (s) within the building; and outputting the selected configuration.
  • the representative parameter of the forecast sunlight allows, for example in summer if a strong sunlight is provided, to operate the device at night at least part of the time in charge of cold alone (especially if the outside temperature allows) to ensure a sufficient volume of the first cold fluid storage part, especially such that the volume of the first cold fluid storage part is larger than the volume of the first hot fluid storage part.
  • This forecast can be determined from a suitable model, for example at the current season, or from a communication to a database (for example a weather website) containing the appropriate information.
  • the parameter representative of the cost of the electricity used in case of fluctuations of the latter over time can make it possible to adapt the charging strategy of the storage element with a view to limiting costs. This is particularly advantageous in the case where the rates fluctuate according to the days: one adapts thus the control according to the costs and the returns of the load.
  • the representative parameter of the behavior of the customers can be used in order to anticipate the habitual behaviors of the customers according to the climatic conditions (for example via a self-adaptive system which evaluates and evolves according to the uses). For example, by using a behavioral study of clients associated with a past day, it is possible to anticipate the needs if one knows in advance that the conditions of this past day will recur.
  • This presence data can be transmitted to a man-machine box, for example via a smart mobile phone "Smartphone” or by using a calendar of presence.
  • control strategy for selecting the configuration of circuit 2 aims to store heat and / or cold when needed, and to optimize their costs by integrating the efficiency of the circuit.
  • heat pump 3 the cost of electricity, any energy losses over time.
  • This steering strategy may then need to define the sequencing of the heat / cold supply during the day to limit the frequency with which the first hot and cold fluid will mix in the pipes (domestic hot water tank charging during the period when the need for heating and cooling "domestic Will not be present), and need to know the projected need in future weeks and the future cost of energy (availability of energy sources, costs) and needs.
  • the forecast can use a tool incorporating the parameters listed above, and in addition able to calculate thermal flows that will be requested in the coming days within the building, the tool can also implement a calculation method to define the best economical solution to meet the demand for hot / cold requested in the coming days, and apply this method to define the operating strategy of the device.
  • the figure 7 illustrates a particular diagram of implementation of the device in which the circuit 2 comprises an output S1 connected to an input E1 of the distribution network 16 of the building (or intended to be connected to the input E1 of the distribution network 16 of the building when the device does not include the building network) and an input E2 connected to an output S2 of the distribution network 16 of the building (or intended to be connected to the output S2 of the distribution network 16 of the building when the device does not include the building network 16).
  • the circuit 2 then comprises a first section T1 connected, on the one hand, to the storage element 1 (in particular to the ramp 7) and, on the other hand, to the input E2 of the circuit 2, this first section T1 comprises a first pump 6, a first branch 20 formed in parallel with the first pump 6, said first branch 20 being able to adopt a closed state or an open state.
  • the circuit 2 also comprises a second section T2 connected, on the one hand, to the storage element 1 at the first fluid storage part Z2.
  • the circuit 2 further comprises a third section T3 connected, on the one hand, to the first section T1 and, on the other hand, to the second valve 24, said third section T3 being associated with the condenser 5 of the heat pump 3.
  • the circuit 2 also comprises a fourth section T4 connected on the one hand to the first section T1, preferably between the first pump 6 and the third section T3, and on the other hand to a third valve 26.
  • the device further comprises the loop circulation 11 of the second fluid, especially brine, this loop 11 having a fourth pump 15 for circulating the second fluid so that it cooperates successively with the evaporator 4 of the heat pump 3 then the second air heat exchanger 12 to increase its temperature, in particular coupled to a fan 13, then the first heat exchanger 14 also associated with the fourth section T4, before returning to the evaporator
  • the circuit 2 also comprises a fifth section T5, comprising the third valve 26, connected, on the one hand, to the storage element 1 at the first cold storage part Z1 and, on the other hand, second part T2 between the first valve 21 and the second pump 22 (or more particularly the second bypass 23).
  • the circuit 2 comprises a sixth section T6 connected, on the one hand, to the first section T1 and, on the other hand, to the first valve 21.
  • the device can then of course comprise a control module (for example the control 19) for controlling the states of the first, second, third and fourth pumps, the state of the first and second branches, the state of the first, second, third and the state of the heat pump 3 as a function of a desired configuration of the circuit 2.
  • Each of the sections further comprises one or more pipe elements for guiding the circulation of the first fluid in the circuit 2, these piping elements connecting the various components (pumps, valves, heat exchangers, evaporator, condenser, etc.) or sections between them.
  • the device may comprise the additional loop 100 associated with the condenser 5 for taking heat and the pump 101 forms a fifth pump for circulating a third fluid in said additional loop 100.
  • the additional loop 100 is associated with the third heat exchanger 102 also combined with a fan 103 so that the fan 103 sends air to cool the third heat exchanger 102 to cool the third fluid before it passes through the condenser 5.
  • the condenser 5 is configured to selectively cooperate if necessary either with the first fluid or with the third fluid according to the configuration of the circuit, for this it may comprise adapted inputs and outputs associated with the circuit 2 and the additional loop 100, the skilled person will be able to adapt the device as needed to perform this function of condenser capable of cooperating with two separate fluids (other than the refrigerant of the pump to heat).
  • the first pump 6 can adopt a first state in which it pumps the first fluid from the storage element 1 to propel it in a corresponding part of the first section T1, and a second state in which it is stopped and prevents the first fluid from crossing it.
  • the second pump 22 can adopt a first state in which it pumps the first fluid from the storage element, in particular from the first hot fluid storage part Z2, to propel it into a corresponding part of the second section T2, and a second state in which it is stopped and prevents the first fluid from passing through it.
  • the third pump 25 can adopt a first state in which it pumps the first fluid from a corresponding portion of the second section T2 to inject it into the distribution network 16, and a second state in which it is stopped and prevents the first fluid from passing through it and thus prevents the distribution of first fluid in the network 16.
  • the first branch 20 and the second branch 23 may each have a first closed state - where no fluid passes - and a second open state - thus allowing the fluid to pass.
  • the first valve 21 can adopt a first state in which it passes the first fluid at its level in the second section T2 while preventing the fluid communication at its level between the second section T2 and the sixth section T6, a second state in which it passes from the first fluid to its level in the second section and allows the injection of first fluid in the second section from the sixth section T6, and a third state in which the first fluid does not flow through the first valve 21
  • the second valve 24 can adopt a first state in which it allows the first fluid to pass at its level in the second section and in which it prevents the fluidic communication from the third section T3 to the second section T2, a second state in which it passes from the first fluid from the third section T3 in only part of the second section T2 in say ction of the storage element and preventing the flow of first fluid towards the third pump 25, and a third state in which the first fluid does not flow through the second valve 24, the second valve 24 can then be a three-way type valve.
  • the third valve 26 can adopt a first state in which the first fluid does not flow through the third valve 26, a second state in which it allows the circulation of first fluid from the cold first storage portion Z1 of the storage element 1 to the second section T2 by preventing fluid communication between the fifth section T5 and the fourth section T4, and a third state in which the first fluid from the fourth section T4 is injected into a first portion of the fifth section T5 in directing the cold fluid first storage part while preventing the injection of a first fluid in a second portion of the fifth section T5 connecting the third valve 26 to the second section T2.
  • the heat pump 3 may comprise an active state in which it operates (that is to say that the refrigerant circulates and passes successively by the compressor 3a, the condenser 5, the expander 3b and the evaporator 4 before back through the compressor) and an inactive state in which it is stopped.
  • the loop of circulation 11 may comprise an active state in which the second fluid circulates within the loop (in this case the fourth pump 15 is active and the second fluid cooperates successively with the evaporator 4, if necessary the second heat exchanger 12, and the first heat exchanger 14 before cooperating again with the evaporator) and an inactive state in which the second fluid does not circulate within the loop 11.
  • the additional loop 100 may include an active state wherein the third fluid flows through the condenser 5, then the fifth pump 101 which propels it, then through the third heat exchanger 102 while the fan 103 is active to ventilate air on the third heat exchanger, the additional loop 100 may also include an inactive state in which the third fluid does not flow.
  • FIGs 8 to 13 take over the elements of the figure 7 and allow to illustrate the different configurations.
  • the pipe elements in which the first fluid does not flow have been dotted, and for those remained in solid lines, they have been arrowed to indicate the direction of flow of the first fluid.
  • the loops 11 and 100, and the heat pump 3 are inactive dotted lines are present at their level.
  • figure 8 represents the device in which the circuit 2 is in its simultaneous charge configuration of the cold first fluid storage Z1 and the first hot fluid Z2 storage portions.
  • the figure 9 represents the device in which the circuit 2 is in its charging configuration of the first hot fluid first storage part Z2
  • the figure 10 represents the device in which the circuit 2 is in its charging configuration of the cold first fluid storage part Z1 alone in the case 1.
  • the Figures 11 and 12 illustrate the configuration of the circuit 2 for the distribution of the first fluid in the distribution network 16 of the building.
  • the distribution network 16 includes a fourth valve 28 allowing either to supply first fluid the domestic hot water tank 17 and / or a heating system 18 for heating parts of the building ( figure 11 first distribution state), that is to supply the cold system with the first fluid 18 to cool parts of the building ( figure 12 - second state of distribution).
  • the figure 13 illustrates the device in which the circuit 2 is in its charging configuration of the cold first fluid storage part Z1 only in the case 2. Note that in the case where the loop 11 is in the active state of figures 8 and 13 , the branch 11a is shown inactive but can be activated if necessary to bypass the second exchanger 12.
  • the invention also relates to a building device management method, said device comprising the storage element 1 of the first fluid.
  • This method may in particular use the device described above in the context of the implementation of its steps.
  • this method comprises a first mode of operation comprising a simultaneous charging step E1 ( figure 14 ) a first cold fluid storage part Z1 within the storage element 1 and a first hot fluid storage part Z2 within the storage element 1, said simultaneous charging step E1 comprising a sampling step E1-1 of the first fluid from the storage element 1 so as to circulate it in the circulation circuit 2 of the first fluid and a step E1-2 of using a heat pump 3 comprising a condenser 5 and an evaporator 4, including the evaporator 4 forms a cold source participating in the charge of the cold first fluid storage portion Z1 and the condenser 5 forms a hot source participating in the charge of the party storage of first hot fluid Z2.
  • the control step E5 may comprise the use of a function taking as input at least one of the following parameters: a parameter representative of a forecast of sunshine; a parameter representative of the day and night temperatures to come; a parameter representative of the cost of the electricity used in the event of fluctuation of said cost over time; a parameter representative of the customers' behavior; a parameter indicating the presence of client (s) within the building; and outputting the selected operating mode.
  • a function taking as input at least one of the following parameters: a parameter representative of a forecast of sunshine; a parameter representative of the day and night temperatures to come; a parameter representative of the cost of the electricity used in the event of fluctuation of said cost over time; a parameter representative of the customers' behavior; a parameter indicating the presence of client (s) within the building; and outputting the selected operating mode.
  • the device and method described above are linked in such a way that everything that has been said in association with the device can be applied to the process and vice versa.
  • the device and method described above allow from a suitable storage element to provide heating to the building in winter, refrigeration to the building in summer and hot water heating in any season. They therefore allow great adaptability.
  • building used in the present description is to be taken in the broad sense in the sense that it can cover one or more dwellings, one or more offices, as well as applications in buildings of industrial sites such as clean rooms or buildings requiring both heated zones and cooled zones (for example in agro-food buildings).
  • Gray water is "lukewarm" water discharged for example in the evacuation of a shower and which can cooperate with a heat exchanger connected to the circuit, for example at the second pipe element 9 upstream of the condenser 5 of the figure 2 to heat the first fluid before the latter passes through the condenser 5.
  • the invention may relate to an installation comprising a building provided with a fluid distribution network (the first fluid) in particular for heating and / or cooling said building, and the device such as described connected to the distribution network for distributing the fluid (the first fluid) from the storage element within the distribution network.
  • the installation may comprise a module configured to implement the method as described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)

Claims (13)

  1. Vorrichtung für Gebäude, wobei die Vorrichtung ein Speicherelement (1) für ein erstes Fluid, einen Kreislauf (2) zur Zirkulation des ersten Fluids, der mit dem Speicherelement (1) verbunden ist, und eine einen Verdampfer (4) und einen Kondensator (5) umfassende Wärmepumpe (3) umfasst, wobei der Kreislauf (2) wenigstens eine Konfiguration des gleichzeitigen Ladens eines Teils zur Speicherung von kaltem erstem Fluid (Z1) innerhalb des Speicherelements (1) und eines Teils zur Speicherung von warmem erstem Fluid (Z2) innerhalb des Speicherelements (1) aufweist, wobei in der Konfiguration des gleichzeitigen Ladens:
    - die Wärmepumpe (3) dafür ausgelegt ist, eine kalte Quelle am Verdampfer (4), die dazu bestimmt ist, sich am Laden des Teils zur Speicherung von kaltem erstem Fluid (Z1) zu beteiligen, und eine warme Quelle am Kondensator (5), die dazu bestimmt ist, sich am Laden des Teils zur Speicherung von warmem erstem Fluid (Z2) zu beteiligen, zu bilden, wenn von dem Speicherelement (1) kommendes erstes Fluid in dem Kreislauf (2) in Zirkulation gebracht wird,
    - der Kreislauf (2) derart gestaltet ist, dass, wenn das von dem Speicherelement (1) kommende erste Fluid in dem Kreislauf (2) in Zirkulation gebracht wird, eine erste Teilmenge des im Kreislauf (2) zirkulierenden ersten Fluids eine durch die Verwendung der Wärmepumpe (3) hervorgerufene Temperaturerhöhung erfährt, bevor sie an dem Teil zur Speicherung von warmem erstem Fluid (Z2) in das Speicherelement (1) eingeleitet wird, und eine zweite Teilmenge des im Kreislauf (2) zirkulierenden ersten Fluids eine durch die Verwendung der Wärmepumpe (3) hervorgerufene Temperaturverminderung erfährt, bevor sie an dem Teil zur Speicherung von kaltem erstem Fluid (Z1) in das Speicherelement (1) eingeleitet wird,
    dadurch gekennzeichnet, dass sie eine Zirkulationsschleife (11) für ein zweites Fluid aufweist, wobei die Schleife (11) in Verbindung steht:
    • mit dem Verdampfer (4) der Wärmepumpe (3), um das zweite Fluid zu kühlen, wenn die Wärmepumpe (3) verwendet wird,
    • mit einem ersten Wärmetauscher (14), durch den in der Konfiguration des gleichzeitigen Ladens die zweite Teilmenge des ersten Fluids strömt, so dass die zweite Teilmenge des ersten Fluids an dem ersten Wärmetauscher (14) die mit der Verwendung der Wärmepumpe (3) zusammenhängende Temperaturverminderung mithilfe des zweiten Fluids nach dessen Durchfluss durch den Verdampfer (4) erfährt.
  2. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Schleife (11) mit einem zweiten Wärmetauscher (12) in Verbindung steht, insbesondere mit einem Ventilator (13) in Verbindung steht, der dazu bestimmt ist, das zweite Fluid nach seinem Zusammenwirken mit dem Verdampfer (4) der Wärmepumpe (3) und vor dem Durchfluss des zweiten Fluids durch den ersten Wärmetauscher (14) wieder zu erwärmen.
  3. Vorrichtung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass in der Konfiguration des gleichzeitigen Ladens, und wenn das von dem Speicherelement (1) kommende erste Fluid in dem Kreislauf (2) in Zirkulation gebracht wird, die Wärmepumpe (3) ein Kältemittel aufweist, das zwischen dem Verdampfer (4) der Wärmepumpe (3) und dem Kondensator (5) der Wärmepumpe (3) zirkuliert, wobei die Wärmepumpe (3) derart gestaltet ist, dass das Kältemittel:
    • seine Wärme am Kondensator (5) an die erste Teilmenge des ersten Fluids abgibt, und
    • dem zweiten Fluid Wärme entzieht, damit sich dieses Letztere an der Kühlung der zweiten Teilmenge des ersten Fluids beteiligt.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Speicherelement (1) für das erste Fluid eine thermische Schichtung aufweist und einen Behälter (1a) umfasst, der einen Raum aufweist, der mit dem ersten Fluid gefüllt ist und gleichzeitig den Teil zur Speicherung von warmem erstem Fluid (Z2) und den Teil zur Speicherung von kaltem erstem Fluid (Z1), deren Volumina anpassbar sind, umfasst.
  5. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Raum des Behälters (1a) einen Zwischen-Speicherungsteil (Z3) für erstes Fluid umfasst, der sich zwischen dem Teil zur Speicherung von warmem erstem Fluid (Z2) und dem Teil zur Speicherung von kaltem erstem Fluid (Z1) befindet, und dadurch, dass in der Konfiguration des gleichzeitigen Ladens die Vorrichtung ein Entnahmesystem (7) umfasst, das derart gestaltet ist, dass das von dem Speicherelement (1) kommende und in dem Kreislauf (2) zirkulierende erste Fluid aus dem Zwischen-Speicherungsteil (Z3) stammt.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kreislauf in der Lage ist, wenigstens eine der folgenden zusätzlichen Konfigurationen anzunehmen:
    • eine Konfiguration des Ladens des Teils zur Speicherung von warmem erstem Fluid (Z2) allein, in welcher der Kreislauf (2) derart gestaltet ist, dass, wenn von dem Speicherelement (1) kommendes erstes Fluid im Kreislauf (2) zirkuliert, das im Kreislauf (2) zirkulierende erste Fluid im Kreislauf (2) derart gelenkt wird, dass es eine durch den Kondensator (5) der Wärmepumpe (3) hervorgerufene Temperaturerhöhung erfährt, bevor es an dem Teil zur Speicherung von warmem erstem Fluid (Z2) in das Speicherelement eingeleitet wird,
    • eine Konfiguration des Ladens des Teils zur Speicherung von kaltem erstem Fluid (Z1) allein, in welcher der Kreislauf (2) derart gestaltet ist, dass, wenn von dem Speicherelement (1) kommendes erstes Fluid im Kreislauf (2) zirkuliert, das im Kreislauf (2) zirkulierende erste Fluid im Kreislauf (2) derart gelenkt wird, dass es eine durch das in der Zirkulationsschleife (11) der Vorrichtung zirkulierende zweite Fluid hervorgerufene Temperaturverminderung erfährt, bevor es an dem Teil zur Speicherung von kaltem erstem Fluid (Z1) in das Speicherelement (1) eingeleitet wird, wobei in dieser Konfiguration des Ladens des Teils zur Speicherung von kaltem erstem Fluid allein die Wärmepumpe entweder deaktiviert ist oder zur Beteiligung an der Temperaturverminderung aktiviert ist,
    • eine Konfiguration der Verteilung des von dem Speicherelement (1) kommenden ersten Fluids, in welcher die Wärmepumpe (3) deaktiviert ist und in welcher der Kreislauf (2) dafür ausgelegt ist, das von dem Speicherelement (1) kommende erste Fluid zu einem Verteilungsnetz (16) des Gebäudes zu übertragen und das erste Fluid, nachdem es in dem Verteilungsnetz (16) des Gebäudes zirkuliert ist, wieder aufzunehmen, um es wenigstens teilweise in das Speicherelement (1) einzuspeisen,
    und dadurch, dass sie ein Vorsteuerungsmodul (19) aufweist, das dafür ausgelegt ist, eine der Konfigurationen auszuwählen, die aus der Konfiguration des gleichzeitigen Ladens und wenigstens einer der zusätzlichen Konfigurationen gewählt ist, und dafür ausgelegt ist, die Zirkulation des ersten Fluids innerhalb des Kreislaufs (2) so zu ändern, dass die ausgewählte Konfiguration angewendet wird.
  7. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das Vorsteuerungsmodul (19) eine Funktion aufweist, für die wenigstens einer der folgenden Parameter eine Eingangsgröße ist:
    • ein Parameter, der für eine voraussichtliche Sonneneinstrahlung repräsentativ ist,
    • ein Parameter, der für die Außentemperaturen des kommenden Tages und der kommenden Nacht repräsentativ ist,
    • ein Parameter, der für die Kosten der verbrauchten elektrischen Energie repräsentativ ist, falls diese Kosten zeitabhängig schwanken,
    • ein Parameter, der für das Verhalten der Kunden repräsentativ ist,
    • ein Parameter, der die Anwesenheit eines (von) Kunden innerhalb des Gebäudes anzeigt,
    und die als Ausgangsgröße die ausgewählte Konfiguration liefert.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kreislauf (2) einen Ausgang (S1), der dazu bestimmt ist, mit einem Eingang (E1) eines Verteilungsnetzes (16) des Gebäudes verbunden zu werden, und einen Eingang (E2), der dazu bestimmt ist, mit einem Ausgang (S2) des Verteilungsnetzes (16) des Gebäudes verbunden zu werden, aufweist, wobei der Kreislauf (2) außerdem aufweist:
    • einen ersten Teilabschnitt (T1), der einerseits mit dem Speicherelement (1) und andererseits mit dem Eingang (E2) des Kreislaufs (2) verbunden ist, wobei dieser erste Teilabschnitt (T1) eine erste Pumpe (6) und eine erste Zweigleitung (20), die parallel zu der ersten Pumpe (6) ausgebildet ist, aufweist,
    • einen zweiten Teilabschnitt (T2), der einerseits mit dem Speicherelement am Teil zur Speicherung von warmem erstem Fluid (Z2) des Speicherelements (1) verbunden ist und andererseits mit dem Ausgang (S1) des Kreislaufs (2) verbunden ist, wobei der zweite Teilabschnitt (T2) zwischen dem Speicherelement (1) und dem Ausgang (S1) des Kreislaufs (2) die folgenden aufeinander folgenden Elemente aufweist: ein erstes Ventil (21), eine zweite Pumpe (22), die einer parallel zu der zweiten Pumpe (22) ausgebildeten zweiten Zweigleitung (23) zugeordnet ist, ein zweites Ventil (24), eine dritte Pumpe (25), die in der Lage ist, wenn sie aktiviert ist, das erste Fluid in das Verteilungsnetz (16) des Gebäudes zu fördern,
    • einen dritten Teilabschnitt (T3), der einerseits mit dem ersten Teilabschnitt (T1) und andererseits mit dem zweiten Ventil (24) verbunden ist, wobei der dritte Teilabschnitt (T3) dem Kondensator (5) der Wärmepumpe (3) zugeordnet ist,
    • einen vierten Teilabschnitt (T4), der einerseits mit dem ersten Teilabschnitt (T1) verbunden ist, vorzugsweise zwischen der ersten Pumpe (6) und dem dritten Teilabschnitt (T3), und andererseits mit einem dritten Ventil (26), wobei die Zirkulationsschleife (11) des zweiten Fluids, insbesondere von Glykol-WasserGemisch, eine vierte Pumpe (15) aufweist, welche die Umwälzung des zweiten Fluids ermöglicht, derart, dass es nacheinander mit dem Verdampfer (4) der Wärmepumpe (3), dann zwecks Erhöhung seiner Temperatur mit einem zweiten Luft-Wärmetauscher (12), der insbesondere mit einem Ventilator (13) gekoppelt ist, dann mit dem ersten Wärmetauscher (14), der dem vierten Teilabschnitt (T4) zugeordnet ist, zusammenwirkt, bevor es zum Verdampfer (4) zurückströmt,
    • einen das dritte Ventil (26) umfassenden fünften Teilabschnitt (T5), der einerseits mit dem Speicherelement (1) am Teil zur Speicherung von kaltem erstem Fluid (Z1) und andererseits mit dem zweiten Teilabschnitt (T2) zwischen dem ersten Ventil (21) und der zweiten Pumpe (22) verbunden ist,
    • einen sechsten Teilabschnitt (T6), der einerseits mit dem ersten Teilabschnitt (T1) und andererseits mit dem ersten Ventil (21) verbunden ist,
    wobei die Vorrichtung ein Steuerungsmodul (19) aufweist, das dafür ausgelegt ist, den Zustand der ersten, zweiten, dritten und vierten Pumpe, den Zustand der ersten und zweiten Zweigleitung, den Zustand des ersten, zweiten und dritten Ventils und den Zustand der Wärmepumpe in Abhängigkeit von einer gewünschten Konfiguration des Kreislaufs (2) zu steuern.
  9. Verfahren zur Verwaltung einer Vorrichtung für Gebäude nach Anspruch 1, dadurch gekennzeichnet, dass es eine erste Betriebsart aufweist, die einen Schritt des gleichzeitigen Ladens (E1) des Teils zur Speicherung von kaltem erstem Fluid (Z1) innerhalb des Speicherelements (1) und des Teils zur Speicherung von warmem erstem Fluid (Z2) innerhalb des Speicherelements (1) umfasst, wobei der Schritt des gleichzeitigen Ladens einen Schritt der Entnahme (E1-2) von erstem Fluid aus dem Speicherelement (1), um es in dem Kreislauf (2) zur Zirkulation des ersten Fluids in Zirkulation zu bringen, und einen Schritt der Verwendung (E1-2) der Wärmepumpe (3) umfasst.
  10. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Schritt des gleichzeitigen Ladens (E1) die folgenden Schritte umfasst:
    • einen Schritt der Erhöhung (E1-3) der Temperatur der ersten Teilmenge des im Kreislauf (2) zirkulierenden ersten Fluids, die durch den Schritt der Verwendung (E1-2) der Wärmepumpe (3) hervorgerufen wird, gefolgt von einem Schritt der Einleitung (E1-4) der ersten Teilmenge in das Speicherelement (1) an dem Teil zur Speicherung von warmem erstem Fluid (Z2) des Speicherelements (1),
    • einen Schritt der Verminderung (E1-5) der Temperatur der zweiten Teilmenge des im Kreislauf (2) zirkulierenden ersten Fluids, die durch den Schritt der Verwendung (E1-2) der Wärmepumpe (3) hervorgerufen wird, gefolgt von einem Schritt der Einleitung (E1-6) der zweiten Teilmenge in das Speicherelement an dem Teil zur Speicherung von kaltem erstem Fluid (Z1) des Speicherelements (1).
  11. Verfahren nach einem der Ansprüche 9 bis 10, dadurch gekennzeichnet, dass es neben der ersten Betriebsart wenigstens eine der folgenden zusätzlichen Betriebsarten aufweist:
    • eine zweite Betriebsart, die einen Schritt des Ladens (E2) des Teils zur Speicherung von warmem erstem Fluid allein (Z2) umfasst, welcher aufweist:
    o einen Schritt der Entnahme (E2-1) von erstem Fluid aus dem Speicherelement (1), um es in dem Kreislauf (2) in Zirkulation zu bringen, damit es eine von dem Kondensator (5) der Wärmepumpe (3) hervorgerufene Temperaturerhöhung erfährt, gefolgt von einem Schritt der Einleitung (E2-2) des entnommenen ersten Fluids in das Speicherelement (1) an dem Teil zur Speicherung von warmem erstem Fluid (Z2),
    • eine dritte Betriebsart, die einen Schritt des Ladens (E3) des Teils zur Speicherung von kaltem erstem Fluid allein umfasst, welcher aufweist:
    o einen Schritt der Entnahme (E3-1) von erstem Fluid aus dem Speicherelement (1), um es in dem Kreislauf (2) in Zirkulation zu bringen, damit es bei einem Durchfluss des entnommenen ersten Fluids in dem ersten Wärmetauscher (14), der mit dem zweiten Fluid mit einer Temperatur gekoppelt ist, die niedriger als diejenige des entnommenen ersten Fluids ist, eine Temperaturverminderung erfährt, gefolgt von einem Schritt (E3-2) der Einleitung des entnommenen ersten Fluids in das Speicherelement an dem Teil zur Speicherung von kaltem erstem Fluid (Z1) des Speicherelements (1),
    • eine vierte Betriebsart, in welcher die Wärmepumpe (3) deaktiviert ist und welche einen Schritt (E4) umfasst, in welchem der Kreislauf (2) von dem Speicherelement (1) kommendes erstes Fluid zu einem Verteilungsnetz (16) eines Gebäudes überträgt und das erste Fluid, nachdem es in dem Verteilungsnetz (16) des Gebäudes zirkuliert ist, wieder aufnimmt, um es wenigstens teilweise in das Speicherelement (1) einzuspeisen,
    und dadurch, dass es einen Vorsteuerungsschritt (E5) umfasst, der dafür ausgelegt ist, eine Betriebsart auszuwählen, die aus der ersten Betriebsart und wenigstens einer zusätzlichen Betriebsart ausgewählt ist, und dafür ausgelegt ist, diese ausgewählte Betriebsart anzuwenden.
  12. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Vorsteuerungsschritt (E5) die Verwendung einer Funktion beinhaltet, für die wenigstens einer der folgenden Parameter eine Eingangsgröße ist:
    • ein Parameter, der für eine voraussichtliche Sonneneinstrahlung repräsentativ ist,
    • ein Parameter, der für die Temperaturen des kommenden Tages und der kommenden Nacht repräsentativ ist,
    • ein Parameter, der für die Kosten der verbrauchten elektrischen Energie repräsentativ ist, falls diese Kosten zeitabhängig schwanken,
    • ein Parameter, der für das Verhalten der Kunden repräsentativ ist,
    • ein Parameter, der die Anwesenheit eines (von) Kunden innerhalb des Gebäudes anzeigt,
    und die als Ausgangsgröße die ausgewählte Betriebsart liefert.
  13. Anlage, welche ein Gebäude umfasst, das mit einem Fluidverteilungsnetz ausgestattet ist, das insbesondere zur Erwärmung und/oder zur Kühlung des Gebäudes bestimmt ist, dadurch gekennzeichnet, dass sie eine Vorrichtung nach einem der Ansprüche 1 bis 8 aufweist, die mit dem Verteilungsnetz verbunden ist, um das von dem Speicherelement kommende erste Fluid innerhalb des Verteilungsnetzes zu verteilen.
EP17164286.1A 2016-03-31 2017-03-31 Vorrichtung für gebäude, die ein speicherelement für ein thermisch wiederaufladbares fluid enthält Active EP3225937B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1652776A FR3049693A1 (fr) 2016-03-31 2016-03-31 Dispositif pour batiment comprenant un element de stockage de fluide a recharger thermiquement

Publications (2)

Publication Number Publication Date
EP3225937A1 EP3225937A1 (de) 2017-10-04
EP3225937B1 true EP3225937B1 (de) 2019-08-14

Family

ID=56943596

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17164286.1A Active EP3225937B1 (de) 2016-03-31 2017-03-31 Vorrichtung für gebäude, die ein speicherelement für ein thermisch wiederaufladbares fluid enthält

Country Status (2)

Country Link
EP (1) EP3225937B1 (de)
FR (1) FR3049693A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082608B1 (fr) * 2018-06-19 2020-11-20 Commissariat Energie Atomique Systeme comprenant une machine a absorption pour la production de froid a partir de la chaleur fatale de gaz d'echappement d'un vehicule comprenant un module de stockage de l'energie thermique
FR3082609B1 (fr) * 2018-06-19 2020-11-20 Commissariat Energie Atomique Systeme comprenant une machine a absorption pour la production de froid a partir de la chaleur fatale de gaz d'echappement d'un vehicule comprenant un module de stockage de l'energie thermique
DE102020206376A1 (de) * 2020-05-20 2021-11-25 Siemens Aktiengesellschaft Verfahren zum Betrieb eines Schichtenspeichers sowie Schichtenspeicher

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO326274B1 (no) * 2005-03-23 2008-10-27 Kjell Emil Eriksen System og fremgangsmate for utnyttelse av energi
FR2899671B1 (fr) 2006-04-11 2015-03-06 Michel Louis Dupraz Systeme de chauffage, rafraichissement et production d'eau chaude sanitaire par capteur solaire combine avec une thermopompe et une reserve thermique a basse temperature.
EP2061997A2 (de) * 2006-08-31 2009-05-27 Colipu A/S Energiesystem mit wärmepumpe
DK177404B1 (en) * 2009-07-08 2013-04-02 Colipu As An energy system with a heat pump
US7827814B2 (en) * 2009-08-12 2010-11-09 Hal Slater Geothermal water heater
EP2486331B1 (de) * 2009-08-25 2016-04-27 Danfoss A/S Wärmespeichersystem
KR101405521B1 (ko) 2013-12-12 2014-06-09 주식회사 세기 히트펌프식 냉·난방 시스템의 축열조와 축열에너지의 최적화 운전 제어 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3049693A1 (fr) 2017-10-06
EP3225937A1 (de) 2017-10-04

Similar Documents

Publication Publication Date Title
EP2894419B1 (de) Klimaanlagenvorrichtung eines Abteils, insbesondere für Schienenfahrzeug, und Verfahren zum Auftauen des Geräts
EP3225937B1 (de) Vorrichtung für gebäude, die ein speicherelement für ein thermisch wiederaufladbares fluid enthält
US9175865B2 (en) Heat storage system
WO2009071765A2 (fr) Installation de chauffage/climatisation à pompe à chaleur, comportant un boîtier répartiteur de fluide caloporteur avec couplage à une pluralité de circuits de captage et de distribution de chaleur
EP2263894A1 (de) Wärmemanagmentsystem mit einem Klimaanlagenkreislauf und einem Kältemittelkreislauf
FR2893123A1 (fr) Procede de controle du stockage d'energie thermique dans le sol et dispositif associe
WO2017220902A1 (fr) Boucle de circulation d'un fluide refrigerant pour vehicule
US11874014B2 (en) Method and controller for controlling a reversible heat pump assembly
EP2592358A1 (de) Anlage zur Temperaturregelung und Warmwassererzeugung, und Methode zur Umsetzung einer solchen Anlage
EP1978311A2 (de) Von einer anderen Energiequelle unabhängiges und unabhängiges Sonnenheizungssystem
CH711726B1 (fr) Dispositif et procédé de régulation de la température d'une batterie ou d'une pile à combustible d'un véhicule électrique ou hybride.
FR2906604A1 (fr) Module utilisable pour le stockage et le transfert thermique.
EP2629023B1 (de) Thermische Anlage und thermische Konditionierung eines Raums sowie Erzeugung von sanitärem Warmwasser
EP2691250B1 (de) Enteisungs-/beschlagsverhinderungsvorrichtung für elektrisch angetriebene fahrzeuge
WO2018006183A1 (fr) Reseau de distribution d'energie thermique
FR2870928A1 (fr) Procede de production solaire instantane prioritaire dans les installations utilisant des capteurs solaires thermiques basse temperature
WO2015186100A1 (fr) Installation de conversion de chaleur en energie mecanique a systeme de refroidissement du fluide de travail ameliore
EP2567160B1 (de) Verfahren und system zur regulierung einer wärmepumpe mit thermoelektrischen modulen
WO2017149063A1 (fr) Reservoir de stockage de chaleur a fonctionnement optimise
BE1017461A6 (fr) Systeme d'utilisation de l'energie solaire pour le chauffage d'une habitation.
FR2946126A1 (fr) Dispositif de chauffage utilisant une pompe a chaleur, un capteur enterre et une source d'appoint calorifique, et procede de chauffage
CH716214B1 (fr) Échangeur thermique pour réguler la température interne d'une ou plusieurs pièces d'un bâtiment.
EP3660415A1 (de) Vorrichtung für die thermische regelung eines gebäudes, entsprechende anlage und entsprechendes verfahren
FR3139622A1 (fr) Circuit échangeur de chaleur utilisant les hourdis et Méthode d’installation d’un circuit climatiseur
IL156853A (en) Thermal energy storage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 30/02 20060101ALI20180417BHEP

Ipc: F24H 4/04 20060101ALN20180417BHEP

Ipc: F25B 25/00 20060101AFI20180417BHEP

Ipc: F28D 20/00 20060101ALN20180417BHEP

INTG Intention to grant announced

Effective date: 20180516

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180925

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F24H 4/04 20060101ALN20190208BHEP

Ipc: F25B 30/02 20060101ALI20190208BHEP

Ipc: F25B 25/00 20060101AFI20190208BHEP

Ipc: F28D 20/00 20060101ALN20190208BHEP

INTG Intention to grant announced

Effective date: 20190312

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1167504

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017006025

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1167504

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191115

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017006025

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 8

Ref country code: GB

Payment date: 20240318

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240329

Year of fee payment: 8

Ref country code: FR

Payment date: 20240320

Year of fee payment: 8