EP3196603A1 - Verfahren zum betreiben eines coriolis-massedurchflussmessgeräts und diesbezügliches coriolis-massedurchflussmessgerät - Google Patents

Verfahren zum betreiben eines coriolis-massedurchflussmessgeräts und diesbezügliches coriolis-massedurchflussmessgerät Download PDF

Info

Publication number
EP3196603A1
EP3196603A1 EP16203405.2A EP16203405A EP3196603A1 EP 3196603 A1 EP3196603 A1 EP 3196603A1 EP 16203405 A EP16203405 A EP 16203405A EP 3196603 A1 EP3196603 A1 EP 3196603A1
Authority
EP
European Patent Office
Prior art keywords
sensor
signal
coriolis mass
detected
excitation signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16203405.2A
Other languages
English (en)
French (fr)
Other versions
EP3196603B1 (de
Inventor
Kourosh Kolahi
Ralf Storm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krohne Messtechnik GmbH and Co KG
Original Assignee
Krohne Messtechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krohne Messtechnik GmbH and Co KG filed Critical Krohne Messtechnik GmbH and Co KG
Publication of EP3196603A1 publication Critical patent/EP3196603A1/de
Application granted granted Critical
Publication of EP3196603B1 publication Critical patent/EP3196603B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8463Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits the measuring conduits' cross-section being deformed during measurement, e.g. by periodically deflecting a portion of the conduits' surface

Definitions

  • the invention relates to a method for operating a Coriolis mass flowmeter with at least one measuring tube and at least one sensor, wherein the sensor outputs a sensor dependent on the temperature of the sensor electrical sensor signal, the sensor is mechanically coupled by a connection with the rest of the Coriolis mass flowmeter and the Connection has a thermal resistance.
  • the invention relates to a Coriolis mass flowmeter with at least one measuring tube, at least one sensor and an evaluation unit, wherein the sensor outputs a sensor dependent on the temperature of the sensor electrical sensor signal, the sensor is mechanically coupled by a connection with the rest of the Coriolis mass flowmeter and the Connection has a thermal resistance.
  • the operating principle of the Coriolis mass flowmeter is that the measuring tube through which a medium flows is excited to oscillate, wherein the direction of vibration of the measuring tube and thus of the medium flowing in the measuring tube has at least one component orthogonal to the flow direction of the medium in the measuring tube.
  • the orthogonal component of the vibration of the medium flowing in the measuring tube causes a coriolis force in the flowing medium, which counteracts the orthogonal component of the vibration.
  • the Coriolis inertial force causes a phase difference, which is proportional to the mass flow of the medium through the measuring tube, to occur between the oscillation of the measuring tube at respectively two different measuring tube locations along the longitudinal axis of the measuring tube.
  • the Coriolis mass flowmeter measures the phase difference and determines from this the mass flow of the medium.
  • the invention relates to a method in which the previously derived and indicated object is achieved.
  • the inventive method is initially and essentially characterized in that an electrical excitation signal is generated, the excitation signal is impressed into the sensor, the sensor signal influenced by the excitation signal is detected, a change between the detected sensor signal and a reference signal is determined and the change between the detected sensor signal and the reference signal is associated with a change in the thermal resistance.
  • the sensor is designed to measure a physical quantity and outputs the value of the physical quantity representing the temperature of the sensor dependent electrical sensor signal.
  • the sensor and the remainder of the Coriolis mass flowmeter are thermally coupled through the connection, the thermal coupling being described by the thermal resistance.
  • the thermal coupling causes heat to be exchanged between the sensor and the remainder of the Coriolis mass flowmeter when the temperature of the sensor and the temperature of the remaining Coriolis mass flow meter are different.
  • the exchanged heat influences the temperature of the sensor and thus also the output sensor signal. While heat is also exchanged between the sensor and the ambient atmosphere, this exchange of heat is usually negligible compared to the exchange of heat between the sensor and the remainder of the Coriolis mass flowmeter. Influence on the temperature of the rest of the Coriolis mass flowmeter by the heat exchanged is also usually negligible.
  • a known thermal resistance of the connection can be taken into account in the evaluation of the sensor signal, so that the measurements of the sensor are not affected by the known thermal resistance with errors.
  • the change in thermal resistance causes the thermal resistance to be unknown, causing errors in the measurements of the sensor.
  • the thermal resistance characterizes the connection.
  • the change in the thermal resistance thus implies a change in the connection which is detected by the method according to the invention.
  • the change in the connection is signaled, in particular when the change exceeds a predetermined threshold.
  • the impressed in the sensor electrical excitation signal causes a change in the temperature of the sensor.
  • the changing temperature of the sensor causes an exchange of heat between the sensor and the rest of the Coriolis mass flowmeter, the time course of which characterizes the thermal resistance. Consequently, the time profile of the detected sensor signal due to the dependence of the sensor signal on the temperature of the sensor is also characteristic of the thermal resistance. Accordingly, a change in the thermal resistance causes a change in the detected sensor signal.
  • the excitation signal is generated in such a way that the temperature of the sensor is changed so far that the influence of the excitation signal on the sensor signal can be detected.
  • the impressing of the excitation signal into the sensor takes place alternatively or additionally to the supply of the sensor with electrical energy which the sensor requires to measure the physical quantity for which it is designed.
  • the change between the detected sensor signal and the reference signal may be different.
  • the detected sensor signal and the reference signal are the same with unchanged thermal coupling and deviate from each other when the thermal coupling is changed.
  • the detected sensor signal and the reference signal deviate from each other even with unchanged thermal coupling and the deviation changes with a changed thermal coupling.
  • the characteristic of the thermal resistance of the compound time course of the detected sensor signal is reflected in the time constant of the detected sensor signal. It is therefore provided in one embodiment of the method according to the invention that the change between the detected sensor signal and the reference signal is determined by determining the time constant of the detected sensor signal and the change between the time constant of the detected sensor signal and the time constant of the reference signal.
  • a further embodiment of the method provides that the change between the detected sensor signal and the reference signal is assigned to a change in the mechanical coupling through the connection.
  • a decrease in the time constant of the detected sensor signal in comparison to the time constant of the reference signal is assigned to a decrease in the mechanical coupling through the connection.
  • the development requires that the change between the detected sensor signal and the reference signal is determined by determining the time constant of the detected sensor signal and the change between the time constant of the detected sensor signal and the time constant of the reference signal.
  • a particularly advantageous influencing of the detected sensor signal by the excitation signal is given if the excitation signal has the time profile of a jump function.
  • the jump of the excitation signal causes a disturbance of the thermal equilibrium position between the sensor and the rest of the Coriolis mass flowmeter and the constancy of the excitation signal before and after the jump simplifies the determination of the change of the detected sensor signal with respect to the reference signal, since no further after the jump changing influence of the sensor signal by the excitation signal takes place. Consequently, a further embodiment provides that the excitation signal is generated over time with a jump from a first excitation signal value to a second excitation signal value and constant excitation signal values temporally before and after the jump.
  • the excitation signal is generated such that the first excitation signal value is greater than the second excitation signal value.
  • the power loss generated by the excitation signal in the sensor before the jump is greater than after the jump of the excitation signal, wherein the power loss is converted into heat in the sensor. Consequently, after the jump of the excitation signal, the sensor cools due to the outflow of heat from the sensor via the connection to the remaining Coriolis mass flowmeter.
  • the electrical sensor signal of the sensor is output via two sensor connections.
  • the sensor is also supplied via the two sensor terminals with the electrical energy required by the sensor for measuring the physical size for which it is designed.
  • the excitation signal impressed into the two sensor connections can be one of the two electrical quantities current and voltage. If the excitation signal is a current, it is impressed into one of the two sensor terminals and the detected sensor signal is the voltage between the two sensor terminals, wherein the voltage represents the influence of the sensor by the excitation signal. If the excitation signal is a voltage, this is impressed between the two sensor terminals and the detected sensor signal is the current through one of the two sensor terminals, the current influencing of the sensor represented by the excitation signal. Thus, the non-impressed electrical quantity is the sensor signal.
  • the excitation signal as current in the Sensor is impressed.
  • a first alternative provides that a detected sensor signal is used as the reference signal.
  • the detected sensor signal ensures that the connection is in the unaltered state, ie in the proper state. Changes between the subsequently detected sensor signal and the reference signal then mean a deviation of the connection from the unchanged state.
  • a second alternative initially requires that the Coriolis mass flowmeter has a further sensor, the further sensor outputs a dependent on the temperature of the other sensor further electrical sensor signal, the other sensor is mechanically coupled by another connection with the rest of the Coriolis mass flowmeter and the further connection has a further thermal resistance.
  • the second alternative is then characterized in that a further electrical excitation signal is generated, the further excitation signal is impressed into the further sensor, the further sensor signal influenced by the further excitation signal is detected, and the detected further sensor signal is used as the reference signal.
  • a variant of the second alternative provides that the whre sensor is different from the sensor.
  • An alternative or additional variant provides that the further excitation signal corresponds to the excitation signal.
  • the second alternative can be further developed by carrying out a method according to one of claims 6 to 8 with respect to the further sensor.
  • the invention relates to a Coriolis mass flowmeter, in which the previously derived and indicated object is achieved.
  • the Coriolis mass flowmeter according to the invention is initially and essentially characterized in that the evaluation unit is designed to generate an electrical excitation signal, embossing the excitation signal into the sensor, detection of the sensor signal influenced by the excitation signal, determination of a change between the detected sensor signal and a reference signal and assignment of the change between the detected sensor signal and the reference signal to a change of the thermal resistance.
  • An embodiment of the Coriolis mass flowmeter according to the invention provides that the Coriolis mass flowmeter is designed to carry out a method according to one of the preceding embodiments, further developments, alternatives and variants.
  • the sensor is a resistive temperature sensor, in particular a thermistor, or a strain sensor, in particular a strain gauge.
  • the physical quantity sensor is configured to output temperature indicative of the temperature value of the sensor depending on the temperature of the sensor.
  • the sensor is a strain sensor, the sensor is configured to measure the physical amount of strain and outputs the strain value representative of the value of the strain, which is dependent on the temperature of the sensor.
  • generic Coriolis mass flowmeters both have at least one temperature sensor and at least one strain sensor. Then it makes sense to use the strain sensor according to the preceding embodiments of the method according to the invention as a further sensor for generating the reference signal and the generated reference signal in connection with the temperature sensor.
  • the sensor is arranged on the measuring tube by the connection.
  • the measuring tube is preferably directly connected to a carrier and the sensor on the carrier is arranged.
  • the measuring tube is preferably directly connected to a carrier and that at least two sensors are arranged on the body formed by the measuring tube and the carrier.
  • connection is made by material connection, in particular by gluing.
  • connection is made by adhesion, in particular by screwing.
  • the advantage of the connection by material connection to the connection by adhesion is that the connection is flat and not punctiform. Because the surface connection causes a lower thermal resistance.
  • the advantage of the connection by traction is the disassembly of the sensor.
  • FIG. 1 schematically illustrated Coriolis mass flowmeter 1 according to the invention comprises a measuring tube 2, a sensor 3 and an evaluation unit 4.
  • the sensor 3 is a temperature sensor and outputs an electrical sensor signal dependent on the temperature ⁇ S of the sensor 3. It is mechanically coupled by a connection 5 to the rest of the Coriolis mass flowmeter 1, the temperature of the rest of the Coriolis mass flowmeter 1 being ⁇ U.
  • the compound 5 is characterized by a thermal resistance R SU .
  • the evaluation unit 4 generates an excitation signal with the following features. Over time, a jump is from a first excitation value to a second excitation value. The first excitation value is greater than the second excitation value. The excitation values are constant in time before and after the jump. The excitation signal is therefore a jump function. Since the first excitation value is greater than the second excitation value, the sensor 3 cools down after the jump.
  • the evaluation unit 4 impresses the excitation signal as current into the sensor 3.
  • the excitation signal increases the temperature ⁇ S of the sensor 3 until the moment of the jump of the excitation signal, wherein the temperature ⁇ S of the sensor 3 at the time of the jump ⁇ S, 0 .
  • dW s dt - ⁇ S - ⁇ U R SU .
  • d ⁇ U dt 0 .
  • W S is the heat energy of the sensor 3, t the time, C S the heat capacity of the sensor 3 and ⁇ the time constant of the sensor 3.
  • the energy balance is based on the knowledge that the exchange of heat between the sensor 3 and an ambient atmosphere 6 in comparison with the exchange of heat between the sensor 3 and the rest of the Coriolis mass flowmeter 1 negligible and the temperature ⁇ U of the remaining Coriolis mass flowmeter 1 is constant.
  • ⁇ D, 0 is the difference temperature at the time of the jump of the excitation signal. Accordingly, after the jump, the temperature ⁇ S of the sensor 3 again approaches the temperature ⁇ U of the remaining Coriolis mass flowmeter 1 over time. It has been recognized that the increase of the temperature ⁇ S of the sensor 3 by the supply of the sensor 3 with electrical energy, which requires the sensor 3 for measuring the physical size for which it is formed, is negligible.
  • the determination of the change between the detected sensor signal and the reference signal takes place in that the evaluation unit 4 first determines the time constant of the detected sensor signal and then the change between the time constant of the detected signal and the time constant of the reference signal.
  • the evaluation unit 4 assigns the change between the time constant of the detected sensor signal and the time constant of the reference signal to the thermal resistance R SU and outputs a signal when the change exceeds a threshold value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Beschrieben und dargestellt ist ein Verfahren zum Betreiben eines Coriolis-Massedurchflussmessgeräts (1) mit mindestens einem Messrohr (2) und mindestens einem Sensor (3), wobei der Sensor (3) ein von der Temperatur des Sensors (3) abhängiges elektrisches Sensorsignal ausgibt, der Sensor (3) durch eine Verbindung (5) mit dem übrigen Coriolis-Massedurchflussmessgerät (1) mechanisch gekoppelt ist und die Verbindung (5) einen thermischen Widerstand aufweist.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben eines Coriolis-Massedurchflussmessgeräts anzugeben, dass das Erkennen einer Veränderung der Verbindung ermöglicht.
Die Aufgabe ist dadurch gelöst, dass ein elektrisches Anregungssignal erzeugt wird, das Anregungssignal in den Sensor (3) eingeprägt wird, das von dem Anregungssignal beeinflusste Sensorsignal erfasst wird, eine Veränderung zwischen dem erfassten Sensorsignal und einem Referenzsignal bestimmt wird und die Veränderung zwischen dem erfassten Sensorsignal und dem Referenzsignal einer Veränderung des thermischen Widerstands zugeordnet wird.

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben eines Coriolis-Massedurchflussmessgeräts mit mindestens einem Messrohr und mindestens einem Sensor, wobei der Sensor ein von der Temperatur des Sensors abhängiges elektrisches Sensorsignal ausgibt, der Sensor durch eine Verbindung mit dem übrigen Coriolis-Massedurchflussmessgerät mechanisch gekoppelt ist und die Verbindung einen thermischen Widerstand aufweist.
  • Weiterhin betrifft die Erfindung ein Coriolis-Massedurchflussmessgerät mit mindestens einem Messrohr, mindestens einem Sensor und einer Auswerteeinheit, wobei der Sensor ein von der Temperatur des Sensors abhängiges elektrisches Sensorsignal ausgibt, der Sensor durch eine Verbindung mit dem übrigen Coriolis-Massedurchflussmessgerät mechanisch gekoppelt ist und die Verbindung einen thermischen Widerstand aufweist.
  • Das Funktionsprinzip des Coriolis-Massedurchflussmessgeräts ist, dass das von einem Medium durchströmte Messrohr zu einer Schwingung angeregt wird, wobei die Schwingungsrichtung des Messrohrs und damit auch des im Messrohr strömenden Mediums zumindest eine zur Strömungsrichtung des Mediums im Messrohr orthogonale Komponente aufweist. Die orthogonale Komponente der Schwingung des im Messrohr strömenden Mediums ruft in dem strömenden Medium eine Coriolisträgheitskraft hervor, die der orthogonalen Komponente der Schwingung entgegen wirkt. Die Coriolisträgheitskraft verursacht, dass zwischen der Schwingung des Messrohrs an jeweils zwei verschiedenen Messrohrstellen entlang der Längsachse des Messrohrs eine Phasendifferenz auftritt, die proportional zum Massestrom des Mediums durch das Messrohr ist. Das Coriolis-Massedurchflussmessgerät misst die Phasendifferenz und bestimmt aus dieser den Massestrom des Mediums.
  • Aus der Praxis sind gattungsgemäße Coriolis-Massedurchflussmessgeräte bekannt, bei denen sich die Verbindungen derart verändert haben, dass die Messungen der Sensoren mit Fehlern behaftet sind. Die Veränderungen der Verbindungen können verschiedene Ursachen haben wie zum Beispiel Alterung oder Ermüdung der Verbindungen oder äußere Einflüsse auf die Verbindungen.
  • Aufgabe der vorliegenden Erfindung ist deshalb, ein Verfahren zum Betreiben eines Coriolis-Massedurchflussmessgeräts sowie ein Coriolis-Massedurchflussmessgerät anzugeben, dass das Erkennen einer Veränderung der Verbindung ermöglicht.
  • Gemäß einer ersten Lehre bezieht sich die Erfindung auf ein Verfahren, bei dem die zuvor hergeleitete und aufgezeigte Aufgabe gelöst ist. Das erfindungsgemäße Verfahren ist zunächst und im Wesentlichen dadurch gekennzeichnet, dass ein elektrisches Anregungssignal erzeugt wird, das Anregungssignal in den Sensor eingeprägt wird, das von dem Anregungssignal beeinflusste Sensorsignal erfasst wird, eine Veränderung zwischen dem erfassten Sensorsignal und einem Referenzsignal bestimmt wird und die Veränderung zwischen dem erfassten Sensorsignal und dem Referenzsignal einer Veränderung des thermischen Widerstands zugeordnet wird.
  • Der Sensor ist zur Messung einer physikalischen Größe ausgebildet und gibt das den Wert der physikalischen Größe repräsentierende von der Temperatur des Sensors abhängige elektrische Sensorsignal aus. Der Sensor und das übrige Coriolis-Massedurchflussmessgerät sind durch die Verbindung thermisch gekoppelt, wobei die thermische Kopplung durch den thermischen Widerstand beschrieben wird. Die thermische Kopplung bewirkt, dass Wärme zwischen dem Sensor und dem übrigen Coriolis-Massedurchflussmessgerät ausgetauscht wird, wenn die Temperatur des Sensors und die Temperatur des übrigen Coriolis-Massedurchflussmessgeräts verschieden sind. Die ausgetauschte Wärme beeinflusst die Temperatur des Sensors und damit auch das ausgegebene Sensorsignal. Zwar wird auch Wärme zwischen dem Sensor und der Umgebungsatmosphäre ausgetauscht, jedoch ist dieser Austausch von Wärme im Vergleich zu dem Austausch von Wärme zwischen dem Sensor und dem übrigen Coriolis-Massedurchflussmessgerät für gewöhnlich vernachlässigbar. Die Beeinflussung der Temperatur des übrigen Coriolis-Massedurchflussmessgeräts durch die ausgetauschte Wärme ist für gewöhnlich ebenfalls vernachlässigbar.
  • Ein bekannter thermischer Widerstand der Verbindung kann bei der Auswertung des Sensorsignals berücksichtig werden, so dass die Messungen des Sensors nicht durch den bekannten thermischen Widerstand mit Fehlern behaftet sind. Die Veränderung des thermischen Widerstands bewirkt jedoch, dass der thermische Widerstand unbekannt ist, wodurch die Messungen des Sensors mit Fehlern behaftet sind. Demnach charakterisiert der thermische Widerstand die Verbindung. Die Veränderung des thermischen Widerstands bedeutet folglich eine Veränderung der Verbindung, die durch das erfindungsgemäße Verfahren erkannt wird. Vorzugsweise wird die Veränderung der Verbindung signalisiert, insbesondere dann, wenn die Veränderung einen vorgegebenen Schwellwert überschreitet.
  • Das in den Sensor eingeprägte elektrische Anregungssignal bewirkt eine Veränderung der Temperatur des Sensors. Die veränderte Temperatur des Sensors verursacht einen Austausch von Wärme zwischen dem Sensor und dem übrigen Coriolis-Massedurchflussmessgerät, dessen zeitlicher Verlauf den thermischen Widerstand charakterisiert. Folglich ist der zeitliche Verlauf des erfassten Sensorsignals aufgrund der Abhängigkeit des Sensorsignals von der Temperatur des Sensors auch charakteristisch für den thermischen Widerstand. Demnach bewirkt eine Veränderung des thermischen Widerstands eine Veränderung des erfassten Sensorsignals.
  • Das Anregungssignal wird dermaßen erzeugt, dass die Temperatur des Sensors soweit verändert wird, dass die Beeinflussung des Anregungssignals auf das Sensorsignal erfassbar ist. Die Einprägung des Anregungssignals in den Sensor erfolgt alternativ oder zusätzlich zur Versorgung des Sensors mit elektrischer Energie, die der Sensor zur Messung der physikalischen Größe benötigt, für die er ausgebildet ist.
  • Die Veränderung zwischen dem erfassten Sensorsignal und dem Referenzsignal kann unterschiedlicher Art sein. In einem Beispiel sind das erfasste Sensorsignal und das Referenzsignal bei unveränderter thermischer Kopplung gleich und weichen bei veränderter thermischer Kopplung voneinander ab. In einem anderen Beispiel weichen das erfasste Sensorsignal und das Referenzsignal schon bei unveränderter thermischer Kopplung voneinander ab und die Abweichung verändert sich bei veränderter thermischer Kopplung.
  • Der für den thermischen Widerstand der Verbindung charakteristische zeitliche Verlauf des erfassten Sensorsignals spiegelt sich in der Zeitkonstanten des erfassten Sensorsignals wider. Deshalb ist in einer Ausgestaltung des erfindungsgemäßen Verfahrens vorgesehen, dass die Veränderung zwischen dem erfassten Sensorsignal und dem Referenzsignal bestimmt wird, indem die Zeitkonstante des erfassten Sensorsignals und die Veränderung zwischen der Zeitkonstanten des erfassten Sensorsignals und der Zeitkonstanten des Referenzsignals bestimmt wird.
  • Es ist erkannt worden, dass die thermische Kopplung durch die Verbindung mit der Zeit zumeist abnimmt und in Folge dessen der thermische Widerstand steigt und die Zeitkonstante abnimmt. Deshalb ist in einer Weiterbildung der vorangehenden Ausgestaltung vorgesehen, dass eine Abnahme der Zeitkonstanten des erfassten Sensorsignals im Vergleich zur Zeitkonstanten des Referenzsignals einer Zunahme des thermischen Widerstands der Verbindung zugeordnet wird.
  • Weiter ist erkannt worden, dass eine Veränderung der thermischen Kopplung mit einer Veränderung der mechanischen Kopplung durch die Verbindung einhergeht. Und zwar nimmt auch die mechanische Kopplung ab, wenn die thermischen Kopplung abnimmt und umgekehrt. Daher ist ein einer weiteren Ausgestaltung des Verfahrens vorgesehen, dass die Veränderung zwischen dem erfassten Sensorsignal und dem Referenzsignal einer Veränderung der mechanischen Kopplung durch die Verbindung zugeordnet wird.
  • In einer Weiterbildung der vorangehenden Ausgestaltung ist vorgesehen, dass eine Abnahme der Zeitkonstanten des erfassten Sensorsignals im Vergleich zur Zeitkonstanten des Referenzsignals einer Abnahme der mechanischen Kopplung durch die Verbindung zugeordnet wird. Die Weiterbildung setzt voraus, dass die Veränderung zwischen dem erfassten Sensorsignal und dem Referenzsignal bestimmt wird, indem die Zeitkonstante des erfassten Sensorsignals und die Veränderung zwischen der Zeitkonstanten des erfassten Sensorsignals und der Zeitkonstanten des Referenzsignals bestimmt wird.
  • Eine besonders vorteilhafte Beeinflussung des erfassten Sensorsignals durch das Anregungssignal ist gegeben, wenn das Anregungssignal den zeitlichen Verlauf einer Sprungfunktion aufweist. Der Sprung des Anregungssignals bewirkt eine Störung der thermischen Gleichgewichtslage zwischen dem Sensor und dem übrigen Coriolis-Massedurchflussmessgerät und die Konstanz des Anregungssignals zeitlich vor und nach dem Sprung vereinfacht die Bestimmung der Veränderung des erfassten Sensorsignals in Bezug auf das Referenzsignal, da nach dem Sprung keine weitere sich verändernde Beeinflussung des Sensorsignal durch das Anregungssignal erfolgt. Folglich sieht eine weitere Ausgestaltung vor, dass das Anregungssignal im zeitlichen Verlauf mit einem Sprung von einem ersten Anregungssignalwert zu einem zweiten Anregungssignalwert und konstanten Anregungssignalwerten zeitlich vor und nach dem Sprung erzeugt wird.
  • In einer Weiterbildung der vorangehenden Ausgestaltung ist vorgesehen, dass das Anregungssignal derart erzeugt wird, dass der erste Anregungssignalwert größer als der zweite Anregungssignalwert ist. Bei dieser Ausgestaltung ist die durch das Anregungssignal im Sensor erzeugte Verlustleistung vor dem Sprung größer als nach dem Sprung des Anregungssignals, wobei die Verlustleistung im Sensor in Wärme umgewandelt wird. Demzufolge kühlt der Sensor nach dem Sprung des Anregungssignals durch den Abfluss von Wärme vom Sensor über die Verbindung zum übrigen Coriolis-Massedurchflussmessgerät ab.
  • Das elektrische Sensorsignal des Sensors wird über zwei Sensoranschlüsse ausgegeben. Vorzugsweise wird der Sensor über die zwei Sensoranschlüsse auch mit der elektrischen Energie versorgt, die der Sensor zur Messung der physikalischen Größe benötigt, für die er ausgebildet ist. Das in die zwei Sensoranschlüsse eingeprägte Anregungssignal kann eine der beiden elektrischen Größen Strom und Spannung sein. Wenn das Anregungssignal ein Strom ist, wird dieser in einen der zwei Sensoranschlüsse eingeprägt und das erfasste Sensorsignal ist die Spannung zwischen den zwei Sensoranschlüssen, wobei die Spannung die Beeinflussung des Sensors durch das Anregungssignal repräsentiert. Wenn das Anregungssignal eine Spannung ist, wird diese zwischen den zwei Sensoranschlüssen eingeprägt und das erfasste Sensorsignal ist der Strom durch einen der zwei Sensoranschlüsse, wobei der Strom die Beeinflussung des Sensors durch das Anregungssignal repräsentiert. Demnach ist die nichteingeprägte elektrische Größe das Sensorsignal. Da die Realisierung eines Stroms als Anregungssignal für den Sensor und Messung einer Spannung als Sensorsignal technisch vorteilhafter ist als die Realisierung einer Spannung als Anregungssignal für den Sensor und Messung eines Stroms als Sensorsignal, ist in einer weiteren Ausgestaltung vorgesehen, dass das Anregungssignal als Strom in den Sensor eingeprägt wird.
  • Für die Gewinnung des Referenzsignals gibt es verschiedene Alternativen. Eine erste Alternative sieht vor, dass ein erfasstes Sensorsignal als Referenzsignal verwendet wird. Bei dem erfassten Sensorsignal wird sichergestellt, dass die Verbindung im unveränderten, also im ordnungsgemäßen, Zustand ist. Veränderungen zwischen dem danach erfassten Sensorsignal und dem Referenzsignal bedeuten dann eine Abweichung der Verbindung vom unveränderten Zustand. Eine zweite Alternative setzt zunächst voraus, dass das Coriolis-Massedurchflussmessgerät einen weiteren Sensor aufweist, der weitere Sensor ein von der Temperatur des weiteren Sensors abhängiges weiteres elektrisches Sensorsignal ausgibt, der weitere Sensor durch eine weitere Verbindung mit dem übrigen Coriolis-Massedurchflussmessgerät mechanisch gekoppelt ist und die weitere Verbindung einen weiteren thermischen Widerstand aufweist. Die zweite Alternative ist dann dadurch gekennzeichnet, dass ein weiteres elektrisches Anregungssignal erzeugt wird, das weitere Anregungssignal in den weiteren Sensor eingeprägt wird, das von dem weiteren Anregungssignal beeinflusste weitere Sensorsignal erfasst wird und das erfasste weitere Sensorsignal als das Referenzsignal verwendet wird. Eine Variante der zweiten Alternative sieht vor, dass das der weitre Sensor von dem Sensor verschieden ist. Eine alternative oder zusätzliche Variante sieht vor, dass das weitere Anregungssignal dem Anregungssignal entspricht. Die zweite Alternative kann weitergebildet werden, indem ein Verfahren gemäß einem der Ansprüche 6 bis 8 in Bezug auf den weiteren Sensor ausgeführt wird.
  • Gemäß einer zweiten Lehre bezieht sich die Erfindung auf ein Coriolis-Massedurchflussmessgerät, bei dem die zuvor hergeleitete und aufgezeigte Aufgabe gelöst ist. Das erfindungsgemäße Coriolis-Massedurchflussmessgerät ist zunächst und im Wesentlichen dadurch gekennzeichnet, dass die Auswerteeinheit ausgebildet ist zur Erzeugung eines elektrischen Anregungssignals, Einprägung des Anregungssignals in den Sensor, Erfassung des von dem Anregungssignal beeinflussten Sensorsignals, Bestimmung einer Veränderung zwischen dem erfassten Sensorsignal und einem Referenzsignal und Zuordnung der Veränderung zwischen dem erfassten Sensorsignal und dem Referenzsignal zu einer Veränderung des thermischen Widerstands.
  • Die Ausführungen zu dem erfindungsgemäßen Verfahren gelten entsprechend für das erfindungsgemäße Coriolis-Massedurchflussmessgerät und umgekehrt.
  • Eine Ausgestaltung des erfindungsgemäßen Coriolis-Massedurchflussmessgeräts sieht vor, dass das Coriolis-Massedurchflussmessgerät zur Ausführung eines Verfahrens gemäß einer der vorangehenden Ausgestaltungen, Weiterbildungen, Alternativen und Varianten ausgebildet ist.
  • Eine weitere Ausgestaltung des erfindungsgemäßen Coriolis-Massedurchflussmessgeräts sieht vor, dass der Sensor ein resistiver Temperatursensor, insbesondere ein Thermistor, oder ein Dehnungssensor, insbesondere ein Dehnungsmessstreifen, ist. Wenn der Sensor ein Temperatursensor ist, ist der Sensor zur Messung der physikalischen Größe Temperatur ausgebildet und gibt das den Wert der Temperatur repräsentierende von der Temperatur des Sensors abhängige Sensorsignal aus. Wenn der Sensor ein Dehnungssensor ist, ist der Sensor zur Messung der physikalischen Größe Dehnung ausgebildet und gibt das den Wert der Dehnung repräsentierende von der Temperatur des Sensors abhängige Sensorsignal aus.
  • Oftmals weisen gattungsgemäße Coriolis-Massedurchflussmessgeräte sowohl mindestens einen Temperatursensor als auch mindestens einen Dehnungssensor auf. Dann bietet es sich an, den Dehnungssensor gemäß den vorangehenden Ausgestaltungen des erfindungsgemäßen Verfahrens als weiteren Sensor zur Erzeugung des Referenzsignals und das erzeugte Referenzsignal im Zusammenhang mit dem Temperatursensor zu verwenden.
  • Eine weitere Ausgestaltung des Coriolis-Massedurchflussmessgeräts sieht vor, dass der Sensor durch die Verbindung auf dem Messrohr angeordnet ist. In einer ersten Alternative dazu ist vorgesehen, dass das Messrohr mit einem Träger vorzugsweise unmittelbar verbunden ist und der Sensor auf dem Träger angeordnet ist. In einer zweiten Alternative ist vorgesehen, dass das Messrohr mit einem Träger vorzugsweise unmittelbar verbunden ist und dass mindestens zwei Sensoren auf dem durch das Messrohr und den Träger gebildeten Körper angeordnet sind.
  • Eine weitere Ausgestaltung sieht vor, dass die Verbindung durch Stoffschluss hergestellt ist, insbesondere durch Kleben. Eine Alternative dazu sieht vor, dass die Verbindung durch Kraftschluss hergestellt ist, insbesondere durch Verschrauben. Der Vorteil der Verbindung durch Stoffschluss gegenüber der Verbindung durch Kraftschluss ist, dass die Verbindung flächig und nicht punktuell ist. Denn die flächige Verbindung bewirkt einen geringeren thermischen Widerstand. Der Vorteil der Verbindung durch Kraftschluss ist die Demontierbarkeit des Sensors.
  • Im Einzelnen ist eine Vielzahl von Möglichkeiten, das erfindungsgemäße Verfahren und das erfindungsgemäße Coriolis-Massedurchflussmessgerät auszugestalten und weiterzubilden, gegeben. Dazu wird verwiesen sowohl auf die den Patentansprüchen 1 und 11 nachgeordneten Patentansprüche als auch auf die nachfolgende Beschreibung eines bevorzugten Ausführungsbeispiels in Verbindung mit der Zeichnung. In der Zeichnung zeigt
  • Fig. 1
    das Ausführungsbeispiel des erfindungsgemäßen Coriolis-Massedurchflussmessgeräts.
  • Das in Fig. 1 schematisch dargestellte erfindungsgemäße Coriolis-Massedurchflussmessgeräts 1 weist ein Messrohr 2, einen Sensor 3 und eine Auswerteeinheit 4 auf.
  • Der Sensor 3 ist ein Temperatursensor und gibt ein von der Temperatur θS des Sensors 3 abhängiges elektrisches Sensorsignal aus. Er ist durch eine Verbindung 5 mit dem übrigen Coriolis-Massedurchflussmessgerät 1 mechanisch gekoppelt, wobei die Temperatur des übrigen Coriolis-Massedurchflussmessgerät 1 θU ist. Die Verbindung 5 ist durch einen thermischen Widerstand R SU charakterisiert.
  • Die Auswerteeinheit 4 erzeugt ein Anregungssignal mit den folgenden Merkmalen. Im zeitlichen Verlauf ist ein Sprung von einem ersten Anregungswert zu einem zweiten Anregungswert. Der erste Anregungswert ist dabei größer als der zweite Anregungswert. Die Anregungswerte sind zeitlich vor und nach dem Sprung konstant. Das Anregungssignal ist demnach eine Sprungfunktion. Da der erste Anregungswert größer als der zweite Anregungswert ist, kühlt der Sensor 3 nach dem Sprung ab.
  • Die Auswerteeinheit 4 prägt das Anregungssignal als Strom in den Sensor 3 ein. Das Anregungssignal erhöht die Temperatur θS des Sensors 3 bis zum Zeitpunkt des Sprungs des Anregungssignals, wobei die Temperatur θS des Sensors 3 im Zeitpunkt des Sprungs θS,0 beträgt.
  • Die Auswerteeinheit 4 erfasst das von dem Anregungssignal beeinflusste Sensorsignal mindestens zu zwei unterschiedlichen Zeitpunkten t 1 und t 2 nach dem Sprung und bestimmt aus dem erfassten Sensorsignal die Temperatur θS(t 1) und θS(t 2) des Sensors 3 zu diesen Zeitpunkten. Dann bildet die Auswerteeinheit 4 die Differenztemperatur θD(t 1) = θS(t 1) - θU und θD(t 2) = θS(t 2) - θU zwischen dem Sensor 3 und dem übrigen Coriolis-Massedurchflussmessgerät 1.
  • Der Bestimmung einer Veränderung zwischen dem erfassten Sensorsignal und einem Referenzsignal liegt die Energiebilanz für das Abkühlen des Sensors 3 zugrunde, aus der eine Differentialgleichung abgeleitet wird: dW s dt = θ S θ U R SU , mit : C s = dW S S C S S dt + θ S R SU = θ U R SU , mit : τ = C S R SU S dt + 1 τ θ S = 1 τ θ U d θ S θ U dt + 1 τ θ S θ U = 0 , da : U dt = 0 , mit : θ D = θ S θ U D dt + 1 τ θ D = 0
    Figure imgb0001
  • In den Gleichungen ist in der Reihenfolge ihres ersten Auftretens W S die Wärmeenergie des Sensors 3, t die Zeit, C S die Wärmekapazität des Sensors 3 und τ die Zeitkonstante des Sensors 3. Der Energiebilanz liegt die Erkenntnis zugrunde, dass der Austausch von Wärme zwischen dem Sensor 3 und einer Umgebungsatmosphäre 6 im Vergleich mit dem Austausch von Wärme zwischen dem Sensor 3 und dem übrigen Coriolis-Massedurchflussmessgerät 1 vernachlässigbar und die Temperatur θU des übrigen Coriolis-Massedurchflussmessgerät 1 konstant ist.
  • Als Lösung der Differentialgleichung wird gefunden: θ D = θ D , 0 e t τ , mit : θ D , 0 = θ S , θ θ U
    Figure imgb0002
  • In der Lösung der Differentialgleichung ist θD,0 die Differenztemperatur zum Zeitpunkt des Sprungs des Anregungssignals. Nach dem Sprung nähert sich demnach die Temperatur θS des Sensors 3 mit der Zeit wieder der Temperatur θU des übrigen Coriolis-Massedurchflussmessgeräts 1 an. Dabei ist erkannt worden, dass die Erhöhung der Temperatur θS des Sensors 3 durch die Versorgung des Sensors 3 mit elektrischer Energie, die der Sensor 3 zur Messung der physikalischen Größe benötigt, für die er ausgebildet ist, vernachlässigbar ist.
  • Die Bestimmung der Veränderung zwischen dem erfassten Sensorsignal und dem Referenzsignal erfolgt, indem die Auswerteeinheit 4 zunächst die Zeitkonstante des erfassten Sensorsignals und dann die Veränderung zwischen der Zeitkonstanten des erfassten Signals und der Zeitkonstanten des Referenzsignals bestimmt.
  • Dabei bestimmt die Auswerteeinheit 4 die Zeitkonstante des Sensorsignals wie folgt: θ D t 1 = θ D , 0 e t 1 τ , θ D t 2 = θ D , 0 e t 2 τ θ D t 2 θ D t 1 = e t 2 τ e t 1 τ = e t 2 t 1 τ = t 1 t 2 ln θ D t 2 θ D t 1
    Figure imgb0003
  • Die Auswerteeinheit 4 ordnet die Veränderung zwischen der Zeitkonstanten des erfassten Sensorsignals und der Zeitkonstanten des Referenzsignals dem thermischen Widerstand R SU zu und gibt ein Signal aus, wenn die Veränderung einen Schwellwert überschreitet.
  • Bezugszeichen:
  • 1
    Coriolis-Massedurchflussmessgerät
    2
    Messrohr
    3
    Sensor
    4
    Auswerteeinheit
    5
    Verbindung
    6
    Umgebungsatmosphäre

Claims (15)

  1. Verfahren zum Betreiben eines Coriolis-Massedurchflussmessgeräts (1) mit mindestens einem Messrohr (2) und mindestens einem Sensor (3), wobei der Sensor (3) ein von der Temperatur des Sensors (3) abhängiges elektrisches Sensorsignal ausgibt, der Sensor (3) durch eine Verbindung (5) mit dem übrigen Coriolis-Massedurchflussmessgerät (1) mechanisch gekoppelt ist und die Verbindung (5) einen thermischen Widerstand aufweist,
    dadurch gekennzeichnet,
    dass ein elektrisches Anregungssignal erzeugt wird, das Anregungssignal in den Sensor (3) eingeprägt wird, das von dem Anregungssignal beeinflusste Sensorsignal erfasst wird, eine Veränderung zwischen dem erfassten Sensorsignal und einem Referenzsignal bestimmt wird und die Veränderung zwischen dem erfassten Sensorsignal und dem Referenzsignal einer Veränderung des thermischen Widerstands zugeordnet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Veränderung zwischen dem erfassten Sensorsignal und dem Referenzsignal bestimmt wird, indem die Zeitkonstante des erfassten Sensorsignals und die Veränderung zwischen der Zeitkonstanten des erfassten Sensorsignals und der Zeitkonstanten des Referenzsignals bestimmt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass eine Abnahme der Zeitkonstanten des erfassten Sensorsignals im Vergleich zur Zeitkonstanten des Referenzsignals einer Zunahme des thermischen Widerstands der Verbindung (5) zugeordnet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Veränderung zwischen dem erfassten Sensorsignal und dem Referenzsignal einer Veränderung der mechanischen Kopplung durch die Verbindung (5) zugeordnet wird.
  5. Verfahren nach Anspruch 2 und 4, dadurch gekennzeichnet, dass eine Abnahme der Zeitkonstanten des erfassten Sensorsignals im Vergleich zur Zeitkonstanten des Referenzsignals einer Abnahme der mechanischen Kopplung durch die Verbindung (5) zugeordnet wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Anregungssignal im zeitlichen Verlauf mit einem Sprung von einem ersten Anregungssignalwert zu einem zweiten Anregungssignalwert und konstanten Anregungssignalwerten zeitlich vor und nach dem Sprung erzeugt wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Anregungssignal derart erzeugt wird, dass der erste Anregungssignalwert größer als der zweite Anregungssignalwert ist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Anregungssignal als Strom in den Sensor (3) eingeprägt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, wobei das Coriolis-Massedurchflussmessgerät (1) einen weiteren Sensor aufweist, der weitere Sensor ein von der Temperatur des weiteren Sensors abhängiges weiteres elektrisches Sensorsignal ausgibt, der weitere Sensor durch eine weitere Verbindung mit dem übrigen Coriolis-Massedurchflussmessgerät (1) mechanisch gekoppelt ist und die weitere Verbindung einen weiteren thermischen Widerstand aufweist, dadurch gekennzeichnet, dass ein weiteres elektrisches Anregungssignal erzeugt wird, das weitere Anregungssignal in den weiteren Sensor eingeprägt wird, das von dem weiteren Anregungssignal beeinflusste weitere Sensorsignal erfasst wird und das erfasste weitere Sensorsignal als das Referenzsignal verwendet wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass ein Verfahren gemäß einem der Ansprüche 6 bis 8 in Bezug auf den weiteren Sensor ausgeführt wird.
  11. Coriolis-Massedurchflussmessgerät (1) mit mindestens einem Messrohr (2), mindestens einem Sensor (3) und einer Auswerteeinheit (4), wobei der Sensor (3) ein von der Temperatur des Sensors (3) abhängiges elektrisches Sensorsignal ausgibt, der Sensor (3) durch eine Verbindung (5) mit dem übrigen Coriolis-Massedurchflussmessgerät (1) mechanisch gekoppelt ist und die Verbindung (5) einen thermischen Widerstand aufweist,
    dadurch gekennzeichnet,
    dass die Auswerteeinheit (4) ausgebildet ist zur Erzeugung eines elektrischen Anregungssignals, Einprägung des Anregungssignals in den Sensor (3), Erfassung des von dem Anregungssignal beeinflussten Sensorsignals, Bestimmung einer Veränderung zwischen dem erfassten Sensorsignal und einem Referenzsignal und Zuordnung der Veränderung zwischen dem erfassten Sensorsignal und dem Referenzsignal zu einer Veränderung des thermischen Widerstands.
  12. Coriolis-Massedurchflussmessgerät (1) nach Anspruch 11, dadurch gekennzeichnet, dass das Coriolis-Massedurchflussmessgerät (1) zur Ausführung eines Verfahrens gemäß einem der Ansprüche 2 bis 10 ausgebildet ist.
  13. Coriolis-Massedurchflussmessgerät (1) nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass der Sensor (3) ein resistiver Temperatursensor, insbesondere ein Thermistor, oder ein Dehnungssensor, insbesondere ein Dehnungsmessstreifen, ist.
  14. Coriolis-Massedurchflussmessgerät (1) nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass der Sensor (3) durch die Verbindung (5) auf dem Messrohr (2) angeordnet ist.
  15. Coriolis-Massedurchflussmessgerät (1) nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die Verbindung (5) durch Stoffschluss hergestellt ist, insbesondere durch Kleben.
EP16203405.2A 2016-01-20 2016-12-12 Verfahren zum betreiben eines coriolis-massedurchflussmessgeräts und diesbezügliches coriolis-massedurchflussmessgerät Active EP3196603B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016100950.4A DE102016100950A1 (de) 2016-01-20 2016-01-20 Verfahren zum Betreiben eines Coriolis-Massedurchflussmessgeräts und diesbezügliches Coriolis-Massedurchflussmessgerät

Publications (2)

Publication Number Publication Date
EP3196603A1 true EP3196603A1 (de) 2017-07-26
EP3196603B1 EP3196603B1 (de) 2020-08-12

Family

ID=57542860

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16203405.2A Active EP3196603B1 (de) 2016-01-20 2016-12-12 Verfahren zum betreiben eines coriolis-massedurchflussmessgeräts und diesbezügliches coriolis-massedurchflussmessgerät

Country Status (4)

Country Link
US (1) US9989392B2 (de)
EP (1) EP3196603B1 (de)
CN (1) CN107014453B (de)
DE (1) DE102016100950A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023239888A1 (en) * 2022-06-10 2023-12-14 Dexter Technology, Llc Method for determining fluid flow characteristics and energy efficiency through temperature differential analysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2140923A (en) * 1983-06-01 1984-12-05 Univ Manchester Resistance thermometer testing
US5753827A (en) * 1995-10-17 1998-05-19 Direct Measurement Corporation Coriolis meteR having a geometry insensitive to changes in fluid pressure and density and method of operation thereof
DE102011080415A1 (de) * 2011-08-04 2013-02-07 Endress + Hauser Flowtec Ag Verfahren zum Detektieren einer Belagsbildung oder einer Abrasion in einem Durchflussmessgerät
DE102014103427A1 (de) * 2014-03-13 2015-09-17 Endress + Hauser Flowtec Ag Wandlervorrichtung sowie damit gebildetes Meßsystem

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3705900A1 (de) 1987-02-24 1988-09-01 Siemens Ag Verfahren zur selbstueberwachung von messwertaufnehmern
GB9208704D0 (en) * 1992-04-22 1992-06-10 Foxboro Ltd Improvements in and relating to sensor units
US5774378A (en) 1993-04-21 1998-06-30 The Foxboro Company Self-validating sensors
DE102007061585A1 (de) * 2006-12-18 2008-06-19 Abb Ag Verfahren und Einrichtung zum Kompensieren von die Messgenauigkeit störenden Druckeinflüssen bei Coriolis-Durchflussmessgeräten
CA2702893C (en) * 2007-10-15 2016-04-12 Micro Motion, Inc. Vibratory flow meter and method for determining a fluid temperature of a flow material
EP2516971B1 (de) * 2009-12-21 2020-03-04 Endress+Hauser Flowtec AG Messaufnehmer vom vibrationstyp sowie damit gebildetes messsystem
BR112013005600B1 (pt) * 2010-09-09 2020-03-31 Micro Motion, Inc. Medidor de fluxo vibratório de tubo encurvado, e, método de compensação de tensão térmica no mesmo
WO2012089431A1 (de) * 2010-12-30 2012-07-05 Endress+Hauser Flowtec Ag Messaufnehmer vom vibrationstyp sowie damit gebildetes messsystem
JP5642303B2 (ja) * 2011-02-23 2014-12-17 マイクロ モーション インコーポレイテッド 温度を測定するための振動式フローメータおよび方法
DE102012017797B4 (de) 2012-09-10 2014-09-18 Krohne Ag Durchflussmessgerät
RU2577257C2 (ru) * 2012-11-19 2016-03-10 Инвенсис Системз, Инк. Система испытания скважины на чистую нефть и газ
SG11201702043RA (en) * 2014-09-19 2017-04-27 Weatherford Lamb Coriolis flow meter having flow tube with equalized pressure differential

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2140923A (en) * 1983-06-01 1984-12-05 Univ Manchester Resistance thermometer testing
US5753827A (en) * 1995-10-17 1998-05-19 Direct Measurement Corporation Coriolis meteR having a geometry insensitive to changes in fluid pressure and density and method of operation thereof
DE102011080415A1 (de) * 2011-08-04 2013-02-07 Endress + Hauser Flowtec Ag Verfahren zum Detektieren einer Belagsbildung oder einer Abrasion in einem Durchflussmessgerät
DE102014103427A1 (de) * 2014-03-13 2015-09-17 Endress + Hauser Flowtec Ag Wandlervorrichtung sowie damit gebildetes Meßsystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R.K. CHOHAN ET AL: "Mathematical modelling of industrial thermometers", TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL., vol. 7, no. 3, 1 June 1985 (1985-06-01), GB, pages 151 - 158, XP055378793, ISSN: 0142-3312, DOI: 10.1177/014233128500700307 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023239888A1 (en) * 2022-06-10 2023-12-14 Dexter Technology, Llc Method for determining fluid flow characteristics and energy efficiency through temperature differential analysis

Also Published As

Publication number Publication date
CN107014453A (zh) 2017-08-04
US20170205265A1 (en) 2017-07-20
DE102016100950A1 (de) 2017-07-20
EP3196603B1 (de) 2020-08-12
CN107014453B (zh) 2019-12-20
US9989392B2 (en) 2018-06-05

Similar Documents

Publication Publication Date Title
EP2739944B1 (de) Verfahren zum detektieren einer belagsbildung oder einer abrasion in einem durchflussmessgerät
EP3045877B1 (de) Verfahren zum betreiben eines coriolis-massedurchflussmessgeräts
EP3134742B1 (de) Shuntstrommessung mit temperaturkompensation
EP1208359A2 (de) Massendurchflussmessgerät
EP3559609B1 (de) Massedurchflussmessaufnehmer nach dem coriolis-prinzip und verfahren zum bestimmen eines massedurchflusses
EP2936082B1 (de) Verfahren und wirbelströmungsmessgerät zur bestimmung des massenstromverhältnisses einer mehrphasigen strömung
EP2702370B1 (de) Verfahren zum betreiben eines resonanzmesssystems
DE102010040600A1 (de) Verfahren zum Detektieren einer Verstopfung in einem Coriolis-Durchflussmessgerät
DE102016113200B4 (de) Verfahren zum Betreiben eines Durchflussmessgeräts und Durchflussmessgerät
DE102018101923A1 (de) Verfahren zum Feststellen von Belagsbildung in einem Messrohr und Messgerät zur Durchführung des Verfahrens
EP2677284A2 (de) Verfahren zum Betreiben eines Resonanzmesssystems und diesbezügliches Resonanzmesssystem
DE102010030952B4 (de) Vorrichtung zur Bestimmung und/oder Überwachung eines Volumendurchflusses und/oder einer Durchflussgeschwindigkeit
EP3234519B1 (de) Thermisches durchflussmessgerät mit diagnosefunktion
EP3196603B1 (de) Verfahren zum betreiben eines coriolis-massedurchflussmessgeräts und diesbezügliches coriolis-massedurchflussmessgerät
EP3887770B1 (de) Thermischer strömungssensor und verfahren zum betreiben desselben
EP3390976B1 (de) Verfahren zur bestimmung einer flussrate bzw. strömungsgeschwindigkeit eines mediums
WO2008152060A1 (de) Verfahren zur messung und/oder überwachung eines strömungsparameters und entsprechende vorrichtung
EP3361222B1 (de) Verfahren zur druckmessung bei einem coriolis-massedurchflussmessgerät und coriolis-massedurchflussmessgerät
EP2267418B1 (de) Verfahren zum Einrichten und Betreiben eines Massedurchflussmessgeräts und Massedurchflussmessgerät unter Berücksichtigung von Temperatureinflussfaktoren
DE102016103048B3 (de) Verfahren zum Betreiben eines Coriolis-Massedurchflussmessgeräts
EP3196604B1 (de) Verfahren zum betreiben eines coriolis-massedurchflussmessgeräts und diesbezügliches coriolis-massedurchflussmessgerät
DE102023100836B3 (de) Luftfilteranordnung und Verfahren zur Bestimmung der Beladung eines Luftfilters
DE102019117101A1 (de) Verfahren zum Ermitteln eines physikalischen Parameters einer beladenen Flüssigkeit
DE102018216131B4 (de) Verfahren und Vorrichtung zur gleichzeitigen Bestimmung der Temperatur- und Widerstandsänderung von Sensorwiderständen einer als Viertel- oder Halbbrücke ausgebildeten Brückenschaltung
DE102007024276A1 (de) Verfahren zur Messung und/oder Überwachung eines Strömungsparameters und entsprechende Vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171220

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190911

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20200326

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010816

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1302002

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010816

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

26N No opposition filed

Effective date: 20210514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201212

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1302002

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211212

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231220

Year of fee payment: 8

Ref country code: FR

Payment date: 20231221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240222

Year of fee payment: 8

Ref country code: CH

Payment date: 20240101

Year of fee payment: 8