EP3204463B1 - Metal complexes with tridentate ligands for optoelectronic applications - Google Patents

Metal complexes with tridentate ligands for optoelectronic applications Download PDF

Info

Publication number
EP3204463B1
EP3204463B1 EP15778639.3A EP15778639A EP3204463B1 EP 3204463 B1 EP3204463 B1 EP 3204463B1 EP 15778639 A EP15778639 A EP 15778639A EP 3204463 B1 EP3204463 B1 EP 3204463B1
Authority
EP
European Patent Office
Prior art keywords
group
substituted
aromatic
moieties
replaced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15778639.3A
Other languages
German (de)
French (fr)
Other versions
EP3204463A1 (en
Inventor
Andreas Jacob
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cynora GmbH
Original Assignee
Cynora GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cynora GmbH filed Critical Cynora GmbH
Publication of EP3204463A1 publication Critical patent/EP3204463A1/en
Application granted granted Critical
Publication of EP3204463B1 publication Critical patent/EP3204463B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to metal (I) complexes having a structure of the formula A-3 according to claim 1, their use in optoelectronic components according to claim 2, optoelectronic components comprising such a metal (I) complex according to claim 7 and a method for producing an optoelectronic component according to claim 9.
  • Such components consist mainly of organic layers.
  • a conductive metal layer for. B. from an aluminum cathode, negative electrons in a thin electron conduction layer and migrate towards the positive anode.
  • This consists z. B. from a transparent, but electrically conductive, thin indium-tin-oxide layer, from the positive charge carriers, so-called. Holes, immigrate into an organic hole-conduction layer. These holes move in the opposite direction to the negative cathode compared to the electrons.
  • the emitter layer also consists of an organic material, are in addition special emitter molecules on which or in the vicinity of the two charge carriers recombine and thereby lead to neutral, but energetically excited states of the emitter molecules.
  • the excited states then give off their energy as a bright light emission, e.g. B. in blue, green or red color. Also white-light emission is feasible.
  • the emitter layer may also be dispensed with if the emitter molecules are located in the hole or electron conduction layer.
  • the new OLED components can be designed over a large area as lighting fixtures or extremely small pixels for displays.
  • Decisive for the construction of high-effective OLEDs are the luminous materials used (emitter molecules). These can be realized in various ways, using purely organic or metal-organic molecules and complex compounds. It can be shown that the luminous efficacy of the OLEDs with metal-organic substances, the so-called triplet emitters, can be substantially larger than for purely organic materials. Because of this property, the further development of metal-organic materials is of major importance.
  • the function of OLEDs has already been described very frequently: C. Adachi, MA Baldo, SR Forrest, S. Lamansky, ME Thompson, RC Kwong, Appl. Phys. Lett.
  • Pawlowski (BASF AG), DE 10358665 A1, 2005 ; Hsieh, Thoms TPS, JP Chen (Canon KK, Tokyo), US 2006/989273 B2, 2006 ; N. Schulte, S. Heun, I. Bach, P. Stoessel, K. Treacher (Covion Organic Semiconductors), WO 2006/003000 A1, 2006 ; A. Vogler, V. Pawlowski, H.-W. Schmidt, M. Thelakkat (BASF AG), WO 2006/032449 A1, 2006 ; TK Hatwar, JP Spindler, RH Young (Eastman Kodak Co), WO 2006/028546 A1, 2006 ,
  • the present invention was based on the object to overcome at least some of the above-mentioned disadvantages.
  • Organic electroluminescent devices containing these metal complexes are also the subject of the present invention.
  • metal (I) complexes having a structure of formula A-3 which will be described below.
  • An aryl group in the sense of this invention contains 6 to 60 aromatic ring atoms;
  • a heteroaryl group contains 5 to 60 aromatic ring atoms, at least one of which represents a heteroatom.
  • the heteroatoms are preferably N, O, and S. If other statements are made in the description of the present invention, for example with regard to the number of aromatic ring atoms or the heteroatoms contained therein, these apply.
  • An aryl group or heteroaryl group is understood to mean a simple aromatic cycle, ie benzene, or a simple heteroaromatic cycle, for example pyridine, pyrimidine or thiophene, or a heteroaromatic polycycle, for example naphthalene, phenanthrene, quinoline or carbazole.
  • a condensed (fused) aromatic or heteroaromatic polycycle consists in the context of the present application of two or more fused simple aromatic or heteroaromatic cycles.
  • An aryl or heteroaryl group which may be substituted in each case by the abovementioned radicals and which may be linked via any position on the aromatic or heteroaromatic compounds is understood in particular to mean groups which are derived from benzene, naphthalene, anthracene, phenanthrene, pyrene, Dihydropyrenes, chrysene, perylene, fluoranthene, benzanthracene, benzphenanthrene, tetracene, pentacene, benzpyrene, furan, benzofuran, isobenzofuran, dibenzofuran, thiophene, benzothiophene, isobenzothiophene, dibenzothiophene; Pyrrole, indole, isoindole, carbazole, pyridine, quinoline, isoquinoline, acridine, phenanthridine, benzo-5,6-quinoline, isoquinoline
  • An aromatic ring system in the sense of this invention contains 6 to 60 carbon atoms in the ring system.
  • a heteroaromatic ring system in the context of this invention contains 5 to 60 aromatic ring atoms, at least one of which represents a heteroatom.
  • the heteroatoms are preferably selected from, N, O and / or S.
  • An aromatic or heteroaromatic ring system in the sense of this invention is to be understood as meaning a system which does not necessarily contain only aryl or heteroaryl groups but in which also several aryl or heteroaryl groups by a non-aromatic moiety (preferably less than 10% of the various atoms), such as a sp3-hybridized C, Si, or N atom, an sp2-hybridized C, N, or O atom, or a sphybridized C-atom, can be connected.
  • a non-aromatic moiety preferably less than 10% of the various atoms
  • systems such as 9,9'-diaryl fluorene, triarylamine, diaryl ethers, stilbene, etc.
  • aromatic ring systems in the context of this invention, and systems in which two or more aryl groups are exemplified by a linear or cyclic alkyl, alkenyl or alkynyl groups or by a silyl group.
  • systems in which two or more aryl or heteroyrayl groups are linked together via single bonds are understood as aromatic or heteroaromatic ring systems in the context of this invention, such as systems such as biphenyl, terphenyl or diphenyltriazine.
  • aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, which may be substituted in each case with radicals as defined above and which may be linked via any positions on the aromatic or heteroaromatic, are understood in particular groups which are derived from benzene, naphthalene , Anthracene, benzanthracene, phenanthrene, benzphenanthrene, pyrene, chrysene, perylene, fluoranthene, naphthacene, pentacene, benzpyrene, biphenyl, biphenylene, terphenyl, terphenylene, quaterphenyl, fluorene, spirobifluorene, dihydrophenanthrene, dihydropyrene, tetrahydropyrene, cis- or trans-indenofluorene, Truxene, isotruxene, spirotruxene, spiroisotruxen
  • metal complexes of the formula A Preference is given to metal complexes of the formula A in which the sum of the valence electrons around the metal atom is 18. This preference is due to the particular stability of these metal complexes.
  • the metal complexes MLX have a ligand L with a structure of the formula B (part of the formula A), where the symbols indicated in formula B have the meaning given in formula A.
  • the ligand L is thus a tridentate, non-macrocyclic ligand which binds to the metal M via the three donor atoms E, E 'and E ".
  • a donor atom in the context of the present invention is understood to mean an atom which is at least The donor atom may be neutral or negatively charged, and the donor atom may be neutral or negatively charged.
  • Examples of neutral donor atoms are nitrogen which is in a heteroaromatic
  • examples of anionic donor atoms are nitrogen atoms which are part of a five-membered heteroaromatic group, such as, for example, nitrogen in the pyrrole, which bonds via the nitrogen Donor atom in the sense of this invention is understood to mean a donor atom which is not part of the metallacycle having the ring members (EC (sp2) -C (sp2 ) -E'-M), which is formed from M and L, but which is bonded as a substituent to L and which has at least one lone pair of electrons and thereby is able to bind to a metal atom.
  • exocyclic donor atoms are oxygen in Form of a phenolate, sulfur in the form of a thiolate, nitrogen in the form of a nitrile, amine, imine, amide or imide, phosphorous in the form of a phosphine or phosphite.
  • the combination of different donor elements increases the stability of the metal complex.
  • a pnictide donor such as As or P increases the redox stability, so that air-stable substances are obtained. This greatly facilitates the practical handling of component production.
  • US 2012/0286254 which uses only nitrogen donors, results in a reduced oxidation sensitivity of the complexes.
  • the metal (I) complexes according to the invention are distinguished by a wide range of achievable emission colors.
  • the emission quantum yield is high, in particular greater than 50%. For emitter complexes with Cu central ion, the emission decay times are surprisingly short.
  • inventive copper (I) complexes can be used in relatively high emitter concentrations without significant quenching effects. That is, emitter concentrations of 5% to 100% can be used in the emission layer.
  • copper (I) complexes have been used successfully in OLEDs in the past and often show advantageous properties such as high efficiency and good adjustability of the emission color. Due to the restriction to a metal core in particular the vaporizability is facilitated. Often, as the number of metal cores increases, the volatility of a compound decreases, making it unsuitable for gas phase processing.
  • the stability of an OLED component depends strongly on the purity of the compounds used, which can best be ensured by sublimation. By this method, the complexes can be easily obtained in high purity, preferably in a purity of> 99% by ⁇ 1> H-NMR or HPLC, more preferably> 99.9%.
  • Another embodiment of the description relates to metal complexes MLX having a structure of the formula A-1 where E, E ', E ", A, X and R are as defined above.
  • the complexes of the invention are used in an organic electronic device.
  • This is understood to mean an electronic device which contains anode, cathode and at least one layer, wherein these Layer contains at least one organic compound.
  • the organic electronic device according to the invention thus contains anode, cathode and at least one layer which contains at least one complex according to the invention (ie one, two, three or more complexes according to the invention).
  • TFTs organic light-emitting transistors
  • O-LETs organic light-emitting transistors
  • O-SCs organic solar cells
  • O-FQDs organic field quench devices
  • LECs light-emitting electrochemical cells
  • O Laser organic laser diodes
  • Active components are generally the organic or inorganic materials incorporated between the anode and cathode, for example, charge injection, charge transport or charge blocking materials, but especially emission materials and matrix materials.
  • the compounds according to the invention exhibit particularly good properties, in particular as emission material in organic electroluminescent devices, as will be explained in more detail below.
  • One aspect of the invention therefore relates to organic Electroluminescent devices.
  • Such an organic electroluminescent device includes a cathode, an anode and at least one emitting layer. In addition to these layers, they may also contain further layers, for example one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, exciton blocking layers, charge generation layers.
  • the organic electroluminescent device may contain an emitting layer, or it may contain a plurality of emitting layers, wherein at least one emitting layer contains at least one compound according to formula A. If several emission layers are present, they preferably have a total of a plurality of emission maxima between 380 nm and 750 nm, so that overall white emission results, ie in the emitting layers different emitting compounds are used, which can fluoresce or phosphoresce. Particular preference is given to three-layer systems, the three layers showing blue, green and orange or red emission (for the basic structure see, for example, US Pat. WO 05/011013 A ).
  • the organic electronic device contains at least one complex according to the invention, in particular one or more complexes comprising or consisting of a structure of formula A3, as an emitting compound in an emitting layer.
  • the metal is copper, silver or gold, in particular copper.
  • the emitting compound in an emitting layer When at least one complex of the invention is used as the emitting compound in an emitting layer, it is preferably used as a pure substance or in combination with one or more matrix materials.
  • the mixture of the complex of the invention and the matrix material contains 1 to 99% by weight, preferably 2 to 90% by weight, especially preferably 3 to 40 wt .-%, in particular 5 to 15 wt .-% of the complex according to the invention compounds based on the total mixture of emitter and matrix material. Accordingly, the mixture contains 99 to 1 wt .-%, preferably 98 to 10 wt .-%, particularly preferably 97 to 60 wt .-%, in particular 95 to 85 wt .-% of the matrix material based on the total mixture of emitter and matrix material.
  • Preferred matrix materials are CBP (N, N-biscarbazolylbiphenyl), carbazole derivatives (e.g. WO 05/039246 A . US 2005/0069729 A . JP 2004/288381 A . EP 1205527 or the DE 102007002714 A1 ), Azacarbazoles (eg according to EP 1617710 . EP 1617711 . EP 1731584 .
  • Ketones eg according to WO 04/093207 A
  • Phosphine oxides eg according to WO 05/003253
  • Oligophenylenes eg according to US 2005/0069729
  • bipolar matrix materials eg according to WO 07/137725 A
  • Silanes eg according to WO 05/111172 A
  • 9,9-Diarylfluorenderivate eg., According to the DE 102008017591 A1
  • Azaboroles or boronic esters eg according to WO 06/117052 A
  • Further suitable matrix materials are the compounds according to the formula A of the present application, as explained below.
  • the at least one complex according to the invention is used as matrix material for an emitting compound in an emitting layer.
  • the metal complex according to the invention When used as the matrix material for an emitting compound in an emitting layer, it is preferably used in combination with one or more luminescent materials.
  • the mixture of the compound according to formula A and the emissive compound then contains between 99 and 1% by weight, preferably between 98 and 10% by weight, more preferably between 97 and 60% by weight, in particular between 95 and 85% by weight .-% of the compound based on the total mixture of emitter and matrix material.
  • the mixture contains between 1 and 99 wt .-%, preferably between 2 and 90 wt .-%, more preferably between 3 and 40 wt .-%, in particular between 5 and 15 wt .-% of the emitter based on the total mixture of Emitter and matrix material.
  • luminescent compounds are compounds which emit light, preferably in the visible range, with suitable excitation and also contain at least one atom of atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and less than 80.
  • suitable emitters are the metal complexes of the invention described herein. In general, all luminescent complexes which are used according to the prior art for luminescent OLEDs and as are known to the person skilled in the art in the field of organic electroluminescence are suitable.
  • a metal complex according to the invention is used as a hole-blocking material in a hole-blocking layer and / or as an electron-transport material in an electron-transport layer.
  • the emitting layer may be fluorescent or luminescent.
  • one or more layers of an organic electroluminescent device are coated with a sublimation process.
  • the materials are vapor-deposited in vacuum sublimation systems at a pressure of less than 10 -5 mbar, preferably less than 10 -6 mbar, particularly preferably less than 10 -7 mbar.
  • an organic electroluminescent device characterized in that one or more layers are coated with the OVPD (Organic Vapor Phase Deposition) method or with the aid of a carrier gas sublimation.
  • the materials are applied at a pressure between 10 -5 mbar and 1 bar.
  • OVJP Organic Vapor Jet Printing
  • the materials are applied directly through a nozzle and thus structured (eg. MS Arnold et al., Appl. Phys. Lett. 2008, 92, 053301 ).
  • an organic electroluminescent device in which one or more layers of solution, such. B. by spin coating, or with any printing process, such.
  • any printing process such as screen printing, flexographic printing or offset printing, but particularly preferably LITI (Light-Induced Thermal Imaging, thermal transfer printing) or ink-jet printing (ink jet printing), are produced.
  • LITI Light-Induced Thermal Imaging, thermal transfer printing
  • ink-jet printing ink jet printing
  • soluble compounds are necessary, which are obtained for example by suitable substitution.
  • Such chemical Methods for the modification of molecules are known to the person skilled in the art and can be applied by him without problems to organic electroluminescent devices containing at least one metal complex according to the invention.
  • ligands L are suitable as ligands L for the metal complexes according to the invention:
  • aryl bromide (1 eq) is placed in dry ether and cooled to -78 ° C (dry ice, acetone). Then 2.5 molar n-BuLi (1 eq) is slowly added dropwise and stirred at -78 ° C for one hour. After the solution has been brought to RT, the mixture is cooled again to -78 ° C and the corresponding phosphine chloride (usually Ph 2 PCl) slowly added by syringe. The solution is thawed overnight and the reaction is quenched by careful addition (ice-bath cooling) of 1 molar NaOH. It is more common that the phosphines are not soluble in ether and a white solid is in the etheric phase.
  • the ligand is placed in a vial with the metal salt (especially Cul, CuBr or CuCl), which is sealed and evacuated. After it has been charged with inert gas, acetonitrile is added and stirred overnight. The resulting solid is filtered off, washed with a little cold acetonitrile and dried in vacuo.
  • the metal salt especially Cul, CuBr or CuCl
  • the emission spectrum of 3b as a powder at room temperature is in FIG. 3 shown.
  • the excitation spectrum of 3b as a powder at room temperature is in FIG. 4 shown.
  • OLEDs are produced according to the general procedure outlined below. Of course, this has to be adapted in individual cases to the respective circumstances (eg layer thickness variation in order to achieve optimum efficiency or color).
  • ITO-coated substrates eg glass carrier, PET film
  • ITO-coated substrates eg glass carrier, PET film
  • they are cleaned in several purification steps in an ultrasonic bath (eg soap solution, Millipore water, isopropanol).
  • an ultrasonic bath eg soap solution, Millipore water, isopropanol
  • they are blown off with an N2 gun and stored in a desiccator.
  • an ozone plasma device Before evaporation with the organic layers, they are treated with an ozone plasma device for about 20 minutes.
  • a polymeric hole injection layer is usually a conjugated, conductive polymer, such as.
  • a polyaniline derivative (PANI) or a polythiophene derivative eg PEDOT, BAYTRON P® from BAYER. This is then applied by spin coating (spin coating).
  • the organic layers are applied in turn by vapor deposition in a high vacuum system.
  • the layer thickness of the respective layer and the evaporation rate are monitored or adjusted via a quartz crystal.
  • individual layers consist of more than one compound, ie in general a host material (host) to be doped with a guest material (guest). This is achieved by coevaporation from two or more sources.
  • An electrode is applied to the organic layers. This is usually done by thermal evaporation (Balzer BA360 or Pfeiffer PL S 500). Subsequently, the transparent ITO electrode is contacted as the anode and the metal electrode as the cathode, and the device parameters are determined.
  • the emitter used was the copper complex according to Example 3a.
  • FIG. 7 shows the current-voltage curve and the luminance-voltage curve of the OLED during operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Description

Die Erfindung betrifft Metall(I)komplexe aufweisend eine Struktur der Formel A-3 nach Anspruch 1, deren Verwendung in optoelektronischen Bauelementen nach Anspruch 2, optoelektronische Bauelemente aufweisend einen derartigen Metall(I)komplex nach Anspruch 7 und ein Verfahren zur Herstellung eines optoelektronischen Bauelements nach Anspruch 9.The invention relates to metal (I) complexes having a structure of the formula A-3 according to claim 1, their use in optoelectronic components according to claim 2, optoelectronic components comprising such a metal (I) complex according to claim 7 and a method for producing an optoelectronic component according to claim 9.

Einleitungintroduction

Zur Zeit zeichnet sich ein drastischer Wandel im Bereich der Bildschirm- und Beleuchtungstechnik ab. Es wird möglich sein, flache Displays oder Leuchtflächen mit einer Dicke von unter 0,5 mm zu fertigen. Diese sind durch viele faszinierende Eigenschaften ausgezeichnet. So werden z. B. Leuchtflächen als Tapeten mit sehr geringem Energieverbrauch realisierbar sein. Ferner werden Farbbildschirme mit bisher nicht erreichbarer Farb-Echtheit, Helligkeit und Blickwinkelunabhängigkeit, mit geringem Gewicht sowie sehr niedrigem Stromverbrauch herstellbar sein. Die Bildschirme werden sich als Mikro-Displays oder Großbildschirme mit mehreren m2 Fläche in starrer Form oder flexibel, aber auch als Transmissions- oder Reflexions-Displays gestalten lassen. Ferner wird es möglich sein, einfache und kostensparende Herstellungsverfahren wie Siebdruck oder Tintenstrahldruck oder Vakuum-Sublimation einzusetzen. Dadurch wird im Vergleich zu herkömmlichen Flachbildschirmen eine sehr preiswerte Fertigung ermöglicht. Diese neue Technik basiert auf dem Prinzip der OLEDs, den Organic Light Emitting Diodes.At present, a drastic change in the field of screen and lighting technology is emerging. It will be possible to produce flat displays or illuminated areas with a thickness of less than 0.5 mm. These are distinguished by many fascinating properties. So z. B. lighting surfaces can be realized as wallpaper with very low energy consumption. Furthermore, color screens with previously unachievable color fastness, brightness and viewing angle independence, with low weight and very low power consumption will be produced. The screens can be designed as micro displays or large screens with several m 2 surface in rigid form or flexible, but also as transmission or reflection displays. Furthermore, it will be possible to use simple and cost-saving production methods such as screen printing or ink jet printing or vacuum sublimation. As a result, a very inexpensive production is possible compared to conventional flat screens. This new technique is based on the principle of OLED's, the O rganic L ight E mitting D iodes.

Derartige Bauteile bestehen vorwiegend aus organischen Schichten. Bei einer Spannung von z. B. 5 V bis 10 V treten aus einer leitenden Metallschicht, z. B. aus einer Aluminium-Kathode, negative Elektronen in eine dünne Elektronen-Leitungsschicht und wandern in Richtung der positiven Anode. Diese besteht z. B. aus einer durchsichtigen, aber elektrisch leitenden, dünnen Indium-Zinn-Oxid-Schicht, von der positive Ladungsträger, sog. Löcher, in eine organische Löcher-Leitungsschicht einwandern. Diese Löcher bewegen sich im Vergleich zu den Elektronen in entgegengesetzter Richtung, und zwar auf die negative Kathode zu. In einer mittleren Schicht, der Emitterschicht, die ebenfalls aus einem organischen Material besteht, befinden sich zusätzlich besondere Emitter-Moleküle, an denen oder in deren Nähe die beiden Ladungsträger rekombinieren und dabei zu neutralen, aber energetisch angeregten Zuständen der Emitter-Moleküle führen.Such components consist mainly of organic layers. At a voltage of z. B. 5 V to 10 V occur from a conductive metal layer, for. B. from an aluminum cathode, negative electrons in a thin electron conduction layer and migrate towards the positive anode. This consists z. B. from a transparent, but electrically conductive, thin indium-tin-oxide layer, from the positive charge carriers, so-called. Holes, immigrate into an organic hole-conduction layer. These holes move in the opposite direction to the negative cathode compared to the electrons. In a middle layer, the emitter layer, also consists of an organic material, are in addition special emitter molecules on which or in the vicinity of the two charge carriers recombine and thereby lead to neutral, but energetically excited states of the emitter molecules.

Die angeregten Zustände geben dann ihre Energie als helle Lichtemission ab, z. B. in blauer, grüner oder roter Farbe. Auch Weiß-Licht-Emission ist realisierbar. Auf die Emitterschicht kann gegebenenfalls auch verzichtet werden, wenn die Emittermoleküle sich in der Loch- oder Elektronen-Leitungsschicht befinden.The excited states then give off their energy as a bright light emission, e.g. B. in blue, green or red color. Also white-light emission is feasible. Optionally, the emitter layer may also be dispensed with if the emitter molecules are located in the hole or electron conduction layer.

Die neuen OLED-Bauelemente lassen sich großflächig als Beleuchtungskörper oder auch äußerst klein als Pixel für Displays gestalten. Entscheidend für den Bau hoch-effektiver OLEDs sind die verwendeten Leuchtmaterialien (Emitter-Moleküle). Diese können in verschiedener Weise realisiert werden, und zwar unter Verwendung rein organischer oder metall-organischer Moleküle sowie von Komplexverbindungen. Es lässt sich zeigen, dass die Lichtausbeute der OLEDs mit metall-organischen Substanzen, den sog. Triplett-Emittern, wesentlich größer sein kann als für rein organische Materialien. Aufgrund dieser Eigenschaft kommt der Weiterentwicklung der metall-organischen Materialien ein wesentlicher Stellenwert zu. Die Funktion von OLEDs ist bereits sehr häufig beschrieben worden: C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, Appl. Phys. Lett. 2001, 78, 1622 ; X. H. Yang, D. C. Müller, D. Neher, K. Meerholz, Adv. Mater. 2006, 18, 948 ; X. H. Yang, D. Neher, Appl. Phys. Lett. 2004, 84, 2476 ; J. Shinar (Hrsg.), Organic light-emitting devices - A survey, AIP-Press, Springer, New York, 2004 ; H. Yersin, Top. Curr. Chem. 2004, 241, 1 ; H. Yersin, Highly Efficient OLEDs with Phosphorescent Materials, Wiley-VCH, Weinheim 2008 ; Z. H. Kafafi, Organic Electroluminescence, Taylor & Francis, Boca Raton, 2005 . Unter Einsatz von metallorganischen Komplexen mit hoher Emissionsquantenausbeute (Übergänge unter Einbeziehung der untersten Triplett-Zustände zu den Singulett-Grundzuständen) lässt sich eine besonders hohe Effizienz des Devices erzielen. Diese Materialien werden häufig als Triplett-Emitter oder lumineszierende Emitter bezeichnet. Diese Erkenntnis ist seit längerem bekannt: C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, Appl. Phys. Lett. 2001, 78, 1622 ; X. H. Yang, D. C. Müller, D. Neher, K. Meerholz, Adv. Mater. 2006, 18, 948 ; X. H. Yang, D. Neher, Appl. Phys. Lett. 2004, 84, 2476 ; J. Shinar (Hrsg.), Organic light-emitting devices - A survey, AIP-Press, Springer, New York, 2004 ; H. Yersin, Top. Curr. Chem. 2004, 241, 1 ; H. Yersin, Highly Efficient OLEDs with Phosphorescent Materials, Wiley-VCH, Weinheim 2008 . Für Triplett-Emitter sind folgende Dokumente einschlägig: M. E. Thompson, P. I. Djurovich, J. Li (University of Southern California, Los Angeles, CA ), WO 2004/017043 A2, 2004 ; M. E. Thompson, P. I. Djurovich, R. Kwong (University of Southern California, Los Angeles, CA, Universal Display Corp, Ewing, NY), WO 2004/016711 A1, 2004 ; A. Tsuboyama, S. Okada, T. Takiguchi, K. Ueno, S. Igawa, J. Kamatani, M. Furugori, H. Iwawaki (Canon KK, Tokyo), WO 03/095587 A1, 2003 ; C.-M. Che, US 2003/0205707 A1, 2003 ; C.-M. Che, W. Lu, M. C.-W. Chan, US 2002/0179885 A1, 2002 ; J. Kamatani, S. Okada, A. Tsuboyama, T. Takiguchi, S. Igawa, US 2003/186080 A1, 2003 ; P. Stößel, I. Bach, A. Büsing (Covion Organic Semiconductors GmbH), DE 10350606 A1, 2005 ; M. Bold, C. Lennartz, M. Egen, H.-W. Schmidt, M. Thelakkat, M. Bäte, C. Neuber, W. Kowalsky, C. Schildknecht (BASF AG), DE 10338550 A1, 2005 ; C. Lennartz, A. Vogler, V. Pawlowski (BASF AG), DE 10358665 A1, 2005 ; B. Hsieh, T. P. S. Thoms, J. P. Chen (Canon KK, Tokyo), US 2006/989273 B2, 2006 ; N. Schulte, S. Heun, I. Bach, P. Stoessel, K. Treacher (Covion Organic Semiconductors), WO 2006/003000 A1, 2006 ; A. Vogler, V. Pawlowski, H.-W. Schmidt, M. Thelakkat (BASF AG), WO 2006/032449 A1, 2006 ; T. K. Hatwar, J. P. Spindler, R. H. Young (Eastman Kodak Co), WO 2006/028546 A1, 2006 .The new OLED components can be designed over a large area as lighting fixtures or extremely small pixels for displays. Decisive for the construction of high-effective OLEDs are the luminous materials used (emitter molecules). These can be realized in various ways, using purely organic or metal-organic molecules and complex compounds. It can be shown that the luminous efficacy of the OLEDs with metal-organic substances, the so-called triplet emitters, can be substantially larger than for purely organic materials. Because of this property, the further development of metal-organic materials is of major importance. The function of OLEDs has already been described very frequently: C. Adachi, MA Baldo, SR Forrest, S. Lamansky, ME Thompson, RC Kwong, Appl. Phys. Lett. 2001, 78, 1622 ; XH Yang, DC Muller, D. Neher, K. Meerholz, Adv. Mater. 2006, 18, 948 ; XH Yang, D. Neher, Appl. Phys. Lett. 2004, 84, 2476 ; J. Shinar (ed.), Organic light-emitting devices - A survey, AIP-Press, Springer, New York, 2004 ; H. Yersin, Top. Curr. Chem. 2004, 241, 1 ; H. Yersin, Highly Efficient OLEDs with Phosphorescent Materials, Wiley-VCH, Weinheim 2008 ; Zaf Kafafi, Organic Electroluminescence, Taylor & Francis, Boca Raton, 2005 , By using organometallic complexes with high emission quantum yield (transitions involving the lowest triplet states to the singlet ground states), a particularly high efficiency of the device can be achieved. These materials are often referred to as triplet emitters or luminescent emitters. This realization has been known for a long time: C. Adachi, MA Baldo, SR Forrest, S. Lamansky, ME Thompson, RC Kwong, Appl. Phys. Lett. 2001, 78, 1622 ; XH Yang, DC Muller, D. Neher, K. Meerholz, Adv. Mater. 2006, 18, 948 ; XH Yang, D. Neher, Appl. Phys. Lett. 2004, 84, 2476 ; J. Shinar (ed.), Organic light-emitting devices - A survey, AIP-Press, Springer, New York, 2004 ; H. Yersin, Top. Curr. Chem. 2004, 241, 1 ; H. Yersin, Highly Efficient OLEDs with Phosphorescent Materials, Wiley-VCH, Weinheim 2008 , For triplet emitters, the following are pertinent: ME Thompson, PI Djurovich, J.Li (University of Southern California, Los Angeles, CA. ) WO 2004/017043 A2, 2004 ; ME Thompson, PI Djurovich, R. Kwong (University of Southern California, Los Angeles, CA, Universal Display Corp., Ewing, NY), WO 2004/016711 A1, 2004 ; A. Tsuboyama, S. Okada, T. Takiguchi, K. Ueno, S. Igawa, J. Kamatani, M. Furugori, H. Iwawaki (Canon KK, Tokyo), WO 03/095587 A1, 2003 ; CM. Che, US 2003/0205707 A1, 2003 ; CM. Che, W. Lu, MC-W. Chan, US 2002/0179885 A1, 2002 ; J. Kamatani, S. Okada, A. Tsuboyama, T. Takiguchi, S. Igawa, US 2003/186080 A1, 2003 ; P. Stößel, I. Bach, A. Büsing (Covion Organic Semiconductors GmbH), DE 10350606 A1, 2005 ; M. Bold, C. Lennartz, M. Egen, H.-W. Schmidt, M. Thelakkat, M. Bäte, C. Neuber, W. Kowalsky, C. Schildknecht (BASF AG), DE 10338550 A1, 2005 ; C. Lennartz, A. Vogler, V. Pawlowski (BASF AG), DE 10358665 A1, 2005 ; Hsieh, Thoms TPS, JP Chen (Canon KK, Tokyo), US 2006/989273 B2, 2006 ; N. Schulte, S. Heun, I. Bach, P. Stoessel, K. Treacher (Covion Organic Semiconductors), WO 2006/003000 A1, 2006 ; A. Vogler, V. Pawlowski, H.-W. Schmidt, M. Thelakkat (BASF AG), WO 2006/032449 A1, 2006 ; TK Hatwar, JP Spindler, RH Young (Eastman Kodak Co), WO 2006/028546 A1, 2006 ,

Einige Kupferkomplexe der Form Cu(L^L)(L'^L') und Cu2X2(L^L)2 mit L^L und L'^L' = bidentate Liganden und X = Halogenide sind bereits aus dem Stand der Technik bekannt. Sie zeigen intensive Lumineszenz bei Anregung mit UV-Licht. Die Lumineszenz stammt dabei meist von einem MLCT- (metal to ligand charge transfer) oder einem (MX)LCT-(metal-halogene to ligand charge transfer) Zustand. Weitere Einzelheiten zu ähnlichen Cu(I)-Systemen können der Literatur entnommen werden, beispielsweise Inorg. Chem., 2011, 50, 7172-7188 , wobei die in dieser Druckschrift offenbarten Komplexe nur über eine sehr geringe Quanteneffizienz von unter 3 % verfügen ( P. C. Ford, E. Cariati, J. Bourassa, Chem. Rev. 1999, 99, 3625 ; M. Hashimoto, S. Igawa, M. Yashima, I. Kawata, M. Hoshino, M. Osawa, J. Am. Chem. Soc. 2011, 10348 ; V.A. Krylova, P. I. Djurovich, M. T. Whited, M. E. Thompson, Chem. Commun. 2010, 6696 . J. Lumin. 2009, 129, 181 - 186 ; J. Phys. Chem. C 2009, 113, 13968-13973 ; Appl. Phys. Lett. 2006, 89, 103511 - 103513 ).Some copper complexes of the form Cu (L 1 L) (L '1 L') and Cu 2 X 2 (L 1 L) 2 with L 1 L and L '1 L' = bidentate ligands and X = halides are already known from the prior art , They show intense luminescence upon excitation with UV light. The luminescence usually originates from an MLCT (metal to ligand charge transfer) or an (MX) LCT (metal-halogene to ligand charge transfer) state. Further details of similar Cu (I) systems can be found in the literature, for example Inorg. Chem., 2011, 50, 7172-7188 , where the complexes disclosed in this document have only a very low quantum efficiency of less than 3% ( PC Ford, E. Cariati, J. Bourassa, Chem. Rev. 1999, 99, 3625 ; M. Hashimoto, S. Igawa, M. Yashima, I. Kawata, M. Hoshino, M. Osawa, J. Am. Chem. Soc. 2011, 10348 ; VA Krylova, PI Djurovich, MT Whited, ME Thompson, Chem. Commun. 2010, 6696 , J. Lumin. 2009, 129, 181 - 186 ; J. Phys. Chem. C 2009, 113, 13968-13973 ; Appl. Phys. Lett. 2006, 89, 103511-103513 ).

Metallorganische Emitter weisen ein großes Potential zur Lichterzeugung in Displays (als Pixel) und in Beleuchtungsflächen (z. B. als Leuchttapete) auf. Sehr viele Triplett-EmitterMaterialien wurden bereits patentiert und werden mittlerweile auch technologisch in ersten Devices eingesetzt. Die bisherigen Lösungen weisen Nachteile und Probleme auf, und zwar in folgenden Bereichen:

  • Langzeitstabilität der Emitter in den OLED-Devices,
  • Thermische Stabilität,
  • Chemische Stabilität gegenüber Wasser und Sauerstoff,
  • Verfügbarkeit wichtiger Emissionsfarben,
  • Fertigungstechnische Reproduzierbarkeit,
  • Erreichbarkeit einer hohen Effizienz bei hohen Stromdichten,
  • Erreichbarkeit sehr hoher Leuchtdichten,
  • Hoher Preis der Emittermaterialien,
  • Emittermaterialien sind toxisch und
  • Synthesen sind aufwendig.
Organometallic emitters have a high potential for generating light in displays (as pixels) and in illumination surfaces (eg as luminous wallpaper). Many triplet emitter materials have already been patented and are now being used technologically in the first devices. The previous solutions have disadvantages and problems in the following areas:
  • Long-term stability of emitters in OLED devices,
  • Thermal stability,
  • Chemical stability to water and oxygen,
  • Availability of important emission colors,
  • Manufacturing reproducibility,
  • Availability of high efficiency at high current densities,
  • Availability of very high luminances,
  • High price of emitter materials,
  • Emitter materials are toxic and
  • Syntheses are expensive.

Vor diesem Hintergrund lag der vorliegenden Erfindung die Aufgabe zu Grunde, zumindest einige der oben genannten Nachteile zu überwinden.Against this background, the present invention was based on the object to overcome at least some of the above-mentioned disadvantages.

In diesem Zusammenhang sind aus Harkins et al, JACS, 2008, 130, 3478-3485 zweikernige Kupferkomplexsalze bekannt. In US 2008/0064893 werden lumineszierende Metallkomplexe beschrieben, während aus der WO 2014/146749 Metallkomplexe für die Verwendung in optoelektronischen Vorrichtungen bekannt sind. Aus EP 2 749 563 sind zweikernige Metall(I)-Komplexe für optoelektronische Anwendungen bekannt.In this context are out Harkins et al, JACS, 2008, 130, 3478-3485 binuclear copper complex salts known. In US 2008/0064893 luminescent metal complexes are described, while from the WO 2014/146749 Metal complexes are known for use in optoelectronic devices. Out EP 2 749 563 dinuclear metal (I) complexes are known for optoelectronic applications.

Beschreibung der ErfindungDescription of the invention

Überraschend wurde gefunden, dass bestimmte Metallkomplexe zu deutlichen Verbesserungen bei organischen Elektrolumineszenzvorrichtungen führen, insbesondere hinsichtlich der Lebensdauer, der Effizienz und der Stabilität gegenüber Temperaturbelastung sowie der Möglichkeit, diese Vorrichtungen optional durch Prozessierung aus der Gasphase herzustellen.Surprisingly, it has been found that certain metal complexes lead to significant improvements in organic electroluminescent devices, in particular with regard to the lifetime, the efficiency and the stability to thermal stress as well as the possibility of producing these devices optionally by gas-phase processing.

Organische Elektrolumineszenzvorrichtungen, welche diese Metallkomplexe enthalten, sind ebenfalls Gegenstand der vorliegenden Erfindung.Organic electroluminescent devices containing these metal complexes are also the subject of the present invention.

Gemäß einem Aspekt der Erfindung werden Metall(I)komplexe aufweisend eine Struktur der Formel A-3 bereitgestellt, die weiter unten beschrieben werden.According to one aspect of the invention, there are provided metal (I) complexes having a structure of formula A-3 which will be described below.

Zunächst werden Metallkomplexe MLX beschrieben, die eine Struktur gemäß Formel A aufweisen oder von einer Struktur nach Formel A sind:

Figure imgb0001
mit

  • M = ausgewählt aus der Gruppe bestehend aus Cu, Ag und Au;
  • C(sp2) = sp2-hybridisiertes Kohlenstoffatom, optional als Teil einer gegenüber Isomerisierung fixierten Doppelbindung oder eines aromatischen oder heteroaromatischen Ringsystems wie Benzol, Naphthalin, Anthracen, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothiophen, Isobenzothiophen, Dibenzothiophen, Pyrrol, Indol, Isoindol, Carbazol, Pyridin, Chinolin, Isochinolin, Acridin, Phenanthridin, Benzo-5,6-chinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Oxazol, Benzoxazol, Naphthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, 1,2-Thiazol, 1,3-Thiazol, Benzothiazol, Pyridazin, Benzopyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, 1,5-Diazaanthracen, 2,7-Diazapyren, 2,3-Diazapyren, 1,6-Diazapyren, 1,8-Diazapyren, 4,5-Diazapyren, 4,5,9,10-Tetraazaperylen, Pyrazin, Phenazin, Phenoxazin, Phenothiazin, Fluorubin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthrolin, 1,2,3-Triazol, 1,2,4-Triazol, Benzotriazol, 1,2,3-Oxadiazol, 1,2,4-Oxadiazol, 1,2,5-Oxadiazol, 1,3,4-Oxadiazol, 1,2,3-Thiadiazol, 1,2,4-Thiadiazol, 1,2,5-Thiadiazol, 1,3,4-Thiadiazol, 1,3,5-Triazin, 1,2,4-Triazin, 1,2,3-Triazin, Tetrazol, 1,2,4,5-Tetrazin, 1,2,3,4-Tetrazin, 1,2,3,5-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol;
  • A = Brücke mit mehr als einem und weniger als sechs (bezogen auf die kürzeste Kettenlänge) gleichen oder verschiedenen Kettengliedern k, bevorzugt mehr als ein und weniger als 4, stärker bevorzugt mehr als ein und weniger als 3, wobei k = C(sp2)R, CR2, C=O, C=S, C=NR, O, N, NR, S, Se; optional sind ein oder mehrere Glieder von k auch Teil eines aromatischen oder aliphatischen Ringsystems wie bei C(sp2) definiert;
  • E = Arsen oder Phosphor;
  • E' = NR, PR, AsR, O, S, Se oder N als Teil eines Imin-Systems; bevorzugt NR, für NR und N optional auch als Bestandteil eines aromatischen oder aliphatischen Ringsystems, welches optional mit C(sp2) und/oder A anelliert sein kann zu einem Ringsystem wie Chinolin, Isochinolin, etc. (siehe Definition von C(sp2));
  • E" = entweder eine chemisch neutrale Gruppe ausgewählt aus C*R (Carben-Kohlenstoff), NR (Imin-Stickstoff), NR2, PR2, AsR2, OR, SR, SeR, optional als Teil eines neutralen aromatischen oder heteroaromatischen Ringsystems wie bei C(sp2) definiert; oder
    eine einfach negativ geladene Gruppe ausgewählt aus der Gruppe bestehend aus NR, PR, AsR, O, S, Se, optional als Teil eines anionischen heteroaromatischen Ringsystems wie bei C(sp2) definiert;
  • X = ausgewählt aus der Gruppe bestehend aus Cl, Br, I, CN, OCN, SCN, Alkinyl und N3, wobei X nur bei E" = eine chemisch neutrale Gruppe vorhanden ist;
  • R ist bei jedem Auftreten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus H, Deuterium, Phenyl, Naphthyl, F, Cl, Br, I, N(R2)2, -CN, -NC, -SCN, -CF3, -NO2, -OH, C(=O)OH, C(=O)OR3, C(=O)N(R3)2, C(=O)SR3, C(=S)SR3, Si(R4)3, B(OR5)2, B(N(R6)2)2, C(=O)R3, P(=O)(R7)2, As(=O)(R7)2, P(=S)(R7)2, As(=S)(R7)2, S(=O)R3, S=NR3, S(=O)NR3, S(=O)2NR3, S(=O)2R3, O-S(=O)2R3, SF5, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R9 substituiert sein kann, wobei eine oder mehrere benachbarte CH2-Gruppen durch -R9C=CR9-, -C=C-, bzw. eine benachbarte CH2-Gruppe durch -Si(R4)2-, -Ge(R4)2-, - Sn(R4)2, -C(=O)-, -C(=S)-, -C(=Se)-, -C=N-, -C(=O)O-, -C(=O)N(R3)-, -P(=O)(R7)-, - As(=O)(R7)-, -P(=S)(R7)-, -As(=S)(R7)-, -S(=O)-, -S(=O)2-, -NR2-, -O-, oder -S- ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, F, Cl, Br, I, CN, CF3 oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R9 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R9 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere dieser Substituenten R auch miteinander ein monozyklisches aliphatisches Ringsystem mit insgesamt fünf oder sechs Ringgliedern bilden;
  • R2 ist bei jedem Auftreten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus H, Deuterium, Phenyl, Naphthyl, CF3, C(=O)OR3, Si(R4)3, C(=O)R3, P(=O)(R7)2, As(=O)(R7)2 P(=S)(R7)2, As(=S)(R7)2, S(=O)R3, S(=O)2R3, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R9 substituiert sein kann, wobei eine oder mehrere benachbarte CH2-Gruppen durch -R9C=CR9-, -C=C-, bzw. eine benachbarte CH2-Gruppe durch -Si(R4)2-, -Ge(R4)2-, - Sn(R4)2, -C(=O)-, -C(=S)-, -C(=Se)-, -C=N-, -C(=O)O-, -C(=O)N(R3)-, -P(=O)(R7)-, - As(=O)(R7)-, -P(=S)(R7)-, -As(=S)(R7)-, -S(=O)-, -S(=O)2-, -NR2-, -O-, oder -S-ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, F, Cl, Br, I, CN, CF3 oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R9 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R9 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R9 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere dieser Substituenten R2 auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden;
  • R3 ist bei jedem Auftreten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus H, Deuterium, Phenyl, Naphthyl, CF3 oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, in dem auch ein oder mehrere H-Atome durch F oder CF3 ersetzt sein können; dabei können zwei oder mehrere Substituenten R3 auch miteinander ein mono- oder polycyclisches, aliphatisches Ringsystem bilden;
  • R4 ist bei jedem Auftreten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus H, Deuterium, Phenyl, Naphthyl, CN, CF3, OH, C(=O)OR3, C(=O)N(R3)2, C(=O)R3 P(=O)(R7)2, As(=O)(R7)2, P(=S)(R7)2, As(=S)(R7)2, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R9 substituiert sein kann, wobei eine oder mehrere benachbarte CH2-Gruppen durch -R9C=CR9-, -C=C-, bzw. eine benachbarte CH2-Gruppe durch, -C(=O)-, -C(=S)-, - C(=Se)-, -C=N-, -C(=O)O-, -C(=O)N(R3)-, -P(=O)(R7)-, -As(=O)(R7)-, -P(=S)(R7)-, - As(=S)(R7)-, -S(=O)-, -S(=O)2-, -O-, oder -S- ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, F, Cl, Br, I, CN, CF3 oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R8 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R9 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R9 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere dieser Substituenten R4 auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden;
  • R5 ist bei jedem Auftreten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Phenyl, Naphthyl, CF3, C(=O)R3, P(=O)(R7)2, As(=O)(R7)2, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R9 substituiert sein kann, wobei eine oder mehrere benachbarte CH2-Gruppen durch -R9C=CR9-, -C=C-, bzw. eine benachbarte CH2-Gruppe durch -Si(R4)2-, - Ge(R4)2-, -Sn(R4)2, -C(=O)-, -C(=S)-, -C(=Se)-, -C=N-, -C(=O)O-, -C(=O)N(R3)-, - P(=O)(R7)-, -As(=O)(R7)-, -P(=S)(R7)-, -As(=S)(R7)-, -S(=O)-, -S(=O)2-, -NR2-, -O-, oder -S-ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, F, Cl, Br, I, CN, CF3 oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R9 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R9 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R9 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere dieser Substituenten R5 auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden;
  • R6 ist bei jedem Auftreten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Phenyl, Naphthyl, CF3, Si(R4)3, C(=O)R3, P(=O)(R7)2, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R9 substituiert sein kann, wobei eine oder mehrere benachbarte CH2-Gruppen durch -R9C=CR9-, -C=C-, bzw. eine benachbarte CH2-Gruppe durch-Si(R4)2-, -Ge(R4)2-, - Sn(R4)2, -C(=O)-, -C(=S)-, -C(=Se)-, -C=N-, -C(=O)O-, -C(=O)N(R3)-, -P(=O)(R7)-, - As(=O)(R7)-, -P(=S)(R7)-, -As(=S)(R7)-, -S(=O)-, -S(=O)2-, -NR2-, -O-, oder -S- ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, F, Cl, Br, I, CN, CF3 oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R9 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R9 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere dieser Substituenten R6 auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden;
  • R7 ist bei jedem Auftreten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Phenyl, Naphthyl, CN, CF3, C(=O)OR3, C(=O)N(R3)2, C(=O)R3, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R9 substituiert sein kann, wobei eine oder mehrere benachbarte CH2-Gruppen durch -R9C=CR9-, -C=C-, bzw. eine benachbarte CH2-Gruppe durch -C(=O)-, - C(=S)-, -C(=Se)-, -C=N-, -C(=O)O-, -C(=O)N(R3)-, -S(=O)-, -S(=O)2-, -O-, oder -S- ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, F, Cl, Br, I, CN, CF3 oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R9 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R9 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R3 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere dieser Substituenten R7 auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden;
  • R8 ist bei jedem Auftreten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus H, Deuterium, Phenyl, Naphthyl, F, CF3 oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, in dem auch ein oder mehrere H-Atome durch F oder CF3 ersetzt sein können; dabei können zwei oder mehrere Substituenten R8 auch miteinander ein mono- oder polycyclisches, aliphatisches Ringsystem bilden;
  • R9 ist bei jedem Auftreten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus H, Deuterium, Phenyl, Naphthyl, CN, CF3, NO2, OH, COOH, C(=O)OR3, C(=O)N(R3)2, C(=O)R3, S(=O)R3, S(=O)2R3, OSO2R3, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R8 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch - R3C=CR3-, -C=C-, bzw. eine benachbarte CH2-Gruppe durch, -C(=O)-, -C(=S)-, -C(=Se)-, - C=N-, -C(=O)O-, -C(=O)N(R3)-, -S(=O)-, -S(=O)2-, -O-, oder -S- ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, F, Cl, Br, I, CN, CF3 oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R8 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R3 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R8 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere dieser Substituenten R9 auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden.
First, metal complexes MLX are described, which have a structure according to formula A or are of a structure of formula A:
Figure imgb0001
With
  • M = selected from the group consisting of Cu, Ag and Au;
  • C (sp 2 ) = sp 2 -hybridised carbon atom, optionally as part of an isomerization-fixed double bond or an aromatic or heteroaromatic ring system such as benzene, naphthalene, anthracene, furan, benzofuran, isobenzofuran, dibenzofuran, thiophene, benzothiophene, isobenzothiophene, dibenzothiophene, pyrrole, Indole, isoindole, carbazole, pyridine, quinoline, isoquinoline, acridine, phenanthridine, benzo-5,6-quinoline, benzo-6,7-quinoline, benzo-7,8-quinoline, phenothiazine, phenoxazine, pyrazole, Indazole, imidazole, benzimidazole, naphthimidazole, phenanthrimidazole, pyridimidazole, pyrazine imidazole, quinoxaline imidazole, oxazole, benzoxazole, naphthoxazole, anthroxazole, phenanthroxazole, isoxazole, 1,2-thiazole, 1,3-thiazole, benzothiazole, pyridazine, Benzopyridazine, pyrimidine, benzpyrimidine, quinoxaline, 1,5-diazaanthracene, 2,7-diazapyrene, 2,3-diazapyrene, 1,6-diazapyrene, 1,8-diazapyrene, 4,5-diazapyrene, 4,5,9, 10-tetraazaperylene, pyrazine, phenazine, phenoxazine, phenothiazine, fluorubin, naphthyridine, azacarbazole, benzocarboline, phenanthroline, 1,2,3-triazole, 1,2,4-triazole, benzotriazole, 1,2,3-oxadiazole, 1, 2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3, 4-thiadiazole, 1,3,5-triazine, 1,2,4-triazine, 1,2,3-triazine, tetrazole, 1,2,4,5-tetrazine, 1,2,3,4-tetrazine, 1,2,3,5-tetrazine, purine, pteridine, indolizine and benzothiadiazole;
  • A = bridge with more than one and less than six (with respect to the shortest chain length) of the same or different chain members k, preferably more than one and less than 4, more preferably more than one and less than 3, where k = C (sp 2 ) R, CR 2, C = O, C = S, C = NR, O, N, NR, S, Se; optionally, one or more members of k are also part of an aromatic or aliphatic ring system as defined for C (sp 2 );
  • E = arsenic or phosphorus;
  • E '= NR, PR, AsR, O, S, Se or N as part of an imine system; preferably NR, for NR and N optionally also as part of an aromatic or aliphatic ring system, which may optionally be fused with C (sp 2 ) and / or A to a ring system such as quinoline, isoquinoline, etc. (see definition of C (sp 2 ));
  • E "= either a chemically neutral group selected from C * R (carbene carbon), NR (imine nitrogen), NR 2 , PR 2 , AsR 2 , OR, SR, SeR, optionally as part of a neutral aromatic or heteroaromatic ring system as defined at C (sp 2 ); or
    a singly negatively charged group selected from the group consisting of NR, PR, AsR, O, S, Se, optionally defined as part of an anionic heteroaromatic ring system as defined for C (sp 2 );
  • X = selected from the group consisting of Cl, Br, I, CN, OCN, SCN, alkynyl and N 3 , where X is present only when E "= a chemically neutral group;
  • R in each occurrence is independently selected from the group consisting of H, deuterium, phenyl, naphthyl, F, Cl, Br, I, N (R 2 ) 2 , -CN, -NC, -SCN, -CF 3 , - NO 2 , -OH, C (= O) OH, C (= O) OR 3 , C (= O) N (R 3 ) 2 , C (= O) SR 3 , C (= S) SR 3 , Si (R 4 ) 3 , B (OR 5 ) 2 , B (N (R 6 ) 2 ) 2 , C (= O) R 3 , P (= O) (R 7 ) 2 , As (= O) (R 7 ) 2 , P (= S) (R 7 ) 2 , As (= S) (R 7 ) 2 , S (= O) R 3 , S = NR 3 , S (= O) NR 3 , S (= O) 2 NR 3 , S (OO) 2 R 3 , OS (OO) 2 R 3 , SF 5 , a linear alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a linear alkenyl or alkynyl group with 2 to 40 carbon atoms or a branched or cyclic alkyl, alkenyl, alkynyl, alkoxy or thioalkoxy group having 3 to 40 carbon atoms, each of which may be substituted by one or more radicals R 9 , wherein one or more adjacent CH 2 groups is replaced by -R 9 C = CR 9 -, -C = C-, or an adjacent CH 2 group represented by -Si (R 4 ) 2 -, -Ge (R 4 ) 2 -, - Sn (R 4 ) 2 , -C (= O) -, -C (= S) -, - C (= Se) -, -C = N-, -C (= O) O-, -C (= O) N (R 3 ) -, -P (= O) (R 7 ) -, - As ( = O) (R 7 ) -, -P (= S) (R 7 ) -, -As (= S) (R 7 ) -, -S (= O) -, -S (= O) 2 -, And wherein one or more H atoms may be replaced by deuterium, F, Cl, Br, I, CN, CF 3 or NO 2 , or an aromatic or -NR 2 -, -O-, or -S- heteroaromatic ring system having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more radicals R 2 , or an aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms, which may be substituted by one or more radicals R 9 , or a diarylamino group , Diheteroarylaminogruppe or Arylheteroarylaminogruppe with 10 to 40 aromatic Ri ngatomen, which may be substituted by one or more radicals R 9 , or a combination of these systems; two or more of these substituents R may also together form a monocyclic aliphatic ring system with a total of five or six ring members;
  • R 2 in each occurrence is independently selected from the group consisting of H, deuterium, phenyl, naphthyl, CF 3 , C (OO) OR 3 , Si (R 4 ) 3 , C (OO) R 3 , P ( = O) (R 7 ) 2 , As (= O) (R 7 ) 2 P (= S) (R 7 ) 2 , As (= S) (R 7 ) 2 , S (= O) R 3 , S (= O) 2 R 3 , a linear alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a linear alkenyl or alkynyl group having 2 to 40 carbon atoms or a branched or cyclic alkyl, alkenyl, alkynyl -, alkoxy or Thioalkoxygruppe having 3 to 40 carbon atoms, each of which may be substituted with one or more radicals R 9 , wherein one or more adjacent CH 2 groups by -R 9 C = CR 9 -, -C = C -, or an adjacent CH 2 group by -Si (R 4 ) 2 -, -Ge (R 4 ) 2 -, - Sn (R 4 ) 2 , -C (= O) -, -C (= S ) -, -C (= Se) -, -C = N-, -C (= O) O-, -C (= O) N (R 3 ) -, -P (= O) (R 7 ) - , - As (= O) (R 7 ) -, -P (= S) (R 7 ) -, -As (= S) (R 7 ) -, -S (= O) -, -S (= O ) 2 -, -NR 2 -, -O-, or -S-may be replaced and wherein one or more H atoms by deuterium, F, Cl, Br, I, CN, CF 3 or NO 2 may be replaced, or an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more radicals R 9 , or an aryloxy or heteroaryloxy group having 5 to 60 aromatic Ring atoms which may be substituted by one or more radicals R 9 , or a Diarylaminogruppe, Diheteroarylaminogruppe or Arylheteroarylaminogruppe having 10 to 40 aromatic ring atoms, which by one or more radicals R 9 or a combination of these systems; two or more of these substituents R 2 may also together form a mono- or polycyclic, aliphatic, aromatic and / or benzoannellated ring system;
  • R 3 is independently selected for each occurrence from the group consisting of H, deuterium, phenyl, naphthyl, CF 3 or an aliphatic, aromatic and / or heteroaromatic hydrocarbon radical having 1 to 20 carbon atoms, in which also one or more H Atoms may be replaced by F or CF 3 ; two or more substituents R 3 may also together form a mono- or polycyclic aliphatic ring system;
  • R 4 in each occurrence is independently selected from the group consisting of H, deuterium, phenyl, naphthyl, CN, CF 3 , OH, C (= O) OR 3 , C (= O) N (R 3 ) 2 , C (= O) R 3 P (= O) (R 7 ) 2 , As (= O) (R 7 ) 2 , P (= S) (R 7 ) 2 , As (= S) (R 7 ) 2 , a linear alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a linear alkenyl or alkynyl group having 2 to 40 carbon atoms or a branched or cyclic alkyl, alkenyl, alkynyl, alkoxy or thioalkoxy group with 3 to 40 C atoms, each of which may be substituted by one or more R 9 radicals, wherein one or more adjacent CH 2 groups is replaced by -R 9 C = CR 9 -, -C = C- or an adjacent CH 2 -C, -C (= O) -, -C (= S) -, - C (= Se) -, -C = N-, -C (= O) O-, -C (= O) N (R 3 ) -, -P (= O) (R 7 ) -, -As (= O) (R 7 ) -, -P (= S) (R 7 ) -, - As (= S) (R 7 ) -, -S (= O) -, -S (= O) 2 -, -O-, or -S- may be replaced and wherein one or more H atoms by deuterium, F, Cl, Br, I , CN, CF 3 or NO 2 may be substituted or aromatic it or heteroaromatic ring system having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more radicals R 8 , or an aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms, which may be substituted by one or more radicals R 9 , or a diarylamino group, diheteroarylamino group or arylheteroarylamino group having 10 to 40 aromatic ring atoms which may be substituted by one or more of R 9 , or a combination of these systems; two or more of these substituents R 4 may also together form a mono- or polycyclic, aliphatic, aromatic and / or benzoannellated ring system;
  • Each R 5 is independently selected from the group consisting of phenyl, naphthyl, CF 3 , C (= O) R 3 , P (= O) (R 7 ) 2 , As (= O) (R 7 ) 2 , a linear alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a linear alkenyl or alkynyl group having 2 to 40 carbon atoms or a branched or cyclic alkyl, alkenyl, alkynyl, alkoxy or thioalkoxy group with From 3 to 40 carbon atoms, each of which may be substituted with one or more R 9 radicals, one or more adjacent CH 2 groups being replaced by -R 9 C = CR 9 -, -C = C- or an adjacent CH 2- group by -Si (R 4 ) 2 -, - Ge (R 4 ) 2 -, -Sn (R 4 ) 2 , -C (= O) -, -C (= S) -, -C (= Se) -, -C = N-, -C (= O) O-, -C (= O) N (R 3) -, - P (= O) (R 7) -, -As (= O) (R 7 ) -, -P (= S) (R 7 ) -, -As (= S) (R 7 ) -, -S (= O) -, -S (= O) 2 -, -NR 2 -, -O-, or -S- may be replaced and wherein one or more H atoms may be replaced by deuterium, F, Cl, Br, I, CN, CF 3 or NO 2 , or an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more radicals R 9 , or an aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms, which may be substituted by one or more radicals R 9 , or a diarylamino group, A diheteroarylamino group or arylheteroarylamino group having from 10 to 40 aromatic ring atoms which may be substituted by one or more of R 9 , or a combination of these systems; two or more of these substituents R 5 may also together form a mono- or polycyclic, aliphatic, aromatic and / or benzoannellated ring system;
  • R 6 in each occurrence is independently selected from the group consisting of phenyl, naphthyl, CF 3 , Si (R 4 ) 3 , C (= O) R 3 , P (= O) (R 7 ) 2 , a linear alkyl , Alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a linear alkenyl or alkynyl group having 2 to 40 carbon atoms or a branched or cyclic alkyl, alkenyl, alkynyl, alkoxy or thioalkoxy group having 3 to 40C -Atomen, each of which may be substituted with one or more R 9 radicals, wherein one or more adjacent CH 2 groups by -R 9 C = CR 9 -, -C = C-, or an adjacent CH 2 group -Si (R 4 ) 2 -, -Ge (R 4 ) 2 -, - Sn (R 4 ) 2 , -C (= O) -, -C (= S) -, -C (= Se) -, -C = N-, -C (= O) O-, -C (= O) N (R 3) -, -P (= O) (R 7) -, - As (= O) (R 7) -, -P (= S) (R 7 ) -, -As (= S) (R 7 ) -, -S (= O) -, -S (= O) 2 -, -NR 2 -, -O - or -S- may be replaced and wherein one or more H atoms may be replaced by deuterium, F, Cl, Br, I, CN, CF 3 or NO 2 , or an aromatic or heteroaromatic Ringsyst em with 5 to 60 aromatic ring atoms, each of which may be substituted by one or more radicals R 9 , or an aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms which may be substituted by one or more radicals R, or a diarylamino group, diheteroarylamino group or arylheteroarylamino group having 10 to 40 aromatic ring atoms which may be substituted by one or more radicals R 9 , or a combination of these systems; two or more of these substituents R 6 may also together form a mono- or polycyclic, aliphatic, aromatic and / or benzoannellated ring system;
  • R 7 in each occurrence is independently selected from the group consisting of phenyl, naphthyl, CN, CF 3 , C (= O) OR 3 , C (= O) N (R 3 ) 2 , C (= O) R 3 , a linear alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a linear alkenyl or alkynyl group having 2 to 40 carbon atoms or a branched or cyclic alkyl, alkenyl, alkynyl, alkoxy or thioalkoxy group with From 3 to 40 carbon atoms, each of which may be substituted with one or more R 9 radicals, one or more adjacent CH 2 groups being replaced by -R 9 C = CR 9 -, -C = C- or an adjacent CH 2- group by -C (= O) -, - C (= S) -, -C (= Se) -, -C = N-, -C (= O) O-, -C (= O) N (R 3 ) -, -S (= O) -, -S (= O) 2 -, -O-, or -S- may be replaced and wherein one or more H atoms by deuterium, F, Cl, Br , I, CN, CF 3 or NO 2 may be replaced, or an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more radicals R 9 , or an aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms which may be substituted by one or more R 9 radicals, or a diarylamino group, diheteroarylamino group or arylheteroarylamino group having 10 to 40 aromatic ring atoms which may be substituted by one or more R 3 radicals , or a combination of these systems; two or more of these substituents R 7 may also together form a mono- or polycyclic, aliphatic, aromatic and / or benzoannellated ring system;
  • R 8 is independently selected in each occurrence from the group consisting of H, deuterium, phenyl, naphthyl, F, CF 3 or an aliphatic, aromatic and / or heteroaromatic hydrocarbon radical having 1 to 20 carbon atoms, in which also one or more H atoms can be replaced by F or CF 3 ; two or more substituents R 8 may also together form a mono- or polycyclic aliphatic ring system;
  • R 9 in each occurrence is independently selected from the group consisting of H, deuterium, phenyl, naphthyl, CN, CF 3 , NO 2 , OH, COOH, C (= O) OR 3 , C (= O) N (R 3 ) 2 , C (= O) R 3 , S (= O) R 3 , S (= O) 2 R 3 , OSO 2 R 3 , a linear alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a linear alkenyl or alkynyl group having 2 to 40 carbon atoms or a branched or cyclic alkyl, alkenyl, alkynyl, alkoxy or thioalkoxy group having 3 to 40 carbon atoms, each substituted with one or more R 8 substituents wherein one or more non-adjacent CH 2 groups can be replaced by - R 3 C = CR 3 -, -C = C-, or an adjacent CH 2 group by, -C (= O) -, -C ( = S) -, -C (= Se) -, - C = N-, -C (= O) O-, -C (= O) N (R 3 ) -, -S (= O) -, - S (= O) 2 -, -O-, or -S- may be replaced and wherein one or more H atoms may be replaced by deuterium, F, Cl, Br, I, CN, CF 3 or NO 2 , or an aromatic or heteroaromatic ring system with 5 to 60 aromatic ringate omen, which may each be substituted by one or more radicals R 8 , or an aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms which may be substituted by one or more radicals R 3 , or a diarylamino, Diheteroarylaminogruppe or Arylheteroarylaminogruppe 10 to 40 aromatic ring atoms, which may be substituted by one or more radicals R 8 , or a combination of these systems; two or more of these substituents R 9 may also together form a mono- or polycyclic, aliphatic, aromatic and / or benzoannellated ring system.

Eine Arylgruppe im Sinne dieser Erfindung enthält 6 bis 60 aromatische Ringatome; eine Heteroarylgruppe im Sinne dieser Erfindung enthält 5 bis 60 aromatische Ringatome, von denen mindestens eines ein Heteroatom darstellt. Die Heteroatome sind bevorzugt N, O, und S. Werden in der Beschreibung der vorliegenden Erfindung andere Ausführungen angegeben, beispielsweise bezüglich der Zahl der aromatischen Ringatome oder der enthaltenen Heteroatome, so gelten diese.An aryl group in the sense of this invention contains 6 to 60 aromatic ring atoms; For the purposes of this invention, a heteroaryl group contains 5 to 60 aromatic ring atoms, at least one of which represents a heteroatom. The heteroatoms are preferably N, O, and S. If other statements are made in the description of the present invention, for example with regard to the number of aromatic ring atoms or the heteroatoms contained therein, these apply.

Dabei wird unter einer Arylgruppe bzw. Heteroarylgruppe ein einfacher aromatischer Cyclus, also Benzol, bzw. ein einfacher heteroaromatischer Cyclus, beispielsweise Pyridin, Pyrimidin oder Thiophen, oder ein heteroaromatischer Polycyclus, beispielsweise Napthalin, Phenanthren, Chinolin oder Carbazol verstanden. Ein kondensierter (annelierter) aromatischer bzw. heteroaromatischer Polycyclus besteht im Sinne der vorliegenden Anmeldung aus zwei oder mehr miteinander kondensierten einfachen aromatischen bzw. heteroaromatischen Cyclen.An aryl group or heteroaryl group is understood to mean a simple aromatic cycle, ie benzene, or a simple heteroaromatic cycle, for example pyridine, pyrimidine or thiophene, or a heteroaromatic polycycle, for example naphthalene, phenanthrene, quinoline or carbazole. A condensed (fused) aromatic or heteroaromatic polycycle consists in the context of the present application of two or more fused simple aromatic or heteroaromatic cycles.

Unter einer Aryl- oder Heteroarylgruppe, die jeweils mit den oben genannten Resten substituiert sein kann und die über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, welche abgeleitet sind von Benzol, Naphthalin, Anthracen, Phenanthren, Pyren, Dihydropyren, Chrysen, Perylen, Fluoranthen, Benzanthracen, Benzphenanthren, Tetracen, Pentacen, Benzpyren, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothiophen, Isobenzothiophen, Dibenzothiophen; Pyrrol, Indol, Isoindol, Carbazol, Pyridin, Chinolin, Isochinolin, Acridin, Phenanthridin, Benzo-5,6-chinolin, Isochinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Oxazol, Benzoxazol, Napthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, 1,2-Thiazol, 1,3-Thiazol, Benzothiazol, Pyridazin, Benzopyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, Pyrazin, Phenazin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthrolin, 1,2,3-Triazol, 1,2,4-Triazol, Benztriazol, 1,2,3-Oxadiazol, 1,2,4-Oxadiazol, 1,2,5-Oxadiazol, 1,2,3,4-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol.An aryl or heteroaryl group which may be substituted in each case by the abovementioned radicals and which may be linked via any position on the aromatic or heteroaromatic compounds is understood in particular to mean groups which are derived from benzene, naphthalene, anthracene, phenanthrene, pyrene, Dihydropyrenes, chrysene, perylene, fluoranthene, benzanthracene, benzphenanthrene, tetracene, pentacene, benzpyrene, furan, benzofuran, isobenzofuran, dibenzofuran, thiophene, benzothiophene, isobenzothiophene, dibenzothiophene; Pyrrole, indole, isoindole, carbazole, pyridine, quinoline, isoquinoline, acridine, phenanthridine, benzo-5,6-quinoline, isoquinoline, benzo-6,7-quinoline, benzo-7,8-quinoline, phenothiazine, phenoxazine, pyrazole, Indazole, imidazole, benzimidazole, naphthimidazole, phenanthrimidazole, pyridimidazole, pyrazine imidazole, quinoxaline imidazole, oxazole, benzoxazole, napthoxazole, anthroxazole, phenanthroxazole, isoxazole, 1,2-thiazole, 1,3-thiazole, benzothiazole, pyridazine, benzopyridazine, pyrimidine, benzpyrimidine, Quinoxaline, pyrazine, phenazine, naphthyridine, azacarbazole, benzocarboline, phenanthroline, 1,2,3-triazole, 1,2,4-triazole, benzotriazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1, 2,5-oxadiazole, 1,2,3,4-tetrazine, purine, pteridine, indolizine and benzothiadiazole.

Ein aromatisches Ringsystem im Sinne dieser Erfindung enthält 6 bis 60 C-Atome im Ringsystem. Ein heteroaromatisches Ringsystem im Sinne dieser Erfindung enthält 5 bis 60 aromatische Ringatome, von denen mindestens eines ein Heteroatom darstellt. Die Heteroatome sind bevorzugt ausgewählt aus, N, O und/oder S. Unter einem aromatischen oder heteroaromatischen Ringsystem im Sinne dieser Erfindung soll ein System verstanden werden, das nicht notwendigerweise nur Aryl- oder Heteroarylgruppen enthält, sondern in dem auch mehrere Aryl- oder Heteroarylgruppen durch eine nicht-aromatische Einheit (bevorzugt weniger als 10% der verschiedenen Atome), wie z.B. ein sp3-hybridisiertes C-, Si-, oder N-Atom, ein sp2-hybridisiertes C-, N- oder O-Atom oder ein sphybridisiertes C-Atom, verbunden sein können. So sollen beispielsweise auch System wie 9,9'-Diarylfluoren, Triarylamin, Diarylether, Stilben etc als aromatische Ringsysteme im Sinne dieser Erfindung verstanden werden, und ebenso Systeme, in denen zwei oder mehrere Arylgruppen beispielsweise durch eine lineare oder cyclische Alkyl-, Alkenyl- oder Alkinylgruppen oder durch eine Silylgruppe verbunden sind. Weiterhin werden auch Systeme, in denen zwei oder mehr Aryl- oder Heteroyraylgruppen über Einfachbindungen miteinander verknüpft sind, als aromatische oder heteroaromatische Ringsysteme im Sinne dieser Erfindung verstanden, wie beispielsweise Systeme wie Biphenyl, Terphenyl oder Diphenyltriazin.An aromatic ring system in the sense of this invention contains 6 to 60 carbon atoms in the ring system. A heteroaromatic ring system in the context of this invention contains 5 to 60 aromatic ring atoms, at least one of which represents a heteroatom. The heteroatoms are preferably selected from, N, O and / or S. An aromatic or heteroaromatic ring system in the sense of this invention is to be understood as meaning a system which does not necessarily contain only aryl or heteroaryl groups but in which also several aryl or heteroaryl groups by a non-aromatic moiety (preferably less than 10% of the various atoms), such as a sp3-hybridized C, Si, or N atom, an sp2-hybridized C, N, or O atom, or a sphybridized C-atom, can be connected. For example, systems such as 9,9'-diaryl fluorene, triarylamine, diaryl ethers, stilbene, etc. are also to be understood as aromatic ring systems in the context of this invention, and systems in which two or more aryl groups are exemplified by a linear or cyclic alkyl, alkenyl or alkynyl groups or by a silyl group. Furthermore, systems in which two or more aryl or heteroyrayl groups are linked together via single bonds are understood as aromatic or heteroaromatic ring systems in the context of this invention, such as systems such as biphenyl, terphenyl or diphenyltriazine.

Unter einem aromatischen oder heteroaromatischen Ringsystem mit 5 bis 60 aromatischen Ringatomen, welches noch jeweils mit Resten wie oben definiert substituiert sein kann und welches über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, die abgeleitet sind von Benzol, Naphthalin, Anthracen, Benzanthracen, Phenanthren, Benzphenanthren, Pyren, Chrysen, Perylen, Fluoranthen, Napthacen, Pentacen, Benzpyren, Biphenyl, Biphenylen, Terphenyl, Terphenylen, Quaterphenyl, Fluoren, Spirobifluoren, Dihydrophenanthren, Dihydropyren, Tetrahydropyren, cis- oder trans-Indenofluoren, Truxen, Isotruxen, Spirotruxen, Spiroisotruxen, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothiophen, Isobenzothiophen, Dibenzothiophen, Pyrrol, Indol, Isoindol, Carbazol, Indolocarbazol, Indenocarbazol, Pyridin, Chinolin, Isochinolin, Acridin, Phenanthridin, Benzo-5,6-chinolin Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyarzinimidazol, Chinoxalinimidazol, Oxazol, Benzoxazol, Napthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, 1,2-Thiazol, 1,3-Thiazol, Benzothiazol, Pyridazin, Benzopyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, 1,5-Diazaanthracen, 2,7-Diazapyren, 2,3-Diazapyren, 1,6-Diazapyren, 1,8-Diazapyren, 4,5-Diazapyren, 4,5,9,10-Tetraazaperylen, Pyrazin, Phenazin, Phenoxazin, Phenothiazin, Fluorubin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthrolin, 1,2,3-Triazol, 1,2,4-Triazol, Benzotriazol, 1,2,3-Oxadiazol, 1,2,4-Oxadiazol, 1,2,5-Oxadiazol, 1,2,3 Oxadiazol, 1,2,3-Thiadiazol, 1,2,5-Thiadiazol, 1,3,4-Thiadiazol, 1,3,5-Triazin, 1,2,4-Triazin, 1,2,3-Triazin, Tetrazol, 1,2,3,5-Tetrazin, 1,2,3,4-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol oder Kombinationen dieser Gruppen.By an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, which may be substituted in each case with radicals as defined above and which may be linked via any positions on the aromatic or heteroaromatic, are understood in particular groups which are derived from benzene, naphthalene , Anthracene, benzanthracene, phenanthrene, benzphenanthrene, pyrene, chrysene, perylene, fluoranthene, naphthacene, pentacene, benzpyrene, biphenyl, biphenylene, terphenyl, terphenylene, quaterphenyl, fluorene, spirobifluorene, dihydrophenanthrene, dihydropyrene, tetrahydropyrene, cis- or trans-indenofluorene, Truxene, isotruxene, spirotruxene, spiroisotruxene, furan, benzofuran, isobenzofuran, dibenzofuran, thiophene, benzothiophene, isobenzothiophene, dibenzothiophene, pyrrole, indole, isoindole, carbazole, indolocarbazole, indenocarbazole, pyridine, quinoline, isoquinoline, acridine, phenanthridine, benzo-5, 6-quinoline benzo-6,7-quinoline, benzo-7,8-quinoline, phenothiazine, phenox azin, pyrazole, indazole, imidazole, benzimidazole, naphthimidazole, phenanthrimidazole, pyrimididazole, pyrazine imidazole, quinoxaline imidazole, oxazole, benzoxazole, napthoxazole, anthroxazole, phenanthroxazole, isoxazole, 1,2-thiazole, 1,3-thiazole, benzothiazole, pyridazine, benzopyridazine, Pyrimidine, benzpyrimidine, quinoxaline, 1,5-diazaanthracene, 2,7-diazapyrene, 2,3-diazapyrene, 1,6-diazapyrene, 1,8-diazapyrene, 4,5-diazapyrene, 4,5,9,10- Tetraazaperylene, pyrazine, phenazine, phenoxazine, phenothiazine, fluorubin, naphthyridine, azacarbazole, benzocarboline, phenanthroline, 1,2,3-triazole, 1,2,4-triazole, benzotriazole, 1,2,3-oxadiazole, 1,2, 4-oxadiazole, 1,2,5-oxadiazole, 1,2,3-oxadiazole, 1,2,3-thiadiazole, 1,2,5-thiadiazole, 1,3,4-thiadiazole, 1,3,5-triazine , 1,2,4-triazine, 1,2,3-triazine, tetrazole, 1,2,3,5-tetrazine, 1,2,3,4-tetrazine, purine, pteridine, indolizine and benzothiadiazole or combinations of these groups ,

Bevorzugt sind Metallkomplexe gemäß Formel A, bei denen die Summe der Valenzelektronen um das Metallatom 18 beträgt. Diese Bevorzugung ist durch die besondere Stabilität dieser Metallkomplexe begründet.Preference is given to metal complexes of the formula A in which the sum of the valence electrons around the metal atom is 18. This preference is due to the particular stability of these metal complexes.

Die Metallkomplexe MLX weisen einen Liganden L mit einer Struktur der Formel B auf (Teil der Formel A),

Figure imgb0002
wobei die in Formel B angegebenen Symbole die bei Formel A angegebene Bedeutung haben.
Bei dem Liganden L handelt es sich somit um einen tridentaten, nicht-makrocyclischen Liganden, welcher über die drei Donoratome E, E' und E" an das Metall M bindet. Unter einem Donoratom im Sinne der vorliegenden Erfindung wird ein Atom verstanden, das mindestens ein freies Elektronenpaar aufweist und dadurch in der Lage ist, an ein Metallatom bzw. Metallion zu binden. Dabei kann das Donoratom neutral oder negativ geladen sein. Bevorzugt ist das Donoratom neutral oder negativ geladen. Beispiele für neutrale Donoratome sind Stickstoff, welcher in einem Heteroaromaten wie z. B. Pyridin gebunden ist, oder Kohlenstoff in Form eines Carbens. Beispiele für anionische Donoratome sind Stickstoffatome, welche Teil einer Fünfring-heteroaromatischen Gruppe sind, wie z. B. Stickstoff im Pyrrol, welches über den Stickstoff bindet. Unter einem exocyclischen Donoratom im Sinne dieser Erfindung wird ein Donoratom verstanden, welches nicht Teil des Metallacyclus mit den Ringgliedern (E-C(sp2)-C(sp2)-E'-M), welcher aus M und L gebildet wird, ist, sondern welches als Substituent an L gebunden ist und welches mindestens ein freies Elektronenpaar aufweist und dadurch in der Lage ist, an ein Metallatom zu binden. Beispiele für exocyclische Donoratome sind Sauerstoff in Form eines Phenolats, Schwefel in Form eines Thiolats, Stickstoff in Form eines Nitrils, Amins, Imins, Amids oder Imids, Phosphor in Form eines Phosphins oder Phosphits.The metal complexes MLX have a ligand L with a structure of the formula B (part of the formula A),
Figure imgb0002
where the symbols indicated in formula B have the meaning given in formula A.
The ligand L is thus a tridentate, non-macrocyclic ligand which binds to the metal M via the three donor atoms E, E 'and E ". A donor atom in the context of the present invention is understood to mean an atom which is at least The donor atom may be neutral or negatively charged, and the donor atom may be neutral or negatively charged. Examples of neutral donor atoms are nitrogen which is in a heteroaromatic Examples of anionic donor atoms are nitrogen atoms which are part of a five-membered heteroaromatic group, such as, for example, nitrogen in the pyrrole, which bonds via the nitrogen Donor atom in the sense of this invention is understood to mean a donor atom which is not part of the metallacycle having the ring members (EC (sp2) -C (sp2 ) -E'-M), which is formed from M and L, but which is bonded as a substituent to L and which has at least one lone pair of electrons and thereby is able to bind to a metal atom. Examples of exocyclic donor atoms are oxygen in Form of a phenolate, sulfur in the form of a thiolate, nitrogen in the form of a nitrile, amine, imine, amide or imide, phosphorous in the form of a phosphine or phosphite.

Durch die Kombination von verschiedenen Donorelementen wird die Stabilität des Metallkomplexes erhöht. Insbesondere durch die zwingend erforderliche Anwesenheit eines Pnictid-Donors wie As oder P steigt die Redoxstabilität, sodass luftstabile Substanzen erhalten werden. Dies erleichtert den praktischen Umgang bei der Bauteilproduktion enorm. Im Gegensatz zu US 2012/0286254 , die ausschließlich Stickstoffdonoren verwendet, resultiert eine reduzierte Oxidationsempfindlichkeit der Komplexe. Hinsichtlich ihrer Verwendung in optoelektronischen Bauelementen zeichnen sich die erfindungsgemäßen Metall(I)komplexe durch einen weiten Bereich von erzielbaren Emissionsfarben aus. Zudem ist die Emissionsquantenausbeute hoch, insbesondere größer als 50 %. Für Emitterkomplexe mit Cu-Zentralion, sind die Emissionsabklingzeiten erstaunlich kurz.The combination of different donor elements increases the stability of the metal complex. In particular, the absolutely necessary presence of a pnictide donor such as As or P increases the redox stability, so that air-stable substances are obtained. This greatly facilitates the practical handling of component production. In contrast to US 2012/0286254 , which uses only nitrogen donors, results in a reduced oxidation sensitivity of the complexes. With regard to their use in optoelectronic components, the metal (I) complexes according to the invention are distinguished by a wide range of achievable emission colors. In addition, the emission quantum yield is high, in particular greater than 50%. For emitter complexes with Cu central ion, the emission decay times are surprisingly short.

Außerdem sind die erfindungsgemäßen Kupfer(I)komplexe in relativ hohen Emitterkonzentrationen ohne deutliche Quencheffekte verwendbar. Das heißt, in der Emissionsschicht können Emitterkonzentrationen von 5 % bis 100 % verwendet werden.In addition, the inventive copper (I) complexes can be used in relatively high emitter concentrations without significant quenching effects. That is, emitter concentrations of 5% to 100% can be used in the emission layer.

In einer besonderen Ausführungsform der Beschreibung werden Metallkomplexe MLX der Struktur der Formel A mit M = Cu verwendet. Besonders Kupfer(I) Komplexe wurden in der Vergangenheit erfolgreich in OLEDs eingesetzt und zeigen häufig vorteilhafte Eigenschaften wie eine hohe Effizienz und gute Einstellbarkeit der Emissionsfarbe. Durch die Beschränkung auf einen Metallkern wird insbesondere die Verdampfbarkeit erleichtert. Oft nimmt mit zunehmender Zahl an Metallkernen die Verdampfbarkeit einer Verbindung ab, wodurch diese nicht für die Prozessierung aus der Gasphase geeignet ist. Die Stabilität eines OLED-Bauteils hängt stark von der Reinheit der verwendeten Verbindungen ab, die allerdings am besten durch Sublimation gewährleistet werden kann. Durch dieses Verfahren lassen sich die Komplexe leicht in hoher Reinheit, bevorzugt in einer Reinheit von > 99 % nach <1>H-NMR oder HPLC, besonders bevorzugt > 99.9 % erhalten.In a particular embodiment of the description, metal complexes MLX of the structure of the formula A where M = Cu are used. Especially copper (I) complexes have been used successfully in OLEDs in the past and often show advantageous properties such as high efficiency and good adjustability of the emission color. Due to the restriction to a metal core in particular the vaporizability is facilitated. Often, as the number of metal cores increases, the volatility of a compound decreases, making it unsuitable for gas phase processing. The stability of an OLED component depends strongly on the purity of the compounds used, which can best be ensured by sublimation. By this method, the complexes can be easily obtained in high purity, preferably in a purity of> 99% by <1> H-NMR or HPLC, more preferably> 99.9%.

Eine weitere Ausführungsform der Beschreibung betrifft Metallkomplexe MLX aufweisend eine Struktur der Formel A-1

Figure imgb0003
wobei für E, E', E", A, X und R die oben genannten Definitionen gelten.Another embodiment of the description relates to metal complexes MLX having a structure of the formula A-1
Figure imgb0003
where E, E ', E ", A, X and R are as defined above.

In einer Ausführungsform der Beschreibung weist der Metallkomplex MLX eine Struktur der Formel A-2 auf

Figure imgb0004
wobei für E', E", A und X die oben genannten Definitionen gelten; Ph = Phenyl.In one embodiment of the description, the metal complex MLX has a structure of the formula A-2
Figure imgb0004
where E ', E ", A and X are as defined above, Ph = phenyl.

In einem Aspekt der Erfindung weist der Metallkomplex MLX eine Struktur der Formel A-3 auf

Figure imgb0005
wobei für E", A, X und R die oben genannten Definitionen gelten; Ph = Phenyl.In one aspect of the invention, the metal complex MLX has a structure of formula A-3
Figure imgb0005
where E ", A, X and R are as defined above; Ph = phenyl.

In einer Ausführungsform werden die erfindungsgemäßen Komplexe in einer organischen elektronischen Vorrichtung verwendet. Darunter wird eine elektronische Vorrichtung verstanden, welche Anode, Kathode und mindestens eine Schicht enthält, wobei diese Schicht mindestens eine organische Verbindung enthält. Die erfindungsgemäße organische elektronische Vorrichtung enthält also Anode, Kathode und mindestens eine Schicht, welche mindestens einen erfindungsgemäßen Komplex (also ein, zwei, drei oder mehr erfindungsgemäße Komplexe) enthält. Dabei sind bevorzugte organische elektronische Vorrichtungen ausgewählt aus der Gruppe bestehend aus organischen Elektrolumineszenzvorrichtungen (= organischen Leuchtdioden, OLEDs, PLEDs), organischen integrierten Schaltungen (O-ICs), organischen Feld-Effekt-Transistoren (O-FETs), organischen Dünnfilmtransistoren (O-TFTs), organischen lichtemittierenden Transistoren (O-LETs), organischen Solarzellen (O-SCs), organischen optischen Detektoren, organischen Photorezeptoren, organischen Feld-Quench-Devices (O-FQDs), lichtemittierenden elektrochemischen Zellen (LECs) oder organischen Laserdioden (O-Laser), enthaltend in mindestens einer Schicht mindestens einen erfindungsgemäßen Komplexe. Bevorzugt sind entsprechende organische Elektrolumineszenzvorrichtungen.In one embodiment, the complexes of the invention are used in an organic electronic device. This is understood to mean an electronic device which contains anode, cathode and at least one layer, wherein these Layer contains at least one organic compound. The organic electronic device according to the invention thus contains anode, cathode and at least one layer which contains at least one complex according to the invention (ie one, two, three or more complexes according to the invention). Preferred organic electronic devices are selected from the group consisting of organic electroluminescent devices (= organic light-emitting diodes, OLEDs, PLEDs), organic integrated circuits (O-ICs), organic field-effect transistors (O-FETs), organic thin-film transistors (O-ICs). TFTs), organic light-emitting transistors (O-LETs), organic solar cells (O-SCs), organic optical detectors, organic photoreceptors, organic field quench devices (O-FQDs), light-emitting electrochemical cells (LECs) or organic laser diodes (O Laser) containing at least one complex according to the invention in at least one layer. Preferred are corresponding organic electroluminescent devices.

Die erfindungsgemäßen Metallkomplexe werden in der organischen elektronischen oder optoelektronischen Vorrichtung als aktive Komponente verwendet. Unter der Bezeichnung "optoelektronische Bauelemente" werden insbesondere verstanden:

  • Organische lichtemittierende Bauteile (organic light emitting diodes, OLEDs)
  • lichtemittierende elektrochemische Zellen (light emitting electrochemical cells, LECs, LEECs),
  • OLED-Sensoren, insbesondere in nicht hermetisch nach außen abgeschirmten Gas- und Dampf-Sensoren,
  • organische Solarzellen (organic solar cells, OSCs, organic photovoltaics, OPVs),
  • organische Feldeffekttransistoren und
  • organische Laser.
The metal complexes according to the invention are used in the organic electronic or optoelectronic device as the active component. The term "optoelectronic components" is understood in particular as:
  • Organic light emitting devices (organic light emitting diodes, OLEDs)
  • light emitting electrochemical cells (LECs, LEECs),
  • OLED sensors, in particular in non-hermetically shielded gas and vapor sensors,
  • organic solar cells (OSCs, organic photovoltaics, OPVs),
  • organic field effect transistors and
  • organic lasers.

Aktive Komponenten sind generell die organischen oder anorganischen Materialien, welche zwischen Anode und Kathode eingebracht sind, beispielsweise Ladungsinjektions-, Ladungstransport- oder Ladungsblockiermaterialien, insbesondere aber Emissionsmaterialien und Matrixmaterialien. Für diese Funktionen zeigen die erfindungsgemäßen Verbindungen besonders gute Eigenschaften, insbesondere als Emissionsmaterial in organischen Elektrolumineszenzvorrichtungen, wie im Folgenden noch näher ausgeführt wird. Ein Aspekt der Erfindung betrifft daher organische Elektrolumineszenzvorrichtungen. Eine derartige organische Elektrolumineszenzvorrichtung enthält eine Kathode, eine Anode und mindestens eine emittierende Schicht. Außer diesen Schichten kann sie noch weitere Schichten enthalten, beispielsweise jeweils eine oder mehrere Lochinjektionsschichten, Lochtransportschichten, Lochblockierschichten, Elektronentransportschichten, Elektroneninjektionsschichten, Excitonenblockierschichten, Ladungserzeugungsschichten. Ebenso können zwischen zwei emittierenden Schichten Zwischenschichten eingebracht sein, welche beispielsweise eine Excitonen-blockierende Funktion aufweisen. Es sei aber darauf hingewiesen, dass nicht notwendigerweise jede dieser Schichten vorhanden sein muss. Dabei kann die organische Elektrolumineszenzvorrichtung eine emittierende Schicht enthalten, oder sie kann mehrere emittierende Schichten enthalten, wobei mindestens eine emittierende Schicht mindestens eine Verbindung gemäß Formel A enthält. Wenn mehrere Emissionsschichten vorhanden sind, weisen diese bevorzugt insgesamt mehrere Emissionsmaxima zwischen 380 nm und 750 nm auf, so dass insgesamt weiße Emission resultiert, d. h. in den emittierenden Schichten werden verschiedene emittierende Verbindungen verwendet, die fluoreszieren oder phosphoreszieren können. Insbesondere bevorzugt sind Dreischichtsysteme, wobei die drei Schichten blaue, grüne und orange oder rote Emission zeigen (für den prinzipiellen Aufbau siehe z. B. WO 05/011013 A ).Active components are generally the organic or inorganic materials incorporated between the anode and cathode, for example, charge injection, charge transport or charge blocking materials, but especially emission materials and matrix materials. For these functions, the compounds according to the invention exhibit particularly good properties, in particular as emission material in organic electroluminescent devices, as will be explained in more detail below. One aspect of the invention therefore relates to organic Electroluminescent devices. Such an organic electroluminescent device includes a cathode, an anode and at least one emitting layer. In addition to these layers, they may also contain further layers, for example one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, exciton blocking layers, charge generation layers. Likewise, intermediate layers can be introduced between two emitting layers, which have, for example, an exciton-blocking function. It should be noted, however, that not necessarily each of these layers must be present. In this case, the organic electroluminescent device may contain an emitting layer, or it may contain a plurality of emitting layers, wherein at least one emitting layer contains at least one compound according to formula A. If several emission layers are present, they preferably have a total of a plurality of emission maxima between 380 nm and 750 nm, so that overall white emission results, ie in the emitting layers different emitting compounds are used, which can fluoresce or phosphoresce. Particular preference is given to three-layer systems, the three layers showing blue, green and orange or red emission (for the basic structure see, for example, US Pat. WO 05/011013 A ).

In einer bevorzugten Ausführungsform der Erfindung enthält die organische elektronische Vorrichtung mindestens einen erfindungsgemäßen Komplex, insbesondere einen oder mehrere Komplexe aufweisend oder bestehend aus einer Struktur nach Formel A3, als emittierende Verbindung in einer emittierenden Schicht. Dies ist insbesondere dann der Fall, wenn das Metall Kupfer, Silber oder Gold ist, insbesondere Kupfer.In a preferred embodiment of the invention, the organic electronic device contains at least one complex according to the invention, in particular one or more complexes comprising or consisting of a structure of formula A3, as an emitting compound in an emitting layer. This is especially the case when the metal is copper, silver or gold, in particular copper.

Wenn mindestens ein erfindungsgemäßer Komplex als emittierende Verbindung in einer emittierenden Schicht eingesetzt wird, wird sie bevorzugt als Reinsubstanz oder in Kombination mit einem oder mehreren Matrixmaterialien eingesetzt. Die Mischung aus dem erfindungsgemäßen Komplex und dem Matrixmaterial enthält 1 bis 99 Gew.-%, vorzugsweise 2 bis 90 Gew.-%, besonders bevorzugt 3 bis 40 Gew.-%, insbesondere 5 bis 15 Gew.-% des erfindungsgemäßen Komplexes Verbind bezogen auf die Gesamtmischung aus Emitter und Matrixmaterial. Entsprechend enthält die Mischung 99 bis 1 Gew.-%, vorzugsweise 98 bis 10 Gew.-%, besonders bevorzugt 97 bis 60 Gew.-%, insbesondere 95 bis 85 Gew.-% des Matrixmaterials bezogen auf die Gesamtmischung aus Emitter und Matrixmaterial.When at least one complex of the invention is used as the emitting compound in an emitting layer, it is preferably used as a pure substance or in combination with one or more matrix materials. The mixture of the complex of the invention and the matrix material contains 1 to 99% by weight, preferably 2 to 90% by weight, especially preferably 3 to 40 wt .-%, in particular 5 to 15 wt .-% of the complex according to the invention compounds based on the total mixture of emitter and matrix material. Accordingly, the mixture contains 99 to 1 wt .-%, preferably 98 to 10 wt .-%, particularly preferably 97 to 60 wt .-%, in particular 95 to 85 wt .-% of the matrix material based on the total mixture of emitter and matrix material.

Bevorzugte Matrixmaterialien sind CBP (N,N-Biscarbazolylbiphenyl), Carbazolderivate (z. B. gemäß WO 05/039246 A , US 2005/0069729 A , JP 2004/288381 A , EP 1205527 oder der DE 102007002714 A1 ), Azacarbazole (z. B. gemäß EP 1617710 , EP 1617711 , EP 1731584 , JP 2005/347160 ), Ketone (z. B. gemäß WO 04/093207 A ), Phosphinoxide, Sulfoxide und Sulfone (z. B. gemäß WO 05/003253 ), Oligophenylene, aromatische Amine (z. B. gemäß US 2005/0069729 ), bipolare Matrixmaterialien (z. B. gemäß WO 07/137725 A ), Silane (z. B. gemäß WO 05/111172 A ), 9,9-Diarylfluorenderivate (z. B. gemäß der DE 102008017591 A1 ), Azaborole oder Boronester (z. B. gemäß WO 06/117052 A ). Weiterhin eignen sich als Matrixmaterialien die Verbindungen gemäß der Formel A der vorliegenden Anmeldung, wie unten ausgeführt.Preferred matrix materials are CBP (N, N-biscarbazolylbiphenyl), carbazole derivatives (e.g. WO 05/039246 A . US 2005/0069729 A . JP 2004/288381 A . EP 1205527 or the DE 102007002714 A1 ), Azacarbazoles (eg according to EP 1617710 . EP 1617711 . EP 1731584 . JP 2005/347160 ), Ketones (eg according to WO 04/093207 A ), Phosphine oxides, sulfoxides and sulfones (eg according to WO 05/003253 ), Oligophenylenes, aromatic amines (eg according to US 2005/0069729 ), bipolar matrix materials (eg according to WO 07/137725 A ), Silanes (eg according to WO 05/111172 A ), 9,9-Diarylfluorenderivate (eg., According to the DE 102008017591 A1 ), Azaboroles or boronic esters (eg according to WO 06/117052 A ). Further suitable matrix materials are the compounds according to the formula A of the present application, as explained below.

In einer weiteren Ausführungsform der Erfindung wird der mindestens eine erfindungsgemäße Komplex als Matrixmaterial für eine emittierende Verbindung in einer emittierenden Schicht eingesetzt.In a further embodiment of the invention, the at least one complex according to the invention is used as matrix material for an emitting compound in an emitting layer.

Wenn der erfindungsgemäße Metallkomplex als Matrixmaterial für eine emittierende Verbindung in einer emittierenden Schicht eingesetzt wird, wird er bevorzugt in Kombination mit einem oder mehreren lumineszierenden Materialien eingesetzt. Die Mischung aus der Verbindung gemäß Formel A und der emittierenden Verbindung enthält dann zwischen 99 und 1 Gew.-%, vorzugsweise zwischen 98 und 10 Gew.-%, besonders bevorzugt zwischen 97 und 60 Gew.-%, insbesondere zwischen 95 und 85 Gew.-% der Verbindung bezogen auf die Gesamtmischung aus Emitter und Matrixmaterial. Entsprechend enthält die Mischung zwischen 1 und 99 Gew.-%, vorzugsweise zwischen 2 und 90 Gew.-%, besonders bevorzugt zwischen 3 und 40 Gew.-%, insbesondere zwischen 5 und 15 Gew.-% des Emitters bezogen auf die Gesamtmischung aus Emitter und Matrixmaterial.When the metal complex according to the invention is used as the matrix material for an emitting compound in an emitting layer, it is preferably used in combination with one or more luminescent materials. The mixture of the compound according to formula A and the emissive compound then contains between 99 and 1% by weight, preferably between 98 and 10% by weight, more preferably between 97 and 60% by weight, in particular between 95 and 85% by weight .-% of the compound based on the total mixture of emitter and matrix material. Accordingly, the mixture contains between 1 and 99 wt .-%, preferably between 2 and 90 wt .-%, more preferably between 3 and 40 wt .-%, in particular between 5 and 15 wt .-% of the emitter based on the total mixture of Emitter and matrix material.

Als lumineszierende Verbindungen eignen sich insbesondere Verbindungen, die bei geeigneter Anregung Licht, vorzugsweise im sichtbaren Bereich, emittieren und außerdem mindestens ein Atom der Ordnungszahl grösser 20, bevorzugt grösser 38 und kleiner 84, besonders bevorzugt grösser 56 und kleiner 80 enthalten. Weiterhin eignen sich als Emitter die hier beschriebenen erfindungsgemäßen Metallkomplexe. Generell eignen sich alle lumineszierenden Komplexe, wie sie gemäß dem Stand der Technik für lumineszierende OLEDs verwendet werden und wie sie dem Fachmann auf dem Gebiet der organischen Elektrolumineszenz bekannt sind.Particularly suitable as luminescent compounds are compounds which emit light, preferably in the visible range, with suitable excitation and also contain at least one atom of atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and less than 80. Furthermore, suitable emitters are the metal complexes of the invention described herein. In general, all luminescent complexes which are used according to the prior art for luminescent OLEDs and as are known to the person skilled in the art in the field of organic electroluminescence are suitable.

In einer weiteren Ausführungsform der Erfindung wird ein erfindungsgemäßer Metallkomplex als Lochblockiermaterial in einer Lochblockierschicht und/oder als Elektronentransportmaterial in einer Elektronentransportschicht eingesetzt. Dabei kann die emittierende Schicht fluoreszierend oder lumineszierend sein.In a further embodiment of the invention, a metal complex according to the invention is used as a hole-blocking material in a hole-blocking layer and / or as an electron-transport material in an electron-transport layer. In this case, the emitting layer may be fluorescent or luminescent.

In einer Ausführungsform wird eine oder werden mehrere Schichten einer organische Elektrolumineszenzvorrichtung mit einem Sublimationsverfahren beschichtet. Dabei werden die Materialien in Vakuum-Sublimationsanlagen bei einem Druck kleiner 10-5 mbar, bevorzugt kleiner 10-6 mbar, besonders bevorzugt kleiner 10-7 mbar aufgedampft.In one embodiment, one or more layers of an organic electroluminescent device are coated with a sublimation process. The materials are vapor-deposited in vacuum sublimation systems at a pressure of less than 10 -5 mbar, preferably less than 10 -6 mbar, particularly preferably less than 10 -7 mbar.

Bevorzugt ist ebenfalls eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit dem OVPD (Organic Vapor Phase Deposition) Verfahren oder mit Hilfe einer Trägergassublimation beschichtet werden. Dabei werden die Materialien bei einem Druck zwischen 10-5 mbar und 1 bar aufgebracht. Ein Spezialfall dieses Verfahrens ist das OVJP (Organic Vapor Jet Printing) Verfahren, bei dem die Materialien direkt durch eine Düse aufgebracht und so strukturiert werden (z. B. M. S. Arnold et al., Appl. Phys. Lett. 2008, 92, 053301 ).Also preferred is an organic electroluminescent device, characterized in that one or more layers are coated with the OVPD (Organic Vapor Phase Deposition) method or with the aid of a carrier gas sublimation. The materials are applied at a pressure between 10 -5 mbar and 1 bar. A special case of this process is the OVJP (Organic Vapor Jet Printing) process, in which the materials are applied directly through a nozzle and thus structured (eg. MS Arnold et al., Appl. Phys. Lett. 2008, 92, 053301 ).

Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, bei der eine oder mehrere Schichten aus Lösung, wie z. B. durch Spincoating, oder mit einem beliebigen Druckverfahren, wie z. B. Siebdruck, Flexodruck oder Offsetdruck, besonders bevorzugt aber LITI (Light-Induced Thermal Imaging, Thermotransferdruck) oder Ink-Jet Druck (Tintenstrahldruck), hergestellt werden. Hierfür sind lösliche Verbindungen nötig, welche beispielsweise durch geeignete Substitution erhalten werden. Derartige chemische Verfahren zur Modifikation von Molekülen sind dem Fachmann bekannt und können von ihm ohne Probleme auf organische Elektrolumineszenzvorrichtungen enthaltend mindestens einen erfindungsgemäßen Metallkomplex angewandt werden.Further preferred is an organic electroluminescent device in which one or more layers of solution, such. B. by spin coating, or with any printing process, such. As screen printing, flexographic printing or offset printing, but particularly preferably LITI (Light-Induced Thermal Imaging, thermal transfer printing) or ink-jet printing (ink jet printing), are produced. For this purpose, soluble compounds are necessary, which are obtained for example by suitable substitution. Such chemical Methods for the modification of molecules are known to the person skilled in the art and can be applied by him without problems to organic electroluminescent devices containing at least one metal complex according to the invention.

Die erfindungsgemäßen organischen elektronischen Vorrichtungen, insbesondere organischen Elektrolumineszenzvorrichtungen, zeichnen sich durch folgende überraschende Vorteile gegenüber dem Stand der Technik aus:

  1. 1. Im Gegensatz zu vielen Metallkomplexen aus dem Stand der Technik, die der teilweisen oder vollständigen pyrolytischen Zersetzung bei Sublimation unterliegen, weisen die erfindungsgemäßen Verbindungen eine hohe thermische Stabilität auf.
  2. 2. Organische Elektrolumineszenzvorrichtungen aufweisend einen erfindungsgemäßen als emittierende Materialien zeigen eine exzellente Lebensdauer.
  3. 3. Es sind blau lumineszierende Komplexe zugänglich, welche eine tiefblaue Emissionsfarbe und bei Verwendung in organischen Elektrolumineszenzvorrichtungen eine hohe Lebensdauer aufweisen. Dies ist ein deutlicher Fortschritt gegenüber dem Stand der Technik, da bislang blau lumineszierende Vorrichtungen nur mit schlechten Farbkoordinaten und insbesondere einer sehr schlechten Lebensdauer zugänglich waren.
  4. 4. Die erfindungsgemäßen Metallkomplexe, eingesetzt in organischen Elektrolumineszenzvorrichtungen, führen zu hohen Effizienzen und zu steilen Strom-Spannungs-Kurven.
The organic electronic devices according to the invention, in particular organic electroluminescent devices, are distinguished by the following surprising advantages over the prior art:
  1. 1. In contrast to many prior art metal complexes that undergo partial or complete sublimation pyrolytic decomposition, the compounds of this invention have high thermal stability.
  2. 2. Organic electroluminescent devices comprising a material according to the invention as emitting materials show an excellent lifetime.
  3. 3. Blue luminescent complexes are available which have a deep blue emission color and a long life when used in organic electroluminescent devices. This is a significant advance over the prior art, since previously blue luminescent devices were only accessible with poor color coordinates and, in particular, a very poor lifetime.
  4. 4. The metal complexes according to the invention, used in organic electroluminescent devices, lead to high efficiencies and steep current-voltage curves.

Diese oben genannten Vorteile gehen nicht mit einer Verschlechterung der weiteren elektronischen Eigenschaften einher.These advantages mentioned above are not accompanied by a deterioration of the other electronic properties.

Beispielhaft kommen folgende Liganden als Liganden L für die erfindungsgemäßen Metallkomplexe in Frage:

Figure imgb0006
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012
Figure imgb0013
Figure imgb0014
Figure imgb0015
Figure imgb0016
Figure imgb0017
Figure imgb0018
Figure imgb0019
Figure imgb0020
Figure imgb0021
Figure imgb0022
Figure imgb0023
Figure imgb0024
Figure imgb0025
Figure imgb0026
Figure imgb0027
Figure imgb0028
Figure imgb0029
Figure imgb0030
By way of example, the following ligands are suitable as ligands L for the metal complexes according to the invention:
Figure imgb0006
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012
Figure imgb0013
Figure imgb0014
Figure imgb0015
Figure imgb0016
Figure imgb0017
Figure imgb0018
Figure imgb0019
Figure imgb0020
Figure imgb0021
Figure imgb0022
Figure imgb0023
Figure imgb0024
Figure imgb0025
Figure imgb0026
Figure imgb0027
Figure imgb0028
Figure imgb0029
Figure imgb0030

BeispieleExamples

Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert, ohne sie dadurch einschränken zu wollen. Der Fachmann kann aus den Schilderungen ohne erfinderisches Zutun weitere erfindungsgemäße Komplexe herstellen und diese in organischen elektronischen Vorrichtungen verwenden bzw. das erfindungsgemäße Verfahren anwenden.The invention is explained in more detail by the following examples without wishing to restrict them thereby. The person skilled in the art can prepare further complexes according to the invention from the descriptions without inventive step and use them in organic electronic devices or use the method according to the invention.

Allgemeine Arbeitsvorschrift (AAV) zur Kupplung von Iod-Brombenzol mit Aminen (AAV1):General procedure (AAV) for the coupling of iodine bromobenzene with amines (AAV1):

Unter Stickstoff werden Pd2(dba)3 (0.005 Äq), NaOtBu (1.4 Äq) und Xantphos (0.02 Äq) in trockenem Toluol vorgelegt und nacheinander die 2-Brom-1-iodbenzol (1 Äq) sowie das zu kuppelnde Amin (1.05 Äq) hinzu gegeben. Anschließend wird die Mischung unter Rückfluss bis zum vollständigen Umsatz (GC-Kontrolle) gerührt. Nachdem die Mischung auf RT gebracht wurde, wird das Lösungsmittel entfernt und der Rückstand in DCM/Wasser aufgenommen. Die organische Phase wird abgetrennt und aufbewahrt, während die wässrige Phase zweimal mit DCM extrahiert wird. Die vereinten organischen Phasen werden über Na2SO4 getrocknet und das Lösungsmittel abdestilliert. Der braune ölige Rückstand wird mittels Säulenchromatographie aufgereinigt. (CyHex/EE 15:1 -> 10:1 verwendet)Pd 2 (dba) 3 (0.005 eq), NaOtBu (1.4 eq) and xantphos (0.02 eq) in dry toluene are initially introduced under nitrogen and the 2-bromo-1-iodobenzene (1 eq) and the amine to be coupled (1.05 Äq) added. The mixture is then stirred under reflux until complete conversion (GC control). After the mixture is brought to RT, the solvent is removed and the residue taken up in DCM / water. The organic phase is separated and stored while the aqueous phase is extracted twice with DCM. The combined organic phases are dried over Na 2 SO 4 and the solvent is distilled off. The brown oily residue is purified by column chromatography. (CyHex / EE 15: 1 -> 10: 1 used)

Beispiel 1:Example 1:

Figure imgb0031
1H-NMR (500 MHz, CDCl3) δ = 7.50 (td, 1H), 7.26 (m, 3H), 6.82 (tt, 1H), 6.74 (ddd, 3H), 6.66 (td, 1H), 3.48 (s, 4H); NH nicht beobachtet; GC-MS (4min, 50-300 °C): 12.40 min (M+ = 291.19)
Figure imgb0031
1 H-NMR (500 MHz, CDCl 3) δ = 7:50 (td, 1H), 7.26 (m, 3H), 6.82 (dd, 1H), 6.74 (ddd, 3H), 6.66 (td, 1H), 3:48 ( s, 4H); NH not observed; GC-MS (4min, 50-300 ° C): 12.40 min (M + = 291.19)

AAV2 für Brom-Lithium-Austausch:AAV2 for bromine-lithium exchange:

Das Arylbromid (1 Äq) wird in trockenem Ether vorgelegt und auf -78 °C (Trockeneis, Aceton) gekühlt. Anschließend wird 2.5 molares n-BuLi (1 Äq) langsam zugetropft und eine Stunde lang bei -78 °C gerührt. Nachdem die Lösung auf RT gebracht wurde, wird wieder auf -78 °C gekühlt und das entsprechende Phosphinchlorid (i.d.R. Ph2PCl) langsam per Spritze zugegeben. Über Nacht wird die Lösung auftauen gelassen und die Reaktion durch vorsichtige Zugabe (Eisbadkühlung) von 1 molarer NaOH abgebrochen. Es kommt häufiger vor, dass die Phosphine nicht in Ether löslich sind und sich ein weißer Feststoff in der etherischen Phase befindet. Dieser wird nach der Abtrennung der etherischen Phase von der wässrigen durch Zugabe von DCM aufgelöst. Die wässrige Phase wird zweimal mit DCM extrahiert und die vereinigten organischen Phasen werden über Na2SO4 getrocknet, das Lösungsmittel im Vakuum entfernt. Der meist ölige Rückstand wird mittels Säulenchromatographie aufgereinigt. (CyHex/EE 20:1 -> 10:1)The aryl bromide (1 eq) is placed in dry ether and cooled to -78 ° C (dry ice, acetone). Then 2.5 molar n-BuLi (1 eq) is slowly added dropwise and stirred at -78 ° C for one hour. After the solution has been brought to RT, the mixture is cooled again to -78 ° C and the corresponding phosphine chloride (usually Ph 2 PCl) slowly added by syringe. The solution is thawed overnight and the reaction is quenched by careful addition (ice-bath cooling) of 1 molar NaOH. It is more common that the phosphines are not soluble in ether and a white solid is in the etheric phase. This is dissolved after the separation of the ethereal phase from the aqueous by the addition of DCM. The aqueous phase is extracted twice with DCM and the combined organic phases are dried over Na 2 SO 4 , the solvent is removed in vacuo. The mostly oily residue is purified by column chromatography. (CyHex / EE 20: 1 -> 10: 1)

Beispiel 2:Example 2:

Figure imgb0032
1H NMR (500 MHz, CDCl3) δ = 7.41-7.38 (m, 7H), 7.37-7.33 (m, 4H), 7.27 - 7.20 (m, 3H), 7.09 (td, 1H), 6.83 (ddd, 1H), 6.71 (t, 1H), 6.62 (d, 2H), 2.79 (s, 3H), 2.72 (s, 3H). 31P-NMR (125 MHz, CDCl3) δ = -13.90; GC-MS (4min, 50-300°C): 17.87 min (M+ = 424.53)
Figure imgb0032
1 H NMR (500 MHz, CDCl 3) δ = 7:41 to 7:38 (m, 7H), 7:37 to 7:33 (m, 4H), 7:27 to 7:20 (m, 3H), 7:09 (td, 1H), 6.83 (ddd, 1H), 6.71 (t, 1H), 6.62 (d, 2H), 2.79 (s, 3H), 2.72 (s, 3H). 31 P-NMR (125 MHz, CDCl 3) δ = -13.90; GC-MS (4 min, 50-300 ° C): 17.87 min (M + = 424.53)

AAV3 Komplexsynthese:AAV3 complex synthesis:

Der Ligand wird zusammen mit dem Metallsalz (insbesondere Cul, CuBr oder CuCI) in ein Vial gegeben, welches verschlossen und evakuiert wird. Nachdem es mit Schutzgas beschickt wurde, wird Acetonitril hinzugefügt und über Nacht gerührt. Der entstandene Feststoff wird abfiltriert, mit wenig kaltem Acetonitril gewaschen und im Vakuum getrocknet.The ligand is placed in a vial with the metal salt (especially Cul, CuBr or CuCl), which is sealed and evacuated. After it has been charged with inert gas, acetonitrile is added and stirred overnight. The resulting solid is filtered off, washed with a little cold acetonitrile and dried in vacuo.

Beispiel 3a:Example 3a:

Figure imgb0033
Figure imgb0033

FAB-MS (m/z) = 614 M+;
Das Emissionsspektrum von 3a als Pulver bei Raumtemperatur ist in Figur 1 gezeigt.
Das Anregungsspektrum von 3a als Pulver bei Raumtemperatur ist in Figur 2 gezeigt.
FAB-MS (m / z) = 614 M + ;
The emission spectrum of 3a as a powder at room temperature is in FIG. 1 shown.
The excitation spectrum of 3a as a powder at room temperature is in FIG. 2 shown.

Beispiel 3b:Example 3b:

Figure imgb0034
Das Emissionsspektrum von 3b als Pulver bei Raumtemperatur ist in Figur 3 gezeigt.
Das Anregungsspektrum von 3b als Pulver bei Raumtemperatur ist in Figur 4 gezeigt.
Figure imgb0034
The emission spectrum of 3b as a powder at room temperature is in FIG. 3 shown.
The excitation spectrum of 3b as a powder at room temperature is in FIG. 4 shown.

Beispiel 3c:Example 3c:

Figure imgb0035
Berechnet C: 66,24 H: 5,58 N: 5,35; gefunden C: 64,36 H: 5,37 N: 5,69
Das Emissionsspektrum von 3c als Pulver bei Raumtemperatur ist in Figur 5 gezeigt.
Das Anregungsspektrum von 3c als Pulver bei Raumtemperatur ist in Figur 6 gezeigt.
Figure imgb0035
Calculated C: 66.24 H: 5.58 N: 5.35; Found C: 64.36 H: 5.37 N: 5.69
The emission spectrum of 3c as a powder at room temperature is in FIG. 5 shown.
The excitation spectrum of 3c as a powder at room temperature is in FIG. 6 shown.

Beispiel 4: Herstellung und Charakterisierung von organischen Elektrolumineszenzvorrichtungen:Example 4: Preparation and Characterization of Organic Electroluminescent Devices

Die Herstellung von OLEDs erfolgt nach dem im Folgenden skizzierten allgemeinen Verfahren. Dieses muss natürlich im Einzelfall auf die jeweiligen Gegebenheiten (z. B. Schichtdickenvariation, um optimale Effizienz bzw. Farbe zu erreichen) angepasst werden.OLEDs are produced according to the general procedure outlined below. Of course, this has to be adapted in individual cases to the respective circumstances (eg layer thickness variation in order to achieve optimum efficiency or color).

Allgemeines Verfahren zur Herstellung der OLEDs:General procedure for the preparation of the OLEDs:

Nachdem man die ITO-beschichteten Substrate (z. B. Glasträger, PET-Folie) auf die richtige Größe zugeschnitten hat, werden sie in mehreren Reinigungsschritten im Ultraschallbad gereinigt (z. B. Seifenlösung, Millipore-Wasser, Isopropanol). Zur Trocknung werden sie mit einer N2-Pistole abgepustet und in einem Exsikkator gelagert. Vor der Bedampfung mit den organischen Schichten werden sie mit einem Ozon-Plasma-Gerät für ca. 20 Minuten behandelt. Es kann sich empfehlen, als erste organische Schicht eine polymere Lochinjektionsschicht zu verwenden. Dies ist in der Regel ein konjugiertes, leitfähiges Polymer, wie z. B. ein Polyanilinderivat (PANI) oder eine Polythiophenderivat (z. B. PEDOT, BAYTRON P® von BAYER). Diese wird dann durch Spin-Coaten (Lackschleudern) aufgebracht. Die organischen Schichten werden der Reihe nach durch Aufdampfen in einer Hochvakuumanlage aufgebracht. Dabei werden die Schichtdicke der jeweiligen Schicht und die Bedampfungsrate über einen Schwingquarz verfolgt bzw. eingestellt. Es können auch einzelne Schichten aus mehr als einer Verbindung bestehen, d. h. in der Regel ein Wirtsmaterial (host) mit einem Gastmaterial (guest) dotiert sein. Dies wird durch Co-Verdampfung aus zwei bzw. mehreren Quellen erzielt. Auf die organischen Schichten wird noch eine Elektrode aufgebracht. Dies geschieht in der Regel durch thermisches Verdampfen (Balzer BA360 bzw. Pfeiffer PL S 500). Anschließend wird die durchsichtige ITO-Elektrode als Anode und die Metallelektrode als Kathode kontaktiert, und es werden die Device-Parameter bestimmt.After the ITO-coated substrates (eg glass carrier, PET film) have been cut to the correct size, they are cleaned in several purification steps in an ultrasonic bath (eg soap solution, Millipore water, isopropanol). to Drying, they are blown off with an N2 gun and stored in a desiccator. Before evaporation with the organic layers, they are treated with an ozone plasma device for about 20 minutes. It may be advisable to use a polymeric hole injection layer as the first organic layer. This is usually a conjugated, conductive polymer, such as. A polyaniline derivative (PANI) or a polythiophene derivative (eg PEDOT, BAYTRON P® from BAYER). This is then applied by spin coating (spin coating). The organic layers are applied in turn by vapor deposition in a high vacuum system. In this case, the layer thickness of the respective layer and the evaporation rate are monitored or adjusted via a quartz crystal. It is also possible for individual layers to consist of more than one compound, ie in general a host material (host) to be doped with a guest material (guest). This is achieved by coevaporation from two or more sources. An electrode is applied to the organic layers. This is usually done by thermal evaporation (Balzer BA360 or Pfeiffer PL S 500). Subsequently, the transparent ITO electrode is contacted as the anode and the metal electrode as the cathode, and the device parameters are determined.

Es wurden OLEDs mit folgendem Schichtaufbau hergestellt:

  • ITO 120 nm / CuPc 10 nm / NBPhen: α-NPD (1:2) 10 nm / NBPhen : Emitter (3:7) 50 nm / TPBI 50 nm / LiF 1 nm / Al 80 nm. ITO: Indiumzinnoxid; CuPc: Kupferphthalocyanin;
  • NBPhen: 2,9-Bis(naphtalen-2-yl)-4,7-diphenyl-1,10-phenanthrolin; TPBI: 2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazol).
OLEDs with the following layer structure were produced:
  • ITO 120 nm / CuPc 10 nm / NBPhen: α-NPD (1: 2) 10 nm / NBPhen: emitter (3: 7) 50 nm / TPBI 50 nm / LiF 1 nm / Al 80 nm. ITO: indium tin oxide; CuPc: copper phthalocyanine;
  • NBPhen: 2,9-bis (naphthalen-2-yl) -4,7-diphenyl-1,10-phenanthroline; TPBI: 2,2 ', 2 "- (1,3,5-benzene triyl) tris (1-phenyl-1-H-benzimidazole).

Als Emitter wurde der Kupferkomplex gemäß Beispiel 3a genutzt. Figur 7 zeigt den Strom-Spannungs-Verlauf und den Leuchtdichte-Spannungs-Verlauf der OLED im Betrieb.The emitter used was the copper complex according to Example 3a. FIG. 7 shows the current-voltage curve and the luminance-voltage curve of the OLED during operation.

Figurencharacters

Figur 1:FIG. 1:
Emissionsspektrum von 3a als Pulver bei Raumtemperatur; Anregungswellenlänge: 350 nm.Emission spectrum of 3a as a powder at room temperature; Excitation wavelength: 350 nm.
Figur 2:FIG. 2:
Anregungsspektrum von 3a als Pulver bei Raumtemperatur.Excitation spectrum of 3a as a powder at room temperature.
Figur 3:FIG. 3:
Emissionsspektrum von 3b als Pulver bei Raumtemperatur; Anregungswellenlänge: 350 nm.Emission spectrum of 3b as a powder at room temperature; Excitation wavelength: 350 nm.
Figur 4:FIG. 4:
Anregungsspektrum von 3b als Pulver bei Raumtemperatur.Excitation spectrum of 3b as a powder at room temperature.
Figur 5:FIG. 5:
Emissionsspektrum von 3c als Pulver bei Raumtemperatur; Anregungswellenlänge: 350 nm.Emission spectrum of 3c as a powder at room temperature; Excitation wavelength: 350 nm.
Figur 6:FIG. 6:
Anregungsspektrum von 3c als Pulver bei Raumtemperatur.Excitation spectrum of 3c as a powder at room temperature.
Figur 7:FIG. 7:
Strom-Spannungskurve und Leuchtdichte-Spannungs-Kurve einer OLED mit Emitter gemäß Beispiel 3a.Current-voltage curve and luminance-voltage curve of an OLED with emitter according to Example 3a.

Claims (12)

  1. Metal complex, comprising a structure of formula A-3
    Figure imgb0037
    with
    A = bridge with more than one and less than six (relating to the shortest chain length) identical or different chain members k, preferred more than one and less than 4, more preferred more than one and less than 3, wherein k = C(sp2)R, CR2, C=O, C=S, C=NR, O, N, NR, S, Se; wherein optionally one or more members of k are part of an aromatic or aliphatic ring system as defined at C(sp2);
    E" = either a chemically neutral group selected from C*R (carbene-carbon), NR (iminenitrogen), NR2, PR2, AsR2, OR, SR, SeR, optionally as part of a neutral aromatic or heteroaromatic ring system as defined at C(sp2) or a single negatively charged group selected from NR, PR, AsR, O, S, Se, optionally as part of an anionic heteroaromatic ring system as defined at C(sp2);
    X = selected from the group consistent of Cl, Br, I, CN, OCN, SCN, alkynyl and N3; wherein X is only present during E" = a chemically neutral group;
    R is at each instance independently of each other selected from the group consistent of H, deuterium, phenyl, naphthyl, F, Cl, Br, I, N(R2)2, -CN, -NC, -SCN, -CF3, -NO2, - OH, C(=O)OH, C(=O)OR3, C(=O)N(R3)2, C(=O)SR3, C(=S)SR3, Si(R4)3, B(OR5)2, B(N(R6)2)2, C(=O)R3, P(=O)(R7)2, As(=O)(R7)2, P(=S)(R7)2, As(=S)(R7)2, S(=O)R3, S=NR3, S(=O)NR3, S(=O)2NR3, S(=O)2R3, O-S(=O)2R3, SF5, a linear alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a linear alkenyl or alkynyl group having 2 to 40 carbon atoms or a branched or cyclic alkyl, alkenyl, alkynyl or thioalkoxy group having 3 to 40 carbon atoms, each of which may be substituted by one or more R9 moieties,
    where one or more adjacent CH2 groups may be replaced by -R9C=CR9-, -C=C- and one adjacent CH2 group may be replaced by -Si(R4)2-, -Ge(R4)2-, -Sn(R4)2, -C(=O)-, - C(=S)-, -C(=Se)-, -C=N-, -C(=O)O-, -C(=O)N(R3)-, -P(=O)(R7)-, -As(=O)(R7)-, - P(=S)(R7)-, -As(=S)(R7)-, -S(=O)-, -S(=O)2-, -NR2-, -O-, or -S-, and where one or more hydrogen atoms may be replaced by deuterium, F, Cl, Br, I, CN, CF3 or NO2 or an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more R2 moieties, or an aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms, which may be substituted by one or more R9 moieties, or a diarylamino group, diheteroarylamino group or arylheteroarylamino group having 10 to 40 aromatic ring atoms, which may be substituted by one or more R9 moieties, or a combination of these systems; at the same time two or more of these R substituents together may also form a monocyclic, aliphatic, ring system having in total five or six ring members;
    R2 is at each instance independently of each other selected from the group consistent of H, deuterium, phenyl, naphthyl, CF3, C(=O)OR3, Si(R4)3, C(=O)R3, P(=O)(R7)2, As(=O)(R7)2 P(=S)(R7)2, As(=S)(R7)2, S(=O)R3, S(=O)2R3, a linear alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a linear alkenyl or alkynyl group having 2 to 40 carbon atoms or a branched or cyclic alkyl, alkenyl, alkynyl, alkoxy or thioalkoxy group having 3 to 40 carbon atoms, each of which may be substituted by one or more R9 moieties, where one or more adjacent CH2 groups may be replaced by -R9C=CR9-, -C=C- and one adjacent CH2 group may be replaced by -Si(R4)2-, - Ge(R4)2-, -Sn(R4)2, -C(=O)-, -C(=S)-, -C(=Se)-, -C=N-, -C(=O)O-, -C(=O)N(R3)-, - P(=O)(R7)-, -As(=O)(R7)-, -P(=S)(R7)-, -As(=S)(R7)-, -S(=O)-, -S(=O)2-, -O-, or -S-, and where one or more hydrogen atoms may be replaced by deuterium, F, Cl, Br, I, CN, CF3 or NO2 or an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more R9 moieties, or an aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms, which may be substituted by one or more R9 moieties, or a diarylamino group, diheteroarylamino group or arylheteroarylamino group having 10 to 40 aromatic ring atoms, which may be substituted by one or more R9 moieties, or a combination of these systems;
    at the same time two or more of these R2 substituents together may also form a mono- or polycyclic, aliphatic, aromatic and/or benzo-fused ring system;
    R3 is at each instance independently of each other selected from the group consistent of H, deuterium, phenyl, naphthyl, CF3 or an aliphatic, aromatic and/or heteroaromatic hydrocarbonyl moiety having 1 to 20 carbon atoms, in which one or more hydrogen atoms may be replaced by F or CF3; at the same time, two or more R3 substituents together may also form a mono- or polycyclic aliphatic ring system;
    R4 is at each instance independently of each other selected from the group consistent of H, deuterium, phenyl, naphthyl, CN, CF3, OH, C(=O)OR3, C(=O)N(R3)2, C(=O)R3, P(=O)(R7)2, As(=O)(R7)2, P(=S)(R7)2, As(=S)(R7)2, a linear alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a linear alkenyl or alkynyl group having 2 to 40 carbon atoms or a branched or cyclic alkyl, alkenyl, alkynyl, alkoxy or thioalkoxy group having 3 to 40 carbon atoms, each of which may be substituted by one or more R9 moieties, where one or more adjacent CH2 groups may be replaced by -R9C=CR9-, - C=C- and one adjacent CH2 group may be replaced by -C(=O)-, -C(=S)-, -C(=Se)-, - C=N-, -C(=O)O-, -C(=O)N(R3)-, -P(=O)(R7)-, -As(=O)(R7)-, -P(=S)(R7)-, -As(=S)(R7)-, - S(=O)-, -S(=O)2-, -O-, or -S-, and where one or more hydrogen atoms may be replaced by deuterium, F, Cl, Br, I, CN, CF3 or NO2 or an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more R8 moieties, or an aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms, which may be substituted by one or more R9 moieties, or a diarylamino group, diheteroarylamino group or arylheteroarylamino group having 10 to 40 aromatic ring atoms, which may be substituted by one or more R9 moieties, or a combination of these systems; at the same time two or more of these R4 substituents together may also form a mono- or polycyclic, aliphatic, aromatic and/or benzo-fused ring system;
    R5 is at each instance independently of each other selected from the group consistent of phenyl, naphthyl, CF3, C(=O)R3, P(=O)(R7)2, As(=O)(R7)2, a linear alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a linear alkenyl or alkynyl group having 2 to 40 carbon atoms or a branched or cyclic alkyl, alkenyl, alkynyl, alkoxy or thioalkoxy group having 3 to 40 carbon atoms, each of which may be substituted by one or more R9 moieties, where one or more adjacent CH2 groups may be replaced by -R9C=CR9-, -C=C- and one adjacent CH2 group may be replaced by -Si(R4)2-, - Ge(R4)2-, -Sn(R4)2, -C(=O)-, -C(=S)-, -C(=Se)-, -C=N-, -C(=O)O-, -C(=O)N(R3)-, - P(=O)(R7)-, -As(=O)(R7)-, -P(=S)(R7)-, -As(=S)(R7)-, -S(=O)-, -S(=O)2-, -NR2-, -O-, or - S-, and where one or more hydrogen atoms may be replaced by deuterium, F, Cl, Br, I, CN, CF3 or NO2 or an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more R9 moieties, or an aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms, which may be substituted by one or more R9 moieties, or a diarylamino group, diheteroarylamino group or arylheteroarylamino group having 10 to 40 aromatic ring atoms, which may be substituted by one or more R9 moieties, or a combination of these systems; at the same time two or more of these R5 substituents together may also form a mono- or polycyclic, aliphatic, aromatic and/or benzo-fused ring system;
    R6 is at each instance independently of each other selected from the group consistent of phenyl, naphthyl, CF3, Si(R4)3, C(=O)R3, P(=O)(R7)2, a linear alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a linear alkenyl or alkynyl group having 2 to 40 carbon atoms or a branched or cyclic alkyl, alkenyl, alkynyl, alkoxy or thioalkoxy group having 3 to 40 carbon atoms, each of which may be substituted by one or more R9 moieties, where one or more adjacent CH2 groups may be replaced by -R9C=CR9-, -C=C- and one adjacent CH2 group may be replaced by -Si(R4)2-, - Ge(R4)2-, -Sn(R4)2, -C(=O)-, -C(=S)-, -C(=Se)-, -C=N-, -C(=O)O-, -C(=O)N(R3)-, - P(=O)(R7)-, -As(=O)(R7)-, -P(=S)(R7)-, -As(=S)(R7)-, -S(=O)-, -S(=O)2-, -NR2-, -O-, or - S-, and where one or more hydrogen atoms may be replaced by deuterium, F, Cl, Br, I, CN, CF3 or NO2 or an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more R9 moieties, or an aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms, which may be substituted by one or more R moieties, or a diarylamino group, diheteroarylamino group or arylheteroarylamino group having 10 to 40 aromatic ring atoms, which may be substituted by one or more R9 moieties, or a combination of these systems; at the same time two or more of these R6 substituents together may also form a mono- or polycyclic, aliphatic, aromatic and/or benzo-fused ring system;
    R7 is at each instance independently of each other selected from the group consistent of phenyl, naphthyl, CN, CF3, C(=O)OR3, C(=O)N(R3)2, C(=O)R3, a linear alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a linear alkenyl or alkynyl group having 2 to 40 carbon atoms or a branched or cyclic alkyl, alkenyl, alkynyl, alkoxy or thioalkoxy group having 3 to 40 carbon atoms, each of which may be substituted by one or more R9 moieties, where one or more adjacent CH2 groups may be replaced by -R9C=CR9-, -C=C- and one adjacent CH2 group may be replaced by -C(=O)-, -C(=S)-, -C(=Se)-, -C=N-, -C(=O)O-, -C(=O)N(R3)-, -S(=O)-, -S(=O)2-, -O-, or -S-, and where one or more hydrogen atoms may be replaced by deuterium, F, Cl, Br, I, CN, CF3 or NO2 or an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more R9 moieties, or an aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms, which may be substituted by one or more R9 moieties, or a diarylamino group, diheteroarylamino group or arylheteroarylamino group having 10 to 40 aromatic ring atoms, which may be substituted by one or more R3 moieties, or a combination of these systems; at the same time two or more of these R7 substituents together may also form a mono- or polycyclic, aliphatic, aromatic and/or benzo-fused ring system;
    R8 is at each instance independently of each other selected from the group consistent of H, deuterium, phenyl, naphthyl, F, CF3 or an aliphatic, aromatic and/or heteroaromatic hydrocarbonyl moiety having 1 to 20 carbon atoms, in which one or more hydrogen atoms may be replaced by F or CF3; at the same time, two or more R8 substituents together may also form a mono- or polycyclic aliphatic ring system;
    R9 is at each instance independently of each other selected from the group consistent of H, deuterium, phenyl, naphthyl, CN, CF3, NO2, OH, COOH, C(=O)OR3, C(=O)N(R3)2, C(=O)R3, S(=O)R3, S(=O)2R3, OSO2R3, a linear alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or a linear alkenyl or alkynyl group having 2 to 40 carbon atoms or a branched or cyclic alkyl, alkenyl, alkynyl, alkoxy or thioalkoxy group having 3 to 40 carbon atoms, each of which may be substituted by one or more R8 moieties, where one or more adjacent CH2 groups may be replaced by -R9C=CR9-, -C=C- and one adjacent CH2 group may be replaced by -C(=O)-, -C(=S)-, -C(=Se)-, -C=N-, - C(=O)O-, -C(=O)N(R3)-, -S(=O)-, -S(=O)2-, -O-, or -S-, and where one or more hydrogen atoms may be replaced by deuterium, F, Cl, Br, I, CN, CF3 or NO2 or an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more R8 moieties, or an aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms, which may be substituted by one or more R3 moieties, or a diarylamino group, diheteroarylamino group or arylheteroarylamino group having 10 to 40 aromatic ring atoms, which may be substituted by one or more R8 moieties, or a combination of these systems; at the same time two or more of these R9 substituents together may also form a mono- or polycyclic, aliphatic, aromatic and/or benzo-fused ring system.
  2. Use of a metal complex according to claim 1 as an emitter or an absorber and/or a matrix material and/or a hole blocking material and/or as an electron transport material in an optoelectronic component.
  3. The use according to claim 2, wherein the optoelectronic component is selected from the group consisting of:
    - organic electroluminescent components (organic light diodes, OLEDs, PLEDs),
    - organic integrated circuits (O-ICs),
    - light emitting electrochemical cells (LECs),
    - organic solar cells (O-SCs),
    - organic field effect transistors (O-FETs),
    - organic thin film transistors (O-TFTs),
    - organic light emitting transistors (O-LETs),
    - OLED-sensors, in particular gas and vapor sensors not hermetically sealed to the outside,
    - organic optical detectors,
    - organic photoreceptors,
    - organic field quench devices (O-FQDs) and
    - organic laser diodes (O-Laser).
  4. The use according to claim 2 or 3, characterized in that the fraction of the metal complex in the emitter or absorber is 100%.
  5. The use according to claim 2 or 3, characterized in that the fraction of the metal complex in the emitter or absorber is 1 to 99% by weight, preferably 2 to 90% by weight, more preferred 3 to 40% by weight, in particular 5 to 15% by weight in relation to the total mixture of emitter and matrix material.
  6. The use according to claim 2 or 3, characterized in that the fraction of the metal complex in the matrix material is 99 to 1% by weight, preferably 98 to 10 % by weight, more preferred 97 to 60% by weight, in particular 95 to 85 % by weight in relation to the total mixture of emitter and matrix material.
  7. Optoelectronic component, comprising a metal complex according to claim 1.
  8. The optoelectronic component according to claim 7, formed as a component selected from the group consisting of organic electroluminescent compound, organic integrated circuit, light-emitting electrochemical cell, organic solar cell, organic field effect transistor, organic thin film transistor, organic light emitting transistors, OLED-sensors, in particular in gas and vapor sensors not hermetically sealed off to the outside, organic optical detectors, organic photoreceptors, organic field quench devices and organic laser diodes.
  9. Method for producing an optoelectronic component, wherein the metal complex according to claim 1 is used.
  10. The method according to claim 9, characterized in that a metal complex according to claim 1 is deposited on a carrier.
  11. The method according to claim 8, characterized in that the deposition is carried out using wet-chemical means by colloidal suspension or by sublimation.
  12. The method according to claim 10 or 11, wherein one or more layers are coated with a sublimation process and wherein the materials are vapor-deposited in a vacuum deposition device at a pressure smaller than 10-5 mbar, preferred smaller than 10-6 mbar, more preferred smaller than 10-7 mbar.
EP15778639.3A 2014-10-08 2015-10-08 Metal complexes with tridentate ligands for optoelectronic applications Active EP3204463B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14188055 2014-10-08
PCT/EP2015/073233 WO2016055557A1 (en) 2014-10-08 2015-10-08 Metal complexes with tridentate ligands for optoelectronic applications

Publications (2)

Publication Number Publication Date
EP3204463A1 EP3204463A1 (en) 2017-08-16
EP3204463B1 true EP3204463B1 (en) 2019-04-17

Family

ID=51687866

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15778639.3A Active EP3204463B1 (en) 2014-10-08 2015-10-08 Metal complexes with tridentate ligands for optoelectronic applications

Country Status (2)

Country Link
EP (1) EP3204463B1 (en)
WO (1) WO2016055557A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115477671B (en) * 2022-10-13 2024-01-23 中国科学院兰州化学物理研究所 Chiral imidazoline-aniline-phosphine tridentate ligand, preparation method and application thereof

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660410B2 (en) 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
CN1267525C (en) 2001-03-08 2006-08-02 香港大学 Light-emitting organic metal material
CN100371370C (en) 2001-09-04 2008-02-27 佳能株式会社 High-molecular compounds and organic luminescent devices
US6653654B1 (en) 2002-05-01 2003-11-25 The University Of Hong Kong Electroluminescent materials
JP2003332074A (en) 2002-05-09 2003-11-21 Canon Inc Light emitting element using metal coordination compound
EP1534799A4 (en) 2002-08-16 2008-02-27 Univ Southern California Organic light emitting materials and devices
JP4578970B2 (en) 2002-08-16 2010-11-10 ザ ユニバーシティ オブ サザン カリフォルニア Organic light emitting material having anionic ligand
JP4411851B2 (en) 2003-03-19 2010-02-10 コニカミノルタホールディングス株式会社 Organic electroluminescence device
US7345301B2 (en) 2003-04-15 2008-03-18 Merck Patent Gmbh Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures
EP1617710B1 (en) 2003-04-23 2015-05-20 Konica Minolta Holdings, Inc. Material for organic electroluminescent device, organic electroluminescent device, illuminating device and display
EP1644459B1 (en) 2003-07-07 2017-08-23 Merck Patent GmbH Mixtures of organic emissive semiconductors and matrix materials, and electronic components comprising said mixtures
DE10333232A1 (en) 2003-07-21 2007-10-11 Merck Patent Gmbh Organic electroluminescent element
DE10338550A1 (en) 2003-08-19 2005-03-31 Basf Ag Transition metal complexes with carbene ligands as emitters for organic light-emitting diodes (OLEDs)
US7795801B2 (en) 2003-09-30 2010-09-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
DE10350606A1 (en) 2003-10-30 2005-06-09 Covion Organic Semiconductors Gmbh Process for the preparation of heteroleptic, ortho-metallated organometallic compounds
DE10358665A1 (en) 2003-12-12 2005-07-07 Basf Ag Use of platinum (II) complexes as luminescent materials in organic light-emitting diodes (OLEDs)
US7790890B2 (en) 2004-03-31 2010-09-07 Konica Minolta Holdings, Inc. Organic electroluminescence element material, organic electroluminescence element, display device and illumination device
DE102004023277A1 (en) 2004-05-11 2005-12-01 Covion Organic Semiconductors Gmbh New material mixtures for electroluminescence
JP4862248B2 (en) 2004-06-04 2012-01-25 コニカミノルタホールディングス株式会社 Organic electroluminescence element, lighting device and display device
US7288330B2 (en) 2004-07-01 2007-10-30 Eaastman Kodak Company High performance white light-emitting OLED device
DE102004032527A1 (en) 2004-07-06 2006-02-02 Covion Organic Semiconductors Gmbh Electroluminescent polymers
DE102004046665A1 (en) 2004-09-24 2006-07-27 Basf Ag Use of copper (I) complexes in organic light-emitting diodes
JP5242380B2 (en) 2005-05-03 2013-07-24 メルク パテント ゲーエムベーハー Organic electroluminescence device
DE102006025777A1 (en) 2006-05-31 2007-12-06 Merck Patent Gmbh New materials for organic electroluminescent devices
US7683183B2 (en) * 2006-07-28 2010-03-23 California Institute Of Technology Emissive monomeric metal complexes
DE102007002714A1 (en) 2007-01-18 2008-07-31 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102008017591A1 (en) 2008-04-07 2009-10-08 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102009057167A1 (en) 2009-12-05 2011-06-09 Merck Patent Gmbh Electronic device containing metal complexes
EP2749563A1 (en) * 2012-12-27 2014-07-02 cynora GmbH Binuclear metal(I) complexes for use in optoelectronics
JP2016516731A (en) * 2013-03-16 2016-06-09 メルク パテント ゲーエムベーハー Metal complex

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3204463A1 (en) 2017-08-16
WO2016055557A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
DE102008015526B4 (en) Metal complexes
DE102008057051B4 (en) Materials for organic electroluminescent devices
EP2883422B1 (en) Materials for organic electroluminescence devices
EP2742054B1 (en) Metal complexes
EP2714704B1 (en) Metal complexes
WO2019115423A1 (en) Metal complexes
DE102009053645A1 (en) Materials for organic electroluminescent device
WO2011006574A1 (en) Materials for organic electroluminescent devices
DE102009057167A1 (en) Electronic device containing metal complexes
EP1761962A1 (en) Organic electroluminescent device
EP3335254A1 (en) Materials for organic electroluminescent devices
WO2012013271A1 (en) Organic electroluminescent device
EP1817272A1 (en) Compounds for organic electronic devices
WO2016078747A1 (en) Heterocyclic compounds for use in electronic devices
EP2344608A1 (en) Materials for organic electroluminescent devices
EP2102309A1 (en) Carbazole derivatives for organic electroluminescent devices
WO2011120626A1 (en) Materials for organic electroluminescence devices
DE102012020167A1 (en) metal complexes
WO2018077769A1 (en) Metal complexes
WO2016045769A1 (en) Heterocyclic compounds with benzo[c]coumarin-structures
WO2016116486A1 (en) Organic molecules for use in optoelectronic components
EP2970197B1 (en) Copper complexes with polypodal ligands connected through a common nitrogen or phosphor atom as well as their use in oleds
EP3204463B1 (en) Metal complexes with tridentate ligands for optoelectronic applications
DE102013008189A1 (en) metal complexes
DE102012021650A1 (en) metal complexes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180718

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 51/50 20060101ALI20181120BHEP

Ipc: C09B 57/10 20060101ALI20181120BHEP

Ipc: C09K 11/06 20060101AFI20181120BHEP

Ipc: H01L 51/00 20060101ALI20181120BHEP

Ipc: C07F 1/08 20060101ALI20181120BHEP

INTG Intention to grant announced

Effective date: 20181213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008742

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1121536

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190417

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015008742

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

26N No opposition filed

Effective date: 20200120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191008

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151008

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1121536

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015008742

Country of ref document: DE

Owner name: SAMSUNG DISPLAY CO., LTD., YONGIN-SI, KR

Free format text: FORMER OWNER: CYNORA GMBH, 76646 BRUCHSAL, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015008742

Country of ref document: DE

Representative=s name: DR. WEITZEL & PARTNER PATENT- UND RECHTSANWAEL, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220609 AND 20220615

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230922

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 9