EP3207243B1 - Piezo common rail injector with hydraulic clearance compensation integrated into the servo valve - Google Patents

Piezo common rail injector with hydraulic clearance compensation integrated into the servo valve Download PDF

Info

Publication number
EP3207243B1
EP3207243B1 EP15778973.6A EP15778973A EP3207243B1 EP 3207243 B1 EP3207243 B1 EP 3207243B1 EP 15778973 A EP15778973 A EP 15778973A EP 3207243 B1 EP3207243 B1 EP 3207243B1
Authority
EP
European Patent Office
Prior art keywords
valve
nozzle
chamber
injection
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15778973.6A
Other languages
German (de)
French (fr)
Other versions
EP3207243A1 (en
Inventor
Willibald SCHÜRZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP3207243A1 publication Critical patent/EP3207243A1/en
Application granted granted Critical
Publication of EP3207243B1 publication Critical patent/EP3207243B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/167Means for compensating clearance or thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • F02M2200/705Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic with means for filling or emptying hydraulic chamber, e.g. for compensating clearance or thermal expansion

Definitions

  • the invention relates to an injection valve with servo valve control for the injection of fuel into the combustion chamber of an internal combustion engine, wherein the injection valve is typically used in conjunction with a high-pressure common-rail system.
  • a piezo element is often used as the actuator, wherein the control of the injection quantity of such common rail injection valves is controlled either directly, but predominantly indirectly via a servo valve.
  • the nozzle needle is not directly coupled to the movement of the piezoelectric actuator, but that the piezoelectric actuator in turn actuates a servo valve.
  • the supply of fuel typically occurs under very high pressure via a high pressure port and a high pressure line in the injector body through a valve plate to a throttle plate.
  • a control chamber is connected via an inlet throttle with the high pressure line.
  • the control chamber is connected via an outlet throttle with a valve chamber.
  • the injection nozzle From the front or lower area, which is the area facing the combustion chamber, the injection nozzle has a nozzle body and a nozzle needle, wherein the nozzle needle is biased with a nozzle spring so that it exerts a closing force. Since the control chamber is connected to the rail system via the high-pressure connection, in the non-actuated state, a high pressure prevails in the control chamber, which corresponds to the pressure in the rail system (rail pressure). This results in an additional hydraulic force, which keeps the nozzle needle in the closed position and thus the openings of the injection valve are closed. If the piezo actuator is actuated, it actuates the servo valve.
  • the piezoelectric actuator is usually surrounded by an Invar sleeve, which has a similar thermal expansion behavior as the piezoelectric actuator.
  • injectors in the engine provides thermally very complex boundary conditions with different heat sources and heat sinks.
  • the piezoelectric actuator self-heating plays an important role as a result of electrical losses.
  • the temperature increase due to the relaxation of the fuel from rail pressure to ambient pressure is a significant source of heat.
  • the installation of the injector in the cylinder head of an engine results in various contact points, such as the combustion chamber seal and the contact of the nozzle tip to the combustion gases corresponding heat flows.
  • An influencing factor to be taken into account on the idle stroke also represents the verpratzenzungskraft in the cylinder head. This is also subject to great tolerance.
  • piezo common rail injectors which use a hydraulic coupler consisting of a cylinder with a drive piston on the actuator side and a driven piston on the valve side.
  • a disadvantage of this arrangement is that this hydraulic coupler is in the low pressure range.
  • a certain pressure level usually about 10 bar, to ensure. In the prior art, this is achieved with a pressure-holding valve.
  • EP 1 640 604 A1 discloses an injection valve, wherein the valve body communicates with a pin, which in turn is connected to an actuator, which is biased by an actuator spring.
  • Object of the present invention is therefore to avoid the above-mentioned problems of injectors according to the prior art and to provide an injection valve with servo valve control available, which decoupled the actuator sufficiently from the nozzle needle, on the other hand, by temperature fluctuations and wear compensated by components occurring length changes during operation of the injection valve.
  • the invention provides an injection valve with servo valve control for injecting fuel into the combustion chamber of an internal combustion engine, wherein the injection valve has an injector body with an injection nozzle, which in turn contains a nozzle module with a nozzle body and a nozzle needle, the nozzle module in the lower, the Combustion chamber facing side of the injector body is arranged.
  • the nozzle needle corresponds with a nozzle spring such that it exerts a closing force on the nozzle needle.
  • the injection valve is also connected to a high-pressure line, via which it is connected to the high-pressure fuel system (common rail).
  • the high pressure line is connected via an inlet throttle with a control chamber, wherein the control chamber is in turn connected via an outlet throttle with the valve chamber.
  • a nozzle orifice is present, which can support the closing of the nozzle needle hydraulically.
  • valve body In the valve chamber itself, a valve body is arranged, which cooperates with a valve spring so that the valve spring so the valve body depressed from the throttle plate, that in the idle state, a gap between the valve body and throttle plate remains.
  • the valve body itself is also connected to a valve pin in connection, which in turn is connected to an actuator, preferably with a piezoelectric actuator.
  • an actuator preferably with a piezoelectric actuator.
  • this is usually biased by a spring, the actuator spring, so that the layered structure of the piezoceramic layer stack of the piezoelectric actuator is permanently mechanically stabilized.
  • the piezoceramic layer stack should not come into direct contact with the mostly chemically aggressive fuel, for example diesel. Therefore, a fluid seal is preferably provided towards the piezo stack, for example in the form of a sealing membrane between the piezo stack and fluid-carrying parts of the injector. Or the spring itself is sealingly formed with respect to the fuel, for example as a wave spring or corrugated tube spring.
  • the valve pin is now fitted with a very small clearance in the valve body, so that a sealing gap between the valve pin and the valve body is formed.
  • the valve body itself has holes that connect the valve chamber with the sealing gap.
  • the lower end of the valve pin is not completely connected to the valve body, so that between the valve pin and the valve body, a coupler volume is formed, which is connected via the sealing gap and the bore with the valve chamber.
  • the valve chamber is connected via the outlet throttle with the control chamber, the valve chamber is in the injection valve according to the invention under high pressure (rail pressure). This means that the coupling volume is filled with fuel via the holes in the valve body and the sealing gap between the valve pin and valve body, this fuel is also under rail pressure.
  • the sealing gap is dimensioned such that on the one hand there is a fluid connection between the coupling volume and the valve chamber, on the other hand during the short time of valve actuation virtually no fluid exchange between the coupling volume and the valve space can take place, so that the coupling volume practically does not change in this time.
  • the system acts from the holes in the valve body with the sealing gap and the coupling volume as a hydraulic coupler.
  • the coupler is in the idle state of the valve under high pressure, so that a lowered boiling point of the fuel, such as by admixture of low-boiling components, such as bioalcohol, has no negative impact.
  • the time in which the valve is actuated, ie in which the actuator deflects and opens the servo valve, the pressure in the valve chamber drops, is so short that in this time no significant amount of liquid (fuel) from the coupling volume on the sealing gap and the bore in the valve body can get into the valve chamber, so that the high pressure is maintained in the hydraulic coupler itself.
  • pressure equalization across the existing fluid interconnect may occur across the seal gap between the coupler volume and the valve space, allowing length changes in the valve system to be permanently compensated.
  • the actuator has stacked piezoelectric elements (piezo stack) and is preferably in the form of a fully active piezo stack, which is less prone to crack formation in the interior of the piezo stacking sequence since, in contrast to a not fully active stack not only parts of it
  • the covering is over the entire surface and the contacting takes place in the piezo stacking sequence alternately edge side of the stack side of respective piezoelectric layers of electrode material.
  • the layers to be contacted in opposite directions are alternately insulated on the edge side on this contact side.
  • the high-pressure fuel line is preferably connected via a nozzle orifice to the interior of the nozzle body, which serves for better hydraulic control of the injection valve.
  • valve pin and valve body are about 1 micron.
  • a volume of about 0.5 mm 3 has proven to be advantageous. Both dimensions provide a particularly suitable operation of the injection valve.
  • the nozzle needle of the injection valve preferably opens inwards, in particular in diesel applications, because there the pressures of the fuel are very high and thus a high sealing force acts on the sealing seat of the injection valve.
  • an outwardly opening valve can likewise be realized with the invention, in particular in the case of gasoline injectors.
  • the actuator itself is biased by a wave spring surrounding the actuator to stabilize the piezoelectric actuator and at the same time sealed to protect the piezoelectric stack.
  • Fig. 1 shows the essential part of an injection valve according to the invention, which is located substantially within an injector body 100.
  • a high-pressure fuel line 210 is shown, which is connected in the upper region of the injection valve-not shown here-by means of a high-pressure connection to a high-pressure fuel system-common rail.
  • the actuator 400 surrounded by a wave spring 450 is shown, which is connected to the injector body 100 via its actuator head plate 410.
  • the actuator 400 preferably consists of a piezo stack. However, other materials, such as a magnetostrictive material may also be used.
  • a bottom plate of the actuator 420 Via a bottom plate of the actuator 420, this is connected to a valve body 320 arranged in a valve body 310 and acts directly on this.
  • the high pressure fuel line is also guided through the valve plate 320 and flows there into the throttle plate 290 in the region of the inlet throttle 230 and the nozzle diaphragm 240th
  • the combustion chamber facing part is the actual nozzle module 110, consisting of the nozzle body 120, the nozzle needle 130 and the nozzle spring 140th
  • Fig. 2 shows the area around the throttle plate in more detail. From the top right, the fuel enters the system via the high-pressure fuel line 210 and is guided via the inlet throttle 230 into a control chamber 250. At the same time, fuel is guided past the nozzle orifice 240 into the inner region of the nozzle module 110 on the control chamber 250.
  • the control chamber 250 is in turn connected to an outlet throttle 270, which leads to the valve plate 320. There joins the valve chamber 300, which in Fig. 3 is shown in more detail.
  • valve chamber 300 which is formed in the valve plate 320, connects.
  • valve chamber 300 In the valve chamber 300 is a valve body 320 which is surrounded in its lower part by a valve spring 330 which exerts an upward force on the valve body 310, so that a gap 340 between the valve body 310 and throttle plate 290 is formed and the upper portion of the Valve body 310 seals with the valve plate 320 and thus closes the valve chamber 300 upwards.
  • the valve body 310 has holes 370, which open into a central bore. In this, the valve pin 350 is performed with very little game, which is in communication with the actuator, not shown here.
  • the piezoelectric actuator 400 which is preferably designed as a fully active piezo stack, is integrated into the injector body 100 so that it is supported directly upwards in the injector body 100.
  • the piezoelectric actuator 400 is sealed by a wave spring 450 against the fuel-carrying areas in the injection valve, wherein the wave spring 450 simultaneously provides for the bias of the actuator 400.
  • the wave spring 450 simultaneously provides for the bias of the actuator 400.
  • not the entire actuator space is sealed off from the fuel, but only the area of the actuator 400 itself. This is possible since the use of an Invar sleeve for temperature compensation can be dispensed with.
  • the low pressure volume in the region of the actuator 400 increases by at least an order of magnitude, which is why the pressure pulses which are generated when the servo valve is opened are reduced to a similar extent.
  • the stroke of the piezoelectric actuator 400 is transmitted to the servo valve body 310 via the valve pin 350, which is preferably made of hard metal.
  • the valve pin 350 moves with a very small clearance in the bore in the servo valve body 310.
  • the exemplary embodiment can be found at about half the height of the servo valve body 310 has two radial bores 370, which the Valve chamber 300 with the sealing gap 360 between valve pin 350 and servo valve body 310 connect.
  • rail pressure prevails in the valve chamber, which is transmitted through the radial holes 370 in the sealing gap 360.
  • This pressure is then also transferred to the very small coupler volume 380, which is located on the end face of the valve pin 350 facing away from the piezoactuator 400.
  • This pressure causes the pin to be pushed outwards until it comes to rest on the actuator bottom plate. This ensures a play-free contact between the piezoelectric actuator 400 and servo valve. Movements with very low dynamics, such as temperature expansion and wear, can be compensated by changing the Kopplerraum invented. For highly dynamic movements, however, as this is the piezobody movement, the sealing gap is almost dense and thus the coupler is very stiff.
  • the valve body 310 is pressed down, so that the valve opens upwards. This allows fuel to escape upwards, so that the pressure in the valve chamber 300 drops sharply.
  • the servo valve must be kept open only against the valve spring force and a low hydraulic force.
  • the servo valve closes again, by the valve body 310 against the valve plate 320th is pressed and sealed.
  • the pressure in the valve chamber 300 rises again, as well as in the control chamber 250, so that as a result the nozzle needle 130 is pressed down again into its seat.
  • the injection valve is closed.
  • the sealing gap 360 must be selected to be so small that even at high rail pressure only a sufficiently small fuel leakage is possible and at the same time no clamping of the valve pin 350 in the servo valve body 310 takes place.
  • the sealing gap 360 will be smaller than one micrometer, with the coupler volume 380 of 0.5 mm 3 being sufficiently large to realize a very rigid drive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Die Erfindung betrifft ein Einspritzventil mit Servoventilsteuerung zur Einspritzung von Kraftstoff in den Brennraum eines Verbrennungsmotors, wobei das Einspritzventil typischerweise in Verbindung mit einem unter Hochdruck stehenden sogenannten Common-Rail-System zum Einsatz kommt. Verwendet wird hierbei oftmals ein Piezoelement als Aktor, wobei die Steuerung der Einspritzmenge solcher Common-Rail-Einspritzventile entweder direkt, überwiegend aber indirekt über ein Servoventil gesteuert wird. Dies bedeutet, dass die Düsennadel nicht direkt mit der Bewegung des Piezoaktors gekoppelt ist, sondern dass der Piezoaktor seinerseits ein Servoventil betätigt. Die Zufuhr von Kraftstoff erfolgt typischerweise unter sehr hohem Druck über einen Hochdruckanschluss und eine Hochdruckleitung im Einspritzventilkörper durch eine Ventilplatte auf eine Drosselplatte. Ein Steuerraum ist über eine Zulaufdrossel mit der Hochdruckleitung verbunden. Darüber hinaus ist der Steuerraum über eine Ablaufdrossel mit einem Ventilraum verbunden. Vom vorderen oder unteren Bereich, das ist der Bereich, der zum Brennraum zeigt, weist die Einspritzdüse einen Düsenkörper und eine Düsennadel auf, wobei die Düsennadel mit einer Düsenfeder so vorgespannt ist, dass diese eine Schließkraft ausübt. Da der Steuerraum über den Hochdruckanschluss mit dem Rail-System verbunden ist, herrscht im nicht betätigten Zustand im Steuerraum ein hoher Druck vor, der dem Druck im Rail-System entspricht (Rail-Druck). Daraus resultiert eine zusätzliche hydraulische Kraftwirkung, welche die Düsennadel in Schließposition hält und somit die Öffnungen des Einspritzventils verschlossen sind. Wird der Piezoaktor betätigt, betätigt dieser das Servoventil. Dadurch kann Kraftstoff über die Ablaufdrossel den Steuerraum verlassen. Dadurch wird der Druck im Steuerraum abgesenkt und nach Unterschreiten einer bestimmten Druckschwelle wird die Düsennadel geöffnet. Wird der Piezoaktor anschließend wieder entladen, schließt das Servoventil, der Steuerraum wird über eine Verbindung zum Hochdrucksystem erneut befüllt, sodass sich der Druck im Steuerraum wieder auf Rail-Druck-Niveau aufbaut und die Düsennadel schließt. Dabei wird die Dynamik des Druckabfalls bzw. Druckaufbaus im Steuerraum sowie die Nadelgeschwindigkeit während der Nadelöffnungs- bzw. Nadelschließbewegung im Wesentlichen durch die Dimensionierung der Zu- und Ablaufdrossel bestimmt.The invention relates to an injection valve with servo valve control for the injection of fuel into the combustion chamber of an internal combustion engine, wherein the injection valve is typically used in conjunction with a high-pressure common-rail system. In this case, a piezo element is often used as the actuator, wherein the control of the injection quantity of such common rail injection valves is controlled either directly, but predominantly indirectly via a servo valve. This means that the nozzle needle is not directly coupled to the movement of the piezoelectric actuator, but that the piezoelectric actuator in turn actuates a servo valve. The supply of fuel typically occurs under very high pressure via a high pressure port and a high pressure line in the injector body through a valve plate to a throttle plate. A control chamber is connected via an inlet throttle with the high pressure line. In addition, the control chamber is connected via an outlet throttle with a valve chamber. From the front or lower area, which is the area facing the combustion chamber, the injection nozzle has a nozzle body and a nozzle needle, wherein the nozzle needle is biased with a nozzle spring so that it exerts a closing force. Since the control chamber is connected to the rail system via the high-pressure connection, in the non-actuated state, a high pressure prevails in the control chamber, which corresponds to the pressure in the rail system (rail pressure). This results in an additional hydraulic force, which keeps the nozzle needle in the closed position and thus the openings of the injection valve are closed. If the piezo actuator is actuated, it actuates the servo valve. As a result, fuel can leave the control chamber via the outlet throttle. As a result, the pressure in the control chamber is lowered and after falling below a certain pressure threshold, the nozzle needle is opened. If the piezo actuator is then discharged again, the servo valve closes, the control chamber is refilled via a connection to the high-pressure system so that the pressure in the control chamber builds up again to rail pressure level and the nozzle needle closes. The dynamics of the pressure drop or pressure build-up in the control chamber and the needle speed during the needle opening or needle closing movement are essentially determined by the dimensioning of the inlet and outlet throttle.

Um einen stabilen Betrieb eines Common-Rail-Injektors mit Piezoaktor zu gewährleisten, ist eine nahzu spielfreie Kopplung zwischen Piezoaktor und dem Ventilkörper des Servoventils erforderlich. Hierfür ist eine sehr genaue statische Temperaturkompensation der thermischen Längenänderung im Bereich der gesamten Antriebskette erforderlich, um die Änderung des Leerhubs des Piezoaktors in engen Grenzen zu halten. Hierfür ist der Piezoaktor üblicherweise von einer Invar-Hülse umgeben, die ein ähnliches Wärmeausdehnungsverhalten wie der Piezoaktor zeigt.In order to ensure a stable operation of a common rail injector with piezo actuator, a close play-free coupling between the piezo actuator and the valve body of the servo valve is required. For this purpose, a very accurate static temperature compensation of the thermal change in length in the entire drive chain is required to keep the change in the idle stroke of the piezoelectric actuator within narrow limits. For this purpose, the piezoelectric actuator is usually surrounded by an Invar sleeve, which has a similar thermal expansion behavior as the piezoelectric actuator.

Es ist aber erforderlich, dass ein kleiner definierter Leerhub des Servoventils vorhanden ist, also ein kleiner Zwischenraum zwischen dem Servoventilkörper und der Bodenplatte des Aktors besteht, da verhindert werden muss, dass bei nicht angesteuertem Piezoaktor das Servoventil offen steht. Umgekehrt ist ein zu groß eingestellter Leerhub nachteilig, da dadurch der erforderliche Piezoaktorhub in gleichem Maß erhöht wird und dies wiederum die dazu notwendige Ansteuerenergie entsprechend erhöht. Insgesamt erhöht dies die Anforderungen an die Konstanz der Genauigkeit des Systems auch über längere Zeiträume.However, it is necessary that a small defined idle stroke of the servo valve is present, so there is a small gap between the servo valve body and the bottom plate of the actuator, since it must be prevented that when not actuated piezoelectric actuator, the servo valve is open. Conversely, a set too large idle stroke disadvantageous, since thereby the required Piezoaktorhub is increased to the same extent and this in turn increases the necessary drive energy accordingly. All in all This increases the requirements for the constancy of the accuracy of the system even over longer periods.

Die Anwendung von Einspritzventilen im Motor liefert thermisch sehr komplexe Randbedingungen mit verschiedenen Wärmequellen und Wärmesenken. Im Bereich des Piezoaktors spielt die Eigenerwärmung in Folge elektrischer Verluste eine wesentliche Rolle. Im Bereich des Servoventils steht die Temperaturerhöhung in Folge des Entspannens des Kraftstoffs von Rail-Druck auf Umgebungsdruck eine signifikante Wärmequelle dar. Durch den Einbau des Injektors im Zylinderkopf eines Motors ergeben sich über verschiedene Kontaktstellen, etwa die Brennraumabdichtung und den Kontakt der Düsenspitze zu den Verbrennungsgasen entsprechende Wärmeströme. Eine ebenfalls zu berücksichtigende Einflussgröße auf den Leerhub stellt die Verpratzungskraft im Zylinderkopf dar. Dies ist auch mit großer Toleranz behaftet.The use of injectors in the engine provides thermally very complex boundary conditions with different heat sources and heat sinks. In the area of the piezoelectric actuator self-heating plays an important role as a result of electrical losses. In the area of the servo valve, the temperature increase due to the relaxation of the fuel from rail pressure to ambient pressure is a significant source of heat. The installation of the injector in the cylinder head of an engine results in various contact points, such as the combustion chamber seal and the contact of the nozzle tip to the combustion gases corresponding heat flows. An influencing factor to be taken into account on the idle stroke also represents the verpratzenzungskraft in the cylinder head. This is also subject to great tolerance.

Im statischen Injektorbetrieb können die resultierenden Wärmedehnungen durch geeignete Materialwahl und Geometrie weitgehend kompensiert werden. Im dynamischen Motorbetrieb ergibt sich in Folge instationärer, inhomogener Temperaturverteilungen in den Bauteilen eine zusätzliche Einflussgröße auf den Leerhub des Piezoaktors. Des Weiteren verändert sich der Leerhub im Injektorbetrieb durch Längenänderung des Piezoaktors in Folge von Polarisationsänderungen und Verschleiß.In static injector operation, the resulting thermal expansions can be largely compensated by suitable choice of material and geometry. In dynamic engine operation, as a result of unsteady, inhomogeneous temperature distributions in the components, there is an additional influence on the idle stroke of the piezoactuator. Furthermore, the idle stroke in the injector mode changes due to change in length of the piezoelectric actuator as a result of polarization changes and wear.

Thermisch bedingte Längenänderungen können über eine geeignete Verwendung verschiedener Materialien weitgehend kompensiert werden. Ein Beispiel ist die bereits genannte Verwendung von Aktorgehäusen aus Invar, da Invar ein im Wesentlichen gleiches Temperaturausdehnungsverhalten wie die Piezokeramik besitzt. Letztlich stellt dies jedoch nur eine Grundkompensation dar. Leerhubveränderungen in Folge von Verschleiß bzw. Änderungen des Polarisierungszustandes werden nicht erfasst.Thermally induced changes in length can be largely compensated by a suitable use of different materials. An example is the already mentioned use of actuator housings from Invar, since Invar has a substantially same temperature expansion behavior as the piezoceramic. Ultimately, however, this represents only a basic compensation. Leerhubveränderungen due to wear or changes in the polarization state are not detected.

Zur Lösung dieses Problems existieren Piezo-Common-Rail-Einspritzdüsen, die einen hydraulischen Koppler, bestehend aus einem Zylinder mit einem Antriebskolben auf der Aktorseite und einem Abtriebskolben auf der Ventilseite verwenden. Nachteilig an dieser Anordnung ist, dass sich dieser hydraulische Koppler im Niederdruckbereich befindet. Um einen solchen Koppler jedoch funktionsfähig zu halten, ist ein bestimmtes Druckniveau, meist etwa 10 bar, zu gewährleisten. Im Stand der Technik wird dies mit einem Druckhalteventil erreicht.To solve this problem exist piezo common rail injectors, which use a hydraulic coupler consisting of a cylinder with a drive piston on the actuator side and a driven piston on the valve side. A disadvantage of this arrangement is that this hydraulic coupler is in the low pressure range. However, to keep such a coupler functioning, a certain pressure level, usually about 10 bar, to ensure. In the prior art, this is achieved with a pressure-holding valve.

Die zunehmende Verwendung niedrigsiedender Kraftstoffkomponenten, etwa durch Zumischung von Alkohol zum Kraftstoff, gefährdet jedoch die Funktionsfähigkeit entsprechender hydraulischer Koppelelemente im Niederdruckbereich und stellt somit ein erhebliches Funktionsrisiko für derartige Konzepte dar. Aus der EP 1 389 274 ist darüber hinaus ein direkt betätigtes Einspritzventil mit einem hydraulischen Koppler bekannt. Dies hat jedoch den Nachteil, dass der Aktor nicht ausreichend von der Düsennadel entkoppelt ist, was die Kompensation von Verschleiß ebenfalls erschwert.However, the increasing use of low-boiling fuel components, for example by admixing alcohol with the fuel, jeopardizes the functionality of corresponding hydraulic coupling elements in the low-pressure range and thus represents a significant functional risk for such concepts EP 1 389 274 In addition, a directly operated injection valve with a hydraulic coupler is known. However, this has the disadvantage that the actuator is not sufficiently decoupled from the nozzle needle, which also complicates the compensation of wear.

EP 1 640 604 A1 offenbart ein Einspritzventil, wobei der Ventilkörper mit einem Zapfen in Verbindung steht, der wiederum mit einem Aktor verbunden ist, der von einer Aktorfeder vorgespannt ist. EP 1 640 604 A1 discloses an injection valve, wherein the valve body communicates with a pin, which in turn is connected to an actuator, which is biased by an actuator spring.

Aufgabe der vorliegenden Erfindung ist es daher, die oben genannten Probleme der Einspritzventile nach dem Stand der Technik zu vermeiden und ein Einspritzventil mit Servoventilsteuerung zur Verfügung zu stellen, welches zum einen den Aktor ausreichend von der Düsennadel entkoppelt, zum anderen aber die durch Temperaturschwankungen und Verschleiß von Bauteilen auftretenden Längenänderungen während des Betriebes des Einspritzventils kompensiert.Object of the present invention is therefore to avoid the above-mentioned problems of injectors according to the prior art and to provide an injection valve with servo valve control available, which decoupled the actuator sufficiently from the nozzle needle, on the other hand, by temperature fluctuations and wear compensated by components occurring length changes during operation of the injection valve.

Diese Aufgabe wird durch den kennzeichnenden Teil des Anspruchs 1 gelöst und durch die Lehre der abhängigen Ansprüche weiter erläutert.This object is solved by the characterizing part of claim 1 and further explained by the teaching of the dependent claims.

So stellt die Erfindung ein Einspritzventil mit Servoventilsteuerung zur Einspritzung von Kraftstoff in den Brennraum eines Verbrennungsmotors zur Verfügung, wobei das Einspritzventil einen Injektorkörper mit einer Einspritzdüse aufweist, die wiederum ein Düsenmodul mit einem Düsenkörper und einer Düsennadel enthält, wobei das Düsenmodul in der unteren, dem Brennraum zugewandten Seite des Injektorkörpers angeordnet ist. Die Düsennadel korrespondiert mit einer Düsenfeder derartig, dass sie eine Schließkraft auf die Düsennadel ausübt. Das Einspritzventil ist darüber hinaus an eine Hochdruckleitung angeschlossen, über die es mit dem Hochdruckkraftstoffsystem (Common-Rail) verbunden ist. An einer anderen Stelle ist die Hochdruckleitung über eine Zulaufdrossel mit einem Steuerraum verbunden, wobei der Steuerraum über eine Ablaufdrossel wiederum mit dem Ventilraum verbunden ist. Vorteilhafterweise ist darüber hinaus noch eine Düsenblende vorhanden, die das Schließen der Düsennadel hydraulisch unterstützen kann.Thus, the invention provides an injection valve with servo valve control for injecting fuel into the combustion chamber of an internal combustion engine, wherein the injection valve has an injector body with an injection nozzle, which in turn contains a nozzle module with a nozzle body and a nozzle needle, the nozzle module in the lower, the Combustion chamber facing side of the injector body is arranged. The nozzle needle corresponds with a nozzle spring such that it exerts a closing force on the nozzle needle. The injection valve is also connected to a high-pressure line, via which it is connected to the high-pressure fuel system (common rail). At another point, the high pressure line is connected via an inlet throttle with a control chamber, wherein the control chamber is in turn connected via an outlet throttle with the valve chamber. Advantageously, in addition, a nozzle orifice is present, which can support the closing of the nozzle needle hydraulically.

Im Ventilraum selbst ist ein Ventilkörper angeordnet, der mit einer Ventilfeder so zusammenwirkt, dass die Ventilfeder den Ventilkörper so von der Drosselplatte abdrückt, dass im Ruhezustand ein Spalt zwischen Ventilkörper und Drosselplatte verbleibt. Der Ventilkörper selbst steht weiterhin mit einem Ventil-Pin in Verbindung, der wiederum mit einem Aktor verbunden ist, vorzugsweise mit einem Piezoaktor. Im Falle eines Piezoaktors wird dieser üblicherweise durch eine Feder, die Aktorfeder, vorgespannt, damit der schichtweise Aufbau des piezokeramischen Schichtstapels des Piezoaktors dauerhaft mechanisch stabilisiert wird.In the valve chamber itself, a valve body is arranged, which cooperates with a valve spring so that the valve spring so the valve body depressed from the throttle plate, that in the idle state, a gap between the valve body and throttle plate remains. The valve body itself is also connected to a valve pin in connection, which in turn is connected to an actuator, preferably with a piezoelectric actuator. In the case of a piezoelectric actuator this is usually biased by a spring, the actuator spring, so that the layered structure of the piezoceramic layer stack of the piezoelectric actuator is permanently mechanically stabilized.

Vorzugsweise soll der piezokeramische Schichtstapel nicht in direktem Kontakt mit dem zumeist chemisch aggressiven Kraftstoff, beispielsweise Diesel, kommen. Daher wird vorzugsweise eine Fluidabdichtung zum Piezostapel hin vorgesehen, beispielsweise in Form einer Dichtmembran zwischen Piezostapel und fluidführenden Teilen des Injektors. Oder die Feder selbst ist dichtend gegenüber dem Kraftstoff ausgebildet, beispielsweise als Wellenfeder oder Wellrohrfeder.Preferably, the piezoceramic layer stack should not come into direct contact with the mostly chemically aggressive fuel, for example diesel. Therefore, a fluid seal is preferably provided towards the piezo stack, for example in the form of a sealing membrane between the piezo stack and fluid-carrying parts of the injector. Or the spring itself is sealingly formed with respect to the fuel, for example as a wave spring or corrugated tube spring.

Nach der vorliegenden Erfindung ist nunmehr der Ventil-Pin mit sehr kleinem Spiel in den Ventilkörper eingepasst, sodass sich ein Dichtspalt zwischen dem Ventil-Pin und dem Ventilkörper bildet. Der Ventilkörper selbst weist Bohrungen auf, die den Ventilraum mit dem Dichtspalt verbinden. Das untere Ende des Ventil-Pins ist dabei nicht ganz mit dem Ventilkörper verbunden, sodass sich zwischen Ventil-Pin und Ventilkörper ein Kopplervolumen bildet, welches über den Dichtspalt und die Bohrung mit dem Ventilraum verbunden ist. Da der Ventilraum über die Ablaufdrossel mit dem Steuerraum verbunden ist, steht der Ventilraum bei dem erfindungsgemäßen Einspritzventil unter Hochdruck (Rail-Druck). Dies bedeutet, dass über die Bohrungen im Ventilkörper und dem Dichtspalt zwischen Ventil-Pin und Ventilkörper das Koppelvolumen mit Kraftstoff gefüllt wird, wobei dieser Kraftstoff ebenfalls unter Rail-Druck steht. Der Dichtspalt ist dabei so bemessen, dass zwar einerseits eine Fluidverbindung zwischen dem Koppelvolumen und dem Ventilraum steht, andererseits während der kurzen Zeit der Ventilbetätigung praktisch kein Fluidaustausch zwischen dem Koppelvolumen und dem Ventilraum stattfinden kann, sodass sich das Koppelvolumen in dieser Zeit praktisch nicht verändert. Damit wirkt das System aus den Bohrungen im Ventilkörper mit dem Dichtspalt und dem Koppelvolumen als hydraulischer Koppler.According to the present invention, the valve pin is now fitted with a very small clearance in the valve body, so that a sealing gap between the valve pin and the valve body is formed. The valve body itself has holes that connect the valve chamber with the sealing gap. The lower end of the valve pin is not completely connected to the valve body, so that between the valve pin and the valve body, a coupler volume is formed, which is connected via the sealing gap and the bore with the valve chamber. Since the valve chamber is connected via the outlet throttle with the control chamber, the valve chamber is in the injection valve according to the invention under high pressure (rail pressure). This means that the coupling volume is filled with fuel via the holes in the valve body and the sealing gap between the valve pin and valve body, this fuel is also under rail pressure. The sealing gap is dimensioned such that on the one hand there is a fluid connection between the coupling volume and the valve chamber, on the other hand during the short time of valve actuation virtually no fluid exchange between the coupling volume and the valve space can take place, so that the coupling volume practically does not change in this time. Thus, the system acts from the holes in the valve body with the sealing gap and the coupling volume as a hydraulic coupler.

Anders als nach dem Stand der Technik steht der Koppler im Ruhezustand des Ventils unter Hochdruck, sodass ein abgesenkter Siedepunkt des Kraftstoffs, etwa durch Beimischung von niedrigsiedenden Komponenten, wie Bioalkohol, keine negativen Auswirkungen hat. Die Zeit, in der das Ventil betätigt wird, also in der der Aktor auslenkt und das Servoventil öffnet, wobei der Druck im Ventilraum abfällt, ist so kurz, dass in dieser Zeit keine spürbare Menge von Flüssigkeit (Kraftstoff) aus dem Koppelvolumen über den Dichtspalt und die Bohrung im Ventilkörper in den Ventilraum gelangen kann, sodass in dem hydraulischen Koppler selbst der Hochdruck erhalten bleibt. Über eine längere Zeit betrachtet, kann jedoch ein Druckausgleich über die bestehende Fluidverbindung über den Dichtspalt zwischen Kopplervolumen und Ventilraum stattfinden, sodass Längenänderungen im Ventilsystem auf Dauer ausgeglichen werden können.Unlike in the prior art, the coupler is in the idle state of the valve under high pressure, so that a lowered boiling point of the fuel, such as by admixture of low-boiling components, such as bioalcohol, has no negative impact. The time in which the valve is actuated, ie in which the actuator deflects and opens the servo valve, the pressure in the valve chamber drops, is so short that in this time no significant amount of liquid (fuel) from the coupling volume on the sealing gap and the bore in the valve body can get into the valve chamber, so that the high pressure is maintained in the hydraulic coupler itself. However, over a longer period of time, pressure equalization across the existing fluid interconnect may occur across the seal gap between the coupler volume and the valve space, allowing length changes in the valve system to be permanently compensated.

Es hat sich als vorteilhaft erwiesen, wenn der Aktor gestapelte Piezoelemente (Piezostack) aufweist und vorzugsweise in Form eines vollaktiven Piezostacks ausgebildet ist, der im Allgemeinen weniger zur Rissbildung im Inneren der Piezostapelfolge neigt, da im Unterschied zu einem nicht vollaktiven Stack nicht nur Teile seiner jeweiligen piezoelektrischen Schichten von Elektrodenmaterial bedeckt sind, sondern die Bedeckung ganzflächig ist und die Kontaktierung in der Piezostapelabfolge abwechselnd randseitig von der Stapelseite erfolgt. Die jeweils anderspolig zu kontaktierenden Schichten sind auf dieser Kontaktseite jeweils abwechselnd randseitig isoliert.It has proved to be advantageous if the actuator has stacked piezoelectric elements (piezo stack) and is preferably in the form of a fully active piezo stack, which is less prone to crack formation in the interior of the piezo stacking sequence since, in contrast to a not fully active stack not only parts of it The covering is over the entire surface and the contacting takes place in the piezo stacking sequence alternately edge side of the stack side of respective piezoelectric layers of electrode material. The layers to be contacted in opposite directions are alternately insulated on the edge side on this contact side.

Die Hochdruck-Kraftstoffleitung ist vorzugsweise über eine Düsenblende mit dem Inneren des Düsenkörpers verbunden, was zur besseren hydraulischen Steuerung des Einspritzventils dient.The high-pressure fuel line is preferably connected via a nozzle orifice to the interior of the nozzle body, which serves for better hydraulic control of the injection valve.

Es ist darüber hinaus günstig, wenn der Dichtspalt zwischen Ventil-Pin und Ventilkörper etwa 1µm beträgt. Für das Koppelvolumen hat sich ein Volumen von etwa 0,5mm3 als vorteilhaft erwiesen. Beide Bemaßungen gewähren eine besonders geeignete Funktionsweise des Einspritzventils.It is also beneficial if the sealing gap between valve pin and valve body is about 1 micron. For the coupling volume, a volume of about 0.5 mm 3 has proven to be advantageous. Both dimensions provide a particularly suitable operation of the injection valve.

Die Düsennadel des Einspritzventils öffnet vorzugsweise nach innen, insbesondere in Dieselanwendungen, da dort die Drücke des Kraftstoffs sehr hoch sind und dadurch eine hohce Dichtkraft am Dichtsitz des Einspritzventils wirkt. Bei einer anderen, dem Fachmann geläufigen Umkehr des Kraftflusses, kann aber ebenso ein nach außen öffnendes Ventil mit der Erfindung realisiert werden, insbesondere bei Benzininjektoren. Der Aktor selbst ist von einer den Aktor umgebenden Wellenfeder vorgespannt, um den Piezoaktor zu stabilisieren, und gleichzeitig abgedichtet, um den Piezostack zu schützen.The nozzle needle of the injection valve preferably opens inwards, in particular in diesel applications, because there the pressures of the fuel are very high and thus a high sealing force acts on the sealing seat of the injection valve. In another reversal of the force flow which is familiar to the person skilled in the art, however, an outwardly opening valve can likewise be realized with the invention, in particular in the case of gasoline injectors. The actuator itself is biased by a wave spring surrounding the actuator to stabilize the piezoelectric actuator and at the same time sealed to protect the piezoelectric stack.

Im Folgenden wird eine bevorzugte Ausführungsform unter Bezug auf die Figuren beschrieben. Es zeigen:

Fig. 1
ein Längsschnitt durch den unteren Teil eines erfindungsgemäßen Einspritzventils;
Fig. 2
ein Detailausschnitt; und
Fig. 3
eine Detailzeichnung des Ventilraums im Längsschnitt.
Hereinafter, a preferred embodiment will be described with reference to the figures. Show it:
Fig. 1
a longitudinal section through the lower part of an injection valve according to the invention;
Fig. 2
a detail section; and
Fig. 3
a detailed drawing of the valve chamber in longitudinal section.

Fig. 1 zeigt den wesentlichen Teil eines erfindungsgemäßen Einspritzventils, welches sich im Wesentlichen innerhalb eines Injektorkörpers 100 befindet. Im rechten Bereich ist eine Hochdruck-Kraftstoffleitung 210 gezeigt, die im oberen Bereich des Einspritzventils - hier nicht gezeigt - mittels eines Hochdruckanschlusses an ein Hochdruck-Kraftstoffsystem - Common-Rail - angeschlossen wird. Links neben der Hochdruck-Kraftstoffleitung 210 ist der von einer Wellenfeder 450 umgebene Aktor 400 gezeigt, der über seine Aktorkopfplatte 410 mit dem Injektorkörper 100 verbunden ist. Der Aktor 400 besteht vorzugsweise aus einem Piezostapel. Es können aber auch andere Materialien, etwa ein magnetostriktives Material, verwendet werden. Über eine Bodenplatte des Aktors 420 ist diese mit einem in einer Ventilplatte 320 angeordneten Ventilkörper 310 verbunden und wirkt unmittelbar auf diesen. Die Hochdruck-Kraftstoffleitung ist auch durch die Ventilplatte 320 geführt und mündet dort in die Drosselplatte 290 im Bereich der Zulaufdrossel 230 und der Düsenblende 240. Fig. 1 shows the essential part of an injection valve according to the invention, which is located substantially within an injector body 100. In the right-hand area, a high-pressure fuel line 210 is shown, which is connected in the upper region of the injection valve-not shown here-by means of a high-pressure connection to a high-pressure fuel system-common rail. To the left of the high-pressure fuel line 210, the actuator 400 surrounded by a wave spring 450 is shown, which is connected to the injector body 100 via its actuator head plate 410. The actuator 400 preferably consists of a piezo stack. However, other materials, such as a magnetostrictive material may also be used. Via a bottom plate of the actuator 420, this is connected to a valve body 320 arranged in a valve body 310 and acts directly on this. The high pressure fuel line is also guided through the valve plate 320 and flows there into the throttle plate 290 in the region of the inlet throttle 230 and the nozzle diaphragm 240th

Im unteren, dem Verbrennungsraum zugewandten, Teil findet sich das eigentliche Düsenmodul 110, bestehend aus dem Düsenkörper 120, der Düsennadel 130 und der Düsenfeder 140.In the lower, the combustion chamber facing part is the actual nozzle module 110, consisting of the nozzle body 120, the nozzle needle 130 and the nozzle spring 140th

Fig. 2 zeigt den Bereich um die Drosselplatte etwas detaillierter. Von rechts oben tritt der Kraftstoff über die Hochdruck-Kraftstoffleitung 210 ins System ein und wird über die Zulaufdrossel 230 in einen Steuerraum 250 geführt. Parallel dazu wird Kraftstoff über die Düsenblende 240 in den inneren Bereich des Düsenmoduls 110 am Steuerraum 250 vorbeigeleitet. Fig. 2 shows the area around the throttle plate in more detail. From the top right, the fuel enters the system via the high-pressure fuel line 210 and is guided via the inlet throttle 230 into a control chamber 250. At the same time, fuel is guided past the nozzle orifice 240 into the inner region of the nozzle module 110 on the control chamber 250.

Der Steuerraum 250 ist wiederum mit einer Ablaufdrossel 270 verbunden, die zur Ventilplatte 320 führt. Dort schließt sich der Ventilraum 300 an, der in Fig. 3 genauer gezeigt ist.The control chamber 250 is in turn connected to an outlet throttle 270, which leads to the valve plate 320. There joins the valve chamber 300, which in Fig. 3 is shown in more detail.

Im unteren Bereich der Fig. 3 findet sich wieder die Drosselplatte 290, an die sich der Ventilraum 300, der in der Ventilplatte 320 gebildet ist, anschließt. Im Ventilraum 300 befindet sich ein Ventilkörper 320, der in seinem unteren Bereich von einer Ventilfeder 330 umgeben ist, die eine nach oben wirkende Kraft auf den Ventilkörper 310 ausübt, so dass ein Spalt 340 zwischen Ventilkörper 310 und Drosselplatte 290 entsteht und der obere Bereich des Ventilkörpers 310 mit der Ventilplatte 320 abdichtet und so den Ventilraum 300 nach oben abschließt. Der Ventilkörper 310 weist Bohrungen 370 auf, die in eine zentrale Bohrung münden. In diese ist mit sehr kleinem Spiel der Ventil-Pin 350 geführt, der mit dem, hier nicht gezeigten, Aktor in Verbindung steht. Zwischen dem Ventil-Pin 350 und der Wand des Ventilkörpers 210 findet sich ein schmaler Dichtspalt 360, über den die Bohrung 370 in Fluidverbindung mit einem kleinen Zwischenraum, dem Koppelvolumen 380, besteht. Somit wird die aus dem Stand der Technik bekannte, leerhubbehaftete mechanische Kopplung zwischen Piezoaktorhub und Servoventilbewegung durch eine hydraulische Kopplung mit einem in den Servoventilkörper selbst integrierten Spielausgleich ersetzt. Anders als im Stand der Technik bekannt, herrscht in dem im Servoventilkörper integrierten Spielausgleich Hochdruck, also der Rail-Druck, sodass die eingangs erwähnten Siedeprobleme nicht auftreten können.At the bottom of the Fig. 3 again there is the throttle plate 290, to which the valve chamber 300, which is formed in the valve plate 320, connects. In the valve chamber 300 is a valve body 320 which is surrounded in its lower part by a valve spring 330 which exerts an upward force on the valve body 310, so that a gap 340 between the valve body 310 and throttle plate 290 is formed and the upper portion of the Valve body 310 seals with the valve plate 320 and thus closes the valve chamber 300 upwards. The valve body 310 has holes 370, which open into a central bore. In this, the valve pin 350 is performed with very little game, which is in communication with the actuator, not shown here. Between the valve pin 350 and the wall of the valve body 210 is a narrow sealing gap 360, over which the bore 370 in fluid communication with a small Interspace, the coupling volume 380 exists. Thus, the known from the prior art, vacancy-laden mechanical coupling between Piezoaktorhub and servo valve movement is replaced by a hydraulic coupling with a self-integrated in the servo valve body clearance compensation. Unlike in the prior art known in the servo valve body integrated backlash high pressure, so the rail pressure, so that the initially mentioned boiling problems can not occur.

Die Funktion ist im Detail die Folgende:
Der Piezoaktor 400, welcher vorzugsweise als vollaktiver Piezostack ausgeführt ist, ist in den Injektorkörper 100 so integriert, dass er sich nach oben direkt im Injektorkörper 100 abstützt. Der Piezoaktor 400 wird durch eine Wellenfeder 450 gegen die kraftstoffführenden Bereiche im Einspritzventil abgedichtet, wobei die Wellenfeder 450 gleichzeitig für die Vorspannung des Aktors 400 sorgt. Anders als nach dem Stand der Technik ist somit nicht der gesamte Aktorraum gegenüber dem Kraftstoff abgedichtet, sondern nur der Bereich des Aktors 400 selbst. Dies ist möglich, da auf die Verwendung einer Invar-Hülse zum Temperaturausgleich verzichtet werden kann. Im Ergebnis vergrößert sich das Niederdruckvolumen im Bereich des Aktors 400 um mindestens eine Größenordnung, weshalb sich die Druckpulse, welche beim Öffnen des Servoventils generiert werden, in ähnlichem Ausmaß reduzieren.
The function is in detail the following:
The piezoelectric actuator 400, which is preferably designed as a fully active piezo stack, is integrated into the injector body 100 so that it is supported directly upwards in the injector body 100. The piezoelectric actuator 400 is sealed by a wave spring 450 against the fuel-carrying areas in the injection valve, wherein the wave spring 450 simultaneously provides for the bias of the actuator 400. Unlike the prior art, therefore, not the entire actuator space is sealed off from the fuel, but only the area of the actuator 400 itself. This is possible since the use of an Invar sleeve for temperature compensation can be dispensed with. As a result, the low pressure volume in the region of the actuator 400 increases by at least an order of magnitude, which is why the pressure pulses which are generated when the servo valve is opened are reduced to a similar extent.

Der Hub des Piezoaktors 400 wird über den Ventil-Pin 350, welcher vorzugsweise aus Hartmetall besteht, auf den Servoventilkörper 310 übertragen. Dabei bewegt sich der Ventil-Pin 350 mit sehr kleinem Spiel in der Bohrung im Servoventilkörper 310. Im Ausführungsbeispiel finden sich auf etwa der halben Höhe des Servoventilkörpers 310 zwei radiale Bohrungen 370, welche den Ventilraum 300 mit dem Dichtspalt 360 zwischen Ventil-Pin 350 und Servoventilkörper 310 verbinden. Im geschlossenen Zustand des Servoventils herrscht im Ventilraum 300 Rail-Druck, welcher durch die radialen Bohrungen 370 in den Dichtspalt 360 übertragen wird. Dieser Druck wird dann auch in das sehr kleine Kopplervolumen 380 übertragen, welches sich an der dem Piezoaktor 400 abgewandten Stirnseite des Ventil-Pins 350 befindet. Dieser Druck bewirkt, dass der Pin stets nach außen gedrückt wird, bis er zur Anlage an der Aktorbodenplatte kommt. Damit ist ein spielfreier Kontakt zwischen Piezoaktor 400 und Servoventil gewährleistet. Bewegungen mit sehr geringer Dynamik, wie z.B. Temperaturausdehnung und Verschleiß, können durch Änderung der Kopplerraumhöhe ausgeglichen werden. Für hochdynamische Bewegungen jedoch, wie diese die Piezobewegung darstellt, ist der Dichtspalt nahezu dicht und somit der Koppler sehr steif.The stroke of the piezoelectric actuator 400 is transmitted to the servo valve body 310 via the valve pin 350, which is preferably made of hard metal. In this case, the valve pin 350 moves with a very small clearance in the bore in the servo valve body 310. In the exemplary embodiment can be found at about half the height of the servo valve body 310 has two radial bores 370, which the Valve chamber 300 with the sealing gap 360 between valve pin 350 and servo valve body 310 connect. In the closed state of the servo valve 300 rail pressure prevails in the valve chamber, which is transmitted through the radial holes 370 in the sealing gap 360. This pressure is then also transferred to the very small coupler volume 380, which is located on the end face of the valve pin 350 facing away from the piezoactuator 400. This pressure causes the pin to be pushed outwards until it comes to rest on the actuator bottom plate. This ensures a play-free contact between the piezoelectric actuator 400 and servo valve. Movements with very low dynamics, such as temperature expansion and wear, can be compensated by changing the Kopplerraumhöhe. For highly dynamic movements, however, as this is the piezobody movement, the sealing gap is almost dense and thus the coupler is very stiff.

Wird der Piezoaktor 400 betätigt, wird der Ventilkörper 310 nach unten gedrückt, sodass das Ventil nach oben öffnet. Dadurch kann Kraftstoff nach oben entweichen, sodass der Druck im Ventilraum 300 stark absinkt. Damit muss das Servoventil nur gegen die Ventilfederkraft und eine geringe hydraulische Kraft offengehalten werden.If the piezoelectric actuator 400 is actuated, the valve body 310 is pressed down, so that the valve opens upwards. This allows fuel to escape upwards, so that the pressure in the valve chamber 300 drops sharply. Thus, the servo valve must be kept open only against the valve spring force and a low hydraulic force.

Durch den Druckabfall im Ventilraum 300 fließt über die Ablaufdrossel 270 Kraftstoff aus dem Steuerraum 250 in den Ventilraum 300. Da durch die Zulaufdrossel 230 weniger Kraftstoff nachfließt als durch die Ablaufdrossel 270 abfließt, sinkt der Druck im Steuerraum 250 ab. Dadurch vermindert sich die auf die Düsennadel 130 wirkende hydraulische Schließkraft. Nach Unterschreiten einer bestimmten Druckschwelle öffnet die Düsennadel 130 und die Einspritzung beginnt.Due to the pressure drop in the valve chamber 300, fuel flows out of the control chamber 250 into the valve chamber 300 via the outlet throttle. Since less fuel flows through the inlet throttle 230 than flows through the outlet throttle 270, the pressure in the control chamber 250 drops. As a result, the force acting on the nozzle needle 130 hydraulic closing force decreases. After falling below a certain pressure threshold opens the nozzle needle 130 and the injection begins.

Wird der Piezoaktor 400 entspannt, schließt sich das Servoventil wieder, indem der Ventilkörper 310 gegen die Ventilplatte 320 gedrückt und abgedichtet wird. Der Druck im Ventilraum 300 steigt erneut, ebenso wie der im Steuerraum 250, sodass im Ergebnis die Düsennadel 130 wieder nach unten in ihren Sitz gedrückt wird. Das Einspritzventil ist geschlossen.If the piezoelectric actuator 400 is relaxed, the servo valve closes again, by the valve body 310 against the valve plate 320th is pressed and sealed. The pressure in the valve chamber 300 rises again, as well as in the control chamber 250, so that as a result the nozzle needle 130 is pressed down again into its seat. The injection valve is closed.

Das beschriebene Beispiel zeigt ein nach innen öffnendes Einspritzventil. Selbstverständlich ist bei entsprechender Kraftumkehr auch die Verwendung eines nach außen öffnenden Ventils von der Erfindung umfasst.The example described shows an inwardly opening injection valve. Of course, with appropriate force reversal, the use of an outwardly opening valve is encompassed by the invention.

Damit die Kopplung über das Kopplervolumen 380 korrekt funktioniert, muss der Dichtspalt 360 so klein gewählt werden, dass auch bei hohem Rail-Druck nur eine ausreichend kleine Kraftstoffleckage möglich ist und gleichzeitig auch kein klemmen des Ventil-Pins 350 im Servoventilkörper 310 erfolgt. Typischerweise wird der Dichtspalt 360 kleiner als ein Mikrometer gewählt werden, wobei das Kopplervolumen 380 mit 0,5 mm3 ausreichend groß ist, um einen sehr steifen Antrieb zu realisieren.For the coupling via the coupler volume 380 to function correctly, the sealing gap 360 must be selected to be so small that even at high rail pressure only a sufficiently small fuel leakage is possible and at the same time no clamping of the valve pin 350 in the servo valve body 310 takes place. Typically, the sealing gap 360 will be smaller than one micrometer, with the coupler volume 380 of 0.5 mm 3 being sufficiently large to realize a very rigid drive.

Im Ergebnis wird mit dem erfindungsgemäßen Einspritzventil die als problematische, aus dem Stand der Technik bekannte, leerhubbehaftete mechanische Kopplung des Piezoaktors mit dem Servoventilkörper durch eine hydraulische Kopplung in einem in das Servoventil integrierten Spielausgleich ersetzt. Dadurch wird der Ausgleich von Längenänderungen in Folge von Temperatureffekten, Verschleiß an den Kontaktstellen im Antrieb verbessert, ebenso wie der Ausgleich von Längenänderungen des Piezoaktors selbst, etwa in Folge von Änderungen des Polarisationszustandes. Die Reduktion der Druckpulse im Aktorraum und damit die Verringerung der Störeffekte auf das Sensorsignal des Piezoaktors wird unter anderem durch die Vergrößerung des Niederdruckbereichs erreicht. Im Bereich der - nicht gezeigten - elektrischen Kontaktierung im oberen Bereich des Einspritzventils können Schwingungen reduziert werden, wenn die Piezokopfplatte im Injektorkörper steif anliegt. Durch diese Kopplung, die auch für leichter siedende Kraftstoffe korrekt arbeitet, entfällt der aufwendige Einstellprozess für den Leerhub bei der Injektormontage. Gleichzeitig werden die Fertigungskosten reduziert. Im Betrieb verringert sich die Ansteuerenergie für den Piezoaktor, da der Leerhub entfällt. Durch die gesteigerte Genauigkeit können die Einspritzmengen Streuungen in Abhängigkeit der Verpratzungskraft im Zylinderkopf reduziert werden sowie die Einspritzmengenstabilität im dynamischen Motorbetrieb verbessert werden.As a result, the problematic, known from the prior art, vacancy-laden mechanical coupling of the piezoelectric actuator with the servo valve body is replaced by a hydraulic coupling in a built-in servo valve clearance compensation with the injection valve according to the invention. As a result, the compensation of changes in length due to temperature effects, wear at the contact points in the drive is improved, as well as the compensation of changes in length of the piezoelectric actuator itself, for example as a result of changes in the polarization state. The reduction of the pressure pulses in the actuator chamber and thus the reduction of the parasitic effects on the sensor signal of the piezoelectric actuator is achieved inter alia by the enlargement of the low-pressure region. In the range of - not shown - electrical contact in the upper part of the injector vibrations can be reduced when the Piezo head plate in the injector body stiff. Through this coupling, which also works correctly for lighter boiling fuels, eliminates the complex adjustment process for the idle stroke in the injector assembly. At the same time, the production costs are reduced. During operation, the drive energy for the piezoelectric actuator is reduced because the idle stroke is eliminated. Due to the increased accuracy, the injection quantities variations can be reduced as a function of the Verpratzungskraft in the cylinder head and the injection quantity stability can be improved in dynamic engine operation.

Claims (8)

  1. Injection valve with servo-valve control for injecting fuel into the combustion chamber of an internal combustion engine, having an injector body (100) with an injection nozzle, the injection nozzle having a nozzle module (110) with a nozzle body (120) and with a nozzle needle (130), wherein the nozzle module (110) is arranged in the lower side, facing toward the combustion chamber, of the injector body (100), and the nozzle needle (130) corresponds with a nozzle spring (140) which is arranged so as to exert a closing force on the nozzle needle (130), wherein the injection valve furthermore has a high-pressure line (210) which, at one location, has a connection to the high-pressure fuel system and which, at another location, is connected via an inflow throttle (230) to a control chamber (250), wherein the control chamber (250) is connected via an outflow throttle (270) to a valve chamber (300), wherein a valve body (310) is arranged in the valve chamber (300), wherein the valve body (310) interacts with a valve spring (330) such that the valve spring (330) pushes the valve body (310) away from a throttle plate (290) such that a gap (340) remains between valve body (310) and throttle plate (290), wherein the valve body (310) is furthermore connected to a valve pin (350), which in turn is connected to an actuator (400) which is preloaded by an actuator spring (450), characterized in that the valve pin (350) is fitted into the valve body (310) with a very small clearance and forms a sealing gap (360) between valve pin (350) and valve body (310), and the valve body (310) has bores (370) which connect the valve chamber (300) to the sealing gap (360), and wherein furthermore, the lower end of the valve pin (350) is not entirely connected to the valve body (310), such that a coupling volume (380) is formed between valve pin (350) and valve body (310), which coupling volume is connected via the sealing gap (360) and the bores (370) to the valve chamber (300), and wherein the sealing gap (360), on the one hand, permits a fluidic connection between the coupling volume (380) and the valve chamber (300), but on the other hand, during the short time of valve actuation, practically prevents an exchange of fluid between coupling volume (380) and valve chamber (300), and the coupling volume (380) does not change in said time.
  2. Injection valve according to Claim 1, characterized in that the actuator spring (450) is in the form of a corrugated spring (450) or corrugated tube spring (450).
  3. Injection valve according to one of the preceding claims, characterized in that the actuator has piezo elements, preferably in the form of a fully active piezo stack.
  4. Injection valve according to one of the preceding claims, characterized in that the high-pressure fuel line (210) is connected via a nozzle aperture (240) to the interior of the nozzle body.
  5. Injection valve according to one of the preceding claims, characterized in that the sealing gap (360) amounts to approximately 1 µm.
  6. Injection valve according to one of the preceding claims, characterized in that the coupling volume (380) amounts to approximately 0.5 mm3.
  7. Injection valve according to one of the preceding claims, characterized in that the nozzle needle opens inwardly.
  8. Injection valve according to one of the preceding claims, characterized in that the actuator (400) is preloaded and simultaneously sealed off by a corrugated spring (450).
EP15778973.6A 2014-10-15 2015-10-13 Piezo common rail injector with hydraulic clearance compensation integrated into the servo valve Active EP3207243B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014220883.1A DE102014220883B4 (en) 2014-10-15 2014-10-15 Piezo Common Rail Injector with hydraulic backlash integrated into the servo valve
PCT/EP2015/073710 WO2016059069A1 (en) 2014-10-15 2015-10-13 Piezo common rail injector with hydraulic clearance compensation integrated into the servo valve

Publications (2)

Publication Number Publication Date
EP3207243A1 EP3207243A1 (en) 2017-08-23
EP3207243B1 true EP3207243B1 (en) 2018-09-26

Family

ID=54293262

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15778973.6A Active EP3207243B1 (en) 2014-10-15 2015-10-13 Piezo common rail injector with hydraulic clearance compensation integrated into the servo valve

Country Status (5)

Country Link
US (1) US10233885B2 (en)
EP (1) EP3207243B1 (en)
CN (1) CN106795851B (en)
DE (1) DE102014220883B4 (en)
WO (1) WO2016059069A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220883B4 (en) 2014-10-15 2016-09-22 Continental Automotive Gmbh Piezo Common Rail Injector with hydraulic backlash integrated into the servo valve
DE102016220071A1 (en) * 2016-10-14 2018-04-19 Continental Automotive Gmbh Servo injector with minimal valve volume
DE102016220074B4 (en) * 2016-10-14 2023-02-02 Vitesco Technologies GmbH Piezo common rail injector with hydraulic play compensation by moving the valve seat
JP6926718B2 (en) * 2017-06-23 2021-08-25 株式会社Soken Fuel injection device
JP6988196B2 (en) * 2017-06-27 2022-01-05 株式会社Soken Fuel injection device
JP7006161B2 (en) * 2017-11-15 2022-01-24 株式会社Soken Fuel injection device
DE102018200288A1 (en) * 2018-01-10 2019-07-11 Continental Automotive Gmbh Piezo common rail injector with inward opening servo valve
JP7064363B2 (en) * 2018-03-29 2022-05-10 株式会社Soken Fuel injection device
JP7024567B2 (en) * 2018-04-06 2022-02-24 株式会社デンソー Fuel injection valve
CN109236531A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 The variable heavy oil piezoelectric fuel injector of fuel injection characteristic
CN109184983B (en) * 2018-07-26 2021-03-30 哈尔滨工程大学 Pressure accumulation type heavy oil piezoelectric oil injector with variable oil injection law
DE102018126185A1 (en) 2018-10-22 2020-04-23 Schaeffler Technologies AG & Co. KG Tool and method for mechanical surface processing

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19708304C2 (en) * 1997-02-28 1999-09-30 Siemens Ag Movement transmission device and injection valve with a movement transmission device
US6298829B1 (en) * 1999-10-15 2001-10-09 Westport Research Inc. Directly actuated injection valve
US6575138B2 (en) * 1999-10-15 2003-06-10 Westport Research Inc. Directly actuated injection valve
DE10112147A1 (en) * 2001-03-14 2002-09-19 Bosch Gmbh Robert Valve for controlling liquids
DE102004046191B3 (en) * 2004-09-23 2006-04-13 Siemens Ag Servo valve and injector
DE102009000170B4 (en) * 2009-01-13 2017-11-30 Robert Bosch Gmbh fuel injector
DE102009045556A1 (en) * 2009-10-12 2011-04-14 Robert Bosch Gmbh Injector, particularly common-rail-injector for injecting fuel to combustion chamber of internal combustion engine, comprises valve element which is adjusted between closing position and opening position
DE102010027278B4 (en) * 2010-07-15 2020-07-02 Metismotion Gmbh Thermally volume-neutral stroke transmitter and metering valve with such a stroke transmitter and use of the metering valve
DE102012212614A1 (en) 2012-07-18 2014-01-23 Continental Automotive Gmbh Piezo injector with hydraulically coupled nozzle needle movement
DE102013222650A1 (en) * 2013-06-10 2014-12-11 Robert Bosch Gmbh Fuel injector
DE102014220883B4 (en) 2014-10-15 2016-09-22 Continental Automotive Gmbh Piezo Common Rail Injector with hydraulic backlash integrated into the servo valve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2016059069A1 (en) 2016-04-21
US10233885B2 (en) 2019-03-19
US20170260950A1 (en) 2017-09-14
DE102014220883B4 (en) 2016-09-22
CN106795851B (en) 2019-06-18
CN106795851A (en) 2017-05-31
EP3207243A1 (en) 2017-08-23
DE102014220883A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
EP3207243B1 (en) Piezo common rail injector with hydraulic clearance compensation integrated into the servo valve
EP2052148B1 (en) Fuel injector with direct needle control and servo valve assistance
EP1963662A1 (en) Fuel injector
EP2414662B1 (en) Hydraulic stroke transmitter or amplifier
DE19940054C2 (en) Dosing valve for a pressurized fluid
EP2909467B1 (en) Piezo injector
DE102012220027A1 (en) Switching valve for common-rail fuel injector for injecting diesel into combustion chamber of internal combustion engine, has control space filled with fuel via hole, and closing element closing hole in position for pressure relief of space
EP1983186B1 (en) Pressure-stabilised actuator
WO2016059059A1 (en) Injection valve for injecting fluid into a combustion chamber of an internal combustion engine
DE102016220074B4 (en) Piezo common rail injector with hydraulic play compensation by moving the valve seat
EP2813698B1 (en) Fuel injector valve
EP2426348B1 (en) Fuel injector valve
EP1664525B1 (en) Metering device
WO2018068926A1 (en) Servo injector having minimal valve-chamber volume
DE102006055555A1 (en) Fuel injector for internal combustion engine, has actuator mounted in low pressure area in housing part or retaining body and force-balanced under formation of piston stroke directly or indirectly on valve, where actuator has support
EP1519034B1 (en) Fuel injection valve
WO2002020978A1 (en) Hydraulically translated valve
EP2642110B1 (en) Fuel injector valve
WO2016058969A1 (en) Injection valve for injecting fluid into a combustion chamber of an internal combustion engine
EP2412965A2 (en) Fuel injector valve
EP3184801A1 (en) Hydraulic coupler system and fuel injection valve with same
DE102005029473A1 (en) Fuel injector has servo valve operated by actuator which forms connection between high pressure fuel chamber and sealing chamber
DE102010043110A1 (en) Fuel injection valve for internal combustion engines
DE102005045892A1 (en) Directly driven fuel injector, comprises outwards opening jet needle moved by piezoelectric multi-layer device
DE10232194B4 (en) Fuel injector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180425

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1046322

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015006139

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015006139

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181013

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

26N No opposition filed

Effective date: 20190627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181013

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015006139

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151013

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180926

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191013

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1046322

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201013

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015006139

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201013

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231026

Year of fee payment: 9

Ref country code: DE

Payment date: 20231031

Year of fee payment: 9