EP3191614A1 - Method for reducing the adherence of dirt to a substance - Google Patents

Method for reducing the adherence of dirt to a substance

Info

Publication number
EP3191614A1
EP3191614A1 EP15763294.4A EP15763294A EP3191614A1 EP 3191614 A1 EP3191614 A1 EP 3191614A1 EP 15763294 A EP15763294 A EP 15763294A EP 3191614 A1 EP3191614 A1 EP 3191614A1
Authority
EP
European Patent Office
Prior art keywords
substrate
deposited
thin
layer
closed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15763294.4A
Other languages
German (de)
French (fr)
Inventor
Steffen Günther
Cindy STEINER
Jörg KUBUSCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3191614A1 publication Critical patent/EP3191614A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes

Definitions

  • the invention relates to a method for reducing the adhesion of dirt to a substrate and in particular to substrates having a plastic surface.
  • EP 1 238 71 7 A2 Another method of applying a filler material followed by embossing a structure is known from EP 1 238 71 7 A2.
  • shapes are formed on the basis of a mathematical function as a structure, which requires complex process control requires.
  • WO 2006/021 507 A1 a structured surface is built up by means of an electrochemical deposition method.
  • the invention is therefore based on the technical problem of providing a method by means of which the disadvantages of the prior art are overcome.
  • a structure on the surface of a substrate is therefore based on the technical problem of providing a method by means of which the disadvantages of the prior art are overcome.
  • Substrate is first deposited in a first process step, a thin, not completely closed layer of a material by means of a vacuum coating process on at least one surface region of the substrate.
  • the term thin, incompletely closed layer is to be understood in the sense of the invention that the layer thickness is less than 1 00 nanometers and that the surface area after the coating process has both a plurality of subregions on which layer material is deposited, as well as a plurality of Subareas on which no layer material is deposited.
  • An incompletely closed layer can be produced, for example, by placing a mask over the substrate, whereby only a few partial areas on the substrate are covered with a layer material during a coating process. According to the invention, however, an incompletely closed layer is preferably deposited without a mask by using a mask
  • Coating process such a low coating rate is chosen when no more the entire surface of the substrate is coated with layer material, but only individual portions of the substrate surface are covered with laminated islands. Setting a required low coating rate depends on the particular coating process used and can be determined by laboratory experiments. By depositing the thin, incompletely closed layer, the surface on the substrate already acquires a first roughness that is conducive to the lotus effect, thereby reducing soil adhesion to the substrate.
  • vacuum deposition processes with a low deposition rate are suitable for depositing such a thin, not completely closed layer on a substrate.
  • the vacuum coating process can also be operated reactively.
  • the substrate is coated with a moving substrate by means of a dynamic deposition process
  • vacuum coating processes with a deposition rate of up to 30 nm m / min are suitable.
  • the thin, not completely closed layer is deposited by means of magnetron sputtering. With magnetron sputtering, the deposition rate downwards can be chosen almost arbitrarily small.
  • the deposition rate can also be set so low that on the surface area a surface coverage of deposited material is achieved, which is not even sufficient for the formation of a single fully closed atomic layer or molecular layer of the deposited material. In any case, this procedure ensures that a thin, incompletely closed layer is formed on the surface area of the substrate. Since in the novel deposition of the thin, non-closed layer only the surface roughness achieved thereby is in the foreground, the material of the deposited layer plays only a minor role. If the thin, non-closed layer is deposited by means of magnetron sputtering, it is therefore also possible to use all materials that can be deposited on the substrate by means of magnetron sputtering.
  • not completely closed layers were deposited by means of magnetron sputtering, which contained at least one of the elements from the group silicon, zinc, titanium, tin or aluminum and which were all suitable for the inventive method.
  • the aforementioned chemical elements are deposited as oxide in a reactive process in the presence of an oxygen-containing gas.
  • the formation of an incompletely closed layer can be more easily adjusted than in a metallic deposition process, because the present Oxygen leads to the formation of oxides on the target surface, which reduces the deposition rate.
  • atomic layer deposition processes and layer materials known from atomic layer deposition
  • deposition processes are also known by the term atomic layer deposition or shortened ALD. If the feed rate of the substrate is set sufficiently high during dynamic coating of a substrate by means of ALD, a thin, not completely closed layer can also be formed by means of ALD. Again, it can be easily determined in laboratory tests, which feed rate is required for the formation of a not completely closed layer.
  • the thin, incompletely closed layer is deposited on the surface region of the substrate, at least this surface region is subjected to accelerated ions in a second process step and thus an ion etching process is carried out, whereby the surface region is finally given a roughness effecting the lotus effect.
  • the ions of a plasma generated by means of a sputtering magnetron can be used for this method step. This is particularly advantageous if the thin, not completely closed layer is already deposited by means of magnetron sputtering, because then the same system technology and at least similar pressures in the process chamber can be used for both method steps.
  • all other processes known for ion etching are also suitable for the second process step.
  • the carrying out of the ion etching by means of a magnetron plasma is particularly suitable for reducing the dirt adhesion to plastic substrates or to substrates which have at least one covering layer made of plastic. It is believed that the energy of the accelerated ions from a magnetron plasma correlates in particular with the binding energy of molecules of a plastic, that is, the energy of the accelerated and directed to the substrate ions is so large to knock out particles with a size from the surface leads to a roughness that is conducive to the lotus effect.
  • the inventive method is characterized by a number of advantages.
  • the method according to the invention is very economical, because only a very thin and not completely closed layer is deposited, whereby only a small amount of layer material is required.
  • the method according to the invention also works without a complicated masking step in order to work out a surface structure required for the lotus effect from a cover layer.
  • Such a masking step is already inherent in the method of the invention.
  • ions stick to these islands of material.
  • the larger a material island the larger the number of adhering ions and the greater the repelling effect that such a material island exerts on the direction of the substrate surface due to the adhering ions in the further course of the etching process.
  • individual subregions on the surface of the substrate are influenced to a different extent by the ion etching, which in turn has a positive effect on the achievable surface roughness.
  • the method according to the invention thus also excels in ion etching by a type of self-organizing masking, for which no additional effort has to be made. The present invention will be explained in more detail with reference to an embodiment.
  • a belt-shaped substrate formed as a fluoropolymer ETFE was treated in a dynamic process according to the invention for producing a dirt-repellent surface.
  • the ETFE substrate was wrapped at a belt speed of 1.3 m / min.
  • the ETFE substrate was passed past two process stations positioned one behind the other. These process stations each comprised a double magnetron system, which is typically used for layer deposition by means of cathode sputtering. Both process stations were operated with a polar pulsed voltage, the pulse frequency was 50 kHz.
  • the fed-in power of the process stations was 4 kW for the first station and 8 kW for the second station.
  • the double magnetron was equipped with targets, which consisted of a zinc-tin alloy.
  • the second station had magnesium targets.
  • both process stations were operated in reactive mode.
  • the first station was responsible for the first process step, to produce a very thin and not completely closed layer on the plastic substrate. In this case, it was exploited that the supplied reactive oxygen gas causes oxidation of the magnetron targets and thereby the deposition rate on the ETFE substrate compared to a
  • the magnesium target material of the second station has no appreciable coating rate in fully reactive mode.
  • it is the oxygen ions generated in the magnetron plasma that attack and degrade the polymer material. In particular, this naturally occurs at the surface subregions of the plastic substrate where the material applied to the first station is absent.
  • the role of the ETFE substrate has not been fully addressed by the method of the invention.
  • One end of the tape-shaped ETFE substrate remained untreated.
  • a first sample was cut out of the area treated according to the invention and a second sample was cut out of the untreated area. Both excised samples were then exposed to free-weather weathering for several months. At regular intervals, the contamination of the samples was examined. For this purpose, the determination of the optical transmission in the samples was resorted to. If the surfaces foul, the transmission of the samples should be lower. A comparison of the respective transmission changes to the associated initial value therefore makes it possible to make a qualitative statement regarding the contamination of a sample.
  • FIG. 1 shows graphically the difference between the optical transmission of the sample treated according to the invention and the optical transmission of the untreated sample. It can be seen from FIG. 1 that the difference between the two samples with respect to the optical transmission increases continuously over time. The lower transmission loss of the sample treated according to the invention compared to the untreated sample leads to the conclusion that the sample treated according to the invention is less polluted during the observation period than the untreated sample.
  • the method according to the invention can thus be used particularly advantageously for components having an optical function or for decorative components and there causes the reduction of the regular cleaning effort and, accordingly, the increase in cost-effectiveness.

Abstract

The invention relates to a method for reducing the adherence of dirt to a substrate, wherein a thin, not completely-closed coating of a material is deposited at least on one surface region of the substrate by means of a vacuum deposition process and accelerated ions are subsequently applied to said surface region.

Description

Verfahren zum Reduzieren der Schmutzhaftung an einem Substrat  A method of reducing soil adhesion to a substrate
Beschreibung Die Erfindung betrifft ein Verfahren zum Reduzieren der Schmutzhaftung an einem Substrat und insbesondere an Substraten mit einer Kunststoffoberfläche. The invention relates to a method for reducing the adhesion of dirt to a substrate and in particular to substrates having a plastic surface.
Oberflächen weisen insbesondere in exponierter Umgebung einen Hang zum Verschmutzen auf. Derartige Verschmutzungen können mannigfaltiger Natur sein, degradieren aber in jedweder Form die Eigenschaften von Oberflächen. Sobald die Oberflächen darüber hinaus Körpern angehören, die optische Funktionen aufweisen, bewirken Verschmutzungen auf diesen Oberflächen zum Beispiel eine verminderte optische Transmission des Lichtes durch diese Körper hindurch. Beispielhaft hierfür seien die frontseitigen Abdeckungen von Solarmodulen genannt. Um über mehrere Jahre hinweg die Leistungsfähigkeit derartiger Module aufrecht zu erhalten, sind umfangreiche und teure Maßnahmen zum Reinigen der Oberflächen notwendig. Nur dadurch wird gewährleistet, dass die stattfindende Verschmutzung der Solarmodule keinen starken Einfluss auf den Energieertrag hat. Nachteilig sind dabei neben den allgemeinen Aufwendungen für eine derartige Reinigung, dass nicht nach Notwendigkeit, sondern nach vorgegebenen Zeiträumen eine Reinigung erfolgt. Ver- schmutzungen können dadurch bis zur nächsten stattfindenden Reinigung die Leistungsfähigkeit derartiger Solarmodule verringern. Surfaces show a tendency to become soiled, especially in an exposed environment. Such soils can be of varied nature but degrade the properties of surfaces in any form. Moreover, as soon as the surfaces belong to bodies which have optical functions, soils on these surfaces cause a reduced optical transmission of the light through these bodies. Examples of this are the front covers of solar modules called. In order to maintain the performance of such modules over several years, extensive and expensive measures for cleaning the surfaces are necessary. This is the only way to ensure that the pollution of the solar modules that takes place has no strong influence on the energy yield. Disadvantages are in addition to the general expenses for such cleaning, that not after necessity, but after predetermined periods of cleaning. Soiling can reduce the efficiency of such solar modules until the next cleaning.
Wirtschaftlicher ist es, eine Oberfläche derart zu gestallten, dass diese weniger zum Verschmutzen neigt. Es ist bekannt, Oberflächen mit Eigenschaften auszubilden, die eine Wirkung auf Basis des Lotoseffekts erzielen. Geschaffen wird eine solche Oberfläche häufig durch aufwendige Strukturierungsmaßnahmen, wie sie zum Beispiel in DE 1 01 34 362 A1 beschrieben sind. Hier werden mit einem aufwendigen Herstellungsprozess mittels Ab- formung geometrisch streng definierte Strukturen in einem zusätzlich aufgebrachten Material erzeugt. Dementsprechend gestaltet sich das Übertragen derartiger Strukturen auf große Flächen aufwendig. Das Übertragen von Strukturen auf ein additiv aufgebrachtes Material wird auch in DE 101 38 036 A1 beschrieben. It is more economical to design a surface in such a way that it is less prone to fouling. It is known to form surfaces with properties that achieve an effect based on the lotus effect. Such a surface is often created by complex structuring measures, as described for example in DE 1 01 34 362 A1. Here, with a complex manufacturing process by means of molding, geometrically strictly defined structures are created in an additionally applied material. Accordingly, the transfer of such structures to large areas consuming. The transfer of structures to an additive-applied material is also described in DE 101 38 036 A1.
Ein weiteres Verfahren des Auftragens eines Zusatzmaterials mit anschließendem Prägen einer Struktur ist aus EP 1 238 71 7 A2 bekannt. H ierbei werden Formen auf Basis einer mathematischen Funktion als Struktur ausgebildet, was eine aufwändige Prozessführung erfordert. Ferner wird auch in WO 2006/021 507 A1 eine strukturierte Oberfläche mittels eines elektrochemischen Abscheideverfahrens aufgebaut. Another method of applying a filler material followed by embossing a structure is known from EP 1 238 71 7 A2. In this case, shapes are formed on the basis of a mathematical function as a structure, which requires complex process control requires. Furthermore, also in WO 2006/021 507 A1, a structured surface is built up by means of an electrochemical deposition method.
Allen genannten Verfahren ist gemein, dass ein Zusatzmaterial auf die ursprüngliche Oberfläche aufgebracht werden muss. Das Anbinden des Zusatzmaterials an die Oberfläche stellt in der Praxis immer eine Schwachstelle dar, da derartig aufgebrachte Schichten zum Ablösen neigen. Weiterhin ist allen bekannten Verfahren gemein, dass das Strukturieren mittels sehr komplexer Methoden durchgeführt wird, um den angesprochen Lotoseffekt zu erzielen. All these methods have in common that a filler material must be applied to the original surface. The bonding of the additional material to the surface is always a weak point in practice, since such applied layers tend to detach. Furthermore, all known methods have in common that the structuring is carried out by means of very complex methods in order to achieve the addressed lotus effect.
Der Erfindung liegt daher das technische Problem zugrunde, ein Verfahren zu schaffen, mittels dessen die Nachteile aus dem Stand der Technik überwunden werden. Insbesondere soll mit dem erfindungsgemäßen Verfahren eine Struktur auf der Oberfläche eines The invention is therefore based on the technical problem of providing a method by means of which the disadvantages of the prior art are overcome. In particular, a structure on the surface of a
Substrates geschaffen werden, welche die Schmutzhaftung am Substrat reduziert. Dabei soll das Verfahren gegenüber dem Stand der Technik mit einem verminderten technischen Aufwand durchführbar sein. Substrates are created, which reduces the dirt adhesion to the substrate. The method should be feasible over the prior art with a reduced technical effort.
Die Lösung des technischen Problems ergibt sich durch die Gegenstände mit den Merkmalen des Patentanspruchs 1 . Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen. The solution to the technical problem results from the objects having the features of patent claim 1. Further advantageous embodiments of the invention will become apparent from the dependent claims.
Beim erfindungsgemäßen Verfahren zum Reduzieren der Schmutzhaftung an einem In the inventive method for reducing the dirt adhesion to a
Substrat wird zunächst in einem ersten Verfahrensschritt eine dünne, nicht vollständig geschlossene Schicht eines Materials mittels eines Vakuumbeschichtungsprozesses auf zumindest einem Oberflächenbereich des Substrates abgeschieden. Unter dem Begriff einer dünnen, nicht vollständig geschlossenen Schicht ist im Erfindungssinn zu verstehen, dass die Schichtdicke weniger als 1 00 Nanometer beträgt und dass der Oberflächenbereich nach dem Beschichtungsprozess sowohl eine Vielzahl von Teilbereichen aufweist, auf denen Schichtmaterial abgeschieden ist, als auch eine Vielzahl von Teilbereichen, auf denen kein Schichtmaterial abgeschieden ist. Eine unvollständig geschlossene Schicht kann beispielsweise hergestellt werden, indem eine Maske über dem Substrat angeordnet wird, wodurch bei einem Beschichtungsprozess nur vereinzelte Teilbereiche auf dem Substrat mit einem Schichtmaterial bedeckt werden. Erfindungsgemäß wird eine unvollständig geschlossene Schicht jedoch vorzugsweise ohne eine Maske abgeschieden, indem bei einem Substrate is first deposited in a first process step, a thin, not completely closed layer of a material by means of a vacuum coating process on at least one surface region of the substrate. The term thin, incompletely closed layer is to be understood in the sense of the invention that the layer thickness is less than 1 00 nanometers and that the surface area after the coating process has both a plurality of subregions on which layer material is deposited, as well as a plurality of Subareas on which no layer material is deposited. An incompletely closed layer can be produced, for example, by placing a mask over the substrate, whereby only a few partial areas on the substrate are covered with a layer material during a coating process. According to the invention, however, an incompletely closed layer is preferably deposited without a mask by using a mask
Beschichtungsprozess eine so niedrige Beschichtungsrate gewählt wird, bei der nicht mehr die gesamte Oberfläche des Substrates mit Schichtmaterial beschichtet wird, sondern nur noch einzelne Teilbereiche der Substratoberfläche mit Schichtmaterialinseln bedeckt werden. Das Einstellen einer hierfür erforderlichen geringen Beschichtungsrate ist vom jeweilig verwendeten Beschichtungsprozess abhängig und kann durch Laborversuche ermittelt werden. Durch das Abscheiden der dünnen, nicht vollständig geschlossenen Schicht erlangt die Oberfläche auf dem Substrat bereits eine erste Rauigkeit, die dem Lotoseffekt förderlich ist, wodurch die Schmutzhaftung am Substrat verringert wird. Coating process such a low coating rate is chosen when no more the entire surface of the substrate is coated with layer material, but only individual portions of the substrate surface are covered with laminated islands. Setting a required low coating rate depends on the particular coating process used and can be determined by laboratory experiments. By depositing the thin, incompletely closed layer, the surface on the substrate already acquires a first roughness that is conducive to the lotus effect, thereby reducing soil adhesion to the substrate.
Für das Abscheiden einer solchen dünnen, nicht vollständig geschlossenen Schicht auf einem Substrat sind insbesondere Vakuumbeschichtungsprozesse mit geringer Abscheiderate geeignet. Dabei kann der Vakuumbeschichtungsprozess auch reaktiv betrieben werden. Wird das Substrat mittels eines dynamischen Abscheidevorgangs also bei einem bewegten Substrat beschichtet, sind Vakuumbeschichtungsprozesse mit einer Abscheiderate von bis zu 30 nm m/min geeignet. Bevorzugt wird die dünne, nicht vollständig geschlossene Schicht mittels Magnetron-Sputtern abgeschieden. Beim Magnetron-Sputtern kann die Abscheiderate nach unten hin nahezu beliebig klein gewählt werden. So kann die Abscheiderate auch nur so gering eingestellt werden, dass auf dem Oberflächenbereich eine Flächenbelegung mit abgeschiedenem Material erzielt wird, die noch nicht einmal für das Ausbilden einer einzigen vollständig geschlossenen Atomlage oder Moleküllage des abgeschiedenen Materials ausreicht. Bei dieser Vorgehensweise wird auf jeden Fall sichergestellt, dass eine dünne, nicht vollständig geschlossene Schicht auf dem Oberflächenbereich des Substrates ausgebildet wird. Da beim erfindungsgemäßen Abscheiden der dünnen, nicht geschlossenen Schicht lediglich die dadurch erzielte Oberflächenrauigkeit im Vordergrund steht, spielt das Material der abgeschiedenen Schicht nur eine untergeordnete Rolle. Wird die dünne, nicht geschlossene Schicht mittels Magnetron-Sputtern abschieden, können daher auch alle Materialien verwendet werden, die mittels Magnetron-Sputtern auf dem Substrat abgeschieden werden können. So wurden beispielsweise bei Labortests dünne, nicht vollständig geschlossene Schichten mittels Magnetron-Sputtern abgeschieden, die zumindest eines der Elemente aus der Gruppe Silizium, Zink, Titan, Zinn oder Aluminium enthielten und die allesamt für das erfindungsgemäße Verfahren geeignet waren. Bevorzugt werden die vorher genannten chemischen Elemente in einem reaktiven Prozess bei Anwesenheit eines sauerstoffhaltigen Gases als Oxid abgeschieden. Bei einem solchen reaktiven Abscheideprozess lässt sich das Ausbilden einer nicht vollständig geschlossenen Schicht leichter einstellen als bei einem metallischen Abscheideprozess, weil der anwesende Sauerstoff zum Ausbilden von Oxiden auf der Targetoberfläche führt, was die Abscheiderate verringert. In particular, vacuum deposition processes with a low deposition rate are suitable for depositing such a thin, not completely closed layer on a substrate. In this case, the vacuum coating process can also be operated reactively. If the substrate is coated with a moving substrate by means of a dynamic deposition process, vacuum coating processes with a deposition rate of up to 30 nm m / min are suitable. Preferably, the thin, not completely closed layer is deposited by means of magnetron sputtering. With magnetron sputtering, the deposition rate downwards can be chosen almost arbitrarily small. Thus, the deposition rate can also be set so low that on the surface area a surface coverage of deposited material is achieved, which is not even sufficient for the formation of a single fully closed atomic layer or molecular layer of the deposited material. In any case, this procedure ensures that a thin, incompletely closed layer is formed on the surface area of the substrate. Since in the novel deposition of the thin, non-closed layer only the surface roughness achieved thereby is in the foreground, the material of the deposited layer plays only a minor role. If the thin, non-closed layer is deposited by means of magnetron sputtering, it is therefore also possible to use all materials that can be deposited on the substrate by means of magnetron sputtering. For example, in laboratory tests thin, not completely closed layers were deposited by means of magnetron sputtering, which contained at least one of the elements from the group silicon, zinc, titanium, tin or aluminum and which were all suitable for the inventive method. Preferably, the aforementioned chemical elements are deposited as oxide in a reactive process in the presence of an oxygen-containing gas. In such a reactive deposition process, the formation of an incompletely closed layer can be more easily adjusted than in a metallic deposition process, because the present Oxygen leads to the formation of oxides on the target surface, which reduces the deposition rate.
Alternativ sind für das Abscheiden der dünnen, nicht vollständig geschlossenen Schicht aber auch andere Vakuumprozesse und andere Schichtmaterialien verwendbar, wie beispielsweise Prozesse und Schichtmaterialien, die von der Atomlagenabscheidung her bekannt sind. Derartige Abscheideprozesse sind auch unter dem Begriff Atomic-Layer-Deposition oder verkürzt ALD bekannt. Wird beim dynamischen Beschichten eines Substrates mittels ALD die Vorschubgeschwindigkeit des Substrates hinreichend hoch eingestellt, kann auch mittels ALD eine dünne, nicht vollständig geschlossene Schicht ausgebildet werden. Auch hierbei lässt sich in Laborversuchen einfach ermitteln, welche Vorschubgeschwindigkeit für das Ausbilden einer nicht vollständig geschlossenen Schicht erforderlich ist. Alternatively, other vacuum processes and other layer materials, such as processes and layer materials known from atomic layer deposition, may be used to deposit the thin, non-fully closed layer. Such deposition processes are also known by the term atomic layer deposition or shortened ALD. If the feed rate of the substrate is set sufficiently high during dynamic coating of a substrate by means of ALD, a thin, not completely closed layer can also be formed by means of ALD. Again, it can be easily determined in laboratory tests, which feed rate is required for the formation of a not completely closed layer.
Ist die dünne, nicht vollständig geschlossene Schicht auf dem Oberflächenbereich des Substrates abgeschieden, wird zumindest dieser Oberflächenbereich in einem zweiten Verfahrensschritt mit beschleunigten Ionen beaufschlagt und somit ein lonenätzprozess durchgeführt, wodurch dem Oberflächenbereich endgültig eine Rauigkeit verliehen wird, bei der der Lotoseffekt zum Tragen kommt. Für diesen Verfahrensschritt können beispielsweise die Ionen eines Plasmas verwendet werden, dass mittels eins Sputter-Magnetrons erzeugt wird. Dies ist insbesondere dann vorteilhaft, wenn bereits die dünne, nicht vollständig geschlossene Schicht mittels Magnetron-Sputtern abgeschieden wird, weil dann für beide Verfahrensschritte dieselbe Anlagentechnik und zumindest ähnliche Drücke in der Prozesskammer verwendet werden können. Für den zweiten Verfahrensschritt sind jedoch auch alle anderen Prozesse geeignet, die für das lonenätzen bekannt sind. If the thin, incompletely closed layer is deposited on the surface region of the substrate, at least this surface region is subjected to accelerated ions in a second process step and thus an ion etching process is carried out, whereby the surface region is finally given a roughness effecting the lotus effect. For example, the ions of a plasma generated by means of a sputtering magnetron can be used for this method step. This is particularly advantageous if the thin, not completely closed layer is already deposited by means of magnetron sputtering, because then the same system technology and at least similar pressures in the process chamber can be used for both method steps. However, all other processes known for ion etching are also suitable for the second process step.
Das Durchführen des lonenätzens mittels eines Magnetronplasmas ist insbesondere für das Verringern der Schmutzhaftung an Kunststoffsubstraten bzw. an Substraten, die zumindest eine Deckschicht aus Kunststoff aufweisen, geeignet. Es wird vermutet, dass die Energie der beschleunigten Ionen aus einem Magnetronplasma insbesondere mit der Bindungsenergie von Molekülen eines Kunststoffes korreliert, dass also die Energie der beschleunigten und auf das Substrat gerichteten Ionen so groß ist, um Partikel mit einer Größe aus der Oberfläche herauszuschlagen, die zu einer Rauigkeit führt, die dem Lotoseffekt förderlich ist. Eine Verringerung der Schmutzhaftung durch das erfindungsgemäße Verfahren, bei dem das lonenätzen mittels eines Magnetronplasmas durchgeführt wurde, konnte aber auch bei metallischen Oberflächen nachgewiesen werden. Gegenüber dem Stand der Technik zeichnet sich das erfindungsgemäße Verfahren durch eine Reihe von Vorteilen aus. Zunächst einmal ist das erfindungsgemäße Verfahren sehr wirtschaftlich, weil nur eine sehr dünne und nicht vollständig geschlossene Schicht abgeschieden wird, wobei nur wenig Schichtmaterial benötigt wird. Des Weiteren kommt das erfindungsgemäße Verfahren auch ohne einen aufwändigen Maskierungsschritt aus, um eine für den Lotoseffekt erforderliche Oberflächenstruktur aus einer Deckschicht herauszuarbeiten. Ein solcher Maskierungsschritt ist dem erfindungsgemäßen Verfahren bereits inhärent. Indem das Material auf dem Oberflächenbereich des Substrates mit geringer Menge nur dünn aufgesprenkelt wird, um eine dünne, nicht vollständig geschlossenen Schicht abzuscheiden, bilden sich auf dem Oberflächenbereich des Substrates eine Vielzahl von Materialinseln unterschiedlicher Größe und mit stochastischem Verteilungsmuster aus, was bereits zu einer ersten Maskierung der Substratoberfläche führt. Beim lonenätzen bleiben an diesen Materialinseln Ionen haften. Je größer eine Materialinsel ist, je größer ist auch die Anzahl der anhaftenden Ionen und je größer ist auch der abstoßende Effekt, den eine solche Materialinsel aufgrund der anhaftenden Ionen im weiteren Laufe des Ätzprozesses auf die Richtung Substratoberfläche hin beschleunigten Ionen ausübt. D. h., einzelne Teilbereiche auf der Oberfläche des Substrates werden durch das lonenätzen unterschiedlich stark be- einflusst, was sich wiederum positiv auf die erzielbare Oberflächenrauigkeit auswirkt. Das erfindungsgemäße Verfahren zeichnet sich somit beim lonenätzen auch durch eine Art sich selbst organisierender Maskierung aus, für den kein zusätzlicher Aufwand betrieben werden muss. Die vorliegende Erfindung wird nachfolgend anhand eines Ausführungsbeispiels näher erläutert. Die dabei verwendeten Substrat- und Schichtmaterialien sowie die eingestellten Anlagen- und Prozessparameter sind nur beispielhaft angegeben und beschränken nicht den Schutzumfang der Erfindung. In einer Folienbehandlungsanlage wurde ein als Fluorpolymer ETFE ausgebildetes bandförmiges Substrat in einem dynamischen erfindungs- gemäßen Verfahren zum Herstellen einer schmutzabweisenden Oberfläche behandelt. Das ETFE-Substrat wurde dabei mit einer Bandgeschwindigkeit von 1 ,3 m/min umgewickelt. Während des einmaligen Umwickeins wurde das ETFE-Substrat an zwei hintereinander positionierten Prozessstationen vorbeigeführt. Diese Prozessstationen umfassten jeweils ein Doppelmagnetronsystem, welches typischerweise zur Schichtabscheidung mittels Kathoden- Zerstäubung genutzt wird. Betrieben wurden beide Prozessstationen jeweils mit einer bi- polar gepulsten Spannung, wobei die Pulsfrequenz 50 kHz betrug. Die eingespeiste Leistung der Prozessstationen betrug 4 kW für die erste und 8 kW für die zweite Station. Bei der ersten Station war das Doppelmagnetron mit Targets bestückt, welche aus einer Zink-Zinn- Legierung bestanden. Die zweite Station wies Magnesiumtargets auf. Durch den Einlass von Sauerstoff in die Prozesskammer wurden beide Prozessstationen im reaktiven Modus betrieben. Der ersten Station oblag der erste Verfahrensschritt, eine sehr dünne und nicht vollständig geschlossene Schicht auf dem Kunststoffsubstrat zu erzeugen. H ierbei wurde ausgenutzt, dass das zugeführte Reaktivgas Sauerstoff ein Oxidieren der Magnetron-Targets bewirkt und dadurch die Abscheiderate auf dem ETFE-Substrat gegenüber einer The carrying out of the ion etching by means of a magnetron plasma is particularly suitable for reducing the dirt adhesion to plastic substrates or to substrates which have at least one covering layer made of plastic. It is believed that the energy of the accelerated ions from a magnetron plasma correlates in particular with the binding energy of molecules of a plastic, that is, the energy of the accelerated and directed to the substrate ions is so large to knock out particles with a size from the surface leads to a roughness that is conducive to the lotus effect. A reduction in the dirt adhesion by the method according to the invention, in which the ion etching was carried out by means of a magnetron plasma, but could also be detected in metallic surfaces. Compared to the prior art, the inventive method is characterized by a number of advantages. First of all, the method according to the invention is very economical, because only a very thin and not completely closed layer is deposited, whereby only a small amount of layer material is required. Furthermore, the method according to the invention also works without a complicated masking step in order to work out a surface structure required for the lotus effect from a cover layer. Such a masking step is already inherent in the method of the invention. By spattering the material only thinly on the surface area of the substrate with a small amount in order to deposit a thin, not completely closed layer, a multiplicity of material islands of different size and with a stochastic distribution pattern form on the surface area of the substrate, which is already a first Masking the substrate surface leads. In ion etching, ions stick to these islands of material. The larger a material island, the larger the number of adhering ions and the greater the repelling effect that such a material island exerts on the direction of the substrate surface due to the adhering ions in the further course of the etching process. In other words, individual subregions on the surface of the substrate are influenced to a different extent by the ion etching, which in turn has a positive effect on the achievable surface roughness. The method according to the invention thus also excels in ion etching by a type of self-organizing masking, for which no additional effort has to be made. The present invention will be explained in more detail with reference to an embodiment. The substrate and layer materials used as well as the set plant and process parameters are given by way of example only and do not limit the scope of the invention. In a film treatment plant, a belt-shaped substrate formed as a fluoropolymer ETFE was treated in a dynamic process according to the invention for producing a dirt-repellent surface. The ETFE substrate was wrapped at a belt speed of 1.3 m / min. During the single turn, the ETFE substrate was passed past two process stations positioned one behind the other. These process stations each comprised a double magnetron system, which is typically used for layer deposition by means of cathode sputtering. Both process stations were operated with a polar pulsed voltage, the pulse frequency was 50 kHz. The fed-in power of the process stations was 4 kW for the first station and 8 kW for the second station. At the first station, the double magnetron was equipped with targets, which consisted of a zinc-tin alloy. The second station had magnesium targets. By adding oxygen to the process chamber, both process stations were operated in reactive mode. The first station was responsible for the first process step, to produce a very thin and not completely closed layer on the plastic substrate. In this case, it was exploited that the supplied reactive oxygen gas causes oxidation of the magnetron targets and thereby the deposition rate on the ETFE substrate compared to a
Beschichtung ohne Sauerstoff verringert. In zuvor durchgeführten Laborversuchen wurde die Zuflussmenge an Sauerstoff ermittelt, bei der das verwendete Targetmaterial aus einer Zink-Zinn-Legierung im reaktiven Modus eine zwar nur geringe, aber dennoch vorhandene Beschichtungsrate gewährleistet, bei der eine Vielzahl von inselhaft ausgebildeten Materialanhäufungen auf dem Substrat abgeschieden und somit eine nicht vollständig geschlossene Schicht auf dem Substrat ausgebildet wird. Dadurch, dass beim Durchlaufen der ersten Station eine nicht vollständig geschlossene Schicht hergestellt wurde, konnte bereits eine Rauheitserhöhung an der Oberfläche des ETFE-Substrates erreicht werden, die für das Ausbilden des Lotoseffektes wichtig ist. Des Weiteren wurde durch das dünne Aufsprenkeln des Schichtmaterials an der ersten Doppelmagnetron-Station und das dadurch erfolgte Abscheiden einer dünnen, nicht vollständig geschlossenen Schicht bereits eine erste Maskierung der Oberfläche des ETFE-Substrates erreicht. Coating reduced without oxygen. In previous laboratory experiments, the oxygen influx was determined at which the zinc-tin alloy target material used in the reactive mode ensures a low but still present coating rate at which a plurality of island-like material clusters are deposited on the substrate thus a not completely closed layer is formed on the substrate. Due to the fact that an incompletely closed layer was produced when passing through the first station, an increase in roughness on the surface of the ETFE substrate, which is important for the formation of the lotus effect, has already been achieved. Furthermore, a first masking of the surface of the ETFE substrate has already been achieved by the thin sputtering of the layer material at the first double magnetron station and the resulting deposition of a thin, not completely closed layer.
Das Magnesium-Targetmaterial der zweiten Station weist hingegen im vollreaktiven Modus keine nennenswerte Beschichtungsrate auf. Jedoch sind es hier die im Magnetronplasma generierten Sauerstoffionen, die das Polymermaterial angreifen und degradieren. Insbesondere findet dies natürlich an den Oberflächenteilbereichen des Kunststoffsubstrates statt, an denen das mit der ersten Station aufgebrachte Material nicht vorhanden ist. The magnesium target material of the second station, however, has no appreciable coating rate in fully reactive mode. However, here it is the oxygen ions generated in the magnetron plasma that attack and degrade the polymer material. In particular, this naturally occurs at the surface subregions of the plastic substrate where the material applied to the first station is absent.
Außerdem findet während des lonenbombardements eine weitere, aufgrund der zuvor beschriebenen loneneffekte auf der nicht vollständig geschlossenen Schicht, selbst- organisierte Maskierung des Substrates statt. Das Sauerstoffplasma ätzt die Oberfläche des Kunststoffsubstrates somit lokal begrenzt unterschiedlich stark und erzeugt auf diese Weise eine dem Lotoseffekt förderliche Nanostruktur. In addition, during ion bombardment, another self-organized masking of the substrate occurs due to the previously described ion effects on the incompletely closed layer. The oxygen plasma thus etches the surface of the plastic substrate locally to different extents and in this way generates a nanostructure that promotes the lotus effect.
Die Rolle des ETFE-Substrates wurde jedoch nicht vollständig mit dem erfindungsgemäßen Verfahren behandelt. Ein Ende des bandförmigen ETFE-Substrates blieb unbehandelt. Nach dem erfindungsgemäßen Behandeln der Rolle wurde aus dem erfindungsgemäß behandelten Bereich eine erste Probe ausgeschnitten und aus dem unbehandelten Bereich eine zweite Probe ausgeschnitten. Beide ausgeschnittenen Proben wurden danach einer Bewitterung unter freiem H immel über mehrere Monate ausgesetzt. In regelmäßigen Abständen wurde die Verschmutzung der Proben untersucht. Zu diesem Zweck, wurde auf das Ermitteln der optischen Transmission bei den Proben zurückgegriffen. Verschmutzen die Oberflächen, sollte die Transmission der Proben geringer werden. Ein Vergleich der jeweiligen Transmissionsänderungen zum zugehörigen Ausgangswert ermöglicht deshalb eine qualitative Aussage bezüglich der Verschmutzung einer Probe. However, the role of the ETFE substrate has not been fully addressed by the method of the invention. One end of the tape-shaped ETFE substrate remained untreated. To In accordance with the invention, a first sample was cut out of the area treated according to the invention and a second sample was cut out of the untreated area. Both excised samples were then exposed to free-weather weathering for several months. At regular intervals, the contamination of the samples was examined. For this purpose, the determination of the optical transmission in the samples was resorted to. If the surfaces foul, the transmission of the samples should be lower. A comparison of the respective transmission changes to the associated initial value therefore makes it possible to make a qualitative statement regarding the contamination of a sample.
Über einen Zeitraum von mehreren Monaten hinweg wurde zu verschiedenen Zeitpunkten die optische Transmission der Proben ermittelt. Überraschend zeigten sich Unterschiede im zeitlichen Verlauf der Transmissionsänderungen beim Vergleich der erfindungsgemäß behandelten und der unbehandelten Probe. Über die Bewitterungsdauer hinweg zeigte sich, dass sich die optische Transmission der behandelten Probe weniger stark verringerte als die optische Transmission der unbehandelten Probe und somit, dass die behandelte Probe weniger stark verschmutzte als die unbehandelte Probe. In Fig. 1 ist die Differenz der optischen Transmission der erfindungsgemäß behandelten Probe und der optischen Transmission der unbehandelten Probe graphisch dargestellt. Fig. 1 ist zu entnehmen, dass der Unterschied zwischen den beiden Proben bezüglich der optischen Transmission mit der Zeit kontinuierlich zunimmt. Der geringere Transmissionsverlust der erfindungsgemäß behandelten Probe gegenüber der unbehandelten Probe lässt den Schluss zu, dass die erfindungsgemäß behandelte Probe während des Betrachtungszeitraumes weniger verschmutzt ist als die unbehandelte Probe. Over a period of several months, the optical transmission of the samples was determined at different times. Surprisingly, differences in the time course of the transmission changes in the comparison of the invention treated and the untreated sample showed. Over the period of weathering, it was found that the optical transmission of the treated sample was less reduced than the optical transmission of the untreated sample and thus that the treated sample was less soiled than the untreated sample. FIG. 1 shows graphically the difference between the optical transmission of the sample treated according to the invention and the optical transmission of the untreated sample. It can be seen from FIG. 1 that the difference between the two samples with respect to the optical transmission increases continuously over time. The lower transmission loss of the sample treated according to the invention compared to the untreated sample leads to the conclusion that the sample treated according to the invention is less polluted during the observation period than the untreated sample.
Das erfindungsgemäße Verfahren kann somit besonders vorteilhaft bei Bauteilen mit einer optischen Funktion oder bei dekorativen Bauteilen angewendet werden und bewirkt dort das Verringern des regelmäßigen Reinigungsaufwandes und dementsprechend das Steigern der Wirtschaftlichkeit. The method according to the invention can thus be used particularly advantageously for components having an optical function or for decorative components and there causes the reduction of the regular cleaning effort and, accordingly, the increase in cost-effectiveness.

Claims

Patentansprüche claims
1 . Verfahren zum Reduzieren der Schmutzhaftung an einem Substrat, dadurch 1 . A method of reducing soil adhesion to a substrate thereby
gekennzeichnet, dass zumindest auf einem Oberflächenbereich des Substrates eine dünne, nicht vollständig geschlossene Schicht eines Materials mittels eines Vakuum- beschichtungsprozesses abgeschieden wird und der Oberflächenbereich anschließend mit Ionen beaufschlagt wird.  in that, at least on a surface region of the substrate, a thin, not completely closed layer of a material is deposited by means of a vacuum coating process and the surface area is subsequently exposed to ions.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die dünne, nicht voll- ständig geschlossene Schicht mittels Magnetron-Sputtern abgeschieden wird. 2. The method according to claim 1, characterized in that the thin, not completely closed layer is deposited by means of magnetron sputtering.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als Magnetrontarget ein Material ausgewählt wird, das mindestens eines der Elemente Zink, Zinn, Silizium, Titan, Aluminium enthält. 3. The method according to claim 2, characterized in that as a magnetron target, a material is selected which contains at least one of the elements zinc, tin, silicon, titanium, aluminum.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die dünne, nicht vollständig geschlossene Schicht mittels eines reaktiven Vakuumbeschichtungsprozesses abgeschieden wird. 4. The method according to claim 1, characterized in that the thin, not completely closed layer is deposited by means of a reactive vacuum coating process.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass ein sauerstoffhaltiges Gas als Reaktivgas verwendet wird. 5. The method according to claim 4, characterized in that an oxygen-containing gas is used as the reactive gas.
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die dünne, nicht vollständig geschlossene Schicht mittels ALD abgeschieden wird. 6. The method according to claim 1, characterized in that the thin, not completely closed layer is deposited by means of ALD.
7. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als Substrat ein 7. The method according to claim 1, characterized in that as a substrate
Kunststoffsubstrat oder ein Substrat mit einer Kunststoffdeckschicht verwendet wird.  Plastic substrate or a substrate with a plastic topcoat is used.
8. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Material mit einer Menge auf dem Oberflächenbereich des Substrates abgeschieden wird, die nicht ausreichend ist, um den Oberflächenbereich vollständig mit einer Atomlage des Materials zu bedecken. A method according to claim 1, characterized in that the material is deposited with an amount on the surface area of the substrate which is insufficient to completely cover the surface area with an atomic layer of the material.
9. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Ionen einem Plasma entstammen, welches mittels eines Sputter-Magnetrons erzeugt wird. 9. The method according to claim 1, characterized in that the ions originate from a plasma which is generated by means of a sputtering magnetron.
EP15763294.4A 2014-09-11 2015-09-10 Method for reducing the adherence of dirt to a substance Withdrawn EP3191614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014113097.9A DE102014113097A1 (en) 2014-09-11 2014-09-11 A method of reducing soil adhesion to a substrate
PCT/EP2015/070695 WO2016038132A1 (en) 2014-09-11 2015-09-10 Method for reducing the adherence of dirt to a substance

Publications (1)

Publication Number Publication Date
EP3191614A1 true EP3191614A1 (en) 2017-07-19

Family

ID=54106352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15763294.4A Withdrawn EP3191614A1 (en) 2014-09-11 2015-09-10 Method for reducing the adherence of dirt to a substance

Country Status (5)

Country Link
US (1) US10557196B2 (en)
EP (1) EP3191614A1 (en)
JP (1) JP6649948B2 (en)
DE (1) DE102014113097A1 (en)
WO (1) WO2016038132A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005049280A1 (en) * 2005-10-14 2007-06-14 Friedrich-Schiller-Universität Jena Nano-structure producing method for e.g. raster electron microscope-receiver of hologram, involves applying carrier layer on substrate surface and producing nano-structure at surface with etching process using carrier layer as etching mask

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340276A (en) * 1978-11-01 1982-07-20 Minnesota Mining And Manufacturing Company Method of producing a microstructured surface and the article produced thereby
JPS58118293A (en) * 1982-01-08 1983-07-14 Dainippon Ink & Chem Inc Optical recording medium
JPS63270452A (en) * 1987-04-27 1988-11-08 Oki Electric Ind Co Ltd Method for coating of thin film
US6555430B1 (en) 2000-11-28 2003-04-29 International Business Machines Corporation Process flow for capacitance enhancement in a DRAM trench
DE10110589A1 (en) 2001-03-06 2002-09-12 Creavis Tech & Innovation Gmbh Geometric shaping of surfaces with lotus effect
DE10134362A1 (en) 2001-07-14 2003-01-30 Creavis Tech & Innovation Gmbh Structured hydrophobic surfaces, used to produce e.g. containers, pipettes, comprise projections which are parallel and linear, and which have a saw tooth shape
DE10138036A1 (en) 2001-08-03 2003-02-20 Creavis Tech & Innovation Gmbh Structured self-cleaning surface is hydrophobic, and has a pattern of raised surfaces with lower burrs linking neighboring projections
US20060006302A1 (en) * 2004-07-07 2006-01-12 Gragg Kenneth A Apparatus to support at least one compressed gas cylinder for assisting with safely assembling SCUBA Gear
DE102004041813A1 (en) 2004-08-26 2006-03-02 Siemens Ag Surface having an adhesion reducing microstructure and method of making the same
EP1826293A1 (en) * 2006-02-09 2007-08-29 Isoflux, Inc. Formation of nanoscale surfaces for the attachment of biological materials
DE102006056578A1 (en) * 2006-11-30 2008-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for producing a nanostructure on a plastic surface
FR2913231B1 (en) 2007-03-02 2009-07-10 Essilor Int ARTICLE HAVING A NANOTEXTURED SURFACE WITH SUPERHYDROPHOBIC PROPERTIES.
JP2009128543A (en) 2007-11-21 2009-06-11 Panasonic Corp Method for manufacturing antireflection structure
WO2010022107A2 (en) * 2008-08-18 2010-02-25 The Regents Of The University Of California Nanostructured superhydrophobic, superoleophobic and/or superomniphobic coatings, methods for fabrication, and applications thereof
JP5598080B2 (en) * 2010-05-17 2014-10-01 大日本印刷株式会社 Method for producing gas barrier sheet
KR101283665B1 (en) * 2010-09-30 2013-07-08 바코스 주식회사 Forming Method Of Nano Structure For High Light-Transmissive And Super-Water-Repellent Surface
CN103180060A (en) * 2010-10-28 2013-06-26 3M创新有限公司 Superhydrophobic film constructions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005049280A1 (en) * 2005-10-14 2007-06-14 Friedrich-Schiller-Universität Jena Nano-structure producing method for e.g. raster electron microscope-receiver of hologram, involves applying carrier layer on substrate surface and producing nano-structure at surface with etching process using carrier layer as etching mask

Also Published As

Publication number Publication date
DE102014113097A1 (en) 2016-03-17
JP6649948B2 (en) 2020-02-19
US10557196B2 (en) 2020-02-11
JP2017528600A (en) 2017-09-28
WO2016038132A1 (en) 2016-03-17
US20170218504A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
DE60104026T2 (en) Method for applying a coating by physical vapor deposition
EP1565591B1 (en) Method for vapor-depositing strip-shaped substrates with a transparent barrier layer made of aluminum oxide
DE1116015B (en) Method and device for cathodic spraying of a film onto a workpiece
EP0990715B1 (en) Belt-type vapour deposition unit for the production of plane-parallel lamina
EP2668695A1 (en) Radar-transparent coating
WO2009127373A1 (en) Transparent barrier layer system
DE102012211746B4 (en) LOW-FRICTION COATING LAYER FOR A VEHICLE PART AND METHOD FOR PRODUCING THE SAME
EP2912204A1 (en) Plastic component coated with an embedded pvd layer
EP3133184B1 (en) Method of forming a layer having high light transmission and/or low light reflection
EP2686371B1 (en) Method for modifying a surface of a substrate using ion bombardment
EP3191614A1 (en) Method for reducing the adherence of dirt to a substance
EP3017079B2 (en) Process for the production tixsi1-xn layers
DE3624772C2 (en)
EP3673094A1 (en) Method for producing an electrically conductive foil
WO2012143150A1 (en) Method for depositing a transparent barrier layer system
DE2110668A1 (en) Device for coating a substrate with a thick and strongly adhesive layer
DE3902862A1 (en) METHOD FOR REMOVING PARTICLES ON SUBSTRATE SURFACES
DE102012100288B4 (en) Process for producing a plastic substrate with a porous layer
DE10042194B4 (en) Heat-reflecting layer system for transparent substrates and method for the production
CH663220A5 (en) METHOD FOR PRODUCING LAYERING MATERIAL OR LAYERING PIECES.
DE102008050196A1 (en) Apparatus and method for depositing a gradient layer
AT413108B (en) PROCESS FOR COATING FLEXIBLE SUBSTRATES WITH ALUMINUM
EP3417086A1 (en) Device and method for producing defined properties of gradient layers in a system of multilayered coatings in sputtering installations
DE102009005297A1 (en) Method for coating substrates by vacuum deposition, comprises directing an electron beam on deposited layer material in a heating zone and coating the heating zone by a suitable beam deflection so that the layer material is heated
DE102013011071A1 (en) TixSi1-xN layers with CryAl1-yN adhesion layer and their preparation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 20180123

18W Application withdrawn

Effective date: 20180131