EP3187787B1 - Method for thermal regulation of a water-heating system - Google Patents

Method for thermal regulation of a water-heating system Download PDF

Info

Publication number
EP3187787B1
EP3187787B1 EP16206905.8A EP16206905A EP3187787B1 EP 3187787 B1 EP3187787 B1 EP 3187787B1 EP 16206905 A EP16206905 A EP 16206905A EP 3187787 B1 EP3187787 B1 EP 3187787B1
Authority
EP
European Patent Office
Prior art keywords
heat pump
performance coefficient
water
temperature
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16206905.8A
Other languages
German (de)
French (fr)
Other versions
EP3187787A1 (en
Inventor
Didier MIASIK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guillot Industrie SAS
Original Assignee
Guillot Industrie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guillot Industrie SAS filed Critical Guillot Industrie SAS
Priority to PL16206905T priority Critical patent/PL3187787T3/en
Publication of EP3187787A1 publication Critical patent/EP3187787A1/en
Application granted granted Critical
Publication of EP3187787B1 publication Critical patent/EP3187787B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • F24D3/1091Mixing cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1081Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/04Gas or oil fired boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/32Heat sources or energy sources involving multiple heat sources in combination or as alternative heat sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0221Mixing cylinders

Definitions

  • the subject of the invention is a method of thermal regulation of a water heating system intended to supply a room with hot water, and a hydraulic cylinder for a water heating system intended to supply a room with hot water.
  • a so-called hybrid type heating system comprises at least two types of thermal sources, namely an auxiliary fossil energy generator on the one hand and a heat pump on the other hand.
  • One and / or the other of the two thermal sources ensures (s) the heating of the water which, then, circulates preferably in a local heating network and / or in a heat exchanger connected to a tank d domestic hot water.
  • a method of thermal regulation of such a heating system provides for triggering the heat pump in a given range of outside temperatures.
  • An example of such a thermal regulation method is known from the document. EP 2,463,591 A1 .
  • the heat pump is modulated to operate at partial load to provide a flow at an intermediate temperature for which the coefficient of performance of the heat pump is effective depending on the price of electricity.
  • the heating of the water is carried out only by the auxiliary fossil fuel generator when the outside temperature becomes below a limit temperature, for example of the order of 2 ° C.
  • Such a known method is particularly ill-suited to more complex so-called collective heating systems, for which a plurality of heat pumps are connected to a plurality of back-up generators.
  • the object of the invention is to remedy the aforementioned drawbacks.
  • the real coefficient of performance is calculated as a function of an outside temperature, of a temperature characteristic of the heat pump and of the charge rate of the heat pump.
  • the method comprises a step of comparing the actual coefficient of performance with a threshold value, called the threshold coefficient of performance.
  • the method comprises a step of measuring the temperature of the water leaving the hydraulic cylinder, and a step of activating the auxiliary generator if, at a given time of operation of the heat pump, the outlet temperature is lower than the set temperature.
  • the method comprises a step of deactivating the heat pump if the actual coefficient of performance is less than the threshold coefficient of performance.
  • the method comprises a step of determining the real coefficient of performance at a given interval, regular or irregular, during the deactivation of the heat pump.
  • the method comprises a step of activating the heat pump when the actual coefficient of performance becomes again equal to the threshold coefficient of performance.
  • the method comprises a step of blocking activation of the booster generator for a given period, called blocking period.
  • the method comprises a step of determining the actual coefficient of performance of the heat pump at given times during the blocking period, a step of comparing the actual coefficient of performance with a threshold value, said threshold performance coefficient, and a step of activating the backup generator if the actual performance coefficient is less than the threshold performance coefficient.
  • the charge rate of the heat pump is modified so that increase the coefficient of performance to a maximum value.
  • the charge rate is modified from the heat pump so as to increase the charge rate to a maximum value.
  • the invention also relates to a hydraulic cylinder for a water heating system intended to supply hot water to a room, comprising a tapping shaped to supply water to a heat pump, a tapping shaped to receive water from said heat pump, a nozzle shaped to supply water to a backup fossil energy generator, a nozzle shaped to receive water from the auxiliary generator of fossil energy, a nozzle configured to supply water to a reservoir of hot water in the room, a shaped tap to receive water from the hot water tank of the room, a shaped tap to supply water to an air heating network in the room and a shaped tap to receive water from a local air heating network, the bottle comprising a temperature sensor in a bottom part of a bottle tank and a temperature sensor in a top part of the bottle tank, so that implement the regulation process described above.
  • a diameter of the bottle measures between two and five times more than a diameter of greater value among the diameters of the nozzles, called maximum diameter, and / or a distance between two nozzles measures between two times and six times more than the diameter of greatest value among diameters of the nozzles.
  • the invention also relates to a water heating system intended to supply a room with hot water, comprising at least one auxiliary fossil energy generator, at least one heat pump and a hydraulic decoupling bottle as described previously connected to each back-up generator and to each heat pump and a calculation unit to implement the regulation method as described above.
  • a supply water heating system for a hot water room is referenced 1 on the figure 1 , the room preferably being outside system 1.
  • the hot water is intended to supply a heating network by radiators and a heat exchanger for a storage tank for domestic hot water, as will be explained.
  • the heating system 1 is of the hybrid type, that is to say that the system 1 comprises at least two types of thermal sources, namely at least one auxiliary fossil energy generator 2 on the one hand, and d on the other hand, at least one heat pump 3.
  • the generator 2 is for example a gas or oil boiler.
  • the heat pump 3 is preferably of the variable compressor speed type, which allows a modulation of the power of the heat pump as a function of its charge rate. We are talking about an "inverter” type heat pump.
  • the heating system 1 also comprises a hydraulic decoupling bottle 4 connected to the generator 2 and to the heat pump 3.
  • the hydraulic decoupling bottle 4 is also connected to a network 5 for heating the air in the room by radiators and to a heat exchanger of a DHW storage tank 6 in the room.
  • the heat exchanger is either a coil or a plate exchanger.
  • the system comprises a single heat pump 3 and a single generator 2.
  • the invention is not limited to this embodiment and the system can comprise several heat pumps or generators connected in parallel on hydraulic cylinder tappings.
  • the hydraulic cylinder 4 comprises a water tank provided with a set of four pairs of tappings 7 to 11.
  • the first tap 7 of the first pair is shaped to receive water from the heat pump 3.
  • the tap 7 is also called the heat pump start tap.
  • the second tap 8 of the first pair is shaped to supply water to the heat pump 3.
  • the tap 8 is otherwise called a heat pump return tap.
  • the first connection 9 of the second pair is configured to receive water from the auxiliary generator 2.
  • the connection 9 is otherwise called the starting connection for the additional generator.
  • the second tap 10 of the second pair is shaped to supply water to the booster generator 2.
  • the tap 10 is otherwise called back booster generator booster.
  • the first tap 11 of the third pair is shaped to receive water from the network 5 of radiators.
  • the connection 11 is also called the return heating connection.
  • the second tap 12 of the third pair is shaped to supply water to the network 5 of radiators.
  • the tap 12 is otherwise called the heating flow tap.
  • the first connection 13 of the fourth pair is configured to receive water from the heat exchanger of the preparer 6.
  • the connection 13 is otherwise called the preparator outlet connection.
  • the second tap 14 of the fourth pair is shaped to supply water to the heat exchanger of the preparer 6.
  • the tap 14 is otherwise called the preparator inlet tap.
  • each of the circuits relating respectively to the backup generator 2, to the heat pump 3, to the heating network 5 and to the preparer 6, are fluidly independent of each other.
  • each pair of taps 7 to 14 is fluidly independent of the other pairs.
  • the hydraulic decoupling bottle 4 has an internal volume constituting a buffer zone, which makes it possible to decouple the water flows in each circuit.
  • the taps 7, 8 for the heat pump start and return, and the taps 11 and 13 for the heating and tank return are arranged in a first zone 15 of the hydraulic decoupling bottle 4.
  • the nozzles 9, 10 for the start and return of the auxiliary generator, and the nozzles 12 and 14 for the heating and preparator flow are placed in a second zone 16 of the hydraulic decoupling bottle 4.
  • the first zone 15 is in the lower part of the hydraulic decoupling bottle 4 while the second zone 16 is in the upper part of the hydraulic decoupling bottle 4.
  • the first zone 15 corresponds to lower water temperatures than the second zone 16.
  • temperature sensors are positioned in each tap 7 to 14, or in some taps among the taps 7 to 14, or at least one temperature sensor is positioned in the low zone 15 and another in the high zone 16.
  • the diameter of the bottle 4 measures between two and five times more than the diameter of greatest value among the diameters of the taps 7 to 14.
  • a distance between two consecutive nozzles measures between two and six times more than the diameter of greatest value among the diameters of the nozzles 7 to 14.
  • Tc a thermal regulation process 30 of the heating system 1 is triggered.
  • the set temperature Tc corresponds to a temperature which the water must reach in the upper zone 16 of the hydraulic decoupling bottle 4.
  • This temperature is called the bottle outlet temperature.
  • the regulation method 30 comprises a step 31 of activation of the heat pump 3 systematically following the triggering of the thermal regulation process 30. This step is referenced ACT on the figure 3 .
  • This step ensures that the heat pump 3 constitutes the priority thermal source for the heating system 1.
  • the method 30 also includes a step 32 of determining a coefficient of performance (COP) of the heat pump 3, called the actual coefficient of performance, and referenced DET, whether the compressor is operating or is stopped.
  • COP coefficient of performance
  • the actual coefficient of performance is calculated whether the heat pump is running or, on the contrary, stopped.
  • Step 32 of determining the real coefficient of performance is carried out at given times during a period of use of the heating system 1.
  • step 32 of determining the actual coefficient of performance comprises a succession of steps during which the coefficient of performance is determined at regular or irregular intervals.
  • the thermal regulation method 30 therefore provides a calculation of the coefficient of performance in real time of use of the heating system 1.
  • the actual coefficient of performance is calculated at a time interval of the order of 2 minutes.
  • the real coefficient of performance is defined as a ratio between a heat power generated by the heat pump 3 and an electric power consumed by the heat pump 3.
  • the regulation method 30 also comprises a step 33 of modulating a charge rate of the pump to heat 3 as a function of the measured value of the actual coefficient of performance and of a comparison of the temperature of water leaving the hydraulic cylinder with the set temperature, referenced MOD.
  • the charge rate is defined as a ratio between a heat load at partial load of the heat pump and a heat load at full load of the heat pump.
  • the charge rate is between 0% and 100%, the value 0% corresponding to the shutdown of the heat pump 3 and the value 100% at full load of the heat pump 3.
  • the real coefficient of performance is calculated as a function of an outside temperature T ext , a characteristic temperature of the heat pump 3 and the charge rate of the pump. heat 3.
  • the outside temperature T ext is measured by a temperature sensor, placed outside the heating system and the room.
  • the characteristic temperature of the heat pump is, for example, an outlet temperature T dep corresponding to the temperature of the water circulating in the heat pump outlet nozzle 7, or a temperature of the water in the nozzle pump return 8 to heat, called return temperature T ret heat pump.
  • the flow temperatures T dep and return T ret are measured by temperature sensors.
  • the real coefficient of performance depends on the outside temperature T ext , on the flow temperature or on the return and the charge rate of the heat pump, according to a polynomial, or according to a matrix.
  • the method 30 also includes a step 34 of comparing the actual coefficient of performance with a threshold value, called the threshold coefficient of performance. This step is referenced COMP.
  • the threshold coefficient of performance corresponds to an optimum operating speed limit for the heat pump 3.
  • the comparison step 34 is carried out after each calculation of real COP.
  • the threshold coefficient of performance may depend on the efficiency of the backup generator 2, by a limit value such that an energy bill linked to the operation of the heat pump 3 is equal to an energy bill linked to the operation of the backup generator 2, respective emissions of carbon dioxide from the heat pump 3 and the generator 2, or alternatively the respective primary energy consumption of the heat pump 3 and the generator 2.
  • the method 30 comprises a step 35 of deactivation of the heat pump 3 if the real coefficient of performance is lower than the threshold coefficient of performance, referenced DESACT.
  • the backup generator 2 is then activated.
  • the method 30 comprises a step 36 for measuring (MES) the temperature of the water leaving the hydraulic cylinder 4, and a step for activating the auxiliary generator if, at a given operating time of the heat pump, the outlet temperature is lower than the set temperature.
  • MES measuring
  • the operating time of the heat pump to activate the backup generator 2 is for example of the order of 5 minutes.
  • the two thermal sources that is to say the heat pump 3 and the auxiliary generator 2 simultaneously provide heating of the water for the taps 12 and 14 for the heating start and the preparator start.
  • the method 30 comprises a step 37 of determining (DET) the actual coefficient of performance at a given interval, regular or irregular, during the deactivation of the heat pump 3 preferably followed by a step of activating the heat pump 3 when the actual coefficient of performance becomes equal to the threshold coefficient of performance.
  • the method 30 advantageously comprises a blocking step 38 (BLO) of activation of the booster generator 2 for a given duration, called the blocking duration.
  • BLO blocking step 38
  • the blocking step 38 is active in summer or during periods when the room is not heated by the network of radiators.
  • the blocking time is for example of the order of 30 minutes.
  • the water is only heated by the heat pump 3, even if the temperature at the outlet of the bottle remains below the set temperature.
  • the step of modulating the charge rate comprises a step not illustrated of modifying the charge rate of the heat pump 3 so that the performance coefficient increases up to 'to a maximum value.
  • This step makes it possible to reduce the energy expenditure due to the heat pump 3.
  • the step of modulating the charge rate comprises a step not illustrated of modifying the charge rate of the heat pump 3 until reaching a maximum charge rate, for example of the order of 100% .
  • This step reduces the return on investment time of the heating system.
  • the regulation process is implemented by a computing unit.
  • the Figures 4 and 5 illustrate an evolution over time respectively of the charge rate Tx of the heat pump 3 (in percentage), according to a curve 41, of the flow temperature T dep , according to a curve 51, and of the water temperature in the heat pump return connection 8, that is to say the return temperature T ret heat pump, according to a curve 52.
  • the charge rate Tx decreases over time, following the calculation of the real performance coefficient in real time, which contributes in particular to a reduction in the difference between T dep and T ret and an increase in the performance coefficient.
  • the figure 6 illustrates an evolution in winter and over time respectively of the charge rate Tx of the heat pump 3, according to a curve 61, of a charge rate Txx (in percentage) of the generator make-up 2 along a curve 62, of the flow temperature T dep , according to a curve 63, and of the return temperature T ret , according to a curve 64.
  • the figure 7 illustrates an evolution in summer and over time respectively of the charge rate Tx of the heat pump 3, according to a curve 71, of a charge rate Txx of the auxiliary generator 2 according to a curve 72, of the temperature of flow T dep , according to a curve 73, and return temperature T ret , according to a curve 74.
  • the blocking step 38 is deactivated.
  • this delay in triggering the generator 2 requires that the heat pump 3 alone heat the water to the network 5 and the heat exchanger 6.
  • the regulation method 30 ensuring the calculation of the real coefficient of performance in real time during the operation of the heating system 1, optimal operation of the system 1 is obtained, since the real coefficient of performance is kept greater than or equal to the real coefficient of performance threshold, even if it means topping up with the backup generator 2 without stopping the heat pump 3.
  • the heating system 1 ensures, due in particular to the hydraulic decoupling bottle 4, autonomous operation of the circuits relating to the backup generator 2, the heat pump 3, the heating network 5 and the preparer 6, this which allows you to choose optimal operating conditions for each circuit.
  • the invention applies very particularly to the case where the heating system 1 comprises a plurality of back-up generators and a plurality of heat pumps; in this case, the room supplied by system 1 is a collective installation (as opposed to domestic).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

L'invention a pour objet un procédé de régulation thermique d'un système de chauffage d'eau destinée à alimenter un local en eau chaude, et une bouteille hydraulique pour un système de chauffage d'eau destinée à alimenter en eau chaude un local.The subject of the invention is a method of thermal regulation of a water heating system intended to supply a room with hot water, and a hydraulic cylinder for a water heating system intended to supply a room with hot water.

De façon connue, un système de chauffage dit de type hybride comprend au moins deux types de sources thermiques, à savoir un générateur d'appoint à énergie fossile d'une part et une pompe à chaleur d'autre part.In known manner, a so-called hybrid type heating system comprises at least two types of thermal sources, namely an auxiliary fossil energy generator on the one hand and a heat pump on the other hand.

L'une et/ou l'autre des deux sources thermiques assure(nt) le chauffage de l'eau qui, ensuite, circule de préférence dans un réseau de chauffage du local et/ou dans un échangeur de chaleur raccordé à un réservoir d'eau chaude sanitaire du local.One and / or the other of the two thermal sources ensures (s) the heating of the water which, then, circulates preferably in a local heating network and / or in a heat exchanger connected to a tank d domestic hot water.

Un procédé de régulation thermique d'un tel système de chauffage prévoit de déclencher la pompe à chaleur dans une gamme donnée de températures extérieures. Un exemple d'un tel procédé de régulation thermique est connu du document EP 2 463 591 A1 . Dans ce procédé la pompe à chaleur est modulée pour fonctionner à charge partielle pour fournir un flux à une température intermédiaire pour laquelle le coefficient de performance de la pompe à chaleur est efficace en fonction du prix de l'électricité.A method of thermal regulation of such a heating system provides for triggering the heat pump in a given range of outside temperatures. An example of such a thermal regulation method is known from the document. EP 2,463,591 A1 . In this process the heat pump is modulated to operate at partial load to provide a flow at an intermediate temperature for which the coefficient of performance of the heat pump is effective depending on the price of electricity.

En particulier, le chauffage de l'eau est effectué uniquement par le générateur d'appoint à énergie fossile quand la température extérieure devient inférieure à une température limite, par exemple de l'ordre de 2°C.In particular, the heating of the water is carried out only by the auxiliary fossil fuel generator when the outside temperature becomes below a limit temperature, for example of the order of 2 ° C.

Toutefois, un tel procédé connu ne permet pas d'optimiser pleinement le fonctionnement du système de chauffage pour en réduire sa facture énergétique, ni de réduire au maximum l'impact énergétique du système de chauffage sur son environnement.However, such a known method does not fully optimize the operation of the heating system to reduce its energy bill, nor to minimize the energy impact of the heating system on its environment.

Un tel procédé connu est particulièrement mal adapté aux systèmes plus complexes de chauffage dits collectifs, pour lesquels une pluralité de pompes à chaleur sont connectées à une pluralité de générateurs d'appoint.Such a known method is particularly ill-suited to more complex so-called collective heating systems, for which a plurality of heat pumps are connected to a plurality of back-up generators.

Le but de l'invention est de remédier aux inconvénients précités.The object of the invention is to remedy the aforementioned drawbacks.

A cet effet, l'invention a pour objet un procédé de régulation thermique d'un système de chauffage d'eau destinée à alimenter un local en eau chaude, ledit système de chauffage comprenant un générateur d'appoint à énergie fossile, une pompe à chaleur à compresseur à vitesse variable et une bouteille de découplage hydraulique connectée audit générateur d'appoint et à ladite pompe à chaleur, le procédé de régulation comprenant :

  • une étape d'activation de la pompe à chaleur systématiquement consécutive à une étape d'activation du système de chauffage pour régler la température d'eau sortant de la bouteille hydraulique à une température donnée, dite température de consigne,
  • une étape de détermination d'un coefficient de performance de la pompe à chaleur à des temps donnés pendant une durée de fonctionnement de la pompe à chaleur, dit coefficient de performance réel, que le compresseur fonctionne ou soit en arrêt, et
  • une étape de modulation d'un taux de charge de la pompe à chaleur en fonction de la valeur mesurée du coefficient de performance et d'une comparaison de la température d'eau sortant de la bouteille hydraulique à la température de consigne.
To this end, the invention relates to a method of thermal regulation of a water heating system intended to supply a room with water. hot, said heating system comprising an auxiliary fossil energy generator, a variable speed compressor heat pump and a hydraulic decoupling bottle connected to said backup generator and to said heat pump, the regulation method comprising:
  • a step of activating the heat pump systematically consecutive to a step of activating the heating system to adjust the temperature of the water leaving the hydraulic cylinder to a given temperature, called the set temperature,
  • a step of determining a coefficient of performance of the heat pump at given times during a period of operation of the heat pump, called the actual coefficient of performance, whether the compressor is operating or is stopped, and
  • a step of modulating a charge rate of the heat pump as a function of the measured value of the coefficient of performance and of a comparison of the temperature of water leaving the hydraulic cylinder with the set temperature.

Grâce au procédé selon la présente invention, il est possible d'optimiser la facture énergétique ainsi que l'impact sur l'environnement du système de chauffage, du fait du fonctionnement maitrisé du système de chauffage.Thanks to the method according to the present invention, it is possible to optimize the energy bill as well as the impact on the environment of the heating system, due to the controlled operation of the heating system.

Selon une autre caractéristique de l'invention, au cours de l'étape de détermination du coefficient de performance réel, le coefficient de performance réel est calculé en fonction d'une température extérieure, d'une température caractéristique de la pompe à chaleur et du taux de charge de la pompe à chaleur.According to another characteristic of the invention, during the step of determining the real coefficient of performance, the real coefficient of performance is calculated as a function of an outside temperature, of a temperature characteristic of the heat pump and of the charge rate of the heat pump.

Selon une autre caractéristique de l'invention, le procédé comprend une étape de comparaison du coefficient de performance réel à une valeur seuil, dite coefficient de performance seuil.According to another characteristic of the invention, the method comprises a step of comparing the actual coefficient of performance with a threshold value, called the threshold coefficient of performance.

Selon une autre caractéristique de l'invention, le procédé comprend une étape de mesure de la température de sortie de l'eau hors de la bouteille hydraulique, et une étape d'activation du générateur d'appoint si, à un temps donné de fonctionnement de la pompe à chaleur, la température de sortie est inférieure à la température de consigne.According to another characteristic of the invention, the method comprises a step of measuring the temperature of the water leaving the hydraulic cylinder, and a step of activating the auxiliary generator if, at a given time of operation of the heat pump, the outlet temperature is lower than the set temperature.

Selon une autre caractéristique de l'invention, le procédé comprend une étape de désactivation de la pompe à chaleur si le coefficient de performance réel est inférieur au coefficient de performance seuil.According to another characteristic of the invention, the method comprises a step of deactivating the heat pump if the actual coefficient of performance is less than the threshold coefficient of performance.

Selon une autre caractéristique de l'invention, le procédé comprend une étape de détermination du coefficient de performance réel à intervalle donné, régulier ou irrégulier, pendant la désactivation de la pompe à chaleur.According to another characteristic of the invention, the method comprises a step of determining the real coefficient of performance at a given interval, regular or irregular, during the deactivation of the heat pump.

Selon une autre caractéristique de l'invention, le procédé comprend une étape d'activation de la pompe à chaleur quand le coefficient de performance réel redevient égal au coefficient de performance seuil.According to another characteristic of the invention, the method comprises a step of activating the heat pump when the actual coefficient of performance becomes again equal to the threshold coefficient of performance.

Selon une autre caractéristique de l'invention, le procédé comprend une étape de blocage d'activation du générateur d'appoint pendant une durée donnée, dite durée de blocage.According to another characteristic of the invention, the method comprises a step of blocking activation of the booster generator for a given period, called blocking period.

Selon une autre caractéristique de l'invention, le procédé comprend une étape de détermination du coefficient de performance réel de la pompe à chaleur à des temps donnés pendant la durée de blocage, une étape de comparaison du coefficient de performance réel à une valeur seuil, dite coefficient de performance seuil, et une étape d'activation du générateur d'appoint si le coefficient de performance réel est inférieur au coefficient de performance seuil.According to another characteristic of the invention, the method comprises a step of determining the actual coefficient of performance of the heat pump at given times during the blocking period, a step of comparing the actual coefficient of performance with a threshold value, said threshold performance coefficient, and a step of activating the backup generator if the actual performance coefficient is less than the threshold performance coefficient.

Selon une autre caractéristique de l'invention, au cours de l'étape de modulation du taux de charge, si le coefficient de performance est supérieur ou égal au coefficient de performance seuil, on modifie le taux de charge de la pompe à chaleur de sorte à augmenter le coefficient de performance jusqu'à une valeur maximale.According to another characteristic of the invention, during the step of modulating the charge rate, if the performance coefficient is greater than or equal to the threshold performance coefficient, the charge rate of the heat pump is modified so that increase the coefficient of performance to a maximum value.

Selon une autre caractéristique de l'invention, au cours de l'étape de modulation du taux de charge, si le coefficient de performance est supérieur ou égal au coefficient de performance seuil, on modifie le taux de charge de la pompe à chaleur de sorte à augmenter le taux de charge jusqu'à une valeur maximale.According to another characteristic of the invention, during the step of modulating the charge rate, if the performance coefficient is greater than or equal to the threshold performance coefficient, the charge rate is modified from the heat pump so as to increase the charge rate to a maximum value.

L'invention a également pour objet une bouteille hydraulique pour un système de chauffage d'eau destinée à alimenter en eau chaude un local, comprenant un piquage conformé pour alimenter en eau une pompe à chaleur, un piquage conformé pour recevoir de l'eau de ladite pompe à chaleur, un piquage conformé pour alimenter en eau un générateur d'appoint à énergie fossile, un piquage conformé pour recevoir de l'eau du générateur d'appoint à énergie fossile, un piquage conformé pour alimenter en eau un réservoir d'eau chaude du local, un piquage conformé recevoir de l'eau du réservoir d'eau chaude du local, un piquage conformé pour alimenter en eau un réseau de chauffage d'air du local et un piquage conformé pour recevoir de l'eau d'un réseau de chauffage d'air du local, la bouteille comprenant un capteur de température dans une partie basse d'un réservoir de la bouteille et un capteur de température dans une partie haute du réservoir de la bouteille, de sorte à mettre en œuvre le procédé de régulation décrit précédemment.The invention also relates to a hydraulic cylinder for a water heating system intended to supply hot water to a room, comprising a tapping shaped to supply water to a heat pump, a tapping shaped to receive water from said heat pump, a nozzle shaped to supply water to a backup fossil energy generator, a nozzle shaped to receive water from the auxiliary generator of fossil energy, a nozzle configured to supply water to a reservoir of hot water in the room, a shaped tap to receive water from the hot water tank of the room, a shaped tap to supply water to an air heating network in the room and a shaped tap to receive water from a local air heating network, the bottle comprising a temperature sensor in a bottom part of a bottle tank and a temperature sensor in a top part of the bottle tank, so that implement the regulation process described above.

Un exemple d'un telle bouteille hydraulique est connue du document WO 97/08498 A1 An example of such a hydraulic cylinder is known from the document WO 97/08498 A1

Selon une autre caractéristique de l'invention, un diamètre de la bouteille mesure entre deux et cinq fois plus qu'un diamètre de plus grande valeur parmi des diamètres des piquages, dit diamètre maximal, et/ou une distance entre deux piquages mesure entre deux fois et six fois plus que le diamètre de plus grande valeur parmi des diamètres des piquages.According to another characteristic of the invention, a diameter of the bottle measures between two and five times more than a diameter of greater value among the diameters of the nozzles, called maximum diameter, and / or a distance between two nozzles measures between two times and six times more than the diameter of greatest value among diameters of the nozzles.

L'invention a également pour objet un système de chauffage d'eau destinée à alimenter un local en eau chaude, comprenant au moins un générateur d'appoint à énergie fossile, au moins une pompe à chaleur et une bouteille de découplage hydraulique telle que décrite précédemment connectée à chaque générateur d'appoint et à chaque pompe à chaleur et une unité de calcul pour mettre en œuvre le procédé de régulation tel que décrit précédemment.The invention also relates to a water heating system intended to supply a room with hot water, comprising at least one auxiliary fossil energy generator, at least one heat pump and a hydraulic decoupling bottle as described previously connected to each back-up generator and to each heat pump and a calculation unit to implement the regulation method as described above.

D'autres caractéristiques et avantages de l'invention apparaîtront encore à la lecture de la description qui va suivre. Celle-ci est purement illustrative et doit être lue en regard des dessins annexés sur lesquels :

  • la figure 1 est une vue schématique d'un système de chauffage d'eau destinée à alimenter un local en eau chaude ;
  • la figure 2 est une vue de détail d'une bouteille hydraulique du système de la figure 1 ;
  • la figure 3 est chronogramme d'un procédé selon la présente invention de régulation thermique du système de la figure 1 ; et
  • les figures 4, 5, 6 et 7 illustrent des résultats expérimentaux en temps réel de mise en œuvre du procédé de régulation de la figure 3 au système de la figure 1.
Other characteristics and advantages of the invention will become apparent on reading the description which follows. This is purely illustrative and should be read in conjunction with the accompanying drawings in which:
  • the figure 1 is a schematic view of a water heating system intended to supply a room with hot water;
  • the figure 2 is a detail view of a hydraulic cylinder of the system of the figure 1 ;
  • the figure 3 is a timing diagram of a process according to the present invention for thermal regulation of the system of the figure 1 ; and
  • the figures 4, 5 , 6 and 7 illustrate real-time experimental results of the implementation of the figure 3 to the figure 1 .

Système de chauffage d'eauWater heating system

Un système de chauffage d'eau d'alimentation d'un local en eau chaude est référencé 1 sur la figure 1, le local étant de préférence extérieur au système 1.A supply water heating system for a hot water room is referenced 1 on the figure 1 , the room preferably being outside system 1.

L'eau chaude est destinée à approvisionner un réseau de chauffage par radiateurs et un échangeur de chaleur pour un préparateur de stockage d'eau chaude sanitaire, comme il va être expliqué.The hot water is intended to supply a heating network by radiators and a heat exchanger for a storage tank for domestic hot water, as will be explained.

Le système de chauffage 1 est de type hybride, c'est-à-dire que le système 1 comprend au moins deux types de sources thermiques, à savoir au moins un générateur d'appoint à énergie fossile 2 d'une part et, d'autre part, au moins une pompe à chaleur 3.The heating system 1 is of the hybrid type, that is to say that the system 1 comprises at least two types of thermal sources, namely at least one auxiliary fossil energy generator 2 on the one hand, and d on the other hand, at least one heat pump 3.

Le générateur 2 est par exemple une chaudière à gaz ou à fioul.The generator 2 is for example a gas or oil boiler.

La pompe à chaleur 3 est de préférence de type à vitesse de compresseur variable, ce qui permet une modulation de puissance de la pompe à chaleur en fonction de son taux de charge. On parle de pompe à chaleur de type « inverter ».The heat pump 3 is preferably of the variable compressor speed type, which allows a modulation of the power of the heat pump as a function of its charge rate. We are talking about an "inverter" type heat pump.

Le système de chauffage 1 comprend également une bouteille de découplage hydraulique 4 connectée au générateur 2 et à la pompe à chaleur 3.The heating system 1 also comprises a hydraulic decoupling bottle 4 connected to the generator 2 and to the heat pump 3.

La bouteille de découplage hydraulique 4 est également connectée à un réseau 5 de chauffage de l'air du local par radiateurs et à un échangeur de chaleur d'un préparateur de stockage d'eau chaude sanitaire 6 du local.The hydraulic decoupling bottle 4 is also connected to a network 5 for heating the air in the room by radiators and to a heat exchanger of a DHW storage tank 6 in the room.

L'échangeur de chaleur est soit un serpentin, soit un échangeur à plaques.The heat exchanger is either a coil or a plate exchanger.

Sur le mode de réalisation illustré, le système comprend une seule pompe à chaleur 3 et un seul générateur 2. Toutefois, l'invention ne se limite pas à ce mode de réalisation et le système peut comprendre plusieurs pompes à chaleur ou générateurs raccordés en parallèle sur des piquages de la bouteille hydraulique.In the illustrated embodiment, the system comprises a single heat pump 3 and a single generator 2. However, the invention is not limited to this embodiment and the system can comprise several heat pumps or generators connected in parallel on hydraulic cylinder tappings.

Bouteille de découplage hydrauliqueHydraulic decoupling bottle

Comme visible sur les figures 1 et 2, la bouteille hydraulique 4 comprend un réservoir d'eau muni d'un ensemble de quatre paires de piquages 7 à 11.As seen on figures 1 and 2 , the hydraulic cylinder 4 comprises a water tank provided with a set of four pairs of tappings 7 to 11.

Le premier piquage 7 de la première paire est conformé pour recevoir de l'eau de la pompe à chaleur 3. Le piquage 7 est autrement appelé piquage de départ pompe à chaleur.The first tap 7 of the first pair is shaped to receive water from the heat pump 3. The tap 7 is also called the heat pump start tap.

Le deuxième piquage 8 de la première paire est conformé pour alimenter en eau la pompe à chaleur 3. Le piquage 8 est autrement appelé piquage de retour pompe à chaleur.The second tap 8 of the first pair is shaped to supply water to the heat pump 3. The tap 8 is otherwise called a heat pump return tap.

Le premier piquage 9 de la deuxième paire est conformé pour recevoir de l'eau du générateur d'appoint 2. Le piquage 9 est autrement appelé piquage de départ générateur d'appoint.The first connection 9 of the second pair is configured to receive water from the auxiliary generator 2. The connection 9 is otherwise called the starting connection for the additional generator.

Le deuxième piquage 10 de la deuxième paire est conformé pour alimenter en eau le générateur d'appoint 2. Le piquage 10 est autrement appelé piquage de retour générateur d'appoint.The second tap 10 of the second pair is shaped to supply water to the booster generator 2. The tap 10 is otherwise called back booster generator booster.

Le premier piquage 11 de la troisième paire est conformé pour recevoir de l'eau du réseau 5 de radiateurs. Le piquage 11 est autrement appelé piquage de retour chauffage.The first tap 11 of the third pair is shaped to receive water from the network 5 of radiators. The connection 11 is also called the return heating connection.

Le deuxième piquage 12 de la troisième paire est conformé pour alimenter en eau le réseau 5 de radiateurs. Le piquage 12 est autrement appelé piquage de départ chauffage.The second tap 12 of the third pair is shaped to supply water to the network 5 of radiators. The tap 12 is otherwise called the heating flow tap.

Le premier piquage 13 de la quatrième paire est conformé pour recevoir de l'eau de l'échangeur de chaleur du préparateur 6. Le piquage 13 est autrement appelé piquage de sortie préparateur.The first connection 13 of the fourth pair is configured to receive water from the heat exchanger of the preparer 6. The connection 13 is otherwise called the preparator outlet connection.

Le deuxième piquage 14 de la quatrième paire est conformé pour alimenter en eau l'échangeur de chaleur du préparateur 6. Le piquage 14 est autrement appelé piquage d'entrée préparateur.The second tap 14 of the fourth pair is shaped to supply water to the heat exchanger of the preparer 6. The tap 14 is otherwise called the preparator inlet tap.

Du fait de la bouteille de découplage hydraulique 4, chacun des circuits relatifs respectivement au générateur d'appoint 2, à la pompe à chaleur 3, au réseau de chauffage 5 et au préparateur 6, sont fluidiquement indépendants les uns des autres.Due to the hydraulic decoupling bottle 4, each of the circuits relating respectively to the backup generator 2, to the heat pump 3, to the heating network 5 and to the preparer 6, are fluidly independent of each other.

En particulier, chaque paire des piquages 7 à 14 est indépendante fluidiquement des autres paires.In particular, each pair of taps 7 to 14 is fluidly independent of the other pairs.

La bouteille de découplage hydraulique 4 présente un volume interne constituant une zone tampon, ce qui permet de découpler les débits d'eau dans chaque circuit.The hydraulic decoupling bottle 4 has an internal volume constituting a buffer zone, which makes it possible to decouple the water flows in each circuit.

Comme visible sur la figure 2, les piquages 7, 8 de départ et retour pompe à chaleur, et les piquages 11 et 13 de retour chauffage et préparateur sont disposés dans une première zone 15 de la bouteille de découplage hydraulique 4.As visible on the figure 2 , the taps 7, 8 for the heat pump start and return, and the taps 11 and 13 for the heating and tank return are arranged in a first zone 15 of the hydraulic decoupling bottle 4.

Les piquages 9, 10 de départ et retour générateur d'appoint, et les piquages 12 et 14 de départ chauffage et préparateur sont disposés dans une deuxième zone 16 de la bouteille de découplage hydraulique 4.The nozzles 9, 10 for the start and return of the auxiliary generator, and the nozzles 12 and 14 for the heating and preparator flow are placed in a second zone 16 of the hydraulic decoupling bottle 4.

Comme visible sur la figure 2, la première zone 15 est en partie basse de la bouteille de découplage hydraulique 4 tandis que la deuxième zone 16 est en partie haute de la bouteille de découplage hydraulique 4.As visible on the figure 2 , the first zone 15 is in the lower part of the hydraulic decoupling bottle 4 while the second zone 16 is in the upper part of the hydraulic decoupling bottle 4.

La première zone 15 correspond à des températures d'eau plus faibles que la deuxième zone 16.The first zone 15 corresponds to lower water temperatures than the second zone 16.

Avantageusement, des capteurs de température sont positionnés dans chaque piquage 7 à 14, ou dans certains piquages parmi les piquages 7 à 14, ou au minimum, un capteur de température est positionné dans la zone basse 15 et un autre dans la zone haute 16.Advantageously, temperature sensors are positioned in each tap 7 to 14, or in some taps among the taps 7 to 14, or at least one temperature sensor is positioned in the low zone 15 and another in the high zone 16.

De préférence, le diamètre de la bouteille 4 mesure entre deux et cinq fois plus que le diamètre de plus grande valeur parmi les diamètres des piquages 7 à 14.Preferably, the diameter of the bottle 4 measures between two and five times more than the diameter of greatest value among the diameters of the taps 7 to 14.

De préférence, une distance entre deux piquages consécutifs mesure entre deux fois et six fois plus que le diamètre de plus grande valeur parmi les diamètres des piquages 7 à 14.Preferably, a distance between two consecutive nozzles measures between two and six times more than the diameter of greatest value among the diameters of the nozzles 7 to 14.

Ces dimensionnements assurent que la bouteille hydraulique 4 s'affranchisse de toute interférence de pompes relatives au circuit du générateur d'appoint 2, de la pompe à chaleur 3, du réseau de chauffage d'air 5 et du préparateur 6.These dimensions ensure that the hydraulic cylinder 4 is free of any interference from pumps relating to the circuit of the auxiliary generator 2, the heat pump 3, the air heating network 5 and the preparer 6.

Procédé de régulationRegulation process

Quand le système de chauffage est sollicité du fait d'un besoin thermique à une température souhaitée, dite température de consigne, Tc, un procédé de régulation thermique 30 du système de chauffage 1 se déclenche.When the heating system is requested due to a thermal need at a desired temperature, called the set temperature, Tc, a thermal regulation process 30 of the heating system 1 is triggered.

La température de consigne Tc correspond à une température que doit atteindre l'eau dans la zone haute 16 de la bouteille de découplage hydraulique 4.The set temperature Tc corresponds to a temperature which the water must reach in the upper zone 16 of the hydraulic decoupling bottle 4.

Cette température est appelée température de sortie de bouteille.This temperature is called the bottle outlet temperature.

Comme visible sur la figure 3, le procédé de régulation 30 comprend une étape 31 d'activation de la pompe à chaleur 3 systématiquement consécutive au déclenchement du procédé de régulation thermique 30. Cette étape est référencée ACT sur la figure 3.As visible on the figure 3 , the regulation method 30 comprises a step 31 of activation of the heat pump 3 systematically following the triggering of the thermal regulation process 30. This step is referenced ACT on the figure 3 .

Cette étape assure que la pompe à chaleur 3 constitue la source thermique prioritaire du système de chauffage 1.This step ensures that the heat pump 3 constitutes the priority thermal source for the heating system 1.

Le procédé 30 comprend également une étape 32 de détermination d'un coefficient de performance (COP) de la pompe à chaleur 3, dit coefficient de performance réel, et référencée DET, que le compresseur fonctionne ou soit en arrêt.The method 30 also includes a step 32 of determining a coefficient of performance (COP) of the heat pump 3, called the actual coefficient of performance, and referenced DET, whether the compressor is operating or is stopped.

Ainsi, le coefficient de performance réel est calculé que la pompe à chaleur soit en marche ou au contraire à l'arrêt.Thus, the actual coefficient of performance is calculated whether the heat pump is running or, on the contrary, stopped.

L'étape 32 de détermination du coefficient de performance réel est effectuée à des temps donnés pendant une durée d'utilisation du système de chauffage 1.Step 32 of determining the real coefficient of performance is carried out at given times during a period of use of the heating system 1.

En d'autres termes, l'étape 32 de détermination du coefficient de performance réel comprend une succession d'étapes au cours desquelles le coefficient de performance est déterminé à intervalles réguliers ou irréguliers.In other words, step 32 of determining the actual coefficient of performance comprises a succession of steps during which the coefficient of performance is determined at regular or irregular intervals.

Le procédé de régulation thermique 30 assure donc un calcul du coefficient de performance en temps réel d'utilisation du système de chauffage 1.The thermal regulation method 30 therefore provides a calculation of the coefficient of performance in real time of use of the heating system 1.

Par exemple, le coefficient de performance réel est calculé à un intervalle de temps de l'ordre de 2 minutes.For example, the actual coefficient of performance is calculated at a time interval of the order of 2 minutes.

Le coefficient de performance réel est défini comme un rapport entre une puissance calorifique générée par la pompe à chaleur 3 et une puissance électrique consommée par la pompe à chaleur 3.The real coefficient of performance is defined as a ratio between a heat power generated by the heat pump 3 and an electric power consumed by the heat pump 3.

Comme visible sur la figure 3, le procédé de régulation 30 comprend également une étape 33 de modulation d'un taux de charge de la pompe à chaleur 3 en fonction de la valeur mesurée du coefficient de performance réel et d'une comparaison de la température d'eau sortant de la bouteille hydraulique à la température de consigne, référencée MOD.As visible on the figure 3 , the regulation method 30 also comprises a step 33 of modulating a charge rate of the pump to heat 3 as a function of the measured value of the actual coefficient of performance and of a comparison of the temperature of water leaving the hydraulic cylinder with the set temperature, referenced MOD.

Le taux de charge est défini comme un rapport entre une puissance calorifique à charge partielle de la pompe à chaleur et une puissance calorifique à pleine charge de la pompe à chaleur.The charge rate is defined as a ratio between a heat load at partial load of the heat pump and a heat load at full load of the heat pump.

Le taux de charge est compris entre 0% et 100%, la valeur 0% correspondant à l'arrêt de la pompe à chaleur 3 et la valeur 100% à la pleine charge de la pompe à chaleur 3.The charge rate is between 0% and 100%, the value 0% corresponding to the shutdown of the heat pump 3 and the value 100% at full load of the heat pump 3.

Dans le cas où la comparaison entre les températures donne pour résultat que la température d'eau sortant de la bouteille hydraulique est égale à la température de consigne, le taux de charge est maintenant constant, le besoin thermique étant satisfait.In the case where the comparison between the temperatures gives the result that the water temperature leaving the hydraulic cylinder is equal to the set temperature, the charge rate is now constant, the thermal requirement being satisfied.

Au cours de l'étape de détermination du coefficient de performance réel, le coefficient de performance réel est calculé en fonction d'une température extérieure Text, d'une température caractéristique de la pompe à chaleur 3 et du taux de charge de la pompe à chaleur 3.During the step of determining the real coefficient of performance, the real coefficient of performance is calculated as a function of an outside temperature T ext , a characteristic temperature of the heat pump 3 and the charge rate of the pump. heat 3.

La température extérieure Text est mesurée par un capteur de température, disposé à l'extérieur du système de chauffage et du local.The outside temperature T ext is measured by a temperature sensor, placed outside the heating system and the room.

La température caractéristique de la pompe à chaleur est par exemple une température de départ Tdep correspondant à la température d'eau circulant dans le piquage 7 de départ pompe à chaleur, soit une température de l'eau dans le piquage 8 de retour pompe à chaleur, dite température de retour Tret pompe à chaleur.The characteristic temperature of the heat pump is, for example, an outlet temperature T dep corresponding to the temperature of the water circulating in the heat pump outlet nozzle 7, or a temperature of the water in the nozzle pump return 8 to heat, called return temperature T ret heat pump.

Les températures de départ Tdep et retour Tret sont mesurées par des capteurs de température.The flow temperatures T dep and return T ret are measured by temperature sensors.

De préférence, le coefficient de performance réel dépend de la température extérieure Text, de la température de départ ou de retour et du taux de charge de la pompe à chaleur, selon un polynôme, ou selon une matrice.Preferably, the real coefficient of performance depends on the outside temperature T ext , on the flow temperature or on the return and the charge rate of the heat pump, according to a polynomial, or according to a matrix.

Le procédé 30 comprend également une étape 34 de comparaison du coefficient de performance réel à une valeur seuil, appelée coefficient de performance seuil. Cette étape est référencée COMP.The method 30 also includes a step 34 of comparing the actual coefficient of performance with a threshold value, called the threshold coefficient of performance. This step is referenced COMP.

Le coefficient de performance seuil correspond à un régime limite de fonctionnement optimal de la pompe à chaleur 3.The threshold coefficient of performance corresponds to an optimum operating speed limit for the heat pump 3.

L'étape de comparaison 34 est effectuée après chaque calcul de COP réel.The comparison step 34 is carried out after each calculation of real COP.

Le coefficient de performance seuil peut dépendre du rendement du générateur d'appoint 2, d'une valeur limite telle qu'une facture énergétique liée au fonctionnement de la pompe à chaleur 3 soit égale à une facture énergétique liée au fonctionnement du générateur d'appoint 2, des émissions respectives de dioxyde de carbone de la pompe à chaleur 3 et du générateur 2, ou encore des consommations d'énergies primaires respectives de la pompe à chaleur 3 et du générateur 2.The threshold coefficient of performance may depend on the efficiency of the backup generator 2, by a limit value such that an energy bill linked to the operation of the heat pump 3 is equal to an energy bill linked to the operation of the backup generator 2, respective emissions of carbon dioxide from the heat pump 3 and the generator 2, or alternatively the respective primary energy consumption of the heat pump 3 and the generator 2.

Comme visible sur la figure 3, le procédé 30 comprend une étape 35 de désactivation de la pompe à chaleur 3 si le coefficient de performance réel est inférieur au coefficient de performance seuil, référencée DESACT.As visible on the figure 3 , the method 30 comprises a step 35 of deactivation of the heat pump 3 if the real coefficient of performance is lower than the threshold coefficient of performance, referenced DESACT.

De préférence, dans ce cas, le générateur d'appoint 2 est alors activé.Preferably, in this case, the backup generator 2 is then activated.

Comme visible sur la figure 3, le procédé 30 comprend une étape 36 de mesure (MES) de la température de sortie de l'eau hors de la bouteille hydraulique 4, et une étape d'activation du générateur d'appoint si, à un temps donné de fonctionnement de la pompe à chaleur, la température de sortie est inférieure à la température de consigne.As visible on the figure 3 , the method 30 comprises a step 36 for measuring (MES) the temperature of the water leaving the hydraulic cylinder 4, and a step for activating the auxiliary generator if, at a given operating time of the heat pump, the outlet temperature is lower than the set temperature.

Le temps de fonctionnement de la pompe à chaleur pour activer le générateur d'appoint 2 est par exemple de l'ordre de 5 minutes.The operating time of the heat pump to activate the backup generator 2 is for example of the order of 5 minutes.

Dans ce cas, les deux sources thermiques, c'est-à-dire la pompe à chaleur 3 et le générateur d'appoint 2 assurent simultanément le chauffage de l'eau pour les piquages 12 et 14 de départ chauffage et départ préparateur.In this case, the two thermal sources, that is to say the heat pump 3 and the auxiliary generator 2 simultaneously provide heating of the water for the taps 12 and 14 for the heating start and the preparator start.

Comme visible sur la figure 3, le procédé 30 comprend une étape 37 de détermination (DET) du coefficient de performance réel à intervalle donné, régulier ou irrégulier, pendant la désactivation de la pompe à chaleur 3 suivie de préférence d'une étape d'activation de la pompe à chaleur 3 quand le coefficient de performance réel redevient égal au coefficient de performance seuil.As visible on the figure 3 , the method 30 comprises a step 37 of determining (DET) the actual coefficient of performance at a given interval, regular or irregular, during the deactivation of the heat pump 3 preferably followed by a step of activating the heat pump 3 when the actual coefficient of performance becomes equal to the threshold coefficient of performance.

Comme visible sur la figure 3, le procédé 30 comprend avantageusement une étape 38 de blocage (BLO) d'activation du générateur d'appoint 2 pendant une durée donnée, dite durée de blocage.As visible on the figure 3 , the method 30 advantageously comprises a blocking step 38 (BLO) of activation of the booster generator 2 for a given duration, called the blocking duration.

De préférence, l'étape de blocage 38 est active en été ou en période hors chauffage du local par le réseau de radiateurs.Preferably, the blocking step 38 is active in summer or during periods when the room is not heated by the network of radiators.

La durée de blocage est par exemple de l'ordre de 30 minutes.The blocking time is for example of the order of 30 minutes.

Dans ce cas, le chauffage de l'eau est uniquement assuré par la pompe à chaleur 3, même si la température en sortie de la bouteille reste inférieure à la température de consigne.In this case, the water is only heated by the heat pump 3, even if the temperature at the outlet of the bottle remains below the set temperature.

On peut prévoir également dans ce cas une étape de détermination du coefficient de performance réel de la pompe à chaleur 3 à des temps donnés pendant la durée de blocage suivi d'une étape de comparaison du coefficient de performance réel au coefficient de performance seuil, et une étape d'activation du générateur d'appoint si le coefficient de performance réel est inférieur au coefficient de performance seuil.In this case, it is also possible to provide a step of determining the real performance coefficient of the heat pump 3 at given times during the blocking period followed by a step of comparing the real performance coefficient with the threshold performance coefficient, and a step of activating the backup generator if the actual coefficient of performance is less than the threshold coefficient of performance.

Avantageusement, si le coefficient de performance est supérieur au coefficient de performance seuil, l'étape de modulation du taux de charge comprend une étape non illustrée de modification du taux de charge de la pompe à chaleur 3 de sorte que le coefficient de performance augmente jusqu'à une valeur maximale.Advantageously, if the performance coefficient is greater than the threshold performance coefficient, the step of modulating the charge rate comprises a step not illustrated of modifying the charge rate of the heat pump 3 so that the performance coefficient increases up to 'to a maximum value.

Cette étape permet de réduire la dépense énergétique due à la pompe à chaleur 3.This step makes it possible to reduce the energy expenditure due to the heat pump 3.

Alternativement, si le coefficient de performance est supérieur au coefficient de performance seuil, l'étape de modulation du taux de charge comprend une étape non illustrée de modification du taux de charge de la pompe à chaleur 3 jusqu'à atteindre un taux de charge maximale, par exemple de l'ordre de 100%.Alternatively, if the coefficient of performance is greater than threshold performance coefficient, the step of modulating the charge rate comprises a step not illustrated of modifying the charge rate of the heat pump 3 until reaching a maximum charge rate, for example of the order of 100% .

Cette étape permet de réduire le temps de retour sur investissement du système de chauffage.This step reduces the return on investment time of the heating system.

Le procédé de régulation est mis en œuvre par une unité de calcul.The regulation process is implemented by a computing unit.

L'unité de calcul peut être un circuit comme par exemple :

  • un processeur apte à interpréter des instructions sous la forme de programme informatique, ou
  • une carte électronique dont les étapes du procédé de l'invention sont décrites dans le silicium, ou encore
  • une puce électronique programmable comme une puce FPGA (pour « Field-Programmable Gâte Array » en anglais).
The calculation unit can be a circuit such as for example:
  • a processor capable of interpreting instructions in the form of a computer program, or
  • an electronic card, the steps of the method of the invention are described in silicon, or else
  • a programmable electronic chip like an FPGA chip (for “Field-Programmable Gate Array” in English).

Résultats expérimentauxExperimental results

Les figures 4 et 5 illustrent une évolution au cours du temps respectivement du taux de charge Tx de la pompe à chaleur 3 (en pourcentage), selon une courbe 41, de la température de départ Tdep, selon une courbe 51, et de la température de l'eau dans le piquage 8 de retour pompe à chaleur, c'est-à-dire la température de retour Tret pompe à chaleur, selon une courbe 52.The Figures 4 and 5 illustrate an evolution over time respectively of the charge rate Tx of the heat pump 3 (in percentage), according to a curve 41, of the flow temperature T dep , according to a curve 51, and of the water temperature in the heat pump return connection 8, that is to say the return temperature T ret heat pump, according to a curve 52.

Comme visible sur les figures 4 et 5, le taux de charge Tx diminue au cours du temps, suite au calcul du coefficient de performance réel en temps réel, ce qui contribue notamment à une réduction d'écart entre Tdep et Tret et une augmentation du coefficient de performance.As seen on Figures 4 and 5 , the charge rate Tx decreases over time, following the calculation of the real performance coefficient in real time, which contributes in particular to a reduction in the difference between T dep and T ret and an increase in the performance coefficient.

La figure 6 illustre une évolution en hiver et au cours du temps respectivement du taux de charge Tx de la pompe à chaleur 3, selon une courbe 61, d'un taux de charge Txx (en pourcentage) du générateur d'appoint 2 selon une courbe 62, de la température de départ Tdep, selon une courbe 63, et de la température de retour Tret, selon une courbe 64.The figure 6 illustrates an evolution in winter and over time respectively of the charge rate Tx of the heat pump 3, according to a curve 61, of a charge rate Txx (in percentage) of the generator make-up 2 along a curve 62, of the flow temperature T dep , according to a curve 63, and of the return temperature T ret , according to a curve 64.

La figure 7 illustre une évolution en été et au cours du temps respectivement du taux de charge Tx de la pompe à chaleur 3, selon une courbe 71, d'un taux de charge Txx du générateur d'appoint 2 selon une courbe 72, de la température de départ Tdep, selon une courbe 73, et de la température de retour Tret, selon une courbe 74.The figure 7 illustrates an evolution in summer and over time respectively of the charge rate Tx of the heat pump 3, according to a curve 71, of a charge rate Txx of the auxiliary generator 2 according to a curve 72, of the temperature of flow T dep , according to a curve 73, and return temperature T ret , according to a curve 74.

En hiver, l'étape 38 de blocage est désactivée.In winter, the blocking step 38 is deactivated.

En été au contraire, l'étape 38 de blocage est mise en place.In summer, on the contrary, the blocking stage 38 is put in place.

Comme déjà expliqué, cette temporisation du déclenchement du générateur 2 impose que la pompe à chaleur 3 assure seule le chauffage de l'eau vers le réseau 5 et l'échangeur de chaleur 6.As already explained, this delay in triggering the generator 2 requires that the heat pump 3 alone heat the water to the network 5 and the heat exchanger 6.

Comme visible sur la figure 6, le générateur 2 et la pompe à chaleur 3 sont déclenchés en même temps en hiver, autour du temps t=12h2min.As visible on the figure 6 , generator 2 and heat pump 3 are triggered at the same time in winter, around time t = 12h2min.

Comme visible sur la figure 7, seule la pompe à chaleur 3 se déclenche à t=0, tandis que le générateur d'appoint 2 se déclenche à un temps t de l'ordre de 29min.As visible on the figure 7 , only the heat pump 3 is triggered at t = 0, while the backup generator 2 is triggered at a time t of the order of 29 min.

On note que le taux de modulation Tx de la pompe à chaleur 3 devient nul vers 12h22 sur la figure 6 et vers 0h42min sur la figure 7, indiquant là que le coefficient de performance réel devient inférieur au coefficient de performance seuil.We note that the Tx modulation rate of the heat pump 3 becomes zero around 12:22 on the figure 6 and around 0h42min on the figure 7 , indicating there that the real coefficient of performance becomes lower than the threshold coefficient of performance.

AvantagesBenefits

Le procédé de régulation 30 assurant le calcul du coefficient de performance réel en temps réel lors du fonctionnement du système de chauffage 1, on obtient un fonctionnement optimal du système 1, puisque le coefficient de performance réel est maintenu supérieur ou égal au coefficient de performance réel seuil, quitte à faire un appoint avec le générateur d'appoint 2 sans arrêter pour autant la pompe à chaleur 3.The regulation method 30 ensuring the calculation of the real coefficient of performance in real time during the operation of the heating system 1, optimal operation of the system 1 is obtained, since the real coefficient of performance is kept greater than or equal to the real coefficient of performance threshold, even if it means topping up with the backup generator 2 without stopping the heat pump 3.

Le système de chauffage 1 assure, du fait en particulier de la bouteille de découplage hydraulique 4, un fonctionnement autonome des circuits relatifs au générateur d'appoint 2, à la pompe à chaleur 3, au réseau de chauffage 5 et au préparateur 6, ce qui permet de choisir des conditions optimales de fonctionnement pour chacun des circuits.The heating system 1 ensures, due in particular to the hydraulic decoupling bottle 4, autonomous operation of the circuits relating to the backup generator 2, the heat pump 3, the heating network 5 and the preparer 6, this which allows you to choose optimal operating conditions for each circuit.

L'invention s'applique tout particulièrement au cas où le système de chauffage 1 comprend une pluralité de générateurs d'appoint et une pluralité de pompes à chaleur ; dans ce cas, le local approvisionné par le système 1 est une installation collective (par opposition à domestique).The invention applies very particularly to the case where the heating system 1 comprises a plurality of back-up generators and a plurality of heat pumps; in this case, the room supplied by system 1 is a collective installation (as opposed to domestic).

Claims (14)

  1. Method for thermal regulation of a water-heating system (1) intended to supply a premises with hot water, said heating system comprising a standby fossil fuel generator (2), a variable speed compressor heat pump (3) and a hydraulic isolation cylinder (4) connected to said standby generator (2) and à said heat pump (3), the method for regulation comprising:
    - a step of activating the heat pump (3) systematically following a step of activating the heating system (1) in order to regulate the temperature of the water exiting from the hydraulic cylinder at a given temperature, referred to as the setpoint temperature,
    - a step of determining a performance coefficient of the heat pump at given times during an operating duration of the heating system (1), referred to as real performance coefficient, whether the compressor is operating or is stopped, and
    - a step of modulating a load rate of the heat pump according to the measured value of the real performance coefficient and a comparison of the temperature of the water exiting from the hydraulic cylinder with the setpoint temperature.
  2. Method for thermal regulation according to claim 1, wherein, during the step of determining the real performance coefficient, the real performance coefficient is calculated according to an outside temperature, a characteristic temperature of the heat pump (3) and a load rate of the heat pump (3).
  3. Method for thermal regulation according to one of claims 1 or 2, comprising a step of comparing the real performance coefficient with a threshold value, referred to as the threshold performance coefficient.
  4. Method for thermal regulation according to the preceding claim, comprising a step of measuring the outlet temperature of the water outside the hydraulic cylinder (4), and a step of activating the standby generator if, at a given operating time of the heat pump, the outlet temperature is less than the setpoint temperature.
  5. Method for thermal regulation according to any preceding claim, comprising a step of deactivating the heat pump if the real performance coefficient is less than the threshold performance coefficient.
  6. Method for thermal regulation according to the preceding claim, comprising a step of determining the real performance coefficient at a given interval that is regular or irregular, during the deactivating of the heat pump.
  7. Method for thermal regulation according to the preceding claim, comprising a step of activating the heat pump when the real performance coefficient becomes equal again to the threshold performance coefficient.
  8. Method for thermal regulation according to any preceding claim, comprising a step of blocking the activating of the standby generator for a given duration, referred to as the blocking duration.
  9. Method for thermal regulation according to the preceding claim, comprising a step of determining the real performance coefficient of the heat pump at given times during the blocking duration, a step of comparing the real performance coefficient with a threshold value, referred to as the threshold performance coefficient, and a step of activating the standby generator if the real performance coefficient is less than the threshold performance coefficient.
  10. Method for thermal regulation according to any of claims 3 to 9, wherein, during the step of modulating the load rate, if the performance coefficient is greater than or equal to the threshold performance coefficient, the load rate of the heat pump (3) is modified in such a way as to increase the performance coefficient to a maximum value.
  11. Method for thermal regulation according to any of claims 3 to 9, wherein, during the step of modulating the load rate, if the performance coefficient is greater than or equal to the threshold performance coefficient, the load rate of the heat pump (3) is modified in such a way as to increase the load rate to a maximum value.
  12. Hydraulic cylinder for a water-heating system intended to supply a premises with hot water, comprising a tapping shaped to supply a heat pump with water, a tapping shaped to receive water from said heat pump, a tapping shaped to supply a standby fossil fuel generator with water, a tapping shaped to receive water from the standby fossil fuel generator, a tapping shaped to supply a hot water tank of the premises with water, a tapping shaped to receive water from the hot water tank of the premises, a tapping shaped to supply with water an air-heating network of the premises and a tapping shaped to receive water from an air-heating network of the premises, with the cylinder comprising a temperature sensor in a lower portion (15) of a tank of the cylinder and a temperature sensor in the upper portion (16) of the tank of the cylinder in such a way as to implement the method for regulation according to one of the preceding claims.
  13. Hydraulic cylinder according to the preceding claim, wherein a diameter of the cylinder measures between two and five times more than a diameter of a greater value from among the diameters of the tappings, and/or a distance between two tappings measures between twice and six times more than the diameter of a greater value from among the diameters of the tappings.
  14. Water-heating system intended to supply a premises with hot water, comprising at least one standby fossil fuel generator, at least one heat pump and a hydraulic isolation cylinder according to one of claims 12 or 13 connected to said at least one standby generator and to said at least one heat pump and a calculation unit for implementing the method for regulation according to one of claims 1 to 11.
EP16206905.8A 2015-12-28 2016-12-26 Method for thermal regulation of a water-heating system Active EP3187787B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16206905T PL3187787T3 (en) 2015-12-28 2016-12-26 Method for thermal regulation of a water-heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1563402A FR3046217B1 (en) 2015-12-28 2015-12-28 METHOD OF THERMALLY REGULATING A WATER HEATING SYSTEM

Publications (2)

Publication Number Publication Date
EP3187787A1 EP3187787A1 (en) 2017-07-05
EP3187787B1 true EP3187787B1 (en) 2020-02-12

Family

ID=55451422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16206905.8A Active EP3187787B1 (en) 2015-12-28 2016-12-26 Method for thermal regulation of a water-heating system

Country Status (4)

Country Link
EP (1) EP3187787B1 (en)
ES (1) ES2789362T3 (en)
FR (1) FR3046217B1 (en)
PL (1) PL3187787T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800009760A1 (en) * 2018-10-24 2020-04-24 Adsum Srl System and method for heating a fluid using a heat pump and a boiler
CZ32676U1 (en) * 2018-10-25 2019-03-19 Almeva Ag Combined system for heating household water and medium for house heating and/or for cooling of heating medium for house cooling

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7093296A (en) * 1995-08-29 1997-03-19 Monard (Research & Development) Limited A manifold for connecting circuits of a central heating system
EP2159495B1 (en) * 2008-08-25 2017-11-15 Honeywell Technologies Sarl Heating system
ES2665566T3 (en) * 2010-12-08 2018-04-26 Daikin Europe N.V. Heating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3187787A1 (en) 2017-07-05
FR3046217B1 (en) 2017-12-22
FR3046217A1 (en) 2017-06-30
ES2789362T3 (en) 2020-10-26
PL3187787T3 (en) 2020-09-21

Similar Documents

Publication Publication Date Title
EP3187787B1 (en) Method for thermal regulation of a water-heating system
EP3117158B1 (en) Electric water heater with adjustable power
FR3073932A1 (en) HEATING APPARATUS INCORPORATING BATTERY AND INVERTER FOR INJECTING ENERGY FROM THE BATTERY TO THE POWER SUPPLY SOURCE
WO2015158782A1 (en) Water-heater system with alterable energy consumption
EP2535648B1 (en) Radiator for central-heating facility and central-heating facility comprising such a radiator
CN111664573A (en) Anti-freezing control method and device for gas water heater
WO2015197622A1 (en) Power management method in an electrical installation and an electrical installation
Ashok Kumar et al. Design and implementation of automatic water spraying system for solar photovoltaic module
EP3117159A1 (en) Electric water heater with adjustable power
EP3545724B1 (en) Electric radiator type heating apparatus including a voltage converter
EP3340004B1 (en) Method for determining the load-shedding capability of a building using thermal inertia, associated load-shedding method and system using said methods
EP2990904B1 (en) Method for managing the power consumption of an electrical network
EP3671051A1 (en) Method for controlling the domestic hot water loop return for a system for producing domestic hot water
EP3273170B1 (en) Installation for producing hot water with a thermodynamic circuit powered by photovoltaic cells
EP2770263A2 (en) Method and installation for heating water
WO2016030606A1 (en) Management of a thermodynamic heating system restart
Breido et al. Algorithms of energy efficient control of electric technological complex for autonomous heat supply
EP2651673B1 (en) System and method for controlling an air conditioning system for a motor vehicle
FR3035484A1 (en) HOT WATER PRODUCTION SYSTEM
FR3088414A1 (en) METHOD FOR CONTROLLING A THERMAL POWER TO INJECT IN A HEATING SYSTEM AND HEATING SYSTEM IMPLEMENTING THIS METHOD
EP4113015A1 (en) Facility for producing domestic hot water
CN115900087B (en) Control method, system, equipment and storage medium of water heater
EP4224073A1 (en) Method for controlling the operation of a heat pump
EP3671399B1 (en) Method for determining a preferential minimum power setting, method for controlling a plurality of water heaters and associated device
EP2224176B1 (en) Improved boiler installation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171121

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190829

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1232615

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016029464

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2789362

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016029464

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1232615

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200212

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231124

Year of fee payment: 8

Ref country code: LU

Payment date: 20231124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231211

Year of fee payment: 8

Ref country code: FR

Payment date: 20231116

Year of fee payment: 8

Ref country code: DE

Payment date: 20231208

Year of fee payment: 8

Ref country code: CZ

Payment date: 20231122

Year of fee payment: 8

Ref country code: AT

Payment date: 20231120

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231127

Year of fee payment: 8

Ref country code: BE

Payment date: 20231212

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240108

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231215

Year of fee payment: 8