EP3224175B1 - Verfahren zum betreiben einer aufzuganlage sowie zur ausführung des verfahrens ausgebildete aufzugsanlage - Google Patents

Verfahren zum betreiben einer aufzuganlage sowie zur ausführung des verfahrens ausgebildete aufzugsanlage Download PDF

Info

Publication number
EP3224175B1
EP3224175B1 EP15791306.2A EP15791306A EP3224175B1 EP 3224175 B1 EP3224175 B1 EP 3224175B1 EP 15791306 A EP15791306 A EP 15791306A EP 3224175 B1 EP3224175 B1 EP 3224175B1
Authority
EP
European Patent Office
Prior art keywords
car
cars
stop
travel
stop point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15791306.2A
Other languages
English (en)
French (fr)
Other versions
EP3224175A1 (de
Inventor
Eduard STEINHAUER
Matthias Glück
Bankole ADJIBADJI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TK Elevator Innovation and Operations GmbH
Original Assignee
ThyssenKrupp AG
ThyssenKrupp Elevator AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG, ThyssenKrupp Elevator AG filed Critical ThyssenKrupp AG
Publication of EP3224175A1 publication Critical patent/EP3224175A1/de
Application granted granted Critical
Publication of EP3224175B1 publication Critical patent/EP3224175B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/2408Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration where the allocation of a call to an elevator car is of importance, i.e. by means of a supervisory or group controller
    • B66B1/2466For elevator systems with multiple shafts and multiple cars per shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • B66B5/0031Devices monitoring the operating condition of the elevator system for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3415Control system configuration and the data transmission or communication within the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3415Control system configuration and the data transmission or communication within the control system
    • B66B1/3446Data transmission or communication within the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/003Kinds or types of lifts in, or associated with, buildings or other structures for lateral transfer of car or frame, e.g. between vertical hoistways or to/from a parking position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/10Kinds or types of lifts in, or associated with, buildings or other structures paternoster type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/30Details of the elevator system configuration

Definitions

  • the invention relates to a method for operating an elevator system comprising a shaft system and at least three cars, which is designed for separate movement of the cars at least in a first direction of travel and in a second direction of travel.
  • the at least three cars are each moved separately in a subsequent operation.
  • a stop point at which the car can stop if necessary is continuously predicted for each car, at least for one direction of travel.
  • Such an elevator system is, in particular, an elevator system which comprises a shaft in which several cars can be moved separately. In particular, at least one other car can be moved above and below at least one car.
  • this method of several cars essentially independent of one another in a shaft is a follow-up operation in the sense of the present invention.
  • such an elevator system is, for example, from the document EP 1 562 848 B1 known.
  • an elevator system mentioned at the outset is, in particular, an elevator system with a shaft system comprising a plurality of shafts, wherein the elevators can be operated as a subsequent operation, in particular in a circulating mode.
  • the method in a subsequent operation is carried out in such a way that several cars are moved upwards together in at least one shaft of the shaft system, are moved from this shaft into at least one further shaft and are moved downwards together in this at least one further shaft.
  • Such an elevator system is in the prior art, for example, from the publication EP 0 769 469 B1 known.
  • the US 2013/0299282 A1 discloses an elevator system with two cars, which are moved in a common shaft. To prevent a collision between the two cars, a stop position between the two cars is determined for each car. A stop position represents the position in the shaft at which the car comes to a stop if braking is initiated. If the two cars move towards each other, the closest stop positions of the cars must always be at a positive distance from each other.
  • each car also have its own safety module in addition to its own drive.
  • This safety module can trigger braking processes both in the corresponding associated car and in adjacent cars.
  • the safety module calculates the necessary braking behavior of the cars from the current driving data of all the cars in the elevator system.
  • EP 0 769 469 B1 proposes to work with a dynamic elevator model.
  • the present invention to improve a method for operating an elevator system comprising a shaft system and at least three cars, in particular to the extent that possible collisions of cars can be detected at an early stage, the detection advantageously being able to be implemented by means of a decentrally designed safety system should be.
  • the data volume to be transmitted should preferably be as small as possible.
  • the method should be easily transferable to elevator systems of different designs.
  • a method for operating an elevator system comprising a shaft system and at least three cars, which is designed for separate movement of the cars at least in a first direction of travel and in a second direction of travel, the at least three cars in each case moving separately in a subsequent operation and a stop point at which the car can stop if necessary is continuously predicted for each car, at least for one direction of travel.
  • the distance between the predicted stop points of adjacent cars to one another is determined continuously, the elevator system being switched to a safety mode when a negative distance between the stop points is determined.
  • the elevator system comprises at least one linear motor as the drive system, which enables the cars to be moved separately.
  • the cars can be moved largely independently of one another in the shaft system, taking into account the other cars.
  • the cars can be moved up and down and are thus designed to move in at least a first direction of travel and in a second direction of travel.
  • the hoistway system of the elevator installation comprises a plurality of manholes, the cars being able to be moved between the manholes via connecting manholes, lateral directions of travel in particular are provided as further directions of travel.
  • the method has the particular advantage that the stop point is calculated continuously, that is essentially continuously, for each car for the at least one direction of travel.
  • This stopping point provides information, in particular, about where this car would come to a stop or stop when braking, in particular emergency braking.
  • Operating parameters of the other cars, in particular driving parameters of the other cars advantageously need not be taken into account when determining the stop points.
  • a risk of collision can advantageously be reliably identified.
  • advantageously only stop points are transmitted and in particular no further car-related operating parameters, so that the amount of data to be transmitted is advantageously small. Since it is provided in particular that only the stop points of adjacent cars are compared with one another, the amount of data to be transmitted is advantageously further reduced.
  • a current stop point for a direction of travel of a car is, in particular, the distance that the car needs to stop in this direction of travel, in particular the predicted braking distance.
  • the distance is preferably a safety distance, preferably a fixed one Safety distance, so that the stopping point is further away from the car.
  • the distance between the car and the stop point also changes for each direction of travel. In particular, the speed at which a car is moved also increases the distance from the corresponding stop point to the car.
  • the minimum distance between two adjacent cars can depend on several operating parameters, in particular the current position of the cars in the shaft system, the speeds of the cars, the accelerations of the cars, the payloads of the cars and / or the states of the brakes cars.
  • these operating parameters are advantageously only recorded individually for each car, in order to determine the respective stop point for each car for the at least one direction of travel from these operating parameters.
  • the elevator system is advantageously switched to a safety mode, in particular in the corresponding one neighboring cars, the stopping points of which are at a negative distance, are braked and thus brought to a stop, in particular by triggering safety devices in these cars.
  • negative distance denotes the case that the stopping point of a car in question is further away from the car in question than the stopping point of an adjacent car, in particular a preceding or following car. Whether the distance is actually negative in the sense of a negative number depends on the reference system used. For example, a "negative distance" in a corresponding reference system can also be expressed by a positive number.
  • the method can advantageously be used in particular for both horizontal and vertical movements of the cars.
  • the proposed method also provides for rapid detection of possible collisions between adjacent cars.
  • the stopping point of each car is predicted, assuming that at least one safety device of the elevator installation intervenes at the latest.
  • the method is thus advantageously designed to be conservative.
  • the distance between adjacent cars is sometimes greater than is absolutely necessary, but a collision between adjacent cars is reliably prevented.
  • Safety devices of the elevator system are, in particular, braking devices, such as safety devices for the cars and / or braking devices provided by the drive system. If the drive system of the elevator installation comprises at least one linear drive, the section-by-section shutdown of a line of the linear drive is also provided as intervention by at least one safety device.
  • a further advantageous embodiment of the method according to the invention provides that the stop points are each predicted on the assumption of a worst-case scenario in order to reliably prevent a collision between adjacent cars in any case.
  • the stopping point is predicted by each car on the additional assumption that the respective car is accelerated with the maximum possible acceleration on the part of the elevator system before the at least one safety device of the elevator system intervenes.
  • the stopping point in the direction of travel "up” is thus more advantageously predicted on the assumption that the car is first accelerated in the direction of travel "up” and then by a Intervention of at least one safety device is brought to a stop.
  • the stop point in the direction of travel "below” is advantageously predicted on the assumption that the car is first accelerated to a maximum in the direction of travel “below” and is then brought to a stop by intervention of at least one safety device. Due to the gravity acting on the car, which is advantageously taken into account in the prediction of the stop points, the distance of the stop point in the direction of travel "up” to the upper end of the car is less than the distance of the stop point in the direction of travel "down” to the lower end of the car.
  • a first stop point is predicted for each car for the first direction of travel and a second stop point is predicted for each car for the second direction of travel, so that two stop points are continuously predicted for each car.
  • at least one upper stop point for the “upward” direction of travel and one lower stop point for the “downward” direction of travel are predicted for each car.
  • the distance from the first stop point of this car is advantageously increased determined the second stop point of the first car, in particular in order to be able to determine a risk of collision of this car with the first car.
  • the distance from the second stop point of this car to the first stop point of the second car is advantageously determined, in particular in order to be able to determine a risk of collision of this car with the second car.
  • an upper stop point and a lower stop point are continuously predicted for each car in a vertical shaft of the shaft system of the elevator system, in which at least three cars are moved.
  • all of the cars thus have an upper adjacent car and a lower adjacent car.
  • the distance between the upper stop point of one car and the lower stop point of the upper adjacent car is determined.
  • the distance between the lower stop point of a car and the upper stop point of the lower adjacent car is also advantageously determined.
  • the stop points are advantageously defined using a grid that is permanently assigned to the shaft system. A grid which is fundamentally suitable for this is, for example, from the publication EP 1 719 727 B1 known.
  • the stop points can be represented in particular as coordinates (x, y) or (x, y, z). Only the corresponding coordinate is preferably taken into account for a current direction of travel, for example only the coordinate x for direction of travel x. Particularly in the areas in which the direction of travel changes, for example from the direction of travel x to the direction of travel y, provision is advantageously made for more than one coordinate to be taken into account here for a corresponding section comprising the transition area, i.e. in relation to the example given above Coordinates (x, y).
  • the elevator system is switched to a safety mode, in particular by stopping at least one of the two cars. The same applies accordingly if the lower stop point of a car is smaller than the upper stop point of the car traveling below this car.
  • Possible collision risks of a car with an upper adjacent car and / or a lower adjacent car are thus reliably identified, namely by checking whether a determined distance is negative, that is to say the stop points compared with one another have an overlap area. If a negative distance is determined, the elevator system is advantageously switched from normal operation to a safety mode, in particular by stopping the cars concerned.
  • the other cars are advantageously moved further in restricted operation, the stopped cars defining a restricted area to which the cars still operating may only approach up to a predefined distance.
  • the cars stopped during the transfer of the elevator system to a safety mode are preferably assigned fixed stop points, so that in particular a collision of cars with the stopped cars is further prevented using the same method.
  • the cars each have their own control unit
  • the control unit of a car of the elevator system predicts the stop point for the at least one direction of travel and the stop points predicted for a car to the control units of the latter Car adjacent car are transmitted
  • the control unit of a car determines the distance between the stop points predicted for this car to the stop points transmitted to this control unit.
  • stop points can be calculated simultaneously by a plurality of control units, which are advantageously arranged on the cars. This advantageously reduces the technical requirements for the computing capacities of the safety system of the elevator system.
  • the control units each assigned to a car and preferably arranged on the car, advantageously detect all the operating parameters required for predicting the stopping points by means of corresponding sensors arranged on the car. These include in particular the current position of the car, the speed of the car, the acceleration of the car, the load of the car and / or the state of the brake in the car. These operating parameters and the stop points predicted from them are preferably determined in predefined discrete time intervals of, for example, 5 ms to 50 ms (ms: milliseconds). In this way, a continuous prediction of the stop points is made possible.
  • Each control unit assigned to a car advantageously calculates the stop points for the at least one direction of travel of this car, in particular an upper and a lower stop point, and exchanges them with those of the control units of the adjacent cars. Instead of calculating the distances between adjacent cars, the stop points are advantageously compared with one another, as already explained above. As long as the stop points do not overlap, i.e. no negative distance is determined, there is no risk of collision.
  • the control unit of a car preferably triggers a securing device for this car when a negative distance between the stopping points is determined, it being provided in particular that triggering the securing device causes the car to stop.
  • the actuation of a brake of the car is provided as the triggering of a safety device of the car.
  • the control device assigned to one car is only responsible for the safety device of this car with regard to the triggering of safety devices and advantageously does not also have to brake other cars. As a result, the amount of data to be transmitted is advantageously further reduced.
  • the stop points are predicted from current operating parameters of the respective car. According to an advantageous embodiment variant, it is provided that stop points are predefined for all quantized combinations of operating parameters. According to an advantageous embodiment, the stop points are assigned to such a combination of operating parameters via a lookup table. In particular, according to a further advantageous embodiment variant, such an assignment is provided as a plausibility check of stop points predicted by real-time calculations. When a predefined deviation from assigned stop points and predicted stop points is ascertained, the elevator system is also advantageously switched to a safety mode.
  • the elevator installation comprises a decentralized safety system with a plurality of control units, the plurality of control units comprising the control units of the elevator cars, and the control units each exchanging data to determine an operating mode that differs from the normal operation of the elevator installation ,
  • an elevator system designed to carry out a method according to the invention is also proposed.
  • an elevator system with a shaft system comprising at least one shaft and at least three elevator cars, which can be moved together in the at least one shaft of the shaft system is proposed, the elevator cars each advantageously have its own control unit, and the elevator installation is designed to carry out a method according to the invention.
  • control units of the cars are connected to one another via an interface for transmitting data.
  • a communication bus is provided as the interface.
  • the data is transmitted wirelessly, in particular via an air interface, for example by means of WLAN (WLAN: Wireless Local Area Network).
  • WLAN Wireless Local Area Network
  • Each control unit of a car is advantageously designed to determine the stop points for this car and to compare them with the transmitted stop points of adjacent cars.
  • each car advantageously has sensors for recording operating parameters, such as, in particular, speed, acceleration, payload, state of the safety devices of the car, in particular state of the brakes as safety device of the car, and position of the car. The recorded operating parameters are transmitted to the control unit and evaluated by the control unit to predict the stop points.
  • the elevator system 1 shown which is not shown to scale for reasons of a better overview, comprises a shaft system 2 with two vertical shafts 12 and two connecting shafts 13. Furthermore, the elevator system 1 comprises a plurality of elevator cars 3 (in Fig. 1 Eight cars, for example), which can be moved separately in the shaft system 2 in a subsequent operation, that is to say that several cars 3 can be moved in a shaft 12 or a shaft 13.
  • the cars 3 can be moved upwards in the shafts 12 in a first direction of travel 4 (in Fig. 1 symbolically represented by arrow 4) and moved downwards in a second direction of travel 5 (in Fig. 1 symbolically by arrow 5 ) Shown.
  • the cars are also laterally in a third direction of travel 10 (in Fig. 1 symbolically represented by arrow 10) and in a fourth direction of travel 11 (in Fig. 1 symbolically represented by arrow 11).
  • the elevator installation comprises at least one linear motor as the drive system (in Fig. 1 not explicitly shown), by means of which the cars 3 are moved within the shaft system 2.
  • a first stop point 6 is continuously predicted for each car 3 for the first possible direction of travel and a second stop point 7 for the second possible direction of travel.
  • a stop point is thus continuously predicted for each car 3, at least for one direction of travel.
  • an upper stop point is predicted as the first stop point 6
  • a lower stop point is predicted as the second stop point 7.
  • a stop point located in the direction of travel of the respective car 3 is predicted as the stop point 6 ′ and a second stop point located opposite the direction of travel of the respective car 3 is predicted as the stop point 7 ′.
  • the stop points can in particular be defined via coordinates (x, y), lateral stop points being defined via the x coordinates and stop points lying vertically via the y coordinates.
  • the point A in Fig. 1 For example, the coordinate (0, 0) can be assigned.
  • the two stop points 6, 7 and 6 ', 7' respectively indicate the point at which the car 3 assumes a worst-case scenario for each of the possible directions of travel 4, 5 or 10, 11. Case scenarios can stop at the latest.
  • an upper stop point 6 is predicted, that is to say it is predetermined where the car 3 'would stop if the car 3' maximally in the direction of travel would accelerate and then slow down.
  • the worst-case assumption predicts that the lower stop point 7 of the car 3 'is that the drive fails, the car 3' sags as a result, and the car 3 'would then only be braked.
  • the cages 3 advantageously have a control unit, for example a microcontroller circuit designed as a control unit (in Fig. 1 not explicitly shown).
  • the distance from the first stop point 6 of this car to the second stop point 7 of the second car is determined.
  • the distance from the second stop point 7 of this car to the first stop point 6 of the second car is determined.
  • the distance 8 from the upper stop point 6 of the car 3' to the lower stop point 7 of the car 3 '' is determined.
  • the lower stop point 7 of the car 3 " is advantageously sent to a control unit (in Fig. 1 not explicitly shown) of the car 3 '.
  • the determined distance 8 is positive in this example. There is therefore no risk of collision with respect to the cars 3 'and 3 ".
  • the car 3 ' also has an adjacent car 3''in the further direction of travel 5. Therefore, the distance 9 from the lower stop point 7 of the car 3' to the upper stop point 6 of the car 3 '' is also determined for the car 3 ' ,
  • the upper stop point 6 of the car 3 "' is advantageously sent to a control unit (in Fig. 1 not explicitly shown) of the car 3 '.
  • the determined distance 9 is negative in this example, that is to say the upper stop point 6 of the car 3 "'lies above the lower stop point 7 of the car 3'. There is therefore a risk of collision with respect to the cars 3 'and 3"'.
  • the elevator system is switched to a safety mode, in particular by activating brakes on these cars on the car side, preferably triggered by the respective cars 3 'and 3 "'assigned control units.
  • Fig. 2 Referred.
  • a car 3 with a total car height 17 and an entry threshold 20 is shown.
  • Movable car 3 shows a predicted stop point 6, 7 for each direction of travel 4, 5.
  • the upper stop point 6 is shown for the direction of travel 4 and the lower stop point 7 for the direction of travel 5.
  • the upper stop point 6 indicates the point where the car 3 with the upper car end 21 can stop at the latest in the direction of travel 4 based on current operating parameters and assuming a worst-case scenario.
  • the distance between the stop point 6 and the upper end 21 of the car results in the exemplary embodiment shown from the sum of an optionally definable minimum distance 15 from the car 3, which must not be undercut, and one from the current driving parameters assuming a worst-case scenario.
  • Scenarios calculated braking distance 18.
  • the stopping points are calculated, for example, using an appropriately configured predictor model.
  • the lower stop point 7 indicates the point where the car 3 with the lower car end 22 can stop at the latest in the direction of travel 5 based on current operating parameters and assuming a worst-case scenario.
  • the distance between the stop point 7 and the lower car end 22 results in the illustrated embodiment from the sum of an optionally predeterminable minimum distance 16 from the lower car end 22, which must not be undercut, and one from the current driving parameters assuming a worst case -Scenarios predicted braking distance 19.
  • the positions of the stop points vary depending on the current driving parameters. If the car is stationary, the stop points will move closer to the car. If the car travels upwards at high speed, i.e. in direction of travel 4, the upper stop point will be further up. In this case, in particular, even at very high speeds, the lower stop point 7 may be determined lying at position 14, since a movement in the direction of travel 5 can be ruled out even in the worst case scenario.
  • Such car 3 is predicted such an upper stop point and a lower stop point.
  • the distance between the upper stop point 6 of a car and the lower stop point 7 'or 7 "of a car adjacent above this car and the distance between the lower stop point 7 of this car and the upper stop point 6' respectively 6" one below this car adjacent car determined.
  • the distances 8 are positive, since 7 "greater than 6 or 7 greater than 6". If the distance is negative, there is a risk of collision. Such a negative distance is obtained if 6 is greater than 7 'or 6' is greater than 7. If such a negative distance is determined, the elevator system is brought into a safe operating state, in particular into a safety mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Structural Engineering (AREA)
  • Elevator Control (AREA)
  • Types And Forms Of Lifts (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer ein Schachtsystem und wenigstens drei Fahrkörbe umfassenden Aufzuganlage, welche zum separaten Verfahren der Fahrkörbe zumindest in eine erste Fahrtrichtung und in eine zweite Fahrtrichtung ausgebildet ist. Die wenigstens drei Fahrkörbe werden dabei in einem Folgebetrieb jeweils separat verfahren. Für jeden Fahrkorb wird wenigstens für eine Fahrtrichtung laufend ein Stoppunkt, an dem der Fahrkorb bei Bedarf stoppen kann, prädiziert.
  • Eine solche Aufzuganlage ist insbesondere eine Aufzuganlage, welche einen Schacht umfasst, in der mehrere Fahrkörbe separat verfahren werden können. Dabei kann insbesondere oberhalb und unterhalb wenigstens eines Fahrkorbs wenigstens ein weiterer Fahrkorb verfahren werden. Insbesondere dieses Verfahren von mehreren Fahrkörben im Wesentlichen unabhängig voneinander in einem Schacht ist dabei ein Folgebetrieb im Sinne der vorliegenden Erfindung. Im Stand der Technik ist eine derartige Aufzuganlage beispielsweise aus der Druckschrift EP 1 562 848 B1 bekannt.
  • Ferner ist eine eingangs genannte Aufzuganlage insbesondere eine Aufzuganlage mit einem mehrere Schächte umfassenden Schachtsystem, wobei die Aufzüge insbesondere in einem Umlaufbetrieb als Folgebetrieb verfahren werden können. Das Verfahren in einem Folgebetrieb erfolgt dabei insbesondere derart, dass mehrere Fahrkörbe gemeinsam in wenigstens einem Schacht des Schachtsystems nach oben verfahren werden, von diesem Schacht in wenigstens einen weiteren Schacht verfahren werden und in diesem wenigstens einen weiteren Schacht gemeinsam nach unten verfahren werden. Bei einer solchen Aufzuganlage ist dabei insbesondere vorgesehen, dass zu einem Zeitpunkt in jedem der Schächte des Schachtsystems der Aufzuganlage üblicherweise mehrere Fahrkörbe verfahren werden. Eine solche Aufzuganlage ist im Stand der Technik beispielsweise aus der Druckschrift EP 0 769 469 B1 bekannt.
  • Der Folgebetrieb der Fahrkörbe solcher Aufzuganlagen bedingt dabei eine besondere Auslegung des Sicherheitssystems der Aufzuganlage, da eine Kollision zwischen Fahrkörben unbedingt verhindert werden muss. Um eine Kollision zwischen Fahrkörben zu verhindern, ist es beispielsweise aus der Druckschrift WO 2004/043842 A1 bekannt, die absoluten Abstände zwischen den unmittelbar benachbarten Fahrkörben zu überwachen. Unterschreitet der Abstand einen für einen kritischen Abstand zwischen zwei Fahrkörben vordefinierten Wert, wird eine Maßnahme eingeleitet, die eine Kollision der Fahrkörbe vermeidet. Eine solche Maßnahme kann dabei beispielsweise das Auslösen einer Sicherheitseinrichtung des Fahrkorbs sein, insbesondere das Auslösen einer Fangvorrichtung des Fahrkorbs.
  • Die US 2013/0299282 A1 offenbart eine Aufzuganlage mit zwei Fahrkörben, die in einem gemeinsamen Schacht verfahren werden. Um eine Kollision zwischen den beiden Fahrkörben zu verhindern wird für jeden Fahrkorb eine Stopposition zwischen den beiden Fahrkörben ermittelt. Eine Stopposition repräsentiert diejenige Position im Schacht, an der Fahrkorb zum Stehen kommen, falls eine Bremsung eingeleitet wird. Bewegen sich die beiden Fahrkörbe aufeinander zu, so müssen die jeweils nächstliegenden Stoppositionen der Fahrkörbe stets einen positiven Abstand zueinander aufweisen.
  • Gemäß der Druckschrift EP 0 769 469 B1 lassen sich Kollisionen zwischen Fahrkörben alleine durch einen großen Abstand nicht verhindern. In der Druckschrift EP 0769 469 B1 wird daher vorgeschlagen, dass jeder Fahrkorb neben einem eigenen Antrieb zudem ein eigenes Sicherheitsmodul aufweist. Dieses Sicherheitsmodul kann dabei sowohl bei dem entsprechend zugehörigen Fahrkorb als auch bei benachbarten Fahrkörben Bremsvorgänge auslösen. Das Sicherheitsmodul berechnet dabei aus den aktuellen Fahrdaten sämtlicher Fahrkörbe der Aufzuganlage das notwendige Bremsverhalten der Fahrkörbe.
  • Ein aus der EP 0 769 469 B1 bekanntes Problem hierbei ist, dass die zu dieser Berechnung unter Berücksichtigung der aktuellen Fahrdaten erforderliche Datenmenge derart groß ist, dass eine laufende Übertragung und Verarbeitung dieser Daten zumindest mit vertretbarem technischen Aufwand nicht möglich ist, weshalb die EP 0 769 469 B1 vorschlägt, mit einem dynamischen Aufzugmodell zu arbeiten.
  • Das heißt, dass für ein dezentrales Sicherheitssystem, bei dem die Abstandsüberwachungen der Fahrkörbe lokal bei den Fahrkörben stattfinden, der oben beschriebene Ansatz entweder mit einer nicht händelbaren Kommunikationslast zwischen den Sicherheitsmodulen der Fahrkörbe einer Aufzuganlage einhergeht. Der technische Aufwand zur Bewältigung einer solchen hohen Kommunikationslast ist dabei höchstens mit sehr hohem technischem Aufwand realisierbar. Alternativ müssten Aufzugmodelle, die den tatsächlichen Aufzugbetrieb möglichst gut approximieren, entwickelt und den Berechnungen der Bremsvorgänge zugrunde gelegt werden, was mit hohem Aufwand verbunden ist. Zudem ist jeweils eine Anpassung des Modells an die tatsächlichen Gegebenheiten, beispielsweise die jeweilige Anzahl von Fahrkörben, erforderlich.
  • Vor diesem Hintergrund ist es eine Aufgabe der vorliegenden Erfindung, ein Verfahren zum Betreiben einer ein Schachtsystem und wenigstens drei Fahrkörbe umfassenden Aufzuganlage zu verbessern, insbesondere dahingehend, dass mögliche Kollisionen von Fahrkörben frühzeitig erkannt werden können, wobei die Erkennung vorteilhafterweise mittels eines dezentral ausgestalteten Sicherheitssystems realisierbar sein soll. Vorzugsweise soll hierbei das zu übertragene Datenvolumen möglichst gering sein. Ferner soll vorzugsweise eine einfache Übertragbarkeit des Verfahrens auf unterschiedlich ausgebildete Aufzuganlagen möglich sein. Zur Lösung der Aufgabe wird ein Verfahren zum Betreiben einer ein Schachtsystem und wenigstens drei Fahrkörbe umfassenden Aufzuganlage vorgeschlagen, welche zum separaten Verfahren der Fahrkörbe zumindest in eine erste Fahrtrichtung und in eine zweite Fahrtrichtung ausgebildet ist, wobei die wenigstens drei Fahrkörbe in einem Folgebetrieb jeweils separat verfahren werden und für jeden Fahrkorb wenigstens für eine Fahrtrichtung laufend ein Stoppunkt, an dem der Fahrkorb bei Bedarf stoppen kann, prädiziert wird. Der Abstand der prädizierten Stoppunkte benachbarter Fahrkörbe zueinander wird dabei laufend ermittelt, wobei bei Ermittlung eines negativen Abstands der Stoppunkte die Aufzuganlage in einen Sicherheitsmodus überführt wird.
  • Insbesondere ist vorgesehen, dass die Aufzuganlage als Antriebssystem wenigstens einen Linearmotor umfasst, welcher ein separates Verfahren der Fahrkörbe ermöglicht. Das heißt, die Fahrkörbe können in dem Schachtsystem jeweils unter Berücksichtigung der weiteren Fahrkörbe weitgehend unabhängig voneinander verfahren werden. Insbesondere ist vorgesehen, dass die Fahrkörbe jeweils nach oben und nach unten verfahren werden können und somit zum Verfahren in zumindest eine erste Fahrtrichtung und in eine zweite Fahrtrichtung ausgebildet sind. Insbesondere wenn das Schachtsystem der Aufzuganlage mehrere Schächte umfasst, wobei die Fahrkörbe über Verbindungsschächte zwischen den Schächten verfahren werden können, sind als weitere Fahrtrichtungen insbesondere seitliche Fahrtrichtungen vorgesehen.
  • Das Verfahren weist dabei insbesondere den Vorteil auf, dass jeweils für jeden Fahrkorb für die wenigstens eine Fahrtrichtung laufend, das heißt im Wesentlichen kontinuierlich, der Stoppunkt berechnet wird. Dieser Stoppunkt gibt insbesondere Auskunft darüber, wo dieser Fahrkorb bei einem Abbremsen, insbesondere einer Notbremsung, zum Stoppen beziehungsweise zum Halten käme. Betriebsparameter der andern Fahrkörbe, insbesondere Fahrparameter der anderen Fahrkörbe brauchen bei dieser Bestimmung der Stoppunkte vorteilhafterweise nicht berücksichtigt zu werden. Durch den Abgleich eines Stoppunktes eines Fahrkorbs für eine Fahrtrichtung mit dem Stoppunkt eines benachbarten Fahrkorbs lässt sich dabei vorteilhafterweise eine Kollisionsgefahr zuverlässig erkennen. Bei diesem Verfahren werden somit vorteilhafterweise lediglich Stoppunkte übertragen und insbesondere keine weiteren Fahrkorb bezogenen Betriebsparameter, sodass die zu übertragende Datenmenge vorteilhafterweise gering ist. Da insbesondere vorgesehen ist, dass lediglich die Stoppunkte benachbarter Fahrkörbe miteinander abgeglichen werden, ist vorteilhafterweise die zu übertragende Datenmenge weiter reduziert.
  • Ein aktueller Stoppunkt für eine Fahrtrichtung eines Fahrkorbs ist dabei ausgehend von der aktuellen Position des Fahrkorbs insbesondere die Distanz, die der Fahrkorb in diese Fahrtrichtung zum Stoppen benötigt, also insbesondere der prädizierte Bremsweg. Vorzugsweise wird die Distanz dabei um einen Sicherheitsabstand, vorzugsweise einen fixen Sicherheitsabstand, beaufschlagt, sodass der Stoppunkt entsprechend weiter von dem Fahrkorb entfernt liegt. In Abhängigkeit von den aktuellen Betriebsparametern eines Fahrkorbs der Aufzuganlage ändert sich somit auch jeweils für jede Fahrtrichtung die Distanz zwischen dem Fahrkorb und dem Stoppunkt. Insbesondere vergrößert sich mit der Geschwindigkeit, mit der ein Fahrkorb verfahren wird, auch die Distanz des entsprechenden Stoppunktes zu dem Fahrkorb.
  • Der minimale Abstand, den zwei benachbarte Fahrkörbe zueinander einnehmen können, ist dabei abhängig von mehreren Betriebsparametern, insbesondere der aktuellen Position der Fahrkörbe im Schachtsystem, der Geschwindigkeiten der Fahrkörbe, der Beschleunigungen der Fahrkörbe, der Zuladungen der Fahrkörbe und/oder der Zustände der Bremsen der Fahrkörbe. Bei dem erfindungsgemäßen Verfahren werden diese Betriebsparameter dabei vorteilhafterweise jeweils nur für jeden Fahrkorb einzeln erfasst, um aus diesen Betriebsparametern für jeden Fahrkorb für die wenigstens eine Fahrtrichtung den jeweiligen Stoppunkt zu ermitteln. Durch den Abgleich der Stoppunkte benachbarter Fahrkörbe wird dabei vorteilhafterweise überprüft, dass ein minimaler Abstand zwischen den Fahrkörben eingehalten wird, wobei dieser minimale Abstand vorteilhafterweise durch die laufenden Ermittlungen der Stoppunkte und deren Abgleich dynamisch angepasst wird.
  • Wird beim Ermitteln der Abstände der prädizierten Stoppunkte benachbarter Fahrkörbe ein negativer Abstand ermittelt, das heißt, ist der Stoppunkt eines Fahrkorbes weiter von diesem Fahrkorb entfernt als der Stoppunkt eines benachbarten Fahrkorbes, so wird die Aufzuganlage vorteilhafterweise in einen Sicherheitsmodus überführt, insbesondere in dem die entsprechenden benachbarten Fahrkörbe, deren Stoppunkte einen negativen Abstand aufweisen, abgebremst und somit zum Stoppen gebracht werden, insbesondere durch ein Auslösen von Sicherheitseinrichtungen dieser Fahrkörbe. Es wird darauf hingewiesen, dass die Bezeichnung "negativer Abstand" den Fall bezeichnet, dass der Stoppunkt eines betrachteten Fahrkorbes weiter von diesem betrachteten Fahrkorb entfernt ist als der Stoppunkt eines benachbarten Fahrkorbes, insbesondere eines vorausfahrenden oder nachfolgenden Fahrkorbs. Ob der Abstand dabei tatsächlich negativ im Sinne einer negativen Zahl ist, hängt dabei von dem verwendeten Bezugssystem ab. So kann ein "negativer Abstand" bei einem entsprechenden Bezugssystem insbesondere auch durch eine positive Zahl ausgedrückt werden.
  • Vorteilhafterweise ist das Verfahren insbesondere sowohl für horizontale als auch für vertikale Bewegungen der Fahrkörbe anwendbar. Vorteilhafterweise ist zudem durch das vorgeschlagene Verfahren eine schnelle Erkennung möglicher Kollisionen zwischen benachbarten Fahrkörben bereitgestellt.
  • Gemäß einer besonders vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass der Stoppunkt von jedem Fahrkorb jeweils unter Annahme des bei einem Eingreifen wenigstens einer Sicherheitseinrichtung der Aufzuganlage spätestens erfolgenden Stopps des jeweiligen Fahrkorbs prädiziert wird. Das Verfahren ist hierbei somit vorteilhafterweise konservativ ausgebildet. Der Abstand zwischen benachbarten Fahrkörben ist hierdurch zwar mitunter größer als unbedingt notwendig, dafür wird zuverlässig eine Kollision benachbarter Fahrkörbe verhindert. Sicherheitseinrichtungen der Aufzuganlage sind dabei insbesondere Bremsvorrichtungen, wie beispielsweise Fangvorrichtungen der Fahrkörbe und/oder seitens des Antriebssystems bereitgestellte Bremsvorrichtungen. Umfasst das Antriebssystem der Aufzuganlage wenigstens einen Linearantrieb, ist insbesondere auch das abschnittsweise Abschalten eines Stranges des Linearantriebs als Eingreifen wenigstens einer Sicherheitseinrichtung vorgesehen.
  • Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass die Stoppunkte jeweils unter der Annahme eines Worst-Case-Szenarios prädiziert werden, um eine Kollision benachbarter Fahrkörbe in jedem Fall zuverlässig zu verhindern. Insbesondere ist vorgesehen, dass der Stoppunkt von jedem Fahrkorb unter der zusätzlichen Annahme prädiziert wird, dass der jeweilige Fahrkorb vor dem Eingreifen der wenigstens einen Sicherheitseinrichtung der Aufzuganlage mit der seitens der Aufzuganlage maximal möglichen Beschleunigung beschleunigt wird. Für einen haltenden Fahrkorb, der in einem Schacht nach oben und nach unten verfahren werden kann, wird somit vorteilhafter der Stoppunkt in die Fahrtrichtung "oben" unter der Annahme prädiziert, dass der Fahrkorb zunächst maximal in Fahrtrichtung "oben" beschleunigt wird und dann durch ein Eingreifen wenigstens einer Sicherheitseinrichtung zum Stoppen gebracht wird. In die Fahrtrichtung "unten" wird vorteilhafterweise der Stoppunkt in die Fahrtrichtung "unten" unter der Annahme prädiziert, dass der Fahrkorb zunächst maximal in Fahrtrichtung "unten" beschleunigt wird und dann durch ein Eingreifen wenigstens einer Sicherheitseinrichtung zum Stoppen gebracht wird. Aufgrund der auf den Fahrkorb einwirkenden Schwerkraft, welcher vorteilhafterweise bei der Prädiktion der Stoppunkte berücksichtigt wird, ist die Distanz des Stoppunktes in Fahrtrichtung "oben" zu dem oberen Fahrkorbende dabei geringer als die Distanz des Stoppunktes in Fahrtrichtung "unten" zu dem unteren Fahrkorbende.
  • Dabei ist es vorgesehen, dass für jeden Fahrkorb für die erste Fahrtrichtung ein erster Stoppunkt prädiziert und für jeden Fahrkorb für die zweite Fahrtrichtung ein zweiter Stoppunkt prädiziert, sodass für jeden Fahrkorb laufend zwei Stoppunkte prädiziert werden. Vorteilhafterweise werden für jeden Fahrkorb zumindest ein oberer Stoppunkt für die Fahrtrichtung "aufwärts" und ein unterer Stoppunkt für die Fahrtrichtung "abwärts" prädiziert.
  • Für jeden Fahrkorb, welcher in der ersten Fahrtrichtung einen benachbarten ersten Fahrkorb aufweist, wird vorteilhafterweise der Abstand von dem erstem Stoppunkt dieses Fahrkorbs zu dem zweiten Stoppunkt des ersten Fahrkorbs ermittelt, insbesondere um eine Kollisionsgefahr dieses Fahrkorbs mit dem ersten Fahrkorb ermitteln zu können.
  • Für jeden Fahrkorb, welcher in der zweiten Fahrtrichtung einen benachbarten zweiten Fahrkorb aufweist, wird vorteilhafterweise der Abstand von dem zweiten Stoppunkt dieses Fahrkorbs zu dem ersten Stoppunkt des zweiten Fahrkorbs ermittelt, insbesondere um eine Kollisionsgefahr dieses Fahrkorbs mit dem zweiten Fahrkorb ermitteln zu können.
  • Insbesondere ist somit vorgesehen, dass in einem senkrecht verlaufenden Schacht des Schachtsystems der Aufzuganlage, in dem wenigstens drei Fahrkörbe verfahren werden, für jeden Fahrkorb laufend ein oberer Stoppunkt und ein unterer Stoppunkt prädiziert werden. Außer dem in dem Schacht am weitesten oben befindlichen Fahrkorb und dem in dem Schacht am weitesten unten befindlichen Fahrkorb weisen somit sämtliche Fahrkörbe einen oberen benachbarten Fahrkorb und einen untern benachbarten Fahrkorb auf. Hierbei ist vorteilhafterweise vorgesehen, dass jeweils der Abstand des oberen Stoppunktes eines Fahrkorbs zu dem unteren Stoppunkt des oberen benachbarten Fahrkorbs ermittelt wird. Vorteilhafterweise wird ferner der Abstand des unteren Stoppunktes eines Fahrkorbs zu dem oberen Stoppunkt des unteren benachbarten Fahrkorbs ermittelt.
    Die Stoppunkte werden vorteilhafterweise über ein dem Schachtsystem fest zugewiesenes Raster definiert. Ein grundsätzlich hierfür geeignetes Raster ist beispielsweise aus der Druckschrift EP 1 719 727 B1 bekannt.
  • Bei einem solchen fixen Raster wird dem niedrigsten Punkt, den ein Fahrkorb über das Schachtsystem anfahren kann, vorzugsweise der Wert 0 zugeordnet. Dem höchsten Punkt, den ein Fahrkorb über das Schachtsystem anfahren kann, wird vorzugsweise ein entsprechender Höchstwert zugeordnet. Sind die Fahrkörbe auch seitlich verfahrbar, können die Stoppunkte insbesondere als Koordinaten (x, y) bzw. (x, y, z) repräsentiert werden. Dabei wird vorzugsweise für eine aktuelle Fahrtrichtung nur die entsprechende Koordinate berücksichtigt, beispielsweise für Fahrtrichtung x nur die Koordinate x. Insbesondere in den Bereichen, in denen die Fahrtrichtung wechselt, beispielsweise von Fahrtrichtung x in Fahrtrichtung y, ist vorteilhafterweise vorgesehen, dass hier jeweils für einen entsprechenden, den Übergangsbereich umfassenden Abschnitt mehr als eine Koordinate berücksichtigt wird, also in Bezug auf das zuvor angeführte Beispiel die Koordinaten (x, y).
  • Bei einer solchen Festlegung eines fixen Rasters besteht Kollisionsgefahr, wenn der obere Stoppunkt eines Fahrkorbs größer ist als der untere Stoppunkt des oberhalb dieses Fahrkorbs fahrenden Fahrkorbs. Die Aufzuganlage wird in diesem Fall in einen Sicherheitsmodus überführt, insbesondere indem zumindest einer der beiden Fahrkörbe zum Stoppen gebracht wird. Gleiches gilt entsprechend, wenn der untere Stoppunkt eines Fahrkorbs kleiner ist, als der obere Stoppunkt des unterhalb dieses Fahrkorbs fahrenden Fahrkorbs.
  • Mögliche Kollisionsgefahren eines Fahrkorbs mit einem oberen benachbarten Fahrkorb und/oder einem unteren benachbarten Fahrkorb werden somit zuverlässig erkannt, nämlich indem überprüft wird, ob ein ermittelter Abstand negativ ist, also die miteinander verglichenen Stoppunkte einen Überschneidungsbereich aufweisen. Wenn ein negativer Abstand ermittelt wird, wird vorteilhafterweise die Aufzuganlage von dem Normalbetrieb in einen Sicherheitsmodus überführt, insbesondere indem die betroffenen Fahrkörbe gestoppt werden. Die anderen Fahrkörbe werden vorteilhafterweise in eingeschränktem Betrieb weiter verfahren, wobei die gestoppten Fahrkörbe einen Sperrbereich definieren, dem sich die weiter betriebenen Fahrkörbe nur bis zu einem vordefinierten Abstand annähern dürfen. Vorzugsweise erhalten die im Rahmen der Überführung der Aufzuganlage in einen Sicherheitsmodus gestoppten Fahrkörbe fix zugewiesene Stoppunkte, sodass insbesondere eine Kollision von Fahrkörben mit den gestoppten Fahrkörben mit der Anwendung des gleichen Verfahrens weiterhin verhindert wird.
  • Gemäß einer weiteren besonders bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass die Fahrkörbe jeweils eine eigene Steuereinheit aufweisen, die Steuereinheit eines Fahrkorbs der Aufzuganlage jeweils den Stoppunkt für die wenigstens eine Fahrtrichtung prädiziert und jeweils die für einen Fahrkorb prädizierten Stoppunkte an die Steuereinheiten der zu diesem Fahrkorb benachbarten Fahrkörbe übertragen werden, wobei die Steuereinheit eines Fahrkorbs jeweils den Abstand der für diesen Fahrkorb prädizierten Stoppunkte zu den an diese Steuereinheit übertragenen Stoppunkte ermittelt.
  • Die erforderliche Menge der zu übermittelnden Echtzeitdaten ist dabei vorteilhafterweise gering. Vorteilhafterweise können die Stoppunkte gleichzeitig von mehreren Steuereinheiten, die vorteilhafterweise jeweils an den Fahrkörben angeordnet sind, berechnet werden. Hierdurch sinken vorteilhafterweise die technischen Anforderungen an die Rechenkapazitäten des Sicherheitssystems der Aufzuganlage.
  • Die Steuereinheiten, die jeweils einem Fahrkorb zugewiesen und vorzugsweise an diesem angeordnet sind, erfassen vorteilhafterweise mittels entsprechender an dem Fahrkorb angeordneter Sensoren alle zur Prädiktion der Stoppunkte erforderlichen Betriebsparameter. Hierzu zählen insbesondere die aktuelle Position des Fahrkorbs, die Geschwindigkeit des Fahrkorbs, die Beschleunigung des Fahrkorbs, die Zuladung des Fahrkorbs und/oder der Zustand der Bremse des Fahrkorbs. Vorzugsweise werden diese Betriebsparameter sowie die daraus prädizierten Stoppunkte in vordefinierten diskreten Zeitintervallen von beispielsweise 5 ms bis 50 ms (ms: Millisekunden) ermittelt. Hierdurch ist quasi eine laufende Prädiktion der Stoppunkte ermöglicht.
  • Jede einem Fahrkorb zugeordnete Steuereinheit berechnet vorteilhafterweise die Stoppunkte für die wenigstens eine Fahrtrichtung dieses Fahrkorbs, insbesondere einen oberen und einen unteren Stoppunkt, und tauscht diese mit den von den Steuereinheiten der benachbarten Fahrkörbe aus. Anstatt die Abstände zwischen benachbarten Fahrkörben zu berechnen, werden vorteilhafterweise die Stoppunkte miteinander verglichen, wie bereits oben stehend erläutert. Solange die Stoppunkte sich nicht überlappen, das heißt kein negativer Abstand ermittelt wird, besteht keine Kollisionsgefahr.
  • Vorzugsweise löst die Steuereinheit eines Fahrkorbs bei Ermittlung eines negativen Abstands der Stoppunkte eine Sicherungseinrichtung dieses Fahrkorbs aus, wobei insbesondere vorgesehen ist, dass ein Auslösen der Sicherungseinrichtung den Fahrkorb zum Stoppen bringt. Insbesondere ist das Betätigen einer Bremse des Fahrkorbs als Auslösen einer Sicherungseinrichtung des Fahrkorbs vorgesehen. Vorteilhafterweise ist die einem Fahrkorb zugeordnete Steuereinrichtung dabei hinsichtlich des Auslösens von Sicherungseinrichtungen nur für die Sicherungseinrichtung dieses Fahrkorbs zuständig und muss vorteilhafterweise nicht auch noch andere Fahrkörbe abbremsen. Hierdurch ist die zu übertragende Datenmenge vorteilhafterweise weiter reduziert.
  • Insbesondere ist vorgesehen, dass die Stoppunkte jeweils aus aktuellen Betriebsparametern des jeweiligen Fahrkorbs prädiziert werden. Gemäß einer vorteilhaften Ausgestaltungsvariante ist vorgesehen, dass zu sämtlichen gequantelten Kombinationen von Betriebsparametern jeweils Stoppunkte vordefiniert sind. Eine Zuordnung der Stoppunkte zu einer solchen Kombination von Betriebsparametern erfolgt dabei gemäß einer vorteilhaften Ausgestaltung über Lookup-Table. Insbesondere ist gemäß einer weiteren vorteilhaften Ausgestaltungsvariante eine solche Zuordnung als Plausibilisierung von durch Echtzeitberechnungen prädizierten Stoppunkten vorgesehen. Vorteilhafterweise wird die Aufzuganlage bei Feststellung einer vordefinierten Abweichung von zugeordneten Stoppunkten und prädizierten Stoppunkten ebenfalls in einen Sicherheitsmodus überführt.
  • Gemäß einem weiteren vorteilhaften Aspekt der Erfindung ist vorgesehen, dass die Aufzuganlage ein dezentrales Sicherheitssystem mit einer Mehrzahl von Steuereinheiten umfasst, wobei die Mehrzahl von Steuereinheiten die Steuereinheiten der Fahrkörbe umfassen, und die Steuereinheiten jeweils zur Feststellung eines von dem Normalbetrieb der Aufzuganlage abweichenden Betriebsmodus Daten austauschen.
  • Zur Lösung der eingangs genannten Aufgabe wird des Weiteren eine zur Ausführung eines erfindungsgemäßen Verfahrens ausgebildete Aufzuganlage vorgeschlagen. Insbesondere wird eine Aufzuganlage mit einem wenigstens einen Schacht umfassenden Schachtsystem und wenigstens drei Fahrkörben, welche gemeinsam in dem wenigstens einen Schacht des Schachtsystems separat verfahren werden können, vorgeschlagen, wobei die Fahrkörbe vorteilhafterweise jeweils eine eigene Steuereinheit aufweisen, und wobei die Aufzuganlage zur Ausführung eines erfindungsgemäßen Verfahrens ausgebildet ist.
  • Insbesondere ist dabei vorgesehen, dass die Steuereinheiten der Fahrkörbe über eine Schnittstelle zum Übertragen von Daten miteinander verbunden sind. Als Schnittstelle ist dabei insbesondere ein Kommunikationsbus vorgesehen. Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgt die Übertragung der Daten drahtlos, insbesondere über eine Luftschnittstelle, beispielsweise mittels WLAN (WLAN: Wireless Local Area Network). Jede Steuereinheit eines Fahrkorbs ist dabei vorteilhafterweise ausgebildet, die Stoppunkte für diesen Fahrkorb zu ermitteln und diese mit den übertragenen Stoppunkten benachbarter Fahrkörbe abzugleichen. Zur Ermittlung der Stoppunkte weist jeder Fahrkorb vorteilhafterweise Sensoren zur Erfassung von Betriebsparametern, wie insbesondere Geschwindigkeit, Beschleunigung, Zuladung, Zustand der Sicherheitseinrichtungen des Fahrkorbs, insbesondere Zustand der Bremsen als Sicherheitseinrichtung des Fahrkorbs, und Position des Fahrkorbs, auf. Die erfassten Betriebsparameter werden dabei an die Steuereinheit übertragen und von dieser zur Prädiktion der Stoppunkte ausgewertet.
  • Weitere Vorteile, Merkmale und Ausgestaltungsdetails der Erfindung werden im Zusammenhang mit den in den Figuren dargestellten Ausführungsbeispielen näher erläutert. Dabei zeigt:
  • Fig. 1
    in einer vereinfachten schematischen Darstellung ein Ausführungsbeispiel für eine Aufzuganlage, welche gemäß einer Ausgestaltungsvariante eines erfindungsgemäßen Verfahrens betrieben wird; und
    Fig. 2
    in einer vereinfachten schematischen Darstellung ein Ausführungsbeispiel für einen Fahrkorb zur Verwendung in einer in Fig. 1 dargestellten Aufzuganlage, mit beispielhaft dargestellten Stoppunkten.
  • Die in Fig. 1 dargestellte Aufzuganlage 1, welche aus Gründen der besseren Übersicht nicht maßstabsgerecht dargestellt ist, umfasst ein Schachtsystem 2 mit zwei senkrechten Schächten 12 und zwei Verbindungsschächten 13. Des Weiteren umfasst die Aufzuganlage 1 eine Mehrzahl von Fahrkörben 3 (in Fig. 1 beispielhaft acht Fahrkörbe), welche in dem Schachtsystem 2 in einem Folgebetrieb separat verfahren werden können, das heißt, dass mehrere Fahrkörbe 3 in einem Schacht 12 oder einem Schacht 13 verfahren werden können.
  • Die Fahrkörbe 3 können dabei in den Schächten 12 in eine erste Fahrtrichtung 4 nach oben verfahren werden (in Fig. 1 durch den Pfeil 4 symbolisch dargestellt) und in eine zweite Fahrtrichtung 5 nach unten verfahren werden (in Fig. 1 durch den Pfeil 5 symbolisch dargestellt). In den Verbindungsschächten 13, über welche die Fahrkörbe 3 zwischen den Schächten 12 wechseln können, sind die Fahrkörbe zudem seitlich in eine dritte Fahrtrichtung 10 (in Fig. 1 durch den Pfeil 10 symbolisch dargestellt) und in eine vierte Fahrtrichtung 11 (in Fig. 1 durch den Pfeil 11 symbolisch dargestellt) verfahrbar.
  • Insbesondere ist vorgesehen, dass die Aufzuganlage als Antriebssystem wenigstens einen Linearmotor umfasst (in Fig. 1 nicht explizit dargestellt), mittels dem die Fahrkörbe 3 innerhalb des Schachtsystems 2 verfahren werden.
  • Die in Fig. 1 dargestellte Aufzuganlage 1 wird dabei derart betrieben, dass für jeden Fahrkorb 3 laufend für die erste mögliche Fahrtrichtung ein erster Stoppunkt 6 und für die zweite mögliche Fahrtrichtung ein zweiter Stoppunkt 7 prädiziert wird. Somit wird für jeden Fahrkorb 3 wenigstens für eine Fahrtrichtung laufend ein Stoppunkt prädiziert. So wird für in den senkrechten Schächten 12 befindliche Fahrkörbe 3 als erster Stoppunkt 6 ein oberer Stoppunkt prädiziert und als zweiter Stoppunkt 7 ein unterer Stoppunkt prädiziert. In den Verbindungsschächten 13 wird als Stoppunkt 6' ein in Fahrtrichtung des jeweiligen Fahrkorbs 3 befindlicher Stoppunkt und als Stoppunkt 7' ein zweiter gegen Fahrtrichtung des jeweiligen Fahrkorbs 3 befindlicher Stoppunkt prädiziert.
  • Die Stoppunkte können insbesondere über Koordinaten (x, y) definiert werden, wobei über die x-Koordinaten seitliche Stoppunkte und über die y-Koordinaten senkrecht liegende Stoppunkte definiert werden. Dem Punkt A in Fig. 1 kann dabei beispielhaft die Koordinate (0, 0) zugewiesen sein.
  • Die beiden Stoppunkte 6, 7 beziehungsweise 6', 7' geben dabei ausgehend von der aktuellen Position des jeweiligen Fahrkorbs 3 für jede der möglichen Fahrtrichtungen 4, 5 beziehungsweise 10, 11 jeweils den Punkt an, an dem der Fahrkorb 3 unter Annahme eines Worst-Case-Szenarios spätestens stoppen kann. Insbesondere wird für einen aufwärtsfahrenden Fahrkorb 3' unter Berücksichtigung aktueller Betriebsparameter, wie beispielsweise Fahrtrichtung, Geschwindigkeit und Zuladung des Fahrkorbs 3', ein oberer Stoppunkt 6 prädiziert, also vorherbestimmt, wo der Fahrkorb 3' stoppen würde, wenn der Fahrkorb 3' in Fahrtrichtung maximal beschleunigen würde und dann abgebremst würde. Als unterer Stoppunkt 7 des Fahrkorbs 3' wird unter der Worst-Case-Annahme prädiziert, dass der Antrieb ausfällt, der Fahrkorb 3' aufgrund dessen absackt und der Fahrkorb 3' erst dann abgebremst würde.
  • Entsprechende Prädiktionen werden für die weiteren Fahrkörbe 3 der Aufzuganlage laufend durchgeführt. Vorteilhafterweise weisen die Fahrkörbe 3 hierzu jeweils einer Steuereinheit, beispielsweise eine als Steuereinheit ausgebildete Mikrocontrollerschaltung, auf (in Fig. 1 nicht explizit dargestellt).
  • Für jeden Fahrkorb 3, welcher in einer ersten Fahrtrichtung einen benachbarten ersten Fahrkorb aufweist, wird der Abstand von dem ersten Stoppunkt 6 dieses Fahrkorbs zu dem zweiten Stoppunkt 7 des zweiten Fahrkorbs ermittelt. Zudem wird für jeden Fahrkorb 3, welche in der zweiten Fahrtrichtung einen benachbarten zweiten Fahrkorb aufweist, der Abstand von dem zweiten Stoppunkt 7 dieses Fahrkorbs zu dem ersten Stoppunkt 6 des zweiten Fahrkorbs ermittelt.
  • Beispielsweise wird also für den Fahrkorb 3', welcher in Fahrtrichtung 4 einen benachbarten Fahrkorb 3" aufweist, der Abstand 8 von dem oberen Stoppunkt 6 des Fahrkorbs 3' zu dem unteren Stoppunkt 7 des Fahrkorbs 3" ermittelt. Dazu wird vorteilhafterweise der untere Stoppunkt 7 des Fahrkorbs 3" an eine Steuereinheit (in Fig. 1 nicht explizit dargestellt) des Fahrkorbs 3' übertragen. Der ermittelte Abstand 8 ist in diesem Beispiel positiv. Bezüglich der Fahrkörbe 3' und 3" besteht somit keine Kollisionsgefahr.
  • Der Fahrkorb 3' weist zudem in der weiteren Fahrtrichtung 5 einen benachbarten Fahrkorb 3"' auf. Daher wird für den Fahrkorb 3' zudem der Abstand 9 von dem unteren Stoppunkt 7 des Fahrkorbs 3' zu dem oberen Stoppunkt 6 des Fahrkorbs 3"' ermittelt. Dazu wird vorteilhafterweise der obere Stoppunkt 6 des Fahrkorbs 3"' an eine Steuereinheit (in Fig. 1 nicht explizit dargestellt) des Fahrkorbs 3' übertragen. Der ermittelte Abstand 9 ist in diesem Beispiel negativ, das heißt der obere Stoppunkt 6 des Fahrkorbs 3"' liegt über dem unteren Stoppunkt 7 des Fahrkorbs 3'. Bezüglich der Fahrkörbe 3' und 3"' besteht somit eine Kollisionsgefahr. Aufgrund des negativen Abstands 9 des unteren Stoppunktes 6 des Fahrkorbs 3' und des oberen Stoppunktes 7 des Fahrkorbs 3"' wird die Aufzuganlage in einen Sicherheitsmodus überführt, insbesondere indem fahrkorbseitige Bremsen dieser Fahrkörbe aktiviert werden, vorzugsweise ausgelöst von den jeweiligen Fahrkörbe 3' und 3"' zugeordneten Steuereinheiten.
  • Da an einen Fahrkorb 3 von den beiden benachbarten Fahrkörben jeweils nur ein Stoppunkt übertragen wird, ist die Kommunikationslast bei dem angewandten Verfahren vorteilhafterweise gering.
  • Zur weiteren Erläuterung der Stoppunkte, die für einen Fahrkorb 3 gemäß einem erfindungsgemäßen Verfahren prädiziert werden, wird auf Fig. 2 Bezug genommen. In Fig. 2 ist dabei ein Fahrkorb 3 mit einer Fahrkorbgesamthöhe 17 und einer Eintrittsschwelle 20 dargestellt.
  • Für den in Fahrtrichtung 4 und in Fahrtrichtung 5 (in Fig. 2 ist die Fahrtrichtung jeweils durch Pfeile 4, 5 symbolisch dargestellt) verfahrbaren Fahrkorb 3 ist für jede Fahrtrichtung 4, 5 jeweils beispielhaft ein prädizierter Stoppunkt 6, 7 dargestellt. Für die Fahrtrichtung 4 ist dabei der obere Stoppunkt 6 dargestellt und für die Fahrtrichtung 5 der untere Stoppunkt 7.
  • Der obere Stoppunkt 6 gibt dabei den Punkt an, wo der Fahrkorb 3 mit dem oberen Fahrkorbende 21 ausgehend von aktuellen Betriebsparametern und unter Annahme eines Worst-Case-Szenarios spätestens in Fahrtrichtung 4 stoppen kann. Der Abstand zwischen dem Stoppunkt 6 und dem oberen Fahrkorbende 21 ergibt sich dabei in dem dargestellten Ausführungsbeispiel aus der Summe von einem optional festlegbaren Mindestabstand 15 zum Fahrkorb 3, der nicht unterschritten werden darf, und einem aus den aktuellen Fahrparametern unter Annahme eines Worst-Case-Szenarios berechneten Bremswegs 18. Die Berechnung der Stoppunkte erfolgt beispielsweise mittels eines entsprechend konfigurierten Prädiktormodells.
  • Der untere Stoppunkt 7 gibt dagegen den Punkt an, wo der Fahrkorb 3 mit dem unteren Fahrkorbende 22 ausgehend von aktuellen Betriebsparametern und unter Annahme eines Worst-Case-Szenarios spätestens in Fahrtrichtung 5 stoppen kann. Der Abstand zwischen dem Stoppunkt 7 und dem unteren Fahrkorbende 22 ergibt sich dabei in dem dargestellten Ausführungsbeispiel aus der Summe von einem optional vorgebbaren Mindestabstand 16 zum unteren Fahrkorbende 22, der nicht unterschritten werden darf, und einem aus den aktuellen Fahrparametern unter Annahme eines Worst-Case-Szenarios prädizierten Bremswegs 19.
  • Die Positionen der Stoppunkte variieren dabei in Abhängigkeit von den jeweils aktuellen Fahrparametern. Steht der Fahrkorb, werden die Stoppunkte näher an den Fahrkorb rücken. Fährt der Fahrkorb mit hoher Geschwindigkeit aufwärts, also in Fahrtrichtung 4, wird der obere Stopppunkt weiter oben liegen. Dabei kann insbesondere auch bei sehr hoher Geschwindigkeit der Fall auftreten, dass der untere Stoppunkt 7 an der Position 14 liegend bestimmt wird, da hierbei eine Bewegung in Fahrrichtung 5 selbst im Worst Case-Szenario ausgeschlossen sein kann.
  • Für jeden solchen in Fig. 2 dargestellten Fahrkorb 3 wird jeweils ein solcher oberer Stoppunkt und ein unterer Stoppunkt prädiziert. Dabei wird jeweils der Abstand zwischen dem oberen Stoppunkt 6 eines Fahrkorbs und dem unteren Stoppunkt 7' beziehungsweise 7" eines oberhalb dieses Fahrkorbs benachbarten Fahrkorbs und der Abstand zwischen dem unteren Stoppunkt 7 dieses Fahrkorbs und dem oberen Stoppunkt 6' beziehungswiese 6" eines unterhalb dieses Fahrkorbs benachbarten Fahrkorbs ermittelt. Bei einem unkritischen Betrieb sind die Abstände 8 positiv, da 7" größer 6 beziehungsweise 7 größer 6". Bei einem negativen Abstand besteht dagegen ein Kollisionsrisiko. Ein solcher negativer Abstand ergibt sich, wenn 6 größer 7' beziehungsweise 6' größer 7. Wird ein solcher negativer Abstand ermittelt, wird die Aufzuganlage in eine sicheren Betriebszustand überführt, insbesondere in einen Sicherheitsmodus.
  • Die in den Figuren dargestellten und im Zusammenhang mit diesen erläuterten Ausführungsbeispiele dienen der Erläuterung der Erfindung und sind für diese nicht beschränkend.
  • Bezugszeichen:
  • 1
    Aufzuganlage
    2
    Schachtsystem
    3
    Fahrkorb
    3'
    Fahrkorb
    3"
    Fahrkorb
    3'''
    Fahrkorb
    4
    erste Fahrtrichtung
    5
    zweite Fahrtrichtung
    6
    erster Stoppunkt
    6'
    erster Stoppunkt
    6"
    erster Stoppunkt
    7
    zweiter Stoppunkt
    7'
    erster Stoppunkt
    7"
    erster Stoppunkt
    8
    positiver Abstand prädizierter Stoppunkte
    9
    negativer Abstand prädizierter Stoppunkte
    10
    dritte Fahrtrichtung
    11
    vierte Fahrtrichtung
    12
    senkrechter Schacht
    13
    Verbindungsschacht
    14
    Extremposition für einen möglichen Stoppunkt
    15
    von der Kabine aus einzuhaltender Mindestabstand
    16
    von der Kabine aus einzuhaltender Mindestabstand
    17
    Fahrkorbhöhe
    18
    prädizierter Bremsweg
    19
    prädizierter Bremsweg
    20
    Eintrittsschwelle
    21
    oberes Ende des Fahrkorbs
    22
    unteres Ende des Fahrkorbs

Claims (10)

  1. Verfahren zum Betreiben einer Aufzuganlage(1),
    wobei die Aufzuganlage(1) ein Schachtsystem (2) und wenigstens drei Fahrkörbe (3) umfasst,
    wobei die Aufzuganlage zum separaten Verfahren der Fahrkörbe (3) zumindest in eine erste Fahrtrichtung (4) und in eine zweite Fahrtrichtung (5) ausgebildet ist,
    wobei die wenigstens drei Fahrkörbe (3) in einem Folgebetrieb jeweils separat verfahren werden und für jeden Fahrkorb (3) wenigstens für eine Fahrtrichtung laufend ein Stoppunkt (6, 7), an dem der Fahrkorb (3) bei Bedarf stoppen kann, prädiziert wird, wobei laufend der Abstand (8, 9) der prädizierten Stoppunkte (6, 7) benachbarter Fahrkörbe (3) zueinander ermittelt wird,
    wobei bei Ermittlung eines negativen Abstands (9) der Stoppunkte (6, 7) die Aufzuganlage (1) in einen Sicherheitsmodus überführt wird,
    wobei ein negativer Abstand dann vorliegt, wenn der Stoppunkt eines Fahrkorbes weiter von diesem Fahrkorb entfernt ist als der Stoppunkt eines benachbarten Fahrkorbes,
    dadurch gekennzeichnet,
    dass für jeden Fahrkorb (3) für die erste Fahrtrichtung (4) ein erster Stoppunkt (6) prädiziert wird und für jeden Fahrkorb (3) für die zweite Fahrtrichtung (5) ein zweiter Stoppunkt (7) prädiziert wird, so dass für jeden Fahrkorb (3) laufend zwei Stoppunkte (6, 7) prädiziert werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Stoppunkt (6, 7) von jedem Fahrkorb (3) jeweils unter Annahme des bei einem Eingreifen wenigstens einer Sicherheitseinrichtung der Aufzuganlage (1) spätestens erfolgenden Stopps des jeweiligen Fahrkorbs (3) prädiziert wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Stoppunkt (6, 7) von jedem Fahrkorb (3) unter der zusätzlichen Annahme prädiziert wird, dass der jeweilige Fahrkorb (3) vor dem Eingreifen der wenigstens einen Sicherheitseinrichtung der Aufzuganlage (1) mit der seitens der Aufzuganlage (1) maximal möglichen Beschleunigung beschleunigt wird.
  4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass für jeden Fahrkorb (3'), welcher in der ersten Fahrtrichtung (4) einen benachbarten ersten Fahrkorb (3") aufweist, der Abstand (8, 9) von dem erstem Stoppunkt (6) dieses Fahrkorbs (3') zu dem zweiten Stoppunkt (7) des ersten Fahrkorbs (3") ermittelt wird.
  5. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass für jeden Fahrkorb (3'), welcher in der zweiten Fahrtrichtung (5) einen benachbarten zweiten Fahrkorb (3"') aufweist, der Abstand (8, 9) von dem zweiten Stoppunkt (7) dieses Fahrkorbs (3') zu dem ersten Stoppunkt (6) des zweiten Fahrkorbs (3"') ermittelt wird.
  6. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Fahrkörbe (3) jeweils eine eigene Steuereinheit aufweisen, die Steuereinheit eines Fahrkorbs (3') der Aufzuganlage (1) jeweils den Stoppunkt (6, 7) für die wenigstens eine Fahrtrichtung (4, 5) prädiziert und jeweils die für einen Fahrkorb (3) prädizierten Stoppunkte (6, 7) an die Steuereinheiten der zu diesem Fahrkorb (3') benachbarten Fahrkörbe (3", 3"') übertragen werden, wobei die Steuereinheit eines Fahrkorbs (3) jeweils den Abstand (8, 9) der für diesen Fahrkorb (3) prädizierten Stoppunkte (6, 7) zu den an diese Steuereinheit übertragenen Stoppunkte (6, 7) ermittelt.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Steuereinheit eines Fahrkorbs (3) bei Ermittlung eines negativen Abstands (9) der Stoppunkte (6, 7) eine Sicherungseinrichtung dieses Fahrkorbs (3) auslöst, wobei ein Auslösen der Sicherungseinrichtung den Fahrkorb (3) zum Stoppen bringt.
  8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Stoppunkte (6, 7) jeweils aus aktuellen Betriebsparametern des jeweiligen Fahrkorbs (3) prädiziert werden.
  9. Verfahren nach Anspruch 6 oder Anspruch 7, dadurch gekennzeichnet, dass die Aufzuganlage (1) ein dezentrales Sicherheitssystem mit einer Mehrzahl von Steuereinheiten umfasst, wobei die Mehrzahl von Steuereinheiten die Steuereinheiten der Fahrkörbe (3) umfassen, und die Steuereinheiten jeweils zur Feststellung eines von dem Normbetrieb der Aufzuganlage (1) abweichenden Betriebsmodus Daten austauschen.
  10. Aufzuganlage (1) mit
    einem Schachtsystem (2) umfassend wenigstens einen Schacht (12), und
    wenigstens drei Fahrkörben (3),
    wobei die Fahrkörbe (3) gemeinsam in dem wenigstens einen Schacht (12) separat verfahren werden können,
    wobei die Fahrkörbe (3) jeweils eine eigene Steuereinheit aufweisen,
    dadurch gekennzeichnet,
    dass die Aufzuganlage (1) zur Ausführung eines Verfahrens nach einem der Ansprüche 1 bis 9 eingerichtet ist.
EP15791306.2A 2014-11-27 2015-11-10 Verfahren zum betreiben einer aufzuganlage sowie zur ausführung des verfahrens ausgebildete aufzugsanlage Active EP3224175B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014017487.5A DE102014017487A1 (de) 2014-11-27 2014-11-27 Verfahren zum Betreiben einer Aufzuganlage sowie zur Ausführung des Verfahrens ausgebildete Aufzugsanlage
PCT/EP2015/076141 WO2016083115A1 (de) 2014-11-27 2015-11-10 Verfahren zum betreiben einer aufzuganlage sowie zur ausführung des verfahrens ausgebildete aufzugsanlage

Publications (2)

Publication Number Publication Date
EP3224175A1 EP3224175A1 (de) 2017-10-04
EP3224175B1 true EP3224175B1 (de) 2020-01-01

Family

ID=54478039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15791306.2A Active EP3224175B1 (de) 2014-11-27 2015-11-10 Verfahren zum betreiben einer aufzuganlage sowie zur ausführung des verfahrens ausgebildete aufzugsanlage

Country Status (8)

Country Link
US (1) US10710841B2 (de)
EP (1) EP3224175B1 (de)
KR (1) KR20170091097A (de)
CN (1) CN107000980B (de)
BR (1) BR112017010927B1 (de)
CA (1) CA2967882C (de)
DE (1) DE102014017487A1 (de)
WO (1) WO2016083115A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061766A1 (de) 2022-09-23 2024-03-28 Tk Elevator Innovation And Operations Gmbh Verfahren zum betreiben einer aufzugsanlage

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017486A1 (de) * 2014-11-27 2016-06-02 Thyssenkrupp Ag Aufzuganlage mit einer Mehrzahl von Fahrkörben sowie einem dezentralen Sicherheitssystem
DE102014017487A1 (de) * 2014-11-27 2016-06-02 Thyssenkrupp Ag Verfahren zum Betreiben einer Aufzuganlage sowie zur Ausführung des Verfahrens ausgebildete Aufzugsanlage
US10501287B2 (en) * 2014-12-17 2019-12-10 Inventio Ag Damper unit for an elevator
DE102015212903A1 (de) * 2015-07-09 2017-01-12 Thyssenkrupp Ag Verfahren zum Betreiben eines Aufzugsystems sowie Aufzugsystem
DE102015218025B4 (de) * 2015-09-18 2019-12-12 Thyssenkrupp Ag Aufzugsystem
DE102017205354A1 (de) * 2017-03-29 2018-10-04 Thyssenkrupp Ag Mehrkabinenaufzuganlage sowie Verfahren zum Betreiben einer Mehrkabinenaufzuganlage
DE102017109727A1 (de) * 2017-05-05 2018-11-08 Thyssenkrupp Ag Steuerungssystem für eine Aufzugsanlage, Aufzugsanlage und Verfahren zum Steuern einer Aufzugsanlage
EP3409631B1 (de) * 2017-06-01 2021-04-28 KONE Corporation Anordnung und verfahren zur richtungsänderung von bewegungen eines fahrkorbes eines aufzugs, und aufzug dafür
DE102017113571A1 (de) * 2017-06-20 2018-12-20 Thyssenkrupp Ag Aufzugsystem
DE102018202557A1 (de) * 2018-02-20 2019-08-22 Thyssenkrupp Ag Kollisionsverhinderung zwischen Fahrkörben
DE102018202551A1 (de) * 2018-02-20 2019-08-22 Thyssenkrupp Ag Kollisionsverhinderung zwischen einer Führungseinrichtung und einem Fahrkorb
EP3787992A1 (de) * 2018-04-30 2021-03-10 KONE Corporation Kommunikationslösung für ein aufzugssystem
KR102401290B1 (ko) * 2018-05-22 2022-05-24 미쓰비시 덴키 빌딩 테크노 서비스 가부시키 가이샤 엘리베이터의 제어 장치 및 제어 방법
DE102018213575B4 (de) * 2018-08-13 2020-03-19 Thyssenkrupp Ag Verfahren zum Betreiben einer Aufzuganlage mit Vorgabe einer vorbestimmten Fahrtroute sowie Aufzuganlage und Aufzugsteuerung zur Ausführung eines solchen Verfahrens
DE102019211940A1 (de) * 2019-08-08 2021-02-11 Thyssenkrupp Elevator Innovation And Operations Ag Schachttürentriegelungsvorrichtung sowie Aufzuganlage mit Schachttürentriegelungsvorrichtung
EP3825270A1 (de) * 2019-11-22 2021-05-26 KONE Corporation Verfahren zum betreiben eines aufzugs und aufzug
US20210155457A1 (en) * 2019-11-26 2021-05-27 Man Hay Pong Elevator system with multiple independent cars in a 2-dimensional hoistway
BE1028113B1 (de) 2020-03-02 2021-09-27 Thyssenkrupp Elevator Innovation And Operations Ag Aufzugsanlage
US11904906B2 (en) * 2021-08-05 2024-02-20 Argo AI, LLC Systems and methods for prediction of a jaywalker trajectory through an intersection

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59610869D1 (de) * 1995-10-17 2004-01-29 Inventio Ag Sicherheitseinrichtung bei Multimobil-Aufzugsgruppen
US5660675A (en) 1995-10-19 1997-08-26 Transprint Usa Method and apparatus for splicing heat transfer printing paper
DE50209397D1 (de) 2002-11-09 2007-03-15 Thyssenkrupp Elevator Ag Sicherheitseinrichtung für aufzugssystem mit mehreren aufzugskabinen in einem schacht
AU2002352273A1 (en) 2002-11-20 2004-06-15 Rafael Fernandez Vicente Suction device for ceramic presses
CN1668521A (zh) * 2002-11-26 2005-09-14 蒂森克虏伯电梯股份有限公司 用于控制电梯装置的方法及用于执行该方法的电梯装置
CN2693728Y (zh) * 2004-03-10 2005-04-20 张昊 自由井道多轿厢电梯设备
EP1698580B1 (de) 2005-03-05 2007-05-09 ThyssenKrupp Aufzugswerke GmbH Aufzuganlage
JP4657794B2 (ja) 2005-05-06 2011-03-23 株式会社日立製作所 エレベータの群管理システム
CN1868849A (zh) * 2006-06-13 2006-11-29 孔令中 多轿厢电梯实现方法
JP4277878B2 (ja) 2006-07-07 2009-06-10 株式会社日立製作所 マルチカーエレベータ
ES2499340T3 (es) 2007-08-07 2014-09-29 Thyssenkrupp Elevator Ag Sistema de elevador
US9394139B2 (en) * 2011-04-08 2016-07-19 Mitsubishi Electric Corporation Multi-car elevator and controlling method therefor
DE102014220966A1 (de) * 2014-10-16 2016-04-21 Thyssenkrupp Elevator Ag Verfahren zum Betreiben einer Transportanlage sowie entsprechende Transportanlage
DE102014017487A1 (de) * 2014-11-27 2016-06-02 Thyssenkrupp Ag Verfahren zum Betreiben einer Aufzuganlage sowie zur Ausführung des Verfahrens ausgebildete Aufzugsanlage
DE102014017486A1 (de) * 2014-11-27 2016-06-02 Thyssenkrupp Ag Aufzuganlage mit einer Mehrzahl von Fahrkörben sowie einem dezentralen Sicherheitssystem
DE102015212903A1 (de) * 2015-07-09 2017-01-12 Thyssenkrupp Ag Verfahren zum Betreiben eines Aufzugsystems sowie Aufzugsystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061766A1 (de) 2022-09-23 2024-03-28 Tk Elevator Innovation And Operations Gmbh Verfahren zum betreiben einer aufzugsanlage
DE102022124567A1 (de) 2022-09-23 2024-03-28 Tk Elevator Innovation And Operations Gmbh Verfahren zum Betreiben einer Aufzugsanlage

Also Published As

Publication number Publication date
KR20170091097A (ko) 2017-08-08
BR112017010927B1 (pt) 2022-08-02
CN107000980B (zh) 2019-05-14
CA2967882A1 (en) 2016-06-02
US10710841B2 (en) 2020-07-14
CA2967882C (en) 2019-05-21
US20170355553A1 (en) 2017-12-14
CN107000980A (zh) 2017-08-01
BR112017010927A2 (pt) 2018-02-14
EP3224175A1 (de) 2017-10-04
WO2016083115A1 (de) 2016-06-02
DE102014017487A1 (de) 2016-06-02

Similar Documents

Publication Publication Date Title
EP3224175B1 (de) Verfahren zum betreiben einer aufzuganlage sowie zur ausführung des verfahrens ausgebildete aufzugsanlage
EP3599208B1 (de) Aufzuganlage mit einer mehrzahl von fahrkörben sowie einem dezentralen sicherheitssystem
DE112012006233B4 (de) Mehrfach-Kabinen-Aufzug
EP2022742B1 (de) Aufzugsystem
DE69311221T2 (de) Verfahren und Vorrichtung für die Kontrolle und das automatische Korrigieren des Verzögerungs-/Stopkommandos eines Personen- oder Lastenaufzuges gemäss Veränderungen in den Betriebsdaten des Systems
EP2794449B2 (de) Sicherheitseinrichtung für einen aufzug mit mehreren kabinen
EP1371596B1 (de) Sicherheitseinrichtung für eine Aufzugsgruppe
EP1698580B1 (de) Aufzuganlage
DE112013007449T5 (de) Aufzugvorrichtung
DE102014222857A1 (de) Flexibles taktzeitoptimiertes Teilen eines Arbeitsraums für Roboter
WO2003008316A1 (de) Aufzuganlage mit virtueller schutzzone am schachtfuss und/oder am schachtkopf und verfahren zum ansteuern derselben
DE102017205354A1 (de) Mehrkabinenaufzuganlage sowie Verfahren zum Betreiben einer Mehrkabinenaufzuganlage
DE2517514A1 (de) Aufzugssteuersystem
EP3368462B1 (de) Verfahren zum betreiben von mindestens zwei hebezeugen in einem gruppen-betrieb und anordnung mit mindestens zwei hebezeugen
EP3265415B1 (de) Bremsvorrichtung für einen fahrkorb einer aufzugsanlage
EP3227216B1 (de) Aufzugsanlage
WO2019162092A1 (de) Kollisionsverhinderung zwischen fahrkörben
DE112017004022T5 (de) Aufzugssystem
WO2011107390A1 (de) Verfahren zum energiesparenden betrieb einer aufzugsanlage und entsprechende aufzugsanlage
WO2024061766A1 (de) Verfahren zum betreiben einer aufzugsanlage
WO2021037912A1 (de) AUFZUGSANLAGE DIE EINEN FAHRKORB ABHÄNGIG VON EINEM SCHLIEßZUSTANDSSIGNAL UND EINER POSITION DES FAHRKORBS IN EINEN SICHERHEITSBETRIEBSZUSTAND ÜBERFÜHRT
DE202022106605U1 (de) Aufzugsvorrichtung mit wenigstens einem Positionierungs-, Rettungs- oder Geschwindigkeitsbegrenzungssystem sowie entsprechende Verwendungen
DE102018105139A1 (de) Verfahren zur Steuerung und insbesondere Überwachung eines Aktors, insbesondere einer Winde, eines Hebezeugs oder eines Krans und System zur Durchführung eines solchen Verfahrens

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP ELEVATOR AG

Owner name: THYSSENKRUPP AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190904

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1219557

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011412

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200101

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: JACOBACCI AND PARTNERS S.P.A., CH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THYSSENKRUPP ELEVATOR INNOVATION AND OPERATIONS AG

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200402

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200501

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015011412

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015011412

Country of ref document: DE

Owner name: THYSSENKRUPP ELEVATOR INNOVATION AND OPERATION, DE

Free format text: FORMER OWNERS: THYSSENKRUPP AG, 45143 ESSEN, DE; THYSSENKRUPP ELEVATOR AG, 45143 ESSEN, DE

26N No opposition filed

Effective date: 20201002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201110

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201110

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1219557

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211119

Year of fee payment: 7

Ref country code: FR

Payment date: 20211122

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20231121

Year of fee payment: 9

Ref country code: DE

Payment date: 20231121

Year of fee payment: 9

Ref country code: CH

Payment date: 20231202

Year of fee payment: 9