EP3191412B1 - Gestion active des lits fluidises de charbon actif - Google Patents

Gestion active des lits fluidises de charbon actif Download PDF

Info

Publication number
EP3191412B1
EP3191412B1 EP15763288.6A EP15763288A EP3191412B1 EP 3191412 B1 EP3191412 B1 EP 3191412B1 EP 15763288 A EP15763288 A EP 15763288A EP 3191412 B1 EP3191412 B1 EP 3191412B1
Authority
EP
European Patent Office
Prior art keywords
activated carbon
sludge
powdered activated
separation
aqueous fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15763288.6A
Other languages
German (de)
English (en)
Other versions
EP3191412A1 (fr
Inventor
Sabine BLONDEAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saur SAS
Original Assignee
Saur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saur SAS filed Critical Saur SAS
Priority to PL15763288T priority Critical patent/PL3191412T3/pl
Publication of EP3191412A1 publication Critical patent/EP3191412A1/fr
Application granted granted Critical
Publication of EP3191412B1 publication Critical patent/EP3191412B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/127Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering by centrifugation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/043Treatment of partial or bypass streams
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment

Definitions

  • the present invention relates to a process for treating aqueous fluids based on powdered activated carbon in the form of a fluidized bed, comprising a step of active management of the fluidized bed of activated carbon so as to ensure constant purification performance at a lower cost.
  • aqueous fluids based on fluidized, coagulated and optionally flocculated (CAF) activated carbon are intended to eliminate organic micropollutants present in aqueous fluids, such as pesticides, chlorinated solvents, flavoring molecules, pharmaceuticals and endocrine disruptors, as well as reduce organic content.
  • CAF flocculated
  • CAF-based aqueous fluids treatment processes can be implemented in coagulated, flocculated and fluidized carbon bed reactors operating in upward flow (known as “CAF reactor”), such as those described in the patent. FR 2946333 (Carboplus ®) or in French patent application no. 1354387 filed May 16, 2013 .
  • CAF reactor coagulated, flocculated and fluidized carbon bed reactors operating in upward flow
  • PAC powdered activated carbon
  • the reactors can be equipped with means for injecting fresh powdered activated carbon, coagulation and flocculation agents arranged in coordination with the raw water supply circuit so as to define three distinct operating zones in the reactor .
  • a first zone arranged at the base of the reactor, ensures the admission and the homogeneous distribution of the raw water into which the coagulation and flocculation agents have been injected beforehand.
  • This first zone known as the developed zone, can comprise a lining consisting of a bed of gravel topped by a bed of sand.
  • a second zone formed by a fluidized bed of powdered activated carbon, surmounts the first zone.
  • the second zone ensures the decontamination of raw water by adsorption.
  • a third zone located in the upper part of the reactor, ensures the separation and recovery of the decontaminated water.
  • these reactors can be without a zone fitted out at the base of the reactor.
  • the injection of the powdered activated carbon, of the aqueous fluid to be treated, of the coagulation and flocculation agents is then carried out by the same distribution ramp which makes it possible to define two zones in the reactor: a reaction zone and a separation zone.
  • CAF-based aqueous fluids treatment processes can also be implemented in installations in which each process step is carried out in a separate structure.
  • the coagulated CAP can be contacted with the aqueous fluid to be treated in a first reactor, and then separated from the aqueous fluid to be treated by settling in another reactor.
  • powdered activated carbon is generally continuously injected into the reactors and regular purges of carbon are performed. An equilibrium is achieved when the slurry settling speed is set to the hydraulic fluidization speed.
  • the coagulated CAP and optionally flocculated by adding polymer, is present in the form of carbon flocs, all of these flocs forming sludge.
  • These carbon flocs include PAC, metal hydroxides and colloids and various suspended matter. They are generally characterized by a size ranging from a few tenths of a millimeter to a few millimeters and by settling speeds ranging from 2 to 20 m / h.
  • the maintenance of these flocs in suspension within settling reactors or within CAF reactors for a given fluid transport speed is linked to the settling speed of the flocs, which itself is linked to the level of carbon contained in the flocs.
  • the level of carbon contained in the flocs thus has an effect on the fluidization height of the carbon bed.
  • a given carbon content in the flocs corresponds to a maximum carbon concentration in the reactor.
  • a decrease in the carbon content in the carbon flocs below certain thresholds leads to an increase in the height of the carbon bed, or even the entrainment of the carbon flocs by the aqueous fluid out of the reactor.
  • the separation between the carbon flocs and the aqueous fluid is no longer effective.
  • the decrease in the carbon content in the flocs can also lead to a deconcentration of the activated carbon bed, in particular in reactors equipped with sludge pits or with a lateral nozzle system with a purge flow rate controlled by a fixed bed height. Deconcentration of the activated carbon bed leads to a reduction in performance.
  • the decrease in the level of carbon in the carbon flocs can be linked to various phenomena, such as for example a change in the quality of the aqueous fluid entering the reactor (s), a bad mixing of the reactants, for example lime, upstream of the reactor and / or an insufficient purge of the single fluidization reactor or of the settling reactor.
  • the stability of the CAF bed can also be affected by the presence of excess colloids, metal hydroxides and suspended matter in the aqueous fluids to be treated. Indeed, these constituents will be trapped in the fluidized bed of activated carbon and decrease the settling speeds of the CAF suspension. Thus, a rapid degradation in the quality of the aqueous fluids generates an increase in the height of the fluidization front of the coal bed and its deconcentration.
  • the CAP fluidized bed is a coagulated and optionally flocculated CAP fluidized bed.
  • the CAP fluidized bed is a coagulated and optionally flocculated CAP fluidized bed.
  • the inventors have developed a process for treating aqueous fluids based on powdered activated carbon in the form of a fluidized, coagulated and optionally flocculated bed, comprising a step of managing the fluidized bed as described below. This step ultimately makes it possible to overcome the drifts of the powdered activated carbon beds described above.
  • aqueous fluid (s) denotes surface water, groundwater, urban or tertiary wastewater and / or industrial water.
  • pelletered activated carbon denotes particles of activated carbon whose average diameter is less than 100 ⁇ m.
  • the average particle diameter typically ranges from 1 to 99 ⁇ m, such as 3 to 80 ⁇ m or 5 to 45 ⁇ m, or 15 to 45 ⁇ m.
  • the size of the particles can be determined by laser granulometry.
  • the method of treating aqueous fluids of the present invention comprises contacting the aqueous fluid with a fluidized bed of powdered activated carbon and separating the aqueous fluid from the bed of powdered activated carbon.
  • the treatment process therefore makes it possible to eliminate organic micropollutants present in aqueous fluids, such as pesticides, chlorinated solvents, flavoring molecules, pharmaceutical products and endocrine disruptors, as well as to reduce the contents of organic matter.
  • the aqueous fluids brought into contact with the fluidized bed of powdered activated carbon have been treated beforehand by means of coagulation agents and optionally of flocculation agents, in particular in the case of water loaded with organic matter, such as dam water.
  • the aqueous fluids to be treated are brought into contact with a suspension of new PAC and of coagulating agents, and optionally of flocculating agents, within the powdered activated carbon treatment reactor or upstream of the treatment reactor.
  • the coagulating agents can be chosen from coagulating agents based on iron, aluminum or their mixtures, such as ferric chloride, ferric sulfate or aluminum sulfate.
  • examples of commercial coagulating agents include the WAC, WAC HB, and Aqualenc products.
  • the flocculating agents can be chosen from acrylic flocculating agents, such as anionic and nonionic polyacrylamides.
  • contacting the aqueous fluid with the fluidized bed of powdered activated carbon and the separation of the aqueous fluid from the bed of powdered activated carbon can be done in separate works.
  • the Insoluble HCl index makes it possible to evaluate the rate of carbon contained in the activated carbon sludge, more precisely in the SS of the activated carbon sludge.
  • This index corresponds to the ratio, expressed as a percentage, between the mass of a sample of coal sludge, previously dried at 105 ° C, attacked with hot hydrochloric acid for 20 minutes on the mass of this sample of sludge dried before acid attack. In other words, it This is the part of powdered activated carbon contained in the SS of the carbon sludge.
  • hot hydrochloric acid solubilizes the colloids, lime and hydroxides, such as iron hydroxides, contained in the sludge.
  • the residue obtained at the end of this hot acid treatment essentially comprises activated charcoal which is itself not solubilized.
  • the Insoluble HCl index is advantageously greater than 55%, and preferably greater than 60% in the case of optimum operation, optimum operation being as described above.
  • the fraction exhibiting an insoluble HCl index at least 5 percentage points higher than that of the sludge before separation as obtained in step (b) of the process typically exhibits a suspended solids concentration at least two times greater than the concentration in MES of sludge before separation.
  • the MES concentration is determined according to the protocol described in the “Examples” section.
  • the method of the present invention comprises at least one step of separating the extracted sludge. Each separation step leads to obtaining two fractions. It should be understood that the process of the present invention can comprise a single separation step making it possible to obtain directly a fraction having an insoluble HCl number higher by at least 5 percentage points than that of the sludge before separation.
  • the second fraction obtained has a SS concentration less than or equal to the SS concentration of the sludge before separation, typically at least 1.5 times lower than that of the sludge before separation.
  • the MES concentration is determined according to the protocol described in the “Examples” section.
  • the second fraction can be processed by clarification or flotation upstream of the treatment reactor or treated by a sludge treatment system.
  • the figure 1 shows schematically an example of an installation according to the present invention allowing the implementation of the method of the present invention.
  • the aqueous fluid to be treated (1) brought into contact beforehand with powdered activated carbon, coagulating agents and optionally flocculating agents is introduced into the lower part of a treatment reactor (2) with a fluidized bed of activated carbon in powder operating in ascending flow comprising a reaction zone (3) consisting of a fluidized bed of powdered activated carbon extending from the base of the reactor and a separation zone (4) surmounting the reaction zone allowing gravity separation of the aqueous fluid depolluted activated carbon powder.
  • Coal sludge (5) is extracted in the lower part of the reactor and can be directed to a buffer tank (6) then directed to a hydrocyclone (7) by means of a pumping system (8) or directly to the hydrocyclone (7) by means of the pumping system (8).
  • the fraction (9) of the sludge having an insoluble HCl index greater by at least 5 percentage points than that of the sludge before separation is reintroduced into the reactor.
  • the other fraction (10) can be redirected upstream of the aqueous fluid treatment line (11) or eliminated (12).
  • the separation step or the separation steps is / are carried out by means of a hydrocyclone or several hydrocyclones.
  • Hydrocyclones are devices that separate particles by centrifugal hydraulic classification. They typically consist of a cylindro-conical enclosure in which the tangential feed rotates the water before it leaves through an axial overflow pipe.
  • the hydrocyclone makes it possible to increase the proportion of activated carbon contained in the MES of the CAF sludge.
  • the separation step (s) can / can be carried out continuously or periodically.
  • the device for the treatment of aqueous fluid based on activated carbon of the installation may be a treatment reactor with powdered activated carbon operating in upward flow, for example as described in FR2946333 or in French patent application no. 1354387 filed May 16, 2013 .
  • the means for extracting the carbon flock sludge may be extraction circuits, preferably arranged in the lower part of the reaction zone of the reactor.
  • the extraction of the activated carbon can be carried out by pumping or by gravity withdrawal through an extraction pipe (5) opening into the carbon bed.
  • the extraction of the activated carbon can also be carried out by means of a concentrator collecting the flocs of powdered activated carbon from an overflow at the top of the reaction zone.
  • the two powder activated carbon extraction systems can be combined.
  • the activated carbon sludge can be conveyed directly to the sludge separation device by means of a pumping system or it can be directed to a buffer tank, which can be stirred, which will allow a certain volume of sludge to be stored before separation.
  • the treatment plant comprises a buffer tank.
  • the pumping system makes it possible to introduce the sludge into the separation device, typically with a minimum pressure greater than or equal to 1.8 bars.
  • the separation device is a hydrocyclone.
  • the phase least concentrated in PAC, that is to say having the lowest insoluble HCl index, of the hydrocyclone joins the sludge evacuation circuit.
  • the phase most concentrated in PAC is advantageously reintroduced at the bottom of the CAF reactor by means of a pipe or pipe which generally plunges into the reactor up to 1 meter above the floor.
  • the hydrocycloning unit will preferably be placed above the reactor so that the sludge is injected by gravity. Otherwise, routing will be from one storage / injection unit per pump set.
  • the hydrocyclone can be combined with a second coal pumping assembly and another hydrocyclone to treat the first stage overflow.
  • the installation for treating aqueous fluid by fluidized contact with coagulated activated carbon comprises a single reactor for bringing into contact and separating the water to be treated with the fluidized bed of coagulated activated carbon, the fraction produced whose index insoluble HCl is the strongest can be reintroduced into the reactor either by gravity or by means of a pumping system within the carbon bed of the reactor, preferably in the lower part of the reactor.
  • the fraction produced in which the insoluble HCl is the strongest can be reintroduced into one of the reactors (contact reactor or separation reactor) either by gravity or by means of a pumping system within the coal bed of the reactor, preferably in the lower part of the reactor.
  • an intermediate tank can be added.
  • the other fractions can be conveyed partially or entirely upstream of the installation for treating aqueous fluid by fluidized contact with coagulated activated carbon if the latter is preceded by at least one step of clarifying the aqueous fluid to be treated.
  • These fractions may be partially or totally evacuated to the waste treatment channel from the channel.
  • the insoluble index HCl is determined by carrying out an acid attack at constant boiling for 20 minutes of a sample of carbon slurry taken from the bed of powdered activated carbon and dried beforehand in an oven at 105 ° C. After 20 minutes, the suspension is filtered through a Whatman GFC type glass fiber filter. The filter and its contents are then dried in an oven at 105 ° C.
  • the insoluble HCl is the ratio of the dry masses of the acid etched sample residue to the initial mass of carbon slurry.
  • Tests were carried out on a pilot scale to assess and validate the value of using the hydrocyclone on the sludge from CAF reactors.
  • CT SS concentration (g / L) * water / sludge contact time (min)
  • the hydrocyclone treatment of part of the sludge from a CAF reactor therefore makes it possible, by reinjecting the sludge obtained by underflow, to reduce the height of the CAF bed.
  • the increase in the CT value of 60 and 140 made it possible to improve the reductions in UV absorbance at 254nm from 25% to 44%, without exceeding a CAF bed height of 3 m ( figure 2 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

    DOMAINE DE L'INVENTION
  • La présente invention concerne un procédé de traitement des fluides aqueux à base de charbon actif en poudre sous forme de lit fluidisé comprenant une étape de gestion active du lit fluidisé de charbon actif de manière à assurer des performances épuratoires constantes à moindre coût.
  • ARRIERE PLAN DE L'INVENTION
  • Les procédés de traitement des fluides aqueux à base de charbon actif fluidisé, coagulé et éventuellement floculé (CAF) ont pour but d'éliminer les micropolluants organiques présents dans les fluides aqueux, tels que les pesticides, les solvants chlorés, les molécules sapides, les produits pharmaceutiques et les perturbateurs endocriniens, ainsi que de réduire les teneurs en matière organique.
  • Il est connu d'utiliser des lits fluidisés avec du charbon actif granulaire (CAG) dans des procédés avec régénération tels que ceux décrits par US 2013/243684 .
  • Les procédés de traitement des fluides aqueux à base de CAF peuvent être mis en œuvre dans des réacteurs à lit de charbon coagulé, floculé et fluidisé fonctionnant en flux ascendant (dits « réacteur à CAF »), tels que ceux décrits dans le brevet FR 2946333 (Carboplus ®) ou dans la demande de brevet français n° 1354387 déposée le 16 mai 2013 . De tels réacteurs comprennent un seul ouvrage dans lequel sont réalisées la mise en contact des eaux à traiter avec le charbon actif en poudre (CAP) et la séparation du charbon des eaux traitées. Dans certaines configurations, telles que celles décrites dans le brevet FR 2946333 , les réacteurs peuvent être équipés de moyens d'injection de charbon actif en poudre frais, d'agents de coagulation et de floculation agencés en coordination avec le circuit d'alimentation en eaux brutes de manière à définir dans le réacteur trois zones distinctes de fonctionnement. Une première zone, aménagée à la base du réacteur, assure l'admission et la répartition homogène des eaux brutes dans lesquelles les agents de coagulation et de floculation ont été préalablement injectés. Cette première zone, dite zone aménagée, peut comprendre un garnissage constitué d'un lit de gravier surmonté par un lit de sable. Une seconde zone, constituée par un lit fluidisé de charbon actif en poudre, surmonte la première zone. La seconde zone assure la dépollution des eaux brutes par adsorption. Enfin une troisième zone, aménagée dans la partie haute du réacteur, assure la séparation et la récupération des eaux dépolluées. Dans d'autres configurations, par exemple telles que décrites dans la demande de brevet français n° 1354387 déposée le 16 mai 2013 , ces réacteurs peuvent être dépourvus d'une zone aménagée à la base du réacteur. L'injection du charbon actif en poudre, du fluide aqueux à traiter, des agents de coagulation et de floculation est alors réalisée par une même rampe de distribution qui permet de définir deux zones dans le réacteur : une zone réactionnelle et une zone de séparation.
  • Les procédés de traitement des fluides aqueux à base de CAF peuvent également être mis en œuvre dans des installations dans lesquelles chaque étape du procédé est réalisée dans un ouvrage distinct. Par exemple, le CAP coagulé peut être mis en contact avec le fluide aqueux à traiter dans un premier réacteur, puis séparé du fluide aqueux à traiter par décantation dans un autre réacteur.
  • Pour assurer des performances de traitement constantes, maintenir une concentration en CAP et une hauteur de lit constantes dans la zone réactionnelle du réacteur, du charbon actif en poudre est généralement injecté en continu au sein des réacteurs et des purges régulières de charbon sont réalisées. Un équilibre est atteint lorsque la vitesse de décantation de la suspension est calée sur la vitesse hydraulique de fluidisation.
  • Dans ces réacteurs, le CAP coagulé, et éventuellement floculé par ajout de polymère, est présent sous forme de flocs de charbon, l'ensemble de ces flocs formant des boues. Ces flocs de charbon comprennent du CAP, des hydroxydes métalliques et de colloïdes et des matières en suspension diverses. Ils se caractérisent généralement par une taille allant de quelques dixièmes de millimètres à quelques millimètres et par des vitesses de décantation allant de 2 à 20 m/h. Le maintien en suspension de ces flocs au sein des réacteurs de décantation ou au sein des réacteurs à CAF pour une vitesse de transport du fluide donnée est lié à la vitesse de décantation des flocs, qui elle-même est liée au taux de charbon contenu dans les flocs. Le taux de charbon contenu dans les flocs a ainsi une incidence sur la hauteur de fluidisation du lit de charbon. Par ailleurs, à un taux de charbon donné dans les flocs correspond une concentration maximale en charbon dans le réacteur.
  • Une diminution du taux de charbon dans les flocs de charbon en dessous de certains seuils entraine une augmentation de la hauteur du lit de charbon, voire l'entrainement des flocs de charbon par le fluide aqueux hors du réacteur. La séparation entre les flocs de charbons et le fluide aqueux n'est plus effective.
  • La diminution du taux de charbon dans les flocs peut également entrainer une déconcentration du lit de charbon actif, en particulier dans les réacteurs équipés de fosses à boues ou d'un système de piquage latéral à débit de purge asservi à une hauteur de lit fixe. La déconcentration du lit de charbon actif entraine une diminution des performances.
  • La diminution de taux de charbon dans les flocs de charbons peut être liée à différents phénomènes, comme par exemples un changement de la qualité du fluide aqueux pénétrant dans le ou les réacteurs, un mauvais mélange des réactifs, par exemple de la chaux, en amont du réacteur et/ou une purge du réacteur unique de fluidisation ou du réacteur de décantation insuffisante.
  • La stabilité du lit de CAF peut également être affectée par la présence de colloïdes, d'hydroxydes métalliques et de matières en suspensions en excès dans les fluides aqueux à traiter. En effet, ces constituants vont être piégés dans le lit fluidisé de charbon actif et diminuer les vitesses de décantation de la suspension de CAF. Ainsi, une dégradation rapide de la qualité des fluides aqueux engendre une augmentation de la hauteur du front de fluidisation du lit de charbon et sa déconcentration.
  • A ce jour, lorsque la stabilité du lit de CAF et la concentration en charbon n'est plus assurée pour les raisons évoquées ci-dessus, une seule solution existe : augmenter le renouvellement en CAP coagulé pour renouveler les flocs de charbon et augmenter les purges pour se débarrasser des flocs pauvres en charbon. Cette technique présente l'inconvénient de surdoser le CAP par rapport au réel besoin épuratoire, ce besoin correspondant à la quantité nécessaire en CAP pour garantir des concentrations en polluants dissous, tels que les pesticides, inférieures aux concentrations réglementaires.
  • Ces correctifs de traitement en CAP engendrent des surcoûts d'exploitation, en particulier en entrainant une surconsommation en charbon actif en poudre neuf.
  • Il est également connu de l'art antérieur, la mise en place d'opérations de régénérations classiques in situ telles que la régénération thermique ou chimique, et ce usuellement pour les charbons actifs en grain. Ces opérations sont lourdes à mettre en place sur des sites tels que, par exemple, des usines de production d'eau potable. L'installation de ce type de procédé est une solution très onéreuse au regard des quelques dizaines de kilos de charbon actif à traiter et qui générerait de nouveaux déchets nécessitant des traitements supplémentaires tels que le traitement des fumées, le traitement d'effluents acides (pH<5) ou basiques (>9) riches en polluants désorbés. De plus, ces solutions ne permettent pas d'apporter une solution rapide et en parallèle du procédé en cas de variation rapide de la qualité de l'affluent.
  • Un besoin existe donc pour la mise à disposition d'un procédé peu onéreux et/ou d'une installation de traitement des fluides aqueux qui permette de pallier les dérives de comportement du lit de CAF, en particulier de gérer/stabiliser la hauteur de fluidisation du lit de CAP coagulé lorsque la qualité de l'eau d'entrée se dégrade, de concentrer le lit de charbon pour stabiliser ou améliorer les performances d'élimination et de diminuer les consommations en CAP coagulé en concentrant le lit de charbon pour une performance épuratoire équivalente.
  • BREVE DESCRIPTION DE L'INVENTION
  • La présente invention concerne un procédé de traitement d'un fluide aqueux comprenant une mise en contact du fluide aqueux avec un lit fluidisé de charbon actif en poudre et une séparation du fluide aqueux du lit de charbon actif en poudre, ledit procédé de traitement étant caractérisé en ce qu'il comprend une étape de gestion du lit fluidisé de charbon actif en poudre, ladite étape de gestion comprenant :
    1. (a) une extraction d'une fraction du lit fluidisé de charbon actif en poudre sous forme de boues ;
    2. (b) au moins une séparation des boues extraites à l'étape (a) de manière à obtenir une fraction présentant un indice insoluble HCI supérieur d'au moins 5 points de pourcentage à celui des boues avant séparation, ladite étape de séparation (b) étant réalisée au moyen d'au moins un hydrocyclone ;
    3. (c) une réinjection de ladite fraction obtenue à l'étape (b) dans le lit fluidisé de charbon actif en poudre,
    le charbon actif en poudre présentant un diamètre moyen inférieur à 100 µm.
  • Le lit fluidisé de CAP est un lit fluidisé de CAP coagulé et éventuellement floculé.
  • La présente invention concerne également une installation de traitement de fluides aqueux comprenant :
    1. (a) un dispositif de traitement de fluides aqueux à base de charbon actif en poudre permettant d'assurer une mise en contact du fluide aqueux avec un lit fluidisé de charbon actif en poudre et une séparation du fluide aqueux du lit de charbon actif en poudre;
    2. (b) des moyens d'extraction d'une fraction du lit fluidisé de charbon actif sous forme de boues ;
    3. (c) des moyens d'acheminement des boues du point d'extraction vers le dispositif de séparation des boues ;
    4. (d) au moins un dispositif de séparation des boues, ledit dispositif de séparation des boues étant au moins un hydrocyclone ;
    5. (e) des moyens d'acheminement des boues séparées vers le dispositif de traitement de fluides aqueux,
    le charbon actif en poudre présentant un diamètre moyen inférieur à 100 µm.
  • Le lit fluidisé de CAP est un lit fluidisé de CAP coagulé et éventuellement floculé.
  • BREVE DESCRIPTION DES DESSINS
    • La figure 1 représente un exemple d'installation selon la présente invention permettant la mise en œuvre du procédé de la présente invention
    • La figure 2 représente la variation de l'abattement de l'absorbance UV à 254nm en fonction de la valeur de la CT.
    • La figure 3 représente schématiquement un procédé mettant en œuvre plusieurs étapes de séparation.
    DESCRIPTION DETAILLEE DE L'INVENTION
  • Les inventeurs ont mis au point un procédé de traitement des fluides aqueux à base de charbon actif en poudre sous forme de lit fluidisé, coagulé et éventuellement floculé, comprenant une étape de gestion du lit fluidisé telle que décrite ci-dessous. Cette étape permet in fine de pallier les dérives des lits de charbon actif en poudre décrites ci-dessus.
  • Le terme « fluide(s) aqueux » tel qu'utilisé dans la description de la présente invention désigne des eaux de surface, des eaux souterraines, des eaux résiduaires urbaines ou tertiaires et/ou des eaux industrielles.
  • L'expression « charbon actif en poudre » telle qu'utilisée dans la description de la présente invention désigne des particules de charbon actif dont le diamètre moyen est inférieur à 100 µm. Le diamètre moyen des particules varie typiquement de 1 à 99 µm, tel que de 3 à 80 µm ou de 5 à 45 µm, ou 15 à 45 µm. La taille des particules peut être déterminée par granulométrie laser.
  • L'expression « matière en suspension » ou « MES » telle qu'utilisée dans la description de la présente invention désigne l'ensemble des matières solides obtenues après évaporation des eaux contenues dans les boues de CAP. Il s'agit de la part de matière en suspension du lit de charbon actif en poudre. Les MES incluent le CAP, les hydroxydes métalliques, la chaux.
  • Le procédé de traitement des fluides aqueux de la présente invention comprend une mise en contact du fluide aqueux avec un lit fluidisé de charbon actif en poudre et une séparation du fluide aqueux du lit de charbon actif en poudre. Le procédé de traitement permet donc d'éliminer les micropolluants organiques présents dans les fluides aqueux, tels que les pesticides, les solvants chlorés, les molécules sapides, les produits pharmaceutiques et les perturbateurs endocriniens, ainsi que de réduire les teneurs en matière organique. Avantageusement, les fluides aqueux mis en contact avec le lit fluidisé de charbon actif en poudre ont été préalablement traités au moyen d'agents de coagulation et éventuellement d'agents de floculation, en particulier dans le cas d'une eau chargée en matière organique, telle qu'une eau de barrage.
  • Les fluides aqueux à traiter sont mis en contact avec une suspension de CAP neuf et d'agents de coagulation, et éventuellement d'agents de floculation, au sein du réacteur de traitement à charbon actif en poudre ou en amont du réacteur de traitement.
  • Les agents de coagulation peuvent être choisis parmi les agents de coagulation à base de fer, d'aluminium ou leurs mélanges, tels que le chlorure ferrique, le sulfate ferrique ou le sulfate d'aluminium. Des exemples d'agents de coagulation commerciaux incluent les produits WAC, WAC HB et Aqualenc.
  • Les agents de floculation peuvent être choisis parmi les agents de floculation acryliques, comme les polyacrylamides anioniques et non ioniques.
  • La mise en contact du fluide aqueux avec le lit fluidisé de charbon actif en poudre et la séparation du fluide aqueux du lit de charbon actif en poudre peuvent être réalisées dans un ouvrage unique, tel qu'un réacteur de traitement à charbon actif en poudre fonctionnant en flux ascendant, tel que par exemple décrit dans FR2946333 ou dans la demande de brevet français n° 1354387 déposée le 16 mai 2013 . Par exemple, le réacteur de traitement à lit fluidisé de charbon actif en poudre fonctionnant en flux ascendant peut comprendre :
    • une zone réactionnelle constituée d'un lit fluidisé de charbon actif en poudre s'étendant depuis la base du réacteur, ladite zone réactionnelle comprenant :
    • une rampe de distribution du fluide aqueux à traiter située à la base du réacteur et connectée à la canalisation de transport du fluide aqueux à traiter;
    • un circuit d'injection de réactifs, tels que : CAP neuf, coagulants, floculants, typiquement en amont de la rampe de distribution du fluide aqueux à traiter;
    • un circuit d'extraction du charbon actif usagé ;
    • une zone de séparation surmontant la zone réactionnelle permettant la séparation gravitaire du fluide aqueux dépollué du charbon actif en poudre.
  • Dans certains modes de réalisation, la mise en contact du fluide aqueux avec le lit fluidisé de charbon actif en poudre et la séparation du fluide aqueux du lit de charbon actif en poudre peuvent être réalisées dans des ouvrages distincts.
  • Le procédé de la présente invention est caractérisé en ce qu'il comprend une étape de gestion du lit fluidisé de charbon actif en poudre. Cette étape de gestion comprend ou consiste en :
    1. (a) une extraction d'une fraction du lit fluidisé de charbon actif en poudre, avantageusement coagulé et éventuellement floculé, sous forme de boue ;
    2. (b) au moins une séparation des boues extraites à l'étape (a) de manière à obtenir une fraction présentant un indice insoluble HCl supérieur d'au moins 5 points de pourcentage, de préférence d'au moins 10 points de pourcentage, à celui des boues avant séparation ;
    3. (c) une réinjection de ladite fraction obtenue à l'étape (b) dans le lit fluidisé de charbon actif en poudre, avantageusement coagulé et éventuellement floculé.
  • De manière avantageuse, le procédé de la présente invention permet de :
    • Gérer/stabiliser la hauteur de fluidisation du lit de CAP coagulé lorsque la qualité du fluide aqueux entrant dans le réacteur se dégrade;
    • Concentrer le lit de CAP pour stabiliser ou améliorer les performances d'élimination;
    • Diminuer les consommations en CAP en concentrant le lit de charbon pour une performance épuratoire équivalente,
  • Le procédé est de plus simple à mettre en œuvre.
  • L'indice Insoluble HCl permet d'évaluer le taux de charbon contenu dans les boues de charbon actif, plus précisément dans la MES des boues de charbon actif. Cet indice correspond au rapport, exprimé en pourcentage, entre la masse d'un échantillon de boue de charbon, préalablement séché à 105°C, attaqué à l'acide chlorhydrique à chaud pendant 20 minutes sur la masse de cet échantillon de boue séché avant attaque acide. Autrement dit, il s'agit de la part de de charbon actif en poudre contenue dans la MES des boues de charbon. En effet, l'acide chlorhydrique à chaud solubilise les colloïdes, la chaux et les hydroxydes, tels que les hydroxydes de fer, contenues dans les boues. Le résidu obtenu à l'issue de ce traitement à l'acide à chaud comprend essentiellement du charbon actif qui n'est quant à lui pas solubilisé.
    Lorsque la mise en contact du fluide aqueux avec le lit fluidisé de charbon actif en poudre et la séparation du fluide aqueux du lit de charbon actif en poudre sont réalisées dans un réacteur unique, l'indice Insoluble HCl est avantageusement supérieur à 75%, et préférentiellement supérieur à 80% dans le cas d'un fonctionnement optimal, c'est-à-dire à CT>90 (CT= Concentration en MES du lit de charbon actif (g/L) * temps de contact entre le fluide aqueux à traiter et le CAF (min)).
    Lorsque la mise en contact du fluide aqueux avec le lit fluidisé de charbon actif en poudre et la séparation du fluide aqueux du lit de charbon actif en poudre sont réalisées dans des ouvrages distincts, l'indice Insoluble HCI est avantageusement supérieur à 55%, et préférentiellement supérieur à 60% dans le cas d'un fonctionnement optimal, le fonctionnement optimal étant tel que décrit ci-dessus.
  • La fraction présentant un indice insoluble HCl supérieur d'au moins 5 points de pourcentage à celui des boues avant séparation telle qu'obtenue à l'étape (b) du procédé présente typiquement une concentration en MES au moins deux fois supérieure à la concentration en MES des boues avant séparation. La concentration en MES est déterminée selon le protocole décrit dans la section « exemples ».
  • Le procédé de la présente invention comprend au moins une étape de séparation des boues extraites. Chaque étape de séparation conduit à l'obtention de deux fractions.
    Il doit être compris que le procédé de la présente invention peut comprendre une seule étape de séparation permettant d'obtenir directement une fraction présentant un indice insoluble HCl supérieur d'au moins 5 points de pourcentage à celui des boues avant séparation. La seconde fraction obtenue présente une concentration en MES inférieure ou égale à la concentration en MES des boues avant séparation, typiquement au moins 1.5 fois inférieure à celle des boues avant séparation. La concentration en MES est déterminée selon le protocole décrit dans la section « exemples ». La seconde fraction peut être traitée par clarification ou flottation en amont du réacteur de traitement ou traitée par une filière de traitement des boues.
  • La figure 1 présente de manière schématisée un exemple d'installation selon la présente invention permettant la mise en œuvre du procédé de la présente invention. Le fluide aqueux à traiter (1), préalablement mis en contact avec du charbon actif en poudre, des agents coagulants et éventuellement des agents de floculation est introduit en partie basse d'un réacteur de traitement (2) à lit fluidisé de charbon actif en poudre fonctionnant en flux ascendant comprenant une zone réactionnelle (3) constituée d'un lit fluidisé de charbon actif en poudre s'étendant depuis la base du réacteur et une zone de séparation (4) surmontant la zone réactionnelle permettant la séparation gravitaire du fluide aqueux dépollué du charbon actif en poudre. Des boues de charbon (5) sont extraites en partie basse du réacteur et peuvent être dirigées vers une cuve tampon (6) puis dirigées vers un hydrocyclone (7) au moyen d'un système de pompage (8) ou directement vers l'hydrocyclone (7) au moyen du système de pompage (8). Après séparation au sein de l'hydrocyclone, la fraction (9) des boues présentant un indice insoluble HCl supérieur d'au moins 5 points de pourcentage à celui des boues avant séparation est réintroduite au sein du réacteur. L'autre fraction (10) peut être redirigée en amont de la filière de traitement des fluides aqueux (11) ou éliminées (12).
  • Cependant, dans certains modes de réalisation, il peut être nécessaire de réaliser plusieurs étapes de séparation en série afin d'obtenir une fraction présentant un indice insoluble HCI supérieur d'au moins 5 points de pourcentage à celui des boues avant séparation.
    En effet, si à l'issue d'une première étape de séparation, l'indice insoluble HCl d'une des fractions obtenues est jugé insuffisant, cette fraction peut être elle-même séparée de manière à produire deux nouvelles fractions. Lorsqu'une fraction présentant un indice insoluble HCl supérieur d'au moins 5 points de pourcentage à celui des boues avant séparation est obtenue, cette fraction est alors réinjectée dans le lit fluidisé de charbon actif en poudre. Si aucune des fractions obtenues ne présentent un indice HCl satisfaisant, elles peuvent être à nouveau séparées. La figure 3 est illustrative d'un procédé mettant en œuvre plusieurs étapes de séparation.
  • L'étape de séparation ou les étapes de séparation est/sont réalisée(s) au moyen d'un hydrocyclone ou plusieurs hydrocyclones. Les hydrocyclones sont des appareils qui permettent de séparer des particules par classification hydraulique centrifuge. Ils sont typiquement constitués d'une enceinte cylindroconique dans laquelle l'alimentation tangentielle met l'eau en rotation avant sa sortie par une tubulure axiale de surverse. Dans le cadre de la présente invention, l'hydrocyclone permet d'augmenter la part de charbon actif contenu dans la MES des boues de CAF.
  • Les étapes de séparation successives peuvent être mises en œuvre au moyen d'une pluralité d'hydrocyclones installés en série. Le nombre d'hydrocyclones installés en série dépendra de l'indice insoluble HCI à chaque étape. Cet ensemble de un ou plusieurs hydrocyclones permet avantageusement de produire au moins une fraction caractérisée par un indice insoluble HCI :
    • supérieur à 75 % dans le cas où l'installation de traitement de fluide aqueux par contact fluidisé avec du charbon actif coagulé comprend un réacteur unique de mise en contact et de séparation de l'eau à traiter avec le lit fluidisé de charbon actif coagulé,
    • supérieur à 55% dans le cas où l'installation de traitement de fluide aqueux par contact fluidisé avec du charbon actif coagulé comprend plusieurs réacteurs.
  • La ou les étapes de séparation peut/peuvent être réalisée(s) en continu ou de manière périodique.
  • La présente invention porte également sur une installation de traitement des fluides aqueux comprenant :
    1. (a) un dispositif de traitement de fluide aqueux à base de charbon actif en poudre, coagulé et éventuellement floculé, permettant d'assurer une mise en contact du fluide aqueux avec un lit fluidisé de charbon actif en poudre, avantageusement coagulé et éventuellement floculé, et une séparation du fluide aqueux du lit de charbon actif en poudre, avantageusement coagulé et éventuellement floculé;
    2. (b) des moyens d'extraction d'une fraction du lit fluidisé de charbon actif sous forme de boues ;
    3. (c) des moyens d'acheminement des boues du point d'extraction vers le dispositif de séparation des boues ;
    4. (d) au moins un dispositif de séparation des boues, ladite étape de séparation (b) étant réalisée au moyen d'au moins un hydrocyclone ;
    5. (e) des moyens d'acheminement des boues séparées vers le dispositif de traitement de fluide aqueux,
    le charbon actif en poudre présentant un diamètre moyen inférieur à 100 µm.
  • Le dispositif de traitement de fluide aqueux à base de charbon actif de l'installation peut être un réacteur de traitement à charbon actif en poudre fonctionnant en flux ascendant, par exemple tel que décrit dans FR2946333 ou dans la demande de brevet français n° 1354387 déposée le 16 mai 2013 .
  • Les moyens d'extraction des boues de flocs de charbon peuvent être des circuits d'extraction, de préférence disposés dans la partie inférieure de la zone réactionnelle du réacteur. L'extraction du charbon actif peut être réalisée par pompage ou par soutirage gravitaire par le biais d'une canalisation d'extraction (5) débouchant au sein du lit de charbon. L'extraction du charbon actif peut également être réalisée par le biais d'un concentrateur recueillant les flocs de charbon actif en poudre à partir d'une surverse en partie supérieure de la zone réactionnelle. Les deux systèmes d'extraction de charbon actif en poudre peuvent être combinés.
  • Les boues de charbon actif peuvent être acheminées directement vers le dispositif de séparation des boues au moyen d'un système de pompage ou elles peuvent être dirigées vers une cuve tampon, pouvant être mise sous agitation, qui permettra de stocker un certain volume de boue avant séparation. A la figure 1, l'installation de traitement comprend une cuve tampon.
    Le système de pompage permet d'introduire les boues dans le dispositif de séparation, typiquement avec une pression minimale supérieure ou égale à 1,8 bars.
  • Le dispositif de séparation est un hydrocyclone. La phase la moins concentrée en CAP, c'est-à-dire présentant l'indice insoluble HCl le plus faible, de l'hydrocyclone rejoint le circuit d'évacuation des boues. La phase la plus concentrée en CAP est avantageusement réintroduite au bas du réacteur à CAF au moyen d'un tuyau ou d'une canalisation qui généralement plonge dans le réacteur jusqu'à 1 mètre au dessus du plancher. L'unité d'hydrocyclonage sera placée de préférence au-dessus du réacteur afin que les boues soient injectées gravitairement. Sinon, l'acheminement se fera à partir d'une unité de stockage/injection par jeu de pompe.
  • L'hydrocyclone peut être associé à un second ensemble de pompage du charbon et à un autre hydrocyclone afin de traiter la surverse du premier étage.
  • Lorsque l'installation de traitement de fluide aqueux par contact fluidisé avec du charbon actif coagulé comprend un réacteur unique de mise en contact et de séparation de l'eau à traiter avec le lit fluidisé de charbon actif coagulé, la fraction produite dont l'indice insoluble HCl est le plus fort peut être réintroduite au sein du réacteur soit gravitairement, soit au moyen d'un système de pompage au sein du lit de charbon du réacteur, préférentiellement dans la partie inférieure du réacteur.
    Lorsque l'installation de traitement de fluide aqueux par contact fluidisé avec du charbon actif coagulé comprend plusieurs réacteurs, la fraction produite dont l'insoluble HCl est le plus fort peut être réintroduite au sein de l'un des réacteurs (réacteur de mise en contact ou réacteur de séparation) soit gravitairement, soit au moyen d'un système de pompage au sein du lit de charbon du réacteur, préférentiellement dans la partie inférieure du réacteur.
  • Dans le cas où cette fraction est réintroduite dans le ou les réacteurs au moyen d'un système de pompage, une cuve intermédiaire peut être ajoutée.
  • Les autres fractions peuvent être acheminées partiellement ou en totalité en amont de l'installation de traitement de fluide aqueux par contact fluidisé avec du charbon actif coagulé si celle-ci est précédée d'au moins une étape de clarification du fluide aqueux à traiter. Ces fractions pourront être évacuées partiellement ou en totalité vers la filière de traitement des rejets de la filière.
  • EXEMPLES Détermination de l'indice insoluble HCl
  • L'indice insoluble HCl est déterminé en réalisant une attaque acide à ébullition constante pendant 20 minutes d'un échantillon de boue de charbon prélevé au sein du lit de charbon actif en poudre et préalablement séché à l'étuve à 105°C. Après 20 minutes, la suspension est filtrée sur filtre en fibre de verre de type Whatman GFC. Le filtre et son contenu sont ensuite séchés à l'étuve à 105°C.
  • L'insoluble HCI est le rapport entre les masses sèches du résiduel d'échantillon attaqué à l'acide et de la masse de boue de charbon initiale.
  • Détermination de la concentration en MES Réactifs :
    • Eau Ultrapure
    Matériel :
    • Kit de filtration (fiole rodée, support de filtre avec extrémité à vide, récipient gradué, pince aluminium, pompe à vide, tuyaux)
    • Filtre GFC Whatman circulaire de Ø 47 mm et de porosité 0,45µm
    • Eprouvette graduée d'1 L (ou moins en fonction du volume à filtrer)
    • Balance de précision
    • Dessiccateur
    • Pince
    • Etuve à 105°C
    Mode opératoire : Préparation des filtres papier :
    • Rincer les papiers filtre avec de l'eau Ultrapure en utilisant le kit de filtration
    • Mettre les papiers à l'étuve à 105°C
    Détermination des MES :
    • Sortir les papiers filtres de l'étuve et les laisser refroidir 30 min au dessiccateur
    • Peser les filtres un à un à l'aide d'une balance de précision (utiliser une pince pour prendre les filtres et une coupelle en aluminium pour les emmener)
    • Placer un filtre sur le support filtre du kit puis mettre le récipient gradué en le maintenant avec la pince aluminium
    • Raccorder le support filtre avec la pompe à vide
    • Allumer la pompe
    • Prélever un Litre d'échantillon à analyser dans une éprouvette graduée propre
    • Verser l'eau au fur et à mesure dans le récipient jusqu'à vider l'éprouvette
    • Eteindre la pompe à vide, ôter la pince puis le récipient
    • Oter le filtre avec la pince et le poser dans la coupelle en aluminium
    • Mettre la coupelle à l'étuve à 105°C au minimum 12 heures
    • Sortir la coupelle et la mettre au dessiccateur pendant 30 minutes
    • Peser le filtre sur une balance de précision
    Expression des résultats :
  • MES en g / L = m 2 m 1 / V
    Figure imgb0001
    Avec :
    • m1 la masse en g du filtre initial
    • m2 la masse en g du filtre après filtration
    • V le volume en mL d'échantillon filtré
    Hydrocyclonage d'une boue de CAF Caractéristiques du réacteur d'affinage au CAP :
  • Réacteur unique sans garnissage (tel que décrit dans la demande de brevet français n° 1354387 déposée le 16 mai 2013 ) avec injection de CAP coagulé et de polymère anionique. CAP de type micro-mésoporeux, de diamètre médian de 15 à 35 µm.
  • Des essais d'hydrocyclonage d'une telle boue de CAF ont été réalisés à l'échelle pilote au moyen d'un hydrocyclone 2 pouces de la marque MOZLEY, et de cheminées (vortex finders) et apex (spigots) de différentes tailles : de 8 à 14 mm pour les vortex finders, et de 3,2 à 9,4 mm pour les spigots.
    Le tableau 1 montre des résultats obtenus avec un vortex finder de taille 14,3 et des spigots de taille 6,4 et 9,4. Dans les deux configurations, la boue récupérée en sousverse est plus concentrée en MES que la boue initiale, et présente une teneur en CAP dans les MES plus grande, 93% d'insoluble HCI en moyenne en sousverse contre 83% pour la boue de CAF initiale. En revanche, contrairement à la boue initiale, les flocs de charbons de la boue de sousverse ne décantent pas : le floc est déstructuré.
  • Des résultats similaires présentés dans le tableau 2 sont obtenus avec un vortex finder de taille 14 et des spigots de taille 3,2 à 9,4 mm.
  • La boue récupérée en sousverse de l'hydrocyclone a ensuite été réintroduite selon un certain débit dans la partie inférieure du réacteur d'affinage au CAF : cette réinjection de la boue de sousverse n'a induit aucune augmentation de la turbidité de l'eau en sortie du réacteur d'affinage : les flocs de charbon de la boue de sousverse sont donc piégés par le lit de CAF du réacteur. Tableau 1 : résultats des essais de la première série réalisés à 2 bars sur HC Mozley 2 pouces
    Vortex finder Spigot Boue initiale Boue sousverse Gain en teneur en CAP
    MES Teneur en CAP dans les MES Ratio Débit sousvetse/ Débitinitial MES Teneur en CAP dans les MES Teneur en CAP (Boue sousverse - Boue initiale)
    g/L % % g/L % Point de %
    14,3 6,4 5,1 83 9 26 94 11
    14,3 9,4 5,6 83 22 20 92 9
    Tableau 2 : résultats des essais de la seconde série réalisés à 2 bars sur HC Mozley 2 pouces
    Vortex finder Spigot Boue initiale Boue sousverse Gain en teneur en CAP
    MES Teneur en CAP dans les MES Ratio Débit sousverse/ Débitinitial MES Teneur en CAP dans les MES Teneur en CAP
    g/L % % g/L % Point de %
    14 4,5 14,4 83 4% 119 93 10
    14 3,2 14,4 83 3% 352 95 12
    14 6,4 14,4 83 14% 80 94 11
    14 8 21,0 80 16% 68 89 9
    14 9,4 21,0 80 27% 50 88 8
  • Effet de la réiniection des boues de sousverse sur la gestion du réacteur à CAF
  • Des essais ont été réalisés à l'échelle pilote pour évaluer et valider l'intérêt de l'utilisation de l'hydrocyclone sur les boues de réacteurs CAF.
  • Essai 1
  • L'état initial du lit de CAF est le suivant :
    • une hauteur de lit de CAF de 2,9 mètres ;
    • un profil de concentration en MES hétérogène avec des valeurs en MES variant de 5,8 à 7,5 g/l ;
    • des teneurs en CAP dans les MES de l'ordre de 84%.
  • L'application de 4 cycles d'hydrocyclonages (extraction d'un volume de CAF + utilisation de l'hydrocyclone + injection au bas du réacteur des boues récupérées en sousverse de l'hydrocylone) ont permis :
    • de diminuer la hauteur du lit de CAF de 2,9 m à 2,1m ;
    • de concentrer la teneur en MES du lit de CAF avec des valeurs comprises entre 7,7 et 8,2 g/l (hors hauteur de purge)
    • d'augmenter les teneurs en CAP dans les MES du réacteur de 84 à 87%
    • de produire une fraction 1 dont l'insoluble HCI est supérieur à 91%, soit 7 points de pourcentage de plus que la valeur d'insoluble HCI de la boue initiale traitée.
  • Durant ces essais, la valeur de CT (= concentration en MES (g/L) * temps de contact eau/boue (min)) s'est maintenue à 130.
  • Le traitement par hydrocyclone d'une partie de la boue d'un réacteur à CAF permet donc, en réinjectant la boue obtenue par sousverse, de diminuer la hauteur du lit de CAF.
  • Essai 2
  • La comparaison des résultats d'abattement de l'absorbance UV à 254nm obtenus avant les essais de réinjection et pendant ces essais montrent que :
    • avant les essais, les valeurs de CT variaient entre 60 et 90 ;
    • pendant les essais, les valeurs de CT ont permis de travailler avec un CT compris entre 80 et 140.
  • L'augmentation de la valeur de CT de 60 et 140 a permis d'améliorer les abattements de l'absorbance UV à 254nm de 25% à 44%, et ce sans dépasser une hauteur de lit de CAF de 3 m (figure 2).

Claims (9)

  1. Procédé de traitement d'un fluide aqueux comprenant une mise en contact du fluide aqueux avec un lit fluidisé de charbon actif en poudre coagulé et éventuellement floculé et une séparation du fluide aqueux du lit de charbon actif en poudre coagulé et éventuellement floculé, ledit procédé de traitement étant caractérisé en ce qu'il comprend une étape de gestion du lit fluidisé de charbon actif en poudre coagulé et éventuellement floculé, ladite étape de gestion comprenant :
    (a) une extraction d'une fraction du lit fluidisé de charbon actif en poudre coagulé et éventuellement floculé sous forme de boues ;
    (b) au moins une séparation des boues extraites à l'étape (a) de manière à obtenir une fraction présentant un indice insoluble HCl supérieur d'au moins 5 points de pourcentage à celui des boues avant séparation , ladite étape de séparation (b) étant réalisée au moyen d'au moins un hydrocyclone;
    (c) une réinjection de ladite fraction obtenue à l'étape (b) dans le lit fluidisé de charbon actif en poudre coagulé et éventuellement floculé,
    le charbon actif en poudre présentant un diamètre moyen inférieur à 100 µm.
  2. Procédé selon la revendication 1 dans lequel ladite fraction présente une concentration en matière en suspension (MES) au moins 2 fois supérieure à la concentration en MES des boues avant séparation.
  3. Procédé selon la revendication 1 dans lequel la mise en contact du fluide aqueux avec un lit fluidisé de charbon actif en poudre coagulé et éventuellement floculé et la séparation du fluide aqueux du lit de charbon actif en poudre coagulé et éventuellement floculé sont réalisées dans un réacteur unique de traitement à charbon actif en poudre fonctionnant en flux ascendant.
  4. Procédé selon l'une des revendications précédentes dans lequel l'étape de séparation (b) est réalisée en continu ou de manière périodique.
  5. Procédé selon l'une des revendications précédentes dans lequel ladite fraction présente un indice HCl supérieur d'au moins 10 points de pourcentage à celui des boues avant séparation.
  6. Procédé selon l'une des revendications précédentes dans lequel une seule séparation est réalisée et la seconde fraction obtenue présente une concentration en MES au moins 1.5 fois inférieure à celle des boues avant séparation.
  7. Procédé selon la revendication 6 dans lequel la seconde fraction est traitée par clarification ou flottation en amont du réacteur de traitement ou traitée par une filière de traitement des boues.
  8. Installation de traitement de fluides aqueux comprenant :
    (a) un dispositif de traitement de fluides aqueux à base de charbon actif en poudre coagulé et éventuellement floculé adapté pour assurer une mise en contact du fluide aqueux avec un lit fluidisé de charbon actif en poudre coagulé et éventuellement floculé et une séparation du fluide aqueux du lit de charbon actif en poudre coagulé et éventuellement floculé;
    (b) des moyens d'extraction d'une fraction du lit fluidisé de charbon actif en poudre sous forme de boues ;
    (c) des moyens d'acheminement des boues du point d'extraction vers le dispositif de séparation des boues;
    (d) au moins un dispositif de séparation des boues adapté pour obtenir une fraction présentant un indice insoluble HCl supérieur d'au moins 5 points de pourcentage à celui des boues avant séparation, ledit dispositif de séparation des boues étant au moins un hydrocyclone ;
    (e) des moyens d'acheminement des boues séparées vers le dispositif de traitement de fluides aqueux,
    le charbon actif en poudre présentant un diamètre moyen inférieur à 100 µm.
  9. Installation selon la revendication 8 dans laquelle le dispositif de traitement de fluides aqueux est un réacteur unique de traitement à charbon actif en poudre fonctionnant en flux ascendant.
EP15763288.6A 2014-09-08 2015-09-08 Gestion active des lits fluidises de charbon actif Active EP3191412B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15763288T PL3191412T3 (pl) 2014-09-08 2015-09-08 Aktywna obsługa złóż fluidalnych węgla aktywnego

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1458412A FR3025508B1 (fr) 2014-09-08 2014-09-08 Gestion active des lits fluidises de charbon actif
PCT/EP2015/070520 WO2016038049A1 (fr) 2014-09-08 2015-09-08 Gestion active des lits fluidises de charbon actif

Publications (2)

Publication Number Publication Date
EP3191412A1 EP3191412A1 (fr) 2017-07-19
EP3191412B1 true EP3191412B1 (fr) 2020-11-25

Family

ID=52007075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15763288.6A Active EP3191412B1 (fr) 2014-09-08 2015-09-08 Gestion active des lits fluidises de charbon actif

Country Status (8)

Country Link
US (1) US10882763B2 (fr)
EP (1) EP3191412B1 (fr)
ES (1) ES2856842T3 (fr)
FR (1) FR3025508B1 (fr)
PL (1) PL3191412T3 (fr)
PT (1) PT3191412T (fr)
SA (1) SA517381049B1 (fr)
WO (1) WO2016038049A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3065719B1 (fr) * 2017-04-28 2021-01-08 Saur Procede de traitement mixte par clarification et adsorption sur cap dans un decanteur a lit de boues fluidise
CN110127972B (zh) * 2019-03-06 2020-12-29 同济大学 一种提高污泥厌氧消化效率同时降低重金属生态毒性的方法
CN111348801A (zh) * 2020-03-06 2020-06-30 海湾环境科技(北京)股份有限公司 中水回用装置和中水回用方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659462A (en) * 1984-04-30 1987-04-21 CH2 M Hill, Inc. Apparatus for pretreatment of water using a bed of granular activated carbon
FR2847572B1 (fr) * 2002-11-22 2006-04-21 Omnium Traitement Valorisa Procede de traitement des eaux a l'aide d'un reactif pulverulent inorganique a forte surface specifique incluant une etape de recyclage dudit reactif
FR2946333B1 (fr) 2009-06-09 2012-08-03 Saur Installation de traitement de fluide aqueux par contact avec un lit fluidise de charbon actif coagule
US20130243684A1 (en) * 2012-03-13 2013-09-19 Drake Water Technologies, Inc. Systems, methods, and apparatus for iodine removal from high volume dilute brine
FR3005652B1 (fr) 2013-05-16 2015-05-29 Saur Procede de traitement de fluide aqueux par contact avec un lit fluidise de charbon actif

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
SA517381049B1 (ar) 2021-07-08
ES2856842T3 (es) 2021-09-28
PL3191412T3 (pl) 2021-05-31
WO2016038049A1 (fr) 2016-03-17
FR3025508B1 (fr) 2018-05-11
PT3191412T (pt) 2021-03-01
US10882763B2 (en) 2021-01-05
FR3025508A1 (fr) 2016-03-11
EP3191412A1 (fr) 2017-07-19
US20170260065A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
EP1562867B1 (fr) Prodede de traitement des eaux a l&#39;aide d&#39;un reactif pulverulent inorganique a forte surface specifique incluant une etape de recyclage dudit reactif
EP3040312B1 (fr) Procede de traitement d&#39;eau comprenant une etape d&#39;adsorption sur resine echangeuse d&#39;ions et une etape de coagulation/floculation lestee et de separation, et installation correspondante
EP2382163B1 (fr) Procede de traitement d&#39;eau par floculation lestee et decantation incluant une mise en contact prealable de l&#39;eau avec un adsorbant
EP2440496B1 (fr) Installation de traitement de fluide aqueux par contact avec un lit fluidise de charbon actif en poudre coagule
EP2632859B1 (fr) Procede de separation entre liquide et matiere en suspension d&#39;une boue et dispositif mettant en ouvre un tel procede
EP1951630A1 (fr) Procede de traitement d&#39;eaux comprenant une etape de decantation et une etape de tamisage fin, et dispositif correspondant
EP3395766B1 (fr) Procédé de traitement mixte par clarification et adsorption sur cap dans un décanteur à lit de boues fluidisé
WO2006030081A1 (fr) Installation de traitement d’effluents, et procede de clarification et de filtration utilisant cette installation
FR3050200A1 (fr) Procede de traitement d&#39;eau par adsorption sur charbon actif et clarification, et installation correspondante.
EP3191412B1 (fr) Gestion active des lits fluidises de charbon actif
FR2973794A1 (fr) Procede de traitement d&#39;eau a traiter par clarification comprenant une adsorption d&#39;une portion d&#39;eau clarifiee et une clarification d&#39;un melange d&#39;eau clarifiee adsorbee et d&#39;eau a traiter
EP2632860B1 (fr) Procédé et dispositif de clarification des eaux par traitement de structures colloïdales
EP2307318B1 (fr) Procede de traitement d&#39;un liquide par flottation induite par des particules flottantes
EP3153475B1 (fr) Procédé de dépollution des eaux par adsorption sur charbon actif
EP2996988B1 (fr) Procede de traitement de fluide aqueux par contact avec un lit fluidise de charbon actif
FR3075780A1 (fr) Procede de traitement d&#39;eau en reacteur sequentiel discontinu avec injection de charbon actif
WO2022058446A1 (fr) Procede et installation de traitement de fluide
WO2024038163A1 (fr) Procédé de traitement d&#39;une eau sale de surverse provenant d&#39;une filière de traitement de l&#39;eau, et installation correspondante
FR3005047A1 (fr) Procede et installation de traitement des eaux souterraines

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180515

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200617

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1338084

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015062547

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3191412

Country of ref document: PT

Date of ref document: 20210301

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210223

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1338084

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210225

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015062547

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2856842

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210928

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

26N No opposition filed

Effective date: 20210826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230824

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230822

Year of fee payment: 9

Ref country code: IT

Payment date: 20230911

Year of fee payment: 9

Ref country code: IE

Payment date: 20230817

Year of fee payment: 9

Ref country code: GB

Payment date: 20230920

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230818

Year of fee payment: 9

Ref country code: PL

Payment date: 20230822

Year of fee payment: 9

Ref country code: FR

Payment date: 20230809

Year of fee payment: 9

Ref country code: DE

Payment date: 20230911

Year of fee payment: 9

Ref country code: BE

Payment date: 20230914

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231006

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231020

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125