EP3212817B1 - Superelastic racket string - Google Patents

Superelastic racket string Download PDF

Info

Publication number
EP3212817B1
EP3212817B1 EP15800725.2A EP15800725A EP3212817B1 EP 3212817 B1 EP3212817 B1 EP 3212817B1 EP 15800725 A EP15800725 A EP 15800725A EP 3212817 B1 EP3212817 B1 EP 3212817B1
Authority
EP
European Patent Office
Prior art keywords
phase transition
mpa
tensile stress
occurs
string
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15800725.2A
Other languages
German (de)
French (fr)
Other versions
EP3212817A1 (en
Inventor
Daniel Lau
Johan Kotze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Head Technology GmbH
Original Assignee
Head Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Head Technology GmbH filed Critical Head Technology GmbH
Publication of EP3212817A1 publication Critical patent/EP3212817A1/en
Application granted granted Critical
Publication of EP3212817B1 publication Critical patent/EP3212817B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B51/00Stringing tennis, badminton or like rackets; Strings therefor; Maintenance of racket strings
    • A63B51/02Strings; String substitutes; Products applied on strings, e.g. for protection against humidity or wear
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/02Tennis
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/04Badminton
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/06Squash
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/06Squash
    • A63B2102/065Racketball
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B51/00Stringing tennis, badminton or like rackets; Strings therefor; Maintenance of racket strings
    • A63B51/001Stringing tennis, badminton or like rackets; Strings therefor; Maintenance of racket strings using strings made of different materials on the same frame, e.g. gut and nylon
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B51/00Stringing tennis, badminton or like rackets; Strings therefor; Maintenance of racket strings
    • A63B51/02Strings; String substitutes; Products applied on strings, e.g. for protection against humidity or wear
    • A63B51/023Strings having characteristics varying along the length of the string, e.g. diameter or elasticity
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to a string for a ball game racket which has a superelastic or pseudoelastic material, as well as a ball game racket with a covering which has at least one string with a superelastic or pseudoelastic material.
  • Ball game racket strings such as tennis rackets, squash rackets, badminton rackets, racquetball rackets, and the like are made from a variety of materials.
  • Ball game racket strings originally consisted of natural gut, especially cow gut. Such natural gut strings are still characterized by high elasticity and tension stability. However, they are also very expensive and relatively sensitive to weathering. Therefore, synthetic or synthetic strings made of nylon or polyester have prevailed.
  • US4909510 and WO99 / 20357 show a covering of a racket made of a super-elastic material, for example NiTi, according to the preamble of claims 1 and 7.
  • Ball game racket strings should have a high specific strength, a low stiffness and a high elongation at break. The damping properties and stress relaxation also play a role. None of the known materials for ball game racket strings can meet all these requirements to the highest degree.
  • the present invention is based on the idea of providing a ball game racket string, in particular a string for a tennis racket, a squash racket, badminton racket or a racquetball racket, which consists of a superelastic or pseudoelastic material or has a superelastic or pseudoelastic material.
  • the tensile strength of super-elastic materials such as nitinol is many times higher than the tensile strength of natural casing or polyester, for example.
  • a required tensile strength of, for example, tennis strings of 450 N the diameter of a tennis string made of nitinol, for example, can be significantly reduced compared to conventional strings, as can be seen from the following overview: material tensile strenght density Required string diameter
  • Super elastic nitinol S / BB (As -15 ° C) 1200 MPa 6.5 g / cm 3 0.69 mm 2.43 g / m
  • the diameter of a nitinol string can be reduced by a factor of about 2 compared to a natural gut string, which for example has a not inconsiderable influence on the aerodynamics of a ball game racket strung with such a string.
  • the tensile stiffness of the nitnol string roughly corresponds to the tensile stiffness of the natural gut string, whereas in the case of austenitic nitinol it is significantly higher.
  • One of the advantages of super elastic materials is that the Tensile stiffness through the stringing hardness of the ball game racket, ie the pre-tension applied to the string, determines whether the superelastic material is in an austenitic or martensitic state, since the phase diagram of superelastic materials depends on the applied tension.
  • a superelastic material undergoes an initial phase transition under increasing tensile stress, during which austenite is converted into martensite. Both below and above this phase transition, a super-elastic material behaves essentially linearly in the stress-strain diagram. In the area of the phase transition itself, however, the strain can increase massively without the stress having to be increased, since here the strain is based on a conversion of austenite into martensite. If the applied tensile stress is reduced again, a second phase transition occurs in which martensite is converted back into austenite. Since this second phase transition occurs at a lower tensile stress than the first phase transition, it is also referred to as hysteresis.
  • the first phase transition of the superelastic material occurs at room temperature at a tensile stress between 350 MPa and 700 MPa.
  • the tensile stress at which the first phase transition “occurs” is preferably that tensile stress at which the elongation is 3%. In technical jargon, one speaks of the upper plateau voltage.
  • the second phase transition of the superelastic material occurs at room temperature at a tensile stress between 150 MPa and 650 MPa and preferably at a tensile stress between 250 MPa and 600 MPa.
  • the tensile stress at which the second phase transition “occurs” is preferably that tensile stress at which the elongation is 2.5%. In technical jargon one also speaks of lower plateau voltage.
  • the difference between the tensile stress at which the first phase transition occurs or begins, and the tensile stress at which the second phase transition occurs or begins. begins, at room temperature less than 300 MPa and preferably less than 250 MPa.
  • the covering of the ball game racket can be subjected to a pretension which is greater than the tensile stress at which the first phase transition occurs or begins.
  • this aspect is directed to a ball game racket with a covering that has at least one string with or made of a super-elastic material in the martensitic state.
  • the tensile stiffness in the case of nitinol would essentially correspond to that of a natural gut string.
  • the covering can be subjected to a pretension which is smaller than the tensile stress at which the first phase transition occurs or begins.
  • this aspect is directed to a ball game racket with a covering that has at least one string or with a super-elastic material in the austenitic state.
  • the extremely high tensile stiffness of, for example, austenitic nitinol (see above) can be used and at the same time the phase transition of the superelastic material can be deliberately avoided.
  • the difference between the tensile stress at which the first phase transition occurs or begins and the prestress with which the clothing is applied is greater than 100 MPa, more preferably greater than 200 MPa and particularly preferably greater at room temperature than 300 MPa.
  • This condition is based on the idea that the forces that typically occur while playing the ball game racket should not lead to such high stresses within the string that the string material enters the phase transition. The result is a relatively stiff metal string with a high degree of strength, but which otherwise behaves like a conventional string.
  • the increase in force in the string during a hit depends heavily on the pretension, the stringing pattern, the tensile stiffness of the string and of course the hardness of the player. Under extreme conditions, professional players can achieve increases in force of the order of 200 N. As a rule, however, 150 N are not exceeded. Assuming a force increase of 150 N, a string diameter of 1.1 mm (ie 0.95 mm 2 cross-sectional area) results in a stress increase of 158 MPa.
  • the same increase in force leads to a tension increase of 236 MPa or 299 MPa in the string. Accordingly, for strings with a diameter of more than 1 mm, it is preferred that the difference between the tensile stress at which the first phase transition occurs and the preload applied to the string is greater than 100 MPa at room temperature is preferably greater than 125 MPa and particularly preferably greater than 150 MPa.
  • the difference between the tensile stress at which the first phase transition occurs and the pretension with which the string is applied is greater than 200 MPa at room temperature, more preferably is greater than 250 MPa and particularly preferably greater than 300 MPa.
  • the covering can also be subjected to such a pretension that the phase transition and particularly preferably the complete hysteresis of the phase transition is passed through with the forces that usually occur during play.
  • a pretension to the covering that is smaller than the tensile stress at which the first phase transition occurs or begins, with the difference between the tensile stress at which the first phase transition occurs or begins and the
  • the pre-tension applied to the covering is less than 400 MPa, more preferably less than 300 MPa and particularly preferably less than 200 MPa at room temperature.
  • the string material is in the austenitic state, but just below the phase transition.
  • the string material gets into the area of the phase transition and behaves super- or pseudo-elastic. That is, the string is stretched without increasing the tension until all of the austenite is converted to martensite.
  • This allows extreme deformations of the covering to be generated can lead, among other things, to the fact that the covering forms a kind of "pocket" which surrounds the ball to a large extent and thereby enables greater control during the game.
  • it is preferred that the entire hysteresis is run through.
  • particularly those super-elastic materials are preferred which have a very narrow hysteresis.
  • Preferred materials with such a narrow hysteresis are, for example, NiTi and NiTiFe.
  • strings with a diameter of over 1 mm that the difference between the tensile stress at which the first phase transition occurs and the pretension with which the string is applied , at room temperature is less than 200 MPa, more preferably less than 175 MPa and particularly preferably less than 150 MPa.
  • the difference between the tensile stress at which the first phase transition occurs and the pretension with which the string is applied is less than 400 MPa at room temperature, more preferably is less than 350 MPa and particularly preferably less than 300 MPa.
  • the covering of the ball game racket according to the invention can have one or more strings made of a non-superelastic material.
  • the entire covering can consist of strings with or from a super-elastic material.
  • One or more strings of the ball game racket according to the invention can also only partially consist of or have a super-elastic material.
  • certain sections along the longitudinal direction of the ball game racket string can consist of a superelastic material or have a superelastic material are interrupted by sections made of a non-superelastic material.
  • those string sections which are arranged in the center of the covering are preferably super-elastic.
  • only part of the string cross-section is made from a super-elastic material.
  • the ball game racket string according to the invention is at least partially hollow and the material surrounding the cavity is super-elastic.
  • the present invention also relates to a ball game racket string which consists at least in sections of a super-elastic casing which encloses a (preferably cylindrical) cavity.
  • Preferred super-elastic alloys which are suitable for the ball game racket according to the invention are: NiTi, NiTiCr, NiTiFe, NiTiCo, NiTiCu, NiTiV, CuZnAl, CuAlNi, FeNiAl, FeMnSi.
  • the invention is not restricted to these materials, since in principle other (possibly not yet known) super-elastic or pseudo-elastic materials can also be used for the ball game racket according to the invention.
  • the present invention is also directed to the use of a super-elastic or pseudo-elastic material as a string for a ball game racket according to claim 7, in particular for a tennis racket, a squash racket, a badminton racket or a racquetball racket.
  • a super-elastic or pseudo-elastic material as a string for a ball game racket according to claim 7, in particular for a tennis racket, a squash racket, a badminton racket or a racquetball racket.
  • a super-elastic material for a ball game racket string offers a number of advantages, as should be evident from the above statements.
  • strings of high tensile strength, high tensile stiffness and high elongation at break can be produced with a small diameter.
  • the phase transition between austenite and martensite can be used not only to adjust the tensile stiffness as required, but also to enable extreme deformations of the string when passing through the hysteresis.
  • Fig. 1 shows the tension-strain diagram for four nitinol strings with different diameters. It is a super-elastic Nitinol S / BB with a transition temperature ("Austenite Start Temperature") As of -15 ° C. The stress-strain diagram was measured at room temperature. As can be seen very well, there is a "stiff" austenitic area at tensions of around 100 to 500 MPa, at which the nitinol string behaves linearly. At a stress of around 600 to 650 MPa, a phase transition occurs in which the austenite is transformed into martensite. During this phase transition, the elongation increases from almost 2% to a good 7% without the stress having to be increased significantly. A second linear range is available for larger expansions or higher stresses of around 700 to 900 MPa. This is "soft" martensite.
  • the nitinol string can be used like a conventional string, with the tensile stiffness either essentially corresponding to that of a natural string (soft martensite) or significantly higher (stiff austenite).
  • a nitinol string behaves like conventional ball game racket strings in that the tension in the marked area increases proportionally to the elongation.
  • the nitinol string can also be used in the area of the phase transition, as shown below with the aid of a schematic representation of the hysteresis in Fig. 2 should be explained.
  • Fig. 2 As can be seen, starting from an elongation of 0%, the stress initially increases linearly with increasing elongation. Is the beginning of the first phase transition, in which austenite is transformed into martensite, in the event of a stress is reached, the stress remains essentially constant with increasing elongation ( ).
  • the stringing of a ball game racket is now subjected to a pre-tension that is just below the tension at which the second phase transition occurs, and the hysteresis curve is so narrow that the tensions typically occurring within the string when playing the ball game racket are greater than the tension , at which the first phase transition occurs, when playing the ball game racket, the in Fig. 2
  • the hysteresis curve shown schematically can be run through completely. If the ball hits the stringing of the ball game racket with sufficient force, the austenite is converted into martensite and extreme deformations of the stringing can occur. During or after the ball leaves the covering, the martensite is converted back into austenite, so that the complete transformation can be carried out again the next time the ball hits the covering.
  • the strings according to the invention can be used as longitudinal and / or transverse strings.
  • the racket can be strung exclusively with super-elastic strings or in combination with conventional strings made of nylon, polyester or natural gut.
  • Strings made of super-elastic materials such as nitinol can be produced, for example, via wire drawing (in the annealed state). Basically, such strings can be made round, angular or in any other shape using appropriate drawing tools. Nitinol can be coated with different plastics such as PTFE.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials For Medical Uses (AREA)
  • Golf Clubs (AREA)

Description

Die vorliegende Erfindung betrifft eine Saite für einen Ballspielschläger, die ein superelastisches bzw. pseudoelastisches Material aufweist, sowie einen Ballspielschläger mit einer Bespannung, die mindestens eine Saite mit einem superelastischen bzw. pseudoelastischen Material aufweist.The present invention relates to a string for a ball game racket which has a superelastic or pseudoelastic material, as well as a ball game racket with a covering which has at least one string with a superelastic or pseudoelastic material.

Saiten für Ballspielschläger wie zum Beispiel Tennisschläger, Squashschläger, Badmintonschläger, Racquetballschläger und dergleichen werden aus einer Vielzahl von Materialien hergestellt. Ursprünglich bestanden Ballspielschlägersaiten aus Naturdarm, insbesondere Kuhdarm. Solche Naturdarmsaiten zeichnen sich noch immer durch hohe Elastizität und Spannungsstabilität aus. Sie sind allerdings auch sehr teuer und relativ witterungsempfindlich. Daher haben sich in erster Linie Kunst- oder Synthetiksaiten aus Nylon oder Polyester durchgesetzt.Strings for ball game rackets such as tennis rackets, squash rackets, badminton rackets, racquetball rackets, and the like are made from a variety of materials. Ball game racket strings originally consisted of natural gut, especially cow gut. Such natural gut strings are still characterized by high elasticity and tension stability. However, they are also very expensive and relatively sensitive to weathering. Therefore, synthetic or synthetic strings made of nylon or polyester have prevailed.

US4909510 und WO99/20357 zeigen eine Bespannung eines Schlägers aus einem superelastischen Material, z.B. NiTi, gemäß dem Oberbegriff der Ansprüche 1 und 7. US4909510 and WO99 / 20357 show a covering of a racket made of a super-elastic material, for example NiTi, according to the preamble of claims 1 and 7.

Dokument US6270427 beschreibt die Verwendung von Nitinol als Schlägersaiten und gibt Angaben zur Fließgrenze in den austenitischen und martensitischen Übergangsphasen.document US6270427 describes the use of nitinol as racket strings and provides information on the yield point in the austenitic and martensitic transition phases.

Grundsätzlich sind die Anforderungen, was die mechanischen Eigenschaften anbelangt, an Ballspielschlägersaiten relativ hoch und komplex. Ballspielschlägersaiten sollen über eine hohe spezifische Festigkeit, eine geringe Steifigkeit und eine große Bruchdehnung verfügen. Auch die Dämpfungseigenschaften sowie die Spannungsrelaxation spielen eine Rolle. Keines der bekannten Materialien für Ballspielschlägersaiten vermag all diesen Anforderungen im höchsten Maße gerecht zu werden.Basically, the requirements in terms of mechanical properties for ball game racket strings are relatively high and complex. Ball game racket strings should have a high specific strength, a low stiffness and a high elongation at break. The damping properties and stress relaxation also play a role. None of the known materials for ball game racket strings can meet all these requirements to the highest degree.

Es ist demnach eine Aufgabe der vorliegenden Erfindung, ein Material für Ballspielschlägersaiten bereitzustellen, mit dem sich die mechanischen Eigenschaften herkömmlicher Ballspielschlägersaiten allgemein verbessern oder gezielt verändern lassen.It is accordingly an object of the present invention to provide a material for ball game racket strings with which the mechanical properties of conventional ball game racket strings can generally be improved or specifically changed.

Die vorliegende Erfindung beruht dabei auf der Idee, eine Ballspielschlägersaite, insbesondere eine Saite für einen Tennisschläger, einen Squashschläger, Badmintonschläger oder einen Racquetballschläger, bereitzustellen, die aus einem superelastischen bzw. pseudoelastischen Material besteht oder ein superelastisches bzw. pseudoelastisches Material aufweist.The present invention is based on the idea of providing a ball game racket string, in particular a string for a tennis racket, a squash racket, badminton racket or a racquetball racket, which consists of a superelastic or pseudoelastic material or has a superelastic or pseudoelastic material.

Auch wenn die Verwendung eines superelastischen Materials mit seinem komplexen Spannung-Dehnungs-Verhalten für den Einsatz in einer Ballspielschlägersaite zunächst widersinnig erscheinen mag, so ergeben sich hier eine ganze Reihe von Vorteilen, die das Spielverhalten eines mit solchen Saiten bespannten Ballspielschlägers drastisch beeinflussen können.Even if a super-elastic material with its complex stress-strain behavior was initially used in a ball game racket string may seem absurd, there are a number of advantages that can drastically influence the playing behavior of a ball game racket strung with such strings.

Zunächst ist die Zugfestigkeit von superelastischen Materialien wie zum Beispiel Nitinol um ein Vielfaches höher als die Zugfestigkeit von beispielsweise Naturdarm oder Polyester. Bei einer geforderten Reißkraft von beispielsweise Tennissaiten von 450 N lässt sich demnach der Durchmesser einer beispielsweise aus Nitinol bestehenden Tennissaite deutlich gegenüber herkömmlichen Saiten verringern, wie aus der folgenden Übersicht deutlich wird: Material Zugfestigkeit Dichte Erforderlicher Saitendurchmesser Saitenmasse Naturdarm 300 MPa 1.35 g/cm3 1.40 mm 2.07 g/m Polyester 400 MPa 1.35 g/cm3 1.20 mm 1.53 g/m Superelastisches Nitinol S/BB (As= -15°C) 1200 MPa 6.5 g/cm3 0.69 mm 2.43 g/m First of all, the tensile strength of super-elastic materials such as nitinol is many times higher than the tensile strength of natural casing or polyester, for example. With a required tensile strength of, for example, tennis strings of 450 N, the diameter of a tennis string made of nitinol, for example, can be significantly reduced compared to conventional strings, as can be seen from the following overview: material tensile strenght density Required string diameter String mass Natural casing 300 MPa 1.35 g / cm 3 1.40 mm 2.07 g / m polyester 400 MPa 1.35 g / cm 3 1.20 mm 1.53 g / m Super elastic nitinol S / BB (As = -15 ° C) 1200 MPa 6.5 g / cm 3 0.69 mm 2.43 g / m

Mit anderen Worten lässt sich bei gleicher Reißkraft der Durchmesser einer Nitinolsaite gegenüber einer Naturdarmsaite etwa um den Faktor 2 verringern, was beispielsweise einen nicht unerheblichen Einfluss auf die Aerodynamik eines mit einer solchen Saite bespannten Ballspielschlägers hat.In other words, with the same tensile strength, the diameter of a nitinol string can be reduced by a factor of about 2 compared to a natural gut string, which for example has a not inconsiderable influence on the aerodynamics of a ball game racket strung with such a string.

Ein weiterer Vorteil superelastischer Materialien liegt darin, dass sich die Zugsteifigkeit aufgrund des Phasenübergangs zwischen Austenit und Martensit massiv beeinflussen lässt. Basierend auf dem obengenannten erforderlichen Durchmessern für die Saite und den jeweiligen Elastizitätsmodulen ergeben sich die folgenden Zugsteifigkeiten: Material Erforderlicher ∅ Querschnittsfläche E-Modul Zugsteifigkeit Naturdarm 1.40 mm 1.54 mm2 4 GPa 11.3 kN Polyester 1.20 mm 1.13 mm2 14.4 GPa 16.3 kN S/BB As -15°C (A) 0.69 mm 0.374 mm2 75 GPa 28.1 kN S/BB As -15°C (M) 0.69 mm 0.374 mm2 30 GPa 11.2 kN Another advantage of super-elastic materials is that the tensile stiffness can be massively influenced due to the phase transition between austenite and martensite. Based on the above-mentioned required diameter for the string and the respective modulus of elasticity, the following tensile stiffnesses result: material Required ∅ Cross sectional area Modulus of elasticity Tensile stiffness Natural casing 1.40 mm 1.54 mm 2 4 GPa 11.3 kN polyester 1.20 mm 1.13 mm 2 14.4 GPa 16.3 kN S / BB As -15 ° C (A) 0.69 mm 0.374 mm 2 75 GPa 28.1 kN S / BB As -15 ° C (M) 0.69 mm 0.374 mm 2 30 GPa 11.2 kN

Im Falle von Martensit entspricht die Zugsteifigkeit der Nitnolsaite in etwa der Zugsteifigkeit der Naturdarmsaite, wohingegen sie im Falle von austenitischem Nitinol deutlich höher liegt. Der Vorteil von superelastischen Materialien liegt nun unter anderem darin, dass sich die Zugsteifigkeit durch die Bespannungshärte des Ballspielschlägers, d.h. die auf die Saite aufgebrachte Vorspannung, bestimmen lässt, ob das superelastische Material in austenitischem oder martensitischem Zustand vorliegt, da das Phasendiagramm von superelastischen Materialien von der anliegenden Spannung abhängt.In the case of martensite, the tensile stiffness of the nitnol string roughly corresponds to the tensile stiffness of the natural gut string, whereas in the case of austenitic nitinol it is significantly higher. One of the advantages of super elastic materials is that the Tensile stiffness through the stringing hardness of the ball game racket, ie the pre-tension applied to the string, determines whether the superelastic material is in an austenitic or martensitic state, since the phase diagram of superelastic materials depends on the applied tension.

In der Regel tritt bei einem superelastischen Material unter zunehmender Zugspannung ein erster Phasenübergang auf, bei dem Austenit in Martensit umgewandelt wird. Sowohl unterhalb als auch oberhalb dieses Phasenübergangs verhält sich ein superelastisches Material im Spannung-Dehnungs-Diagramm im Wesentlichen linear. Im Bereich des Phasenübergangs selbst jedoch kann die Dehnung massiv zunehmen ohne dass die Spannung erhöht werden müsste, da hier die Dehnung auf einer Umwandlung von Austenit in Martensit beruht. Wird die angelegte Zugspannung wieder reduziert, so tritt ein zweiter Phasenübergang auf, bei dem Martensit in Austenit zurückverwandelt wird. Da dieser zweite Phasenübergang bei einer niedrigeren Zugspannung als der erste Phasenübergang auftritt, spricht man auch von einer Hysterese.As a rule, a superelastic material undergoes an initial phase transition under increasing tensile stress, during which austenite is converted into martensite. Both below and above this phase transition, a super-elastic material behaves essentially linearly in the stress-strain diagram. In the area of the phase transition itself, however, the strain can increase massively without the stress having to be increased, since here the strain is based on a conversion of austenite into martensite. If the applied tensile stress is reduced again, a second phase transition occurs in which martensite is converted back into austenite. Since this second phase transition occurs at a lower tensile stress than the first phase transition, it is also referred to as hysteresis.

Gemäß der Erfindung tritt der erste Phasenübergang des superelastischen Materials bei Raumtemperatur bei einer Zugspannung zwischen 350 MPa und 700 MPa auf. Unter der Zugspannung, bei der der erste Phasenübergang "auftritt", ist im Kontext der vorliegenden Erfindung bevorzugt diejenige Zugspannung gemeint, bei der die Dehnung 3% beträgt. Im Fachjargon spricht man auch von oberer Plateauspannung.According to the invention, the first phase transition of the superelastic material occurs at room temperature at a tensile stress between 350 MPa and 700 MPa. In the context of the present invention, the tensile stress at which the first phase transition “occurs” is preferably that tensile stress at which the elongation is 3%. In technical jargon, one speaks of the upper plateau voltage.

2- Gemäß der Erfindung tritt der zweite Phasenübergang des superelastischen Materials bei Raumtemperatur bei einer Zugspannung zwischen 150 MPa und 650 MPa und bevorzugt bei einer Zugspannung zwischen 250 MPa und 600 MPa auf. Unter der Zugspannung, bei der der zweite Phasenübergang "auftritt", ist im Kontext der vorliegenden Erfindung bevorzugt diejenige Zugspannung gemeint, bei der die Dehnung 2.5% beträgt. Im Fachjargon spricht man auch von unterer Plateauspannung.2- According to the invention, the second phase transition of the superelastic material occurs at room temperature at a tensile stress between 150 MPa and 650 MPa and preferably at a tensile stress between 250 MPa and 600 MPa. In the context of the present invention, the tensile stress at which the second phase transition “occurs” is preferably that tensile stress at which the elongation is 2.5%. In technical jargon one also speaks of lower plateau voltage.

Gemäß der Erfindung ist die Differenz zwischen der Zugspannung, bei der der erste Phasenübergang auftritt bzw. einsetzt, und der Zugspannung, bei der der zweite Phasenübergang auftritt bzw. einsetzt, bei Raumtemperatur kleiner als 300 MPa und bevorzugt kleiner als 250 MPa.According to the invention, the difference between the tensile stress at which the first phase transition occurs or begins, and the tensile stress at which the second phase transition occurs or begins. begins, at room temperature less than 300 MPa and preferably less than 250 MPa.

Bei dem Ballspielschläger 2. gemäß Anspruch 1 lässt sich die Bespannung des Ballspielschlägers mit einer Vorspannung beaufschlagen, die größer ist als diejenige Zugspannung, bei der der erste Phasenübergang auftritt bzw. einsetzt. Mit anderen Worten richtet sich dieser Aspekt auf einen Ballspielschläger mit einer Bespannung, die mindestens eine Saite mit oder aus einem superelastischen Material im martensitischen Zustand aufweist. Wie sich aus den oben angegebenen Daten ergibt, würde die Zugsteifigkeit im Falle von Nitinol hier im Wesentlichen derjenigen einer Naturdarmsaite entsprechen. Dies ließe sich jedoch mit einem deutlich geringeren Saitendurchmesser von bevorzugt höchstens 1,1 mm, stärker bevorzugt von höchstens 0,9 mm und besonders bevorzugt von höchstens 0,8 mm erzielen.In the ball game racket 2. according to claim 1, the covering of the ball game racket can be subjected to a pretension which is greater than the tensile stress at which the first phase transition occurs or begins. In other words, this aspect is directed to a ball game racket with a covering that has at least one string with or made of a super-elastic material in the martensitic state. As can be seen from the data given above, the tensile stiffness in the case of nitinol would essentially correspond to that of a natural gut string. However, this could be achieved with a significantly smaller string diameter of preferably no more than 1.1 mm, more preferably no more than 0.9 mm and particularly preferably no more than 0.8 mm.

Gemäß einer zweiten nicht-erfindungsgemäßen Ausführungsform des Ballspielschlägers lässt sich die Bespannung mit einer Vorspannung beaufschlagen, die kleiner ist als diejenige Zugspannung, bei der der erste Phasenübergang auftritt bzw. einsetzt. Mit anderen Worten richtet sich dieser Aspekt auf einen Ballspielschläger mit einer Bespannung, die mindestens eine Saite aus oder mit einem superelastischen Material im austenitischen Zustand aufweist. Es lässt sich die extrem hohe Zugsteifigkeit von beispielsweise austenitischem Nitinol (siehe oben) ausnutzen und dabei gleichzeitig der Phasenübergang des superelastischen Materials bewusst vermeiden. Hierzu ist es bevorzugt, dass die Differenz zwischen der Zugspannung, bei der der erste Phasenübergang auftritt bzw. einsetzt, und der Vorspannung, mit der die Bespannung beaufschlagt ist, bei Raumtemperatur größer als 100 MPa, stärker bevorzugt größer als 200 MPa und besonders bevorzugt größer als 300 MPa ist. Dieser Bedingung liegt die Idee zugrunde, dass die typischerweise während des Spielens des Ballspielschlägers auftretenden Kräfte nicht zu so hohen Spannungen innerhalb der Saite führen sollen, dass das Saitenmaterial in den Phasenübergang eintritt. Man erhält so eine relative steife Metallsaite mit einer hohen Festigkeit, die sich ansonsten aber wie eine herkömmliche Saite verhält.According to a second embodiment of the ball game racket, which is not according to the invention, the covering can be subjected to a pretension which is smaller than the tensile stress at which the first phase transition occurs or begins. In other words, this aspect is directed to a ball game racket with a covering that has at least one string or with a super-elastic material in the austenitic state. The extremely high tensile stiffness of, for example, austenitic nitinol (see above) can be used and at the same time the phase transition of the superelastic material can be deliberately avoided. For this purpose, it is preferred that the difference between the tensile stress at which the first phase transition occurs or begins and the prestress with which the clothing is applied is greater than 100 MPa, more preferably greater than 200 MPa and particularly preferably greater at room temperature than 300 MPa. This condition is based on the idea that the forces that typically occur while playing the ball game racket should not lead to such high stresses within the string that the string material enters the phase transition. The result is a relatively stiff metal string with a high degree of strength, but which otherwise behaves like a conventional string.

Im Allgemeinen hängt der Kraftanstieg in der Saite während eines Schlags stark von der Vorspannung, dem Bespannungsmuster, der Zugsteifigkeit der Saite und natürlich der Schlaghärte des Spielers ab. Unter extremen Bedingungen sind von professionellen Spielern Kraftanstiege in der Größenordnung von 200 N zu erreichen. In der Regel werden jedoch 150 N nicht überschritten. Bei einem angenommenen Kraftanstieg von 150 N ergibt sich bei einem Saitendurchmesser von 1,1 mm (d.h. von 0,95 mm2 Querschnittsfläche) ein Spannungsanstieg von 158 MPa. Beträgt der Saitendurchmesser lediglich 0,9 mm (d.h. 0,636 mm2 Querschnittsfläche) bzw. 0,8 mm (d.h. 0,502 mm2 Querschnittsfläche), so führt derselbe Kraftanstieg zu 236 MPa bzw. 299 MPa Spannungsanstieg in der Saite. Dementsprechend ist es für Saiten mit einem Durchmesser von über 1 mm bevorzugt, dass die Differenz zwischen der Zugspannung, bei der der erste Phasenübergang auftritt bzw. einsetzt, und der Vorspannung, mit der die Bespannung beaufschlagt ist, bei Raumtemperatur größer als 100 MPa, stärker bevorzugt größer als 125 MPa und besonders bevorzugt größer als 150 MPa ist. Für Saiten mit einem Durchmesser von unter 1 mm ist es bevorzugt, dass die Differenz zwischen der Zugspannung, bei der der erste Phasenübergang auftritt bzw. einsetzt, und der Vorspannung, mit der die Bespannung beaufschlagt ist, bei Raumtemperatur größer als 200 MPa, stärker bevorzugt größer als 250 MPa und besonders bevorzugt größer als 300 MPa ist.In general, the increase in force in the string during a hit depends heavily on the pretension, the stringing pattern, the tensile stiffness of the string and of course the hardness of the player. Under extreme conditions, professional players can achieve increases in force of the order of 200 N. As a rule, however, 150 N are not exceeded. Assuming a force increase of 150 N, a string diameter of 1.1 mm (ie 0.95 mm 2 cross-sectional area) results in a stress increase of 158 MPa. If the string diameter is only 0.9 mm (ie 0.636 mm 2 cross-sectional area) or 0.8 mm (ie 0.502 mm 2 cross-sectional area), the same increase in force leads to a tension increase of 236 MPa or 299 MPa in the string. Accordingly, for strings with a diameter of more than 1 mm, it is preferred that the difference between the tensile stress at which the first phase transition occurs and the preload applied to the string is greater than 100 MPa at room temperature is preferably greater than 125 MPa and particularly preferably greater than 150 MPa. For strings with a diameter of less than 1 mm, it is preferred that the difference between the tensile stress at which the first phase transition occurs and the pretension with which the string is applied is greater than 200 MPa at room temperature, more preferably is greater than 250 MPa and particularly preferably greater than 300 MPa.

Gemäß einer dritten nicht-erfindungsgemäßen Ausführungsform lässt sich jedoch die Bespannung auch mit einer solchen Vorspannung beaufschlagen, dass bei den üblicherweise auftretenden Kräften während des Spiels der Phasenübergang und besonders bevorzugt die komplette Hysterese des Phasenübergangs durchlaufen wird. Hierzu ist es bevorzugt, die Bespannung mit einer Vorspannung zu beaufschlagen, die kleiner ist als diejenige Zugspannung, bei der der erste Phasenübergang auftritt bzw. einsetzt, wobei zugleich die Differenz zwischen der Zugspannung, bei der der erste Phasenübergang auftritt bzw. einsetzt, und der Vorspannung, mit der die Bespannung beaufschlagt ist, bei Raumtemperatur kleiner als 400 MPa, stärker bevorzugt kleiner als 300 MPa und besonders bevorzugt kleiner als 200 MPa ist. Mit anderen Worten befindet sich das Saitenmaterial im austenitischen Zustand, jedoch knapp unterhalb des Phasenübergangs. Trifft nun ein Ball mit der üblichen Kraft auf die Bespannung des Ballspielschlägers, so gerät das Saitenmaterial in den Bereich des Phasenübergangs und verhält sich super- bzw. pseudoelastisch. Das heißt, die Saite erfährt eine Dehnung, ohne dass dafür eine Zunahme der Spannung erforderlich wäre, bis aller Austenit in Martensit umgewandelt ist. Dadurch lassen sich extreme Verformungen der Bespannung generieren, die unter anderem dazu führen können, dass die Bespannung eine Art "Tasche" bildet, die den Ball in großem Maße umgibt, und dadurch eine stärkere Kontrolle beim Spiel ermöglicht. Um hier einen möglichst großen Effekt erzielen zu können, ist es bevorzugt, dass die gesamte Hysterese durchlaufen wird. Daher sind bei dieser Ausführungsvariante insbesondere solche superelastischen Materialien bevorzugt, die eine sehr schmale Hysterese aufweisen. Bevorzugte Materialien mit einer solch schmalen Hysterese sind beispielsweise NiTi und NiTiFe.According to a third embodiment not according to the invention, however, the covering can also be subjected to such a pretension that the phase transition and particularly preferably the complete hysteresis of the phase transition is passed through with the forces that usually occur during play. For this purpose, it is preferred to apply a pretension to the covering that is smaller than the tensile stress at which the first phase transition occurs or begins, with the difference between the tensile stress at which the first phase transition occurs or begins and the The pre-tension applied to the covering is less than 400 MPa, more preferably less than 300 MPa and particularly preferably less than 200 MPa at room temperature. In other words, the string material is in the austenitic state, but just below the phase transition. If a ball hits the stringing of the ball game racket with the usual force, the string material gets into the area of the phase transition and behaves super- or pseudo-elastic. That is, the string is stretched without increasing the tension until all of the austenite is converted to martensite. This allows extreme deformations of the covering to be generated can lead, among other things, to the fact that the covering forms a kind of "pocket" which surrounds the ball to a large extent and thereby enables greater control during the game. In order to be able to achieve the greatest possible effect here, it is preferred that the entire hysteresis is run through. In this embodiment variant, therefore, particularly those super-elastic materials are preferred which have a very narrow hysteresis. Preferred materials with such a narrow hysteresis are, for example, NiTi and NiTiFe.

Angesichts der obigen Ausführungen zur Abhängigkeit des Spannungsanstiegs vom Saitendurchmesser ist es für Saiten mit einem Durchmesser von über 1 mm bevorzugt, dass die Differenz zwischen der Zugspannung, bei der der erste Phasenübergang auftritt bzw. einsetzt, und der Vorspannung, mit der die Bespannung beaufschlagt ist, bei Raumtemperatur kleiner als 200 MPa, stärker bevorzugt kleiner als 175 MPa und besonders bevorzugt kleiner als 150 MPa ist. Für Saiten mit einem Durchmesser von unter 1 mm ist es bevorzugt, dass die Differenz zwischen der Zugspannung, bei der der erste Phasenübergang auftritt bzw. einsetzt, und der Vorspannung, mit der die Bespannung beaufschlagt ist, bei Raumtemperatur kleiner als 400 MPa, stärker bevorzugt kleiner als 350 MPa und besonders bevorzugt kleiner als 300 MPa ist.In view of the above statements on the dependence of the increase in tension on the string diameter, it is preferred for strings with a diameter of over 1 mm that the difference between the tensile stress at which the first phase transition occurs and the pretension with which the string is applied , at room temperature is less than 200 MPa, more preferably less than 175 MPa and particularly preferably less than 150 MPa. For strings with a diameter of less than 1 mm, it is preferred that the difference between the tensile stress at which the first phase transition occurs and the pretension with which the string is applied is less than 400 MPa at room temperature, more preferably is less than 350 MPa and particularly preferably less than 300 MPa.

Ein weiterer Vorteil vieler superelastischer Materialien ist die außerordentlich hohe Bruchdehnung von 10 bis 20%. Dies ist unter anderem deshalb von Bedeutung, da die Saiten beim Spannen mit Hilfe von Knoten fixiert werden, was zu hohen Bruchdehnungen führt. Materialien wie zum Beispiel Titan oder Stahl, welche ebenfalls hohe spezifische Festigkeiten erreichen können, verfügen in der Regel nur über geringe Bruchdehnungen von etwa 5%. Ein einfaches Abknoten solcher Saiten wäre praktisch nicht durchführbar.Another advantage of many super-elastic materials is the extremely high elongation at break of 10 to 20%. This is important because the strings are fixed with the help of knots when they are tensioned, which leads to high elongation at break. Materials such as titanium or steel, which can also achieve high specific strengths, usually only have low elongation at break of around 5%. Simply tying off such strings would be impractical.

Die Bespannung des erfindungsgemäßen Ballspielschlägers kann eine oder mehrere Saiten aus einem nicht superelastischen Material aufweisen. Alternativ kann die gesamte Bespannung aus Saiten mit oder aus einem superelastischen Material bestehen.The covering of the ball game racket according to the invention can have one or more strings made of a non-superelastic material. Alternatively, the entire covering can consist of strings with or from a super-elastic material.

Eine oder mehrere Saiten des erfindungsgemäßen Ballspielschlägers können auch nur teilweise aus einem superelastischen Material bestehen bzw. dieses aufweisen. So können beispielsweise bestimmte Abschnitte entlang der Längsrichtung der Ballspielschlägersaite aus einem superelastischen Material bestehen oder ein superelastisches Material aufweisen, die von Abschnitten unterbrochen sind, die aus einem nicht superelastischen Material bestehen. Bevorzugt sind insbesondere diejenigen Saitenabschnitte, die im Zentrum der Bespannung angeordnet sind, superelastisch. Alternativ oder zusätzlich ist nur ein Teil des Saitenquerschnitts aus einem superelastischen Material ausgebildet. Insbesondere ist es bevorzugt, dass die erfindungsgemäße Ballspielschlägersaite zumindest abschnittsweise hohl ist und das den Hohlraum umgebende Material superelastisch ist. Mit anderen Worten betrifft die vorliegende Erfindung auch eine Ballspielschlägersaite, die zumindest abschnittsweise aus einem superelastischen Mantel besteht, der einen (bevorzugt zylindrischen) Hohlraum umschließt.One or more strings of the ball game racket according to the invention can also only partially consist of or have a super-elastic material. For example, certain sections along the longitudinal direction of the ball game racket string can consist of a superelastic material or have a superelastic material are interrupted by sections made of a non-superelastic material. In particular, those string sections which are arranged in the center of the covering are preferably super-elastic. As an alternative or in addition, only part of the string cross-section is made from a super-elastic material. In particular, it is preferred that the ball game racket string according to the invention is at least partially hollow and the material surrounding the cavity is super-elastic. In other words, the present invention also relates to a ball game racket string which consists at least in sections of a super-elastic casing which encloses a (preferably cylindrical) cavity.

Bevorzugte superelastische Legierungen, die sich für den erfindungsgemäßen Ballspielschläger eignen, sind: NiTi, NiTiCr, NiTiFe, NiTiCo, NiTiCu, NiTiV, CuZnAl, CuAlNi, FeNiAl, FeMnSi. Die Erfindung ist jedoch nicht auf diese Materialien beschränkt, da grundsätzlich auch andere (womöglich noch nicht bekannte) superelastische bzw. pseudoelastische Materialien für den erfindungsgemäßen Ballspielschläger zum Einsatz kommen können.Preferred super-elastic alloys which are suitable for the ball game racket according to the invention are: NiTi, NiTiCr, NiTiFe, NiTiCo, NiTiCu, NiTiV, CuZnAl, CuAlNi, FeNiAl, FeMnSi. However, the invention is not restricted to these materials, since in principle other (possibly not yet known) super-elastic or pseudo-elastic materials can also be used for the ball game racket according to the invention.

Die vorliegende Erfindung richtet sich ferner auf die Verwendung eines superelastischen bzw. pseudoelasitschen Materials als Saite für einen Ballspielschläger gemäß Anspruch 7, insbesondere für einen Tennisschläger, einen Squashschläger, einen Badmintonschläger oder einen Racquetballschläger. Bei besonders bevorzugten Verwendungen können dabei die oben als vorteilhaft diskutierten Merkmale zur Anwendung kommen.The present invention is also directed to the use of a super-elastic or pseudo-elastic material as a string for a ball game racket according to claim 7, in particular for a tennis racket, a squash racket, a badminton racket or a racquetball racket. In the case of particularly preferred uses, the features discussed above as being advantageous can be used.

Die erfindungsgemäße Verwendung eines superelastischen Materials für eine Ballspielschlägersaite bietet eine Reihe von Vorteilen, wie aus den obigen Ausführungen ersichtlich sein sollte. Mit Hilfe von superelastischen Materialien lassen sich bei kleinem Durchmesser Saiten hoher Zugfestigkeit sowie hoher Zugsteifigkeit und großer Bruchdehnung herstellen. Des weiteren lässt sich der Phasenübergang zwischen Austenit und Martensit nicht nur dazu ausnutzen, die Zugsteifigkeit nach Bedarf einzustellen, sondern auch, um extreme Deformationen der Saite bei Durchlaufen der Hysterese zu ermöglichen.The use according to the invention of a super-elastic material for a ball game racket string offers a number of advantages, as should be evident from the above statements. With the help of super-elastic materials, strings of high tensile strength, high tensile stiffness and high elongation at break can be produced with a small diameter. Furthermore, the phase transition between austenite and martensite can be used not only to adjust the tensile stiffness as required, but also to enable extreme deformations of the string when passing through the hysteresis.

Die Erfindung wird nachfolgend unter Bezug auf die Figuren näher beschrieben. Es zeigen:

Fig.1
ein Spannungs-Dehnungs-Diagramm für mehrere Nitinolsaiten mit unterschiedlichem Durchmesser; und
Fig. 2
schematisch das Phasendiagramm von Nitinol.
The invention is described in more detail below with reference to the figures. Show it:
Fig.1
a stress-strain diagram for several nitinol strings with different diameters; and
Fig. 2
schematically the phase diagram of nitinol.

In Fig. 1 ist das Spannungs-Dehnungs-Diagramm für vier Nitinolsaiten mit unterschiedlichen Durchmessern abgebildet. Es handelt sich um superelastisches Nitinol S/BB mit einer Übergangstemperatur ("Austenite Start Temperature") As von -15°C. Die Messung des Spannung-Dehnungs-Diagramms erfolgte bei Raumtemperatur. Wie sehr gut zu erkennen ist, gibt es einen "steifen" austenitischen Bereich bei Spannungen von etwa 100 bis 500 MPa, bei denen sich die Nitinolsaite linear verhält. Bei einer Spannung von etwa 600 bis 650 MPa tritt ein Phasenübergang auf, bei dem sich der Austenit in Martensit umwandelt. Während dieses Phasenübergangs steigert sich die Dehnung von knapp 2% zu gut 7%, ohne dass die Spannung nennenswert erhöht werden müsste. Für größere Dehnungen bzw. höhere Spannungen von etwa 700 bis 900 MPa liegt ein zweiter linearer Bereich vor. Hier handelt es sich um "weichen" Martensit.In Fig. 1 shows the tension-strain diagram for four nitinol strings with different diameters. It is a super-elastic Nitinol S / BB with a transition temperature ("Austenite Start Temperature") As of -15 ° C. The stress-strain diagram was measured at room temperature. As can be seen very well, there is a "stiff" austenitic area at tensions of around 100 to 500 MPa, at which the nitinol string behaves linearly. At a stress of around 600 to 650 MPa, a phase transition occurs in which the austenite is transformed into martensite. During this phase transition, the elongation increases from almost 2% to a good 7% without the stress having to be increased significantly. A second linear range is available for larger expansions or higher stresses of around 700 to 900 MPa. This is "soft" martensite.

In den beiden markierten Bereichen lässt sich die Nitinolsaite wie eine herkömmliche Saite verwenden, wobei die Zugsteifigkeit entweder im Wesentlichen derjenigen einer Natursaite entspricht (weicher Martensit) oder aber deutlich höher ist (steifer Austenit). Eine solche Nitinolsaite verhält sich insoweit wie herkömmliche Ballspielschlägersaiten, als in den markierten Bereich jeweils die Spannung proportional zur Dehnung zunimmt.In the two marked areas, the nitinol string can be used like a conventional string, with the tensile stiffness either essentially corresponding to that of a natural string (soft martensite) or significantly higher (stiff austenite). Such a nitinol string behaves like conventional ball game racket strings in that the tension in the marked area increases proportionally to the elongation.

Alternativ lässt sich die Nitinolsaite jedoch auch im Bereich des Phasenübergangs verwenden, wie nachfolgend anhand einer schematischen Darstellung der Hysterese in Fig. 2 erläutert werden soll. Wie in Fig. 2 zu erkennen ist, nimmt ausgehend von einer Dehnung von 0% mit zunehmender Dehnung die Spannung zunächst linear zu. Wird der Beginn des ersten Phasenübergangs, bei dem sich Austenit in Martensit umwandelt, bei einer Spannung

Figure imgb0001
erreicht, so bleibt die Spannung bei zunehmender Dehnung im Wesentlichen konstant (
Figure imgb0002
). Wird nach vollständiger Umwandlung in Martensit die Dehnung weiter erhöht, erreicht man einen zweiten Proportionalbereich im Spannungs-Dehnungs-Diagramm, bis schließlich die Streckgrenze YS ("yield strength") und die Zugfestigkeit UTS ("ultimate tensile strength") erreicht werden. Wird hingegen nach vollständiger Umwandlung in Martensit die Dehnung wieder reduziert, so wird zunächst der Martensit nicht direkt wieder in Austenit umgewandelt, sondern zunächst ein Teil der Spannung innerhalb des Martensits abgebaut, bis wieder die Spannung
Figure imgb0003
erreicht ist. Erst bei dieser Spannung
Figure imgb0004
tritt dann der zweite Phasenübergang auf, bei dem Martensit in Austenit umgewandelt wird, bis wieder der Ausgangspunkt der Hysterese im Phasendiagramm erreicht wird.Alternatively, however, the nitinol string can also be used in the area of the phase transition, as shown below with the aid of a schematic representation of the hysteresis in Fig. 2 should be explained. As in Fig. 2 As can be seen, starting from an elongation of 0%, the stress initially increases linearly with increasing elongation. Is the beginning of the first phase transition, in which austenite is transformed into martensite, in the event of a stress
Figure imgb0001
is reached, the stress remains essentially constant with increasing elongation (
Figure imgb0002
). If the elongation is increased further after complete conversion to martensite, a second proportional range is reached in the stress-elongation diagram, until finally the yield strength YS and the tensile strength UTS (ultimate tensile strength) are reached. If, on the other hand, the elongation is reduced again after complete conversion to martensite, the martensite is initially not converted directly back into austenite, but rather a part of the stress within the martensite is initially reduced until the tension
Figure imgb0003
is reached. Only with this tension
Figure imgb0004
Then the second phase transition occurs, in which martensite is converted into austenite until the starting point of the hysteresis in the phase diagram is reached again.

Wird die Bespannung eines Ballspielschlägers nun mit einer Vorspannung beaufschlagt, die knapp unterhalb derjenigen Spannung liegt, bei der der zweite Phasenübergang auftritt, und ist die Hysteresekurve so schmal, dass die typischerweise beim Spielen des Ballspielschlägers auftretenden Spannungen innerhalb der Saite größer sind, als diejenige Zugspannung, bei der der erste Phasenübergang auftritt, so kann beim Spielen des Ballspielschlägers die in Fig. 2 schematisch dargestellte Hysteresekurve komplett durchlaufen werden. Wenn der Ball mit hinreichender Kraft auf die Bespannung des Ballspielschlägers trifft, so wird der Austenit in Martensit umgewandelt und es können dabei extreme Verformungen der Bespannung auftreten. Während oder nachdem der Ball die Bespannung wieder verlässt, wird der Martensit wieder zurück in Austenit verwandelt, so dass die komplette Umwandlung beim nächsten Auftreffen des Balls auf die Bespannung wieder durchlaufen werden kann.If the stringing of a ball game racket is now subjected to a pre-tension that is just below the tension at which the second phase transition occurs, and the hysteresis curve is so narrow that the tensions typically occurring within the string when playing the ball game racket are greater than the tension , at which the first phase transition occurs, when playing the ball game racket, the in Fig. 2 The hysteresis curve shown schematically can be run through completely. If the ball hits the stringing of the ball game racket with sufficient force, the austenite is converted into martensite and extreme deformations of the stringing can occur. During or after the ball leaves the covering, the martensite is converted back into austenite, so that the complete transformation can be carried out again the next time the ball hits the covering.

Auch wenn die obigen Ausführungen am Beispiel einer Nitinolsaite gemacht wurden, so gelten diese selbstverständlich analog für andere superelastische Materialien, wobei selbstverständlich die konkreten Dehnungen und Spannungen, bei denen die Phasenübergänge auftreten von den hier dargestellten Werten abweichen können.Even if the above explanations were made using the example of a nitinol string, they naturally apply analogously to other superelastic materials, although the specific elongations and tensions at which the phase transitions occur can of course deviate from the values shown here.

Die erfindungsgemäßen Saiten können als Längs- und/oder Quersaiten zum Einsatz kommen. Der Schläger kann ausschließlich mit superelastischen Saiten bespannt sein oder in Kombination mit herkömmlichen Saiten aus Nylon, Polyester oder Naturdarm bespannt sein.The strings according to the invention can be used as longitudinal and / or transverse strings. The racket can be strung exclusively with super-elastic strings or in combination with conventional strings made of nylon, polyester or natural gut.

Saiten aus superelastischen Materialien wie beispielsweise Nitinol können beispielsweise über Drahtziehen (im weichgeglühten Zustand) hergestellt werden. Grundsätzlich können solche Saiten mittels entsprechender Ziehwerkzeuge rund, eckig oder in jeder beliebigen anderen Form hergestellt werden. Nitinol lässt sich mit unterschiedlichen Kunststoffen wie zum Beispiel PTFE beschichten.Strings made of super-elastic materials such as nitinol can be produced, for example, via wire drawing (in the annealed state). Basically, such strings can be made round, angular or in any other shape using appropriate drawing tools. Nitinol can be coated with different plastics such as PTFE.

Claims (10)

  1. A ball game racket with strings that comprise at least one string comprising a superelastic material, wherein a first phase transition, at which austenite is transformed into martensite, occurs in the superelastic material when the tensile stress increases, and a second phase transition, at which martensite is transformed into austenite, occurs in the superelastic material when the tensile stress is reduced, characterized in that the first phase transition of the superelastic material occurs at room temperature at a tensile stress between 350 MPa and 700 MPa, wherein the second phase transition of the superelastic material occurs at room temperature at a tensile stress between 150 MPa and 650 MPa, and wherein the difference between the tensile stress at which the first phase transition occurs and the tensile stress at which the second phase transition occurs at room temperature is smaller than 300 MPa, wherein a prestress that is higher than the tensile stress at which the first phase transition occurs is applied to the strings.
  2. The ball game racket according to claim 1, wherein the string has a diameter of no greater than 1.1 mm, preferably no greater than 0.9 mm and more preferably no greater than 0.8 mm.
  3. The ball game racket according to claim 1 or 2, wherein the second phase transition of the superelastic material occurs at room temperature at a tensile stress between 250 MPa and 600 MPa.
  4. The ball game racket according to any one of the preceding claims, wherein the difference between the tensile stress at which the first phase transition occurs and the tensile stress at which the second phase transition occurs at room temperature is smaller than 250 MPa.
  5. The ball game racket according to any one of the preceding claims, wherein the strings comprise at least one further string made from a non-superelastic material or wherein the entire set of strings consists of strings comprising a superelastic material.
  6. The ball game racket according to any one of the preceding claims, wherein the superelastic material comprises one or a combination of the following alloys: NiTi, NiTiCr, NiTiFe, NiTiCo, NiTiCu, NiTiV, CuZnAl, CuAlNi, FeNiAl, FeMnSi.
  7. Use of a superelastic material as string for a ball game racket, wherein a first phase transition, at which austenite is transformed into martensite, occurs in the superelastic material when the tensile stress increases, and a second phase transition, at which martensite is transformed into austenite, occurs in the superelastic material when the tensile stress is reduced, characterized in that the first phase transition of the superelastic material occurs at room temperature at a tensile stress between 350 MPa and 700 MPa, wherein the second phase transition of the superelastic material occurs at room temperature at a tensile stress between 150 MPa and 650 MPa, and wherein the difference between the tensile stress at which the first phase transition occurs and the tensile stress at which the second phase transition occurs at room temperature is smaller than 300 MPa; wherein in the use a prestress that is higher than the tensile stress at which the first phase transition occurs is applied to the string.
  8. The use according to claim 7, wherein the second phase transition of the superelastic material occurs at room temperature at a tensile stress between 250 MPa and 600 MPa.
  9. The use according to claim 7 or 8, wherein the difference between the tensile stress at which the first phase transition occurs and the tensile stress at which the second phase transition occurs at room temperature is smaller than 250 MPa.
  10. The use according to any one of claims 7 to 9, wherein the superelastic material comprises one or a combination of the following alloys: NiTi, NiTiCr, NiTiFe, NiTiCo, NiTiCu, NiTiV, CuZnAl, CuAlNi, FeNiAl, FeMnSi.
EP15800725.2A 2014-10-30 2015-10-28 Superelastic racket string Active EP3212817B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014016105.6A DE102014016105A1 (en) 2014-10-30 2014-10-30 Super elastic bat string
PCT/EP2015/075023 WO2016066706A1 (en) 2014-10-30 2015-10-28 Superelastic racket string

Publications (2)

Publication Number Publication Date
EP3212817A1 EP3212817A1 (en) 2017-09-06
EP3212817B1 true EP3212817B1 (en) 2020-08-19

Family

ID=54703927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15800725.2A Active EP3212817B1 (en) 2014-10-30 2015-10-28 Superelastic racket string

Country Status (5)

Country Link
US (1) US10195496B2 (en)
EP (1) EP3212817B1 (en)
DE (1) DE102014016105A1 (en)
ES (1) ES2824168T3 (en)
WO (1) WO2016066706A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014016105A1 (en) * 2014-10-30 2016-05-04 Head Technology Gmbh Super elastic bat string
DE102016123893A1 (en) 2016-12-08 2018-06-14 Immatics Biotechnologies Gmbh T cell receptors with improved binding
JP2021133084A (en) * 2020-02-28 2021-09-13 住友ゴム工業株式会社 racket

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027092A1 (en) * 1994-03-31 1995-10-12 Besselink Petrus A Ni-Ti-Nb ALLOY PROCESSING METHOD AND ARTICLES FORMED FROM THE ALLOY
US6270427B1 (en) * 1998-11-12 2001-08-07 J. Todd Derbin Golf ball with nickel-titanium wound core

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505767A (en) 1983-10-14 1985-03-19 Raychem Corporation Nickel/titanium/vanadium shape memory alloy
US4909510A (en) * 1989-02-03 1990-03-20 Sahatjian Ronald A Sports racquet netting
WO1993008880A1 (en) 1991-11-07 1993-05-13 Ferrari Importing Co Sports racquet with hybrid stringing arrangement
WO1999020357A1 (en) * 1997-10-20 1999-04-29 Schneider Terry L Sports implement with enhanced energy transfer, control of flexion and vibration dampening
US6057498A (en) * 1999-01-28 2000-05-02 Barney; Jonathan A. Vibratory string for musical instrument
US6625848B1 (en) * 1999-10-12 2003-09-30 Terry L. Schneider Striking implement with improved energy storage and vibration dampening properties
US6916035B2 (en) * 2001-01-23 2005-07-12 Russell A. Houser Athletic devices and other devices with superelastic components
US7871343B2 (en) * 2004-11-01 2011-01-18 Blades Frederick K Tennis ball retriever
DE102014016105A1 (en) * 2014-10-30 2016-05-04 Head Technology Gmbh Super elastic bat string

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027092A1 (en) * 1994-03-31 1995-10-12 Besselink Petrus A Ni-Ti-Nb ALLOY PROCESSING METHOD AND ARTICLES FORMED FROM THE ALLOY
US6270427B1 (en) * 1998-11-12 2001-08-07 J. Todd Derbin Golf ball with nickel-titanium wound core

Also Published As

Publication number Publication date
DE102014016105A1 (en) 2016-05-04
US10195496B2 (en) 2019-02-05
EP3212817A1 (en) 2017-09-06
US20170312589A1 (en) 2017-11-02
ES2824168T3 (en) 2021-05-11
WO2016066706A1 (en) 2016-05-06

Similar Documents

Publication Publication Date Title
DE3434956A1 (en) BULLETS FOR GAMES WITH LIMITED ELASTIC BALL
EP3212817B1 (en) Superelastic racket string
EP0553769A1 (en) Racket, particularly tennis racket
EP2823866B1 (en) Racket with improved sound
DE102017221235A1 (en) Fiber composite body and method for producing a fiber composite body
DE2130663B2 (en) Frame for a tennis racket and process for its manufacture
DE2539454A1 (en) RACKETS FOR GAMES, IN PARTICULAR TENNIS, AND METHOD OF MANUFACTURING THEREOF
EP0443001B1 (en) Racquets, especially tennis racquets
DE3504137A1 (en) Bat, especially for racket games, such as tennis, badminton, squash and the like
EP1452207A1 (en) Racket for ball sports
EP2219743B1 (en) Racket comprising a joint
DE2304727A1 (en) NEEDLE BASE PAD FOR KNITTING NEEDLES
EP2314361B1 (en) Ball game racquet with variable vibration length
DE102021126574B4 (en) Damping device for a ball sports racket and ball sports racket
DE102014011527A1 (en) Table tennis rackets with composite fabric insert
DE3018354A1 (en) Tennis racquet with strung head - which is fitted with guide grooves or recesses on outer and side surfaces of head frame, forming ring groove open inwards
DE19638908C1 (en) Racquet string
DE3016988A1 (en) ARROWBOARD
AT408417B (en) Racket, in particular tennis racket
DE3015960A1 (en) Modified tennis racquet construction - includes longitudinal strings with tension twice as high as cross strings
DE2521578A1 (en) Meshwork for tennis racquet stringing - uses elastic covering around crossing points of string
DE19931860A1 (en) String for racquets e.g. tennis racquets, comprises extruded and stretched monofilament based on mixture of thermoplastic polyester and thermoplastic polyester elastomer
DE102020120963A1 (en) Grip element for sports/playing rackets
DE488738C (en) Tennis racket frame
DE3933831C1 (en) Handle for games racquet - has hollow plastics section defining two chambers

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170526

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOTZE, JOHAN

Inventor name: LAU, DANIEL

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180911

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A63B 51/00 20150101ALI20200117BHEP

Ipc: C22F 1/00 20060101ALI20200117BHEP

Ipc: A63B 51/02 20150101ALI20200117BHEP

Ipc: C22C 19/03 20060101ALI20200117BHEP

Ipc: C22C 14/00 20060101ALI20200117BHEP

Ipc: C22C 19/00 20060101AFI20200117BHEP

Ipc: C22F 1/10 20060101ALI20200117BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200227

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015013292

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1304010

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201119

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201221

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201119

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2824168

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015013292

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201028

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

26N No opposition filed

Effective date: 20210520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201028

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1304010

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220915

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221006

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220929

Year of fee payment: 8

Ref country code: ES

Payment date: 20221108

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230825

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231028