EP3183080B1 - Method for producing a piston for an internal combustion engine - Google Patents

Method for producing a piston for an internal combustion engine Download PDF

Info

Publication number
EP3183080B1
EP3183080B1 EP15741531.6A EP15741531A EP3183080B1 EP 3183080 B1 EP3183080 B1 EP 3183080B1 EP 15741531 A EP15741531 A EP 15741531A EP 3183080 B1 EP3183080 B1 EP 3183080B1
Authority
EP
European Patent Office
Prior art keywords
casting
melt
groove
collar
feeder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15741531.6A
Other languages
German (de)
French (fr)
Other versions
EP3183080A1 (en
Inventor
Udo Rotmann
Jürgen GAISSERT
Martin RÜHLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Priority to PL15741531T priority Critical patent/PL3183080T3/en
Publication of EP3183080A1 publication Critical patent/EP3183080A1/en
Application granted granted Critical
Publication of EP3183080B1 publication Critical patent/EP3183080B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/088Feeder heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
    • B22D15/02Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor of cylinders, pistons, bearing shells or like thin-walled objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/13Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of gas pressure

Definitions

  • the invention relates to a casting tool for producing a piston according to the preamble of claim 1.
  • the invention also relates to a corresponding method for producing such a piston.
  • Fluid energy machines in which pistons in cylinders perform a periodic translational movement transmitted via push rods, are known in mechanical engineering as piston machines.
  • the most common type of piston engine is the reciprocating piston engine, which converts the change in volume of a gas into the linear movement of the piston as described and via a connecting rod and a crank into a rotary movement.
  • the piston comprises a combustion bowl for this purpose.
  • Suitable pistons are regularly manufactured according to the state of the art by means of a master molding process, in particular with the aid of specialized casting techniques.
  • the mold casting method known from metalworking has proven particularly useful, in which a melt is poured into a metal permanent mold called an over-mold and the cavity essentially fills solely as a result of gravity or external pressurization.
  • the bowl rim is also increasingly reinforced by the pouring of ceramic fibers.
  • the squeeze casting process or a robot-assisted medium pressure casting process (“robot-aided medium pressure die casting", RMD) is sometimes used to ensure the complete infiltration of the ceramic fibers by the aluminum melt and thus to promote the integration of the ceramic fibers into the metal structure .
  • a method for producing a piston by means of a multi-part casting tool in which a casting melt is poured into a casting base of the casting tool, the casting melt solidifying in an annular wall which surrounds the feeder in the casting base and is radially spaced therefrom.
  • a corresponding procedure is from the DE 10 2004 052 231 A1 as well as the corresponding revelation of the EP 1 804 985 B1 known.
  • Both documents relate to a method for the series production of a piston, wherein a casting melt is filled via a feed area into a multi-part casting mold with a casting base and at least one feeder, it being provided that after the piston blank has been cast, the opening of the end of the feeder sleeve which is open towards the top is provided is acted upon by a gas pressure acting on the casting melt. The tightness of the feeder is ensured by using a so-called collar feeder.
  • One embodiment of this method is characterized in that after the piston casting tool has been filled, the formation of an edge shell from solidified casting melt is awaited. Due to a special design of the pouring base and feeder sleeve, a collar forms around the feeder in this solidification phase, so that a sealing surface is created between the mouthpiece of the feeder and the collar, which holds the feeder content in position.
  • Dense pressurization of the feeder materials which generally consist of heat-insulating and mechanically unstable materials such as ceramics, has proven to be critical.
  • the formation of an edge shell in the feeder occurs with a function delay compared to the casting tool.
  • the invention is therefore based on the object of providing an improved casting tool in order to produce high-quality pistons in a robust casting process for pistons.
  • the invention is therefore based on the basic idea of supplementing a casting base used in the casting process by a preferably annular groove encircling the feeder or a preferably annular collar encircling the feeder, which collar is also arranged radially spaced from the feeder.
  • the casting melt fed by the feeder or an inlet into the casting mold can, for example, solidify in this groove to form a circumferential sealing rib, the inner flank of which lies sealingly against a corresponding inner flank of the groove.
  • the casting shrinks onto the groove flank, especially when there are different coefficients of thermal expansion, such as between an aluminum melt and a steel mold.
  • the high thermal conductivity of the steel causes the melt to cool and solidify rapidly at the contact points, which can lead to directional solidification with the formation of a fine, columnar, solidified structure.
  • the still liquid part of the casting melt is held in position by the surface contact between the two flanks even when the melt is pressurized by the feeder, but is preferred but not necessary, and exits prematurely the bottom mold hindered.
  • the groove surface acts as a pressure-tight surface when pressure is applied by the feeder.
  • the melt in the feeder has not yet formed a stable edge shell and the liquid melt can thus infiltrate porous inserts, for example for reinforcement of the trough edge, due to the pressurization by the feeder.
  • pressurization of the melt has proven to be advantageous and is preferred, particularly when infiltrating porous inserts, the formation of a combustion chamber trough in a shrunk-on workpiece can also take place without pressurization and, according to the invention, cause directional solidification by rapid cooling.
  • the circumferential groove or collar is radially spaced from the feeder and is arranged separately therefrom, so that the feeder itself is not burdened by shrinking of the pouring melt when the pouring melt solidifies, as is the case, for example at the feeder from the DE 10 2004 052 231 A1 the case is.
  • the casting tool for a piston comprises the above-mentioned casting mold for shaping the piston from the casting melt, the casting base with the centrally arranged feeder for feeding the casting melt into the casting mold and a compressed gas line opening into the feeder for compressing the casting melt within the casting mold.
  • the groove has an inner groove flank for shaping the casting melt into an annular sealing rib in such a way that an inner rib flank of the sealing rib lies sealingly against the inner groove flank when the casting melt solidifies in the groove, whereas the collar has an outer collar flank for shaping the casting melt into one annular sealing groove has that an outer groove flank of the sealing groove lies sealingly against the outer collar flank when the casting melt solidifies.
  • the use of a suitable aluminum alloy as a casting melt can be considered.
  • the choice of specific alloying elements that are introduced into the aluminum liquefied by melting enables properties such as hardness, vibration absorption, toughness and machinability of the piston blank to be influenced in a targeted manner for mechanical processing.
  • an aluminum-silicon alloy for example, has proven itself as a light-metal casting melt which has its eutectic with a mass fraction of approximately 12% silicon.
  • a hypereutectic or slightly hypereutectic mixture ratio is nevertheless recommended, which gives the resulting aluminum alloy a solidification range in which a small proportion of solid phases is already present in addition to the casting melt.
  • the sealing effect of the solidifying rib according to the invention is achieved early in this way.
  • the addition of a mass fraction of up to 6% copper, up to 3% nickel and up to 1% magnesium may also be considered to be expedient in order to additionally increase the strength of the piston blank. All alloy proportions are given in% by weight.
  • the invention is based on the general idea of filling a casting melt via a separate inlet of the casting tool in a method for producing a piston by means of a multi-part casting tool, the Casting melt is pressurized by means of a compressed gas line opening into the feeder within the casting floor.
  • the missing volume due to the shrinkage of the solidifying melt and the infiltration of any porous inserts that may be present is subsequently supplied from the feeder into the casting mold.
  • the pouring melt solidifies in a groove encircling the feeder in the casting base and radially spaced therefrom into an annular sealing rib in such a way that an inner rib flank of the sealing rib lies sealingly against an inner groove flank of the groove from the piston casting tool.
  • a collar can also be provided on the casting base instead of or in addition to the groove, so that the casting melt solidifies to form an annular sealing groove on this circumferential collar which is radially spaced from the feeder in such a way that an outer groove flank of the sealing groove seals on an outer collar flank the collar of the piston mold.
  • At least one insert is placed in the casting mold and infiltrated by means of pressure exerted on the casting melt, the infiltration being supported by generating a negative pressure by means of suction lines.
  • Both embodiments have in common that when the casting melt solidifies, no mechanical stress is exerted on the feeder by shrinking on, but the shrunk-on casting is supported directly on the casting base by a pressure force exerted on the sealing surface and thereby seals along the sealing surface.
  • a particularly favorable design results when the collar of the bottom shape is already as close as possible to the shape of the later combustion bowl, in particular the bowl rim and bowl.
  • the proposed production process is carried out as a gravity mold or low-pressure casting process under a pressure between 0.3 bar and 20 bar.
  • a gravity mold or low-pressure casting process under a pressure between 0.3 bar and 20 bar.
  • a casting tool 1 according to the invention for a piston 2 has a casting mold 3 for forming the piston 2 from a casting melt 4 (cf. Fig. 2 ).
  • the casting mold 3 has a casting base 5 with a preferably centrally arranged feeder 6 for feeding the casting melt 4 into the casting mold 3 and a pressurized gas line 7 opening into the feeder 6 for compressing the casting melt 4 inside the casting mold 3 (cf. Fig. 2 ).
  • the feeder can be made of ceramic, for example.
  • a groove 8, which is arranged in the casting base 5 and has a ring around the feeder 6 and is radially spaced therefrom, is provided with an inner groove flank 9 (cf. Fig.
  • annular collar 12 which is arranged in the casting base 5, surrounds the feeder 6 in a ring shape and is radially spaced from this can be provided (cf. Fig. 3 , 7 and 8th ), with an outer collar flank 13 for shaping the pouring melt 4 into an annular sealing groove 14 such that an outer groove flank 15 of the sealing groove 14 lies sealingly against the outer collar flank 13 when the pouring melt 4 solidifies with shrinkage.
  • the groove 9 or the collar 12 is arranged radially on the outside, whereas it is according to the Fig. 2 and 6 is arranged radially on the inside, that is to say has a smaller radial distance from the feeder 6 than that in FIGS Fig. 1 and 5 shown groove 9.
  • an annular collar 12 may also be provided, as shown in FIGS Fig. 3 and 7 , is shown. It is also conceivable here that the ring collar 12 is arranged further out or further in, there being always a distance from the feeder 6.
  • the groove flank 9 or the collar flank 13 can have an inclination angle ⁇ between 3 ° and 20 °, preferably from 10 ° to 15 °, with respect to a perpendicular 16 on a surface of the casting floor 5.
  • the angle of inclination ⁇ is to be chosen small enough to ensure that the shrunk-on casting is held securely on the sealing surface with regard to the coefficient of friction.
  • the angle of inclination ⁇ should still be sufficiently large to enable the cast piston 2 to be easily stripped out.
  • This geometrical shape also ensures that the sealing rib 10 or sealing groove 14 formed after the casting melt 4 has hardened itself defines an inner rib flank 11 or outer groove flank 15, which lies flat against said inner groove flank 9 or outer collar flank 13 and the casting base 5 or the bottom mold thus seals against a premature and undesired escape of the casting pressure and thus enables the porous inserts to be infiltrated in accordance with the intended purpose.
  • a piston 2 can be produced by means of the casting tool 1 as follows: First, the casting melt 4 is fed via the inlet 21 into the casting base 5 and above into the casting mold 3 of the casting tool 1, the casting melt 4 using the compressed gas line 7 opening into the feeder 6 is pressurized within the casting base 5 in order to avoid the formation of voids and to infiltrate porous pouring parts. When the casting melt 4 is poured into the casting mold 3, it also enters the groove 8, which surrounds the feeder 6 in the casting base 5 in an annular manner and is radially spaced therefrom, and solidifies to form an annular sealing rib 10, the respective inner rib flank 11 of the sealing rib 10 being tight the inner groove flank 9 of the groove 8 (see 1, 2 , 4a, 5 and 6 ).
  • the casting melt 4 can also solidify on the ring collar 12, which surrounds the feeder 6 in the casting floor 5 in a ring shape and is radially spaced therefrom, forming an annular sealing groove 14 in such a way that an outer groove flank 15 of the sealing groove 14 seals against the outer collar flank 13 of the ring collar 12 is present.
  • the casting melt 4 should be pressurized after the casting mold 3 has been filled and before the casting melt has completely solidified, at the earliest after the casting mold 3 has been filled and after the partial solidification of an edge shell of the piston and partial areas of the inlet 21.
  • a porous insert 18 cf. 5 to 8
  • the piston can contain other inserts that are not to be infiltrated, such as ring carriers or salt cores for forming cooling channels.
  • the insert 18, in particular a ring carrier or a trough edge protector can for example be porous and be infiltrated by means of pressure exerted on the casting melt 4. At the same time, the infiltration can be supported by generating a negative pressure by means of suction lines 20.
  • a near-eutectic aluminum alloy is particularly suitable for the casting melt 4, which comprises a mass fraction of 10% to 14% silicon and / or a further mass fraction of up to 6% copper, up to 3% nickel and / or up to 1% magnesium.
  • other elements such as V and Zr (each ⁇ 0.2%) can be added to increase the heat resistance, and Ti ( ⁇ 0.2%) and P ( ⁇ 0.01%) for grain refinement.
  • a near-eutectic or even under-eutectic design of the AlSi alloys has proven to be advantageous for the infiltrability of the porous inserts.
  • a casting melt is preferred that is largely free of contamination by low-melting elements with a Melting point ⁇ 490 ° C, such as Pb, Bi, Sn, Zn, the concentrations of these elements individually being below 0.01%.
  • the pistons 2 are cast by gravity die casting or low-pressure casting, and the casting melt solidifies in the casting mold, in particular under a pressure between 0.3 bar and 20 bar.
  • the described casting melt 4 is poured into the casting tool 1 via the inlet 21, so that the free areas of the casting mold 3 are filled with casting melt 4 around a core 19, which later forms the small connecting rod eye of the piston 2.
  • the special design of the pouring base 5 and feeder 6 allows the formation of the sealing rib 10 or sealing groove 14, which holds the feeder content in position, if the casting tool is opened according to the method to achieve short cycle times at a time when the contents of the feeder 6 are still partially liquid inside can be.
  • the stabilizing effect of the sealing rib 10 or sealing groove 14 is supported by the groove 8 encircling the feeder 6 in the casting base 5 or, in the complementary embodiment, by the annular collar 12, within which the casting melt 4 forms the annular sealing rib 10 or Sealing groove 14 solidifies.
  • the pouring melt 4 can rise to a desired level within the feeder 6, so that above the poured pouring melt 4, after the supply of pouring melt 4 has ended, there is a free space within the feeder 6, via which the pouring melt 4 with a gas pressure between 0. 3 bar and 20 bar is applied.
  • the gas for pressurization will fed to the feeder 6 via the compressed gas line 7, which is open to the environment during the pouring process of the casting melt 4, so that pressure equalization can take place (cf. Fig. 2 ).
  • the compressed gas line 7 is only in for the sake of simplicity Fig. 2 and the inlet 21 and the sleeve 22 are only in Fig. 8 drawn in, it being clear that these may also be present in other embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

Die Erfindung betrifft ein Gießwerkzeug zur Herstellung eines Kolbens gemäß dem Oberbegriff des Anspruchs 1. Die Erfindung betrifft darüber hinaus ein entsprechendes Verfahren zur Herstellung eines solchen Kolbens.The invention relates to a casting tool for producing a piston according to the preamble of claim 1. The invention also relates to a corresponding method for producing such a piston.

Fluidenergiemaschinen, bei der Kolben in Zylindern eine über Schubstangen übertragene periodische Translationsbewegung vollführen, sind im Maschinenbau als Kolbenmaschinen bekannt. Die wohl verbreitetste Bauart der Kolbenmaschine stellt dabei der Hubkolbenmotor dar, welcher die Volumenänderung eines Gases in die beschriebene Linearbewegung des Kolbens und über eine Pleuelstange sowie eine Kurbel weiter in eine Drehbewegung umsetzt. In der wohl gebräuchlichsten Variante der Kolbenmaschine, dem Verbrennungsmotor, umfasst der Kolben hierzu eine Verbrennungsmulde.Fluid energy machines, in which pistons in cylinders perform a periodic translational movement transmitted via push rods, are known in mechanical engineering as piston machines. The most common type of piston engine is the reciprocating piston engine, which converts the change in volume of a gas into the linear movement of the piston as described and via a connecting rod and a crank into a rotary movement. In the most common variant of the piston engine, the internal combustion engine, the piston comprises a combustion bowl for this purpose.

Geeignete Kolben werden nach dem Stand der Technik regelmäßig mittels eines Urformverfahrens, insbesondere mithilfe spezialisierter Gießtechniken, hergestellt. Besonders bewährt hat sich das aus der Metallverarbeitung bekannte Kokillengießverfahren, bei dem eine Schmelze über einen oben liegenden Einguss in eine Kokille genannte metallische Dauerform gegossen wird und deren Hohlraum im Wesentlichen allein infolge der Schwerkraft oder einer externen Druckbeaufschlagung ausfüllt.Suitable pistons are regularly manufactured according to the state of the art by means of a master molding process, in particular with the aid of specialized casting techniques. The mold casting method known from metalworking has proven particularly useful, in which a melt is poured into a metal permanent mold called an over-mold and the cavity essentially fills solely as a result of gravity or external pressurization.

Problematisch gestaltet sich dabei der Ausgleich der im Betrieb des Motors auftretenden extrem hohen thermischen Belastung im Randbereich der Verbrennungsmulde, die unter ungünstigen Umständen zur Bildung von Rissen im Kolben führen kann. Aus dem Stand der Technik ist im Hinblick auf diese Problemstellung beispielsweise die Verwendung gekühlter Ringträger bekannt. Vermehrt wird der Muldenrand auch durch das Eingießen von Keramikfasern verstärkt. Als Kokillengießverfahren wird zu diesem Zweck mitunter das Squeeze Casting-Verfahren oder ein robotergestütztes Mitteldruckgussverfahren ("robot-aided mediumpressure die casting", RMD) eingesetzt, um die vollständige Infiltration der Keramikfasern durch die Aluminiumschmelze zu gewährleisten und somit die Einbindung der Keramikfasern in das Metallgefüge zu begünstigen.It is problematic to compensate for the extremely high thermal load occurring in the operation of the engine in the edge region of the combustion bowl, which under unfavorable circumstances can lead to the formation of cracks in the piston. With regard to this problem, the use of cooled ring carriers is known from the prior art. The bowl rim is also increasingly reinforced by the pouring of ceramic fibers. As a mold casting process For this purpose, the squeeze casting process or a robot-assisted medium pressure casting process ("robot-aided medium pressure die casting", RMD) is sometimes used to ensure the complete infiltration of the ceramic fibers by the aluminum melt and thus to promote the integration of the ceramic fibers into the metal structure .

Aus der WO 2006/133914 A1 ist ein Verfahren zur Herstellung eines Kolbens mittels eines mehrteiligen Gießwerkzeugs bekannt, bei welchem eine Gießschmelze in einen Gießboden des Gießwerkzeugs eingefüllt wird, wobei die Gießschmelze in einem dem Speiser in dem Gießboden umlaufenden und von diesem radial beabstandeten ringförmigen Wall erstarrt.From the WO 2006/133914 A1 A method for producing a piston by means of a multi-part casting tool is known, in which a casting melt is poured into a casting base of the casting tool, the casting melt solidifying in an annular wall which surrounds the feeder in the casting base and is radially spaced therefrom.

Aus der JP S58 86968 A und der WO 2004/105980 A1 sind weitere Verfahren zur Herstellung eines Kolbens bekannt.From the JP S58 86968 A and the WO 2004/105980 A1 further methods for producing a piston are known.

Ein entsprechendes Verfahren ist aus der DE 10 2004 052 231 A1 sowie der entsprechenden Offenbarung der EP 1 804 985 B1 bekannt. Beide Druckschriften betreffen ein Verfahren zur Serienherstellung eines Kolbens, wobei eine Gießschmelze über einen Zuführbereich in eine mehrteilige Gießform mit einem Gießboden und zumindest einen Speiser befüllt wird, wobei vorgesehen ist, dass nach dem Gießen des Kolbenrohlings die Öffnung des nach oben hin offenen Endes der Speiserhülse mit einem auf die Gießschmelze wirkenden Gasdruck beaufschlagt wird. Die Dichtigkeit des Speisers wird durch die Verwendung eines sogenannten Kragenspeisers gewährleistet. Eine Ausführungsform dieses Verfahrens kennzeichnet sich dadurch, dass nach dem Füllen des Kolbengießwerkzeuges die Ausbildung einer Randschale aus erstarrter Gießschmelze abgewartet wird. Durch eine spezielle Ausgestaltung von Gießboden und Speiserhülse bildet sich um den Speiser in dieser Erstarrungsphase ein Kragen, so dass eine Dichtfläche zwischen dem Mundstück des Speisers und dem Kragen entsteht, der den Speiser-inhalt in Position hält.A corresponding procedure is from the DE 10 2004 052 231 A1 as well as the corresponding revelation of the EP 1 804 985 B1 known. Both documents relate to a method for the series production of a piston, wherein a casting melt is filled via a feed area into a multi-part casting mold with a casting base and at least one feeder, it being provided that after the piston blank has been cast, the opening of the end of the feeder sleeve which is open towards the top is provided is acted upon by a gas pressure acting on the casting melt. The tightness of the feeder is ensured by using a so-called collar feeder. One embodiment of this method is characterized in that after the piston casting tool has been filled, the formation of an edge shell from solidified casting melt is awaited. Due to a special design of the pouring base and feeder sleeve, a collar forms around the feeder in this solidification phase, so that a sealing surface is created between the mouthpiece of the feeder and the collar, which holds the feeder content in position.

Als kritisch erweist sich hierbei eine dichte Druckbeaufschlagung der Speiserwerkstoffe, die in der Regel aus wärmeisolierenden und mechanisch wenig belastbaren Materialien wie zum Beispiel Keramik bestehen. Die Bildung einer Randschale im Speiser tritt funktionsgemäß gegenüber dem Gießwerkzeug verzögert ein.Dense pressurization of the feeder materials, which generally consist of heat-insulating and mechanically unstable materials such as ceramics, has proven to be critical. The formation of an edge shell in the feeder occurs with a function delay compared to the casting tool.

Der Erfindung liegt daher die Aufgabe zugrunde, ein verbessertes Gießwerkzeug dahingehend zu schaffen, qualitativ hochwertige Kolben in einem robusten Gießprozess für Kolben herzustellen.The invention is therefore based on the object of providing an improved casting tool in order to produce high-quality pistons in a robust casting process for pistons.

Dieses Problem wird erfindungsgemäß durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.According to the invention, this problem is solved by the subjects of the independent claims. Advantageous embodiments are the subject of the dependent claims.

Die Erfindung fußt demnach auf dem Grundgedanken, einen im Rahmen des Gießverfahrens verwendeten Gießboden um eine den Speiser umlaufende, vorzugsweise ringförmige Nut bzw. einen den Speiser umlaufenden, vorzugsweise ringförmigen Kragen zu ergänzen, die/der zudem radial beabstandet vom Speiser angeordnet ist. Die durch den Speiser oder einen Einlauf in die Gießform eingespeiste Gießschmelze kann beispielsweise in dieser Nut zu einer umlaufenden Dichtrippe erstarren, deren innere Flanke abdichtend an einer entsprechenden Innenflanke der Nut anliegt. Während der Erstarrung schrumpft vor allem bei unterschiedlichen Wärmeausdehnungskoeffizienten, wie zum Beispiel zwischen einer Aluminiumschmelze und einer Stahlkokille, das Gussstück auf die Nutflanke auf. Bei einer typischerweise aus Stahl gebildeten Bodenform bewirkt die hohe Wärmeleitfähigkeit des Stahls eine schnelle Abkühlung und Erstarrung der Schmelze an den Kontaktstellen, die zur gerichteten Erstarrung unter Ausbildung eines feinen, kolumnar-stengelig erstarrten Gefüges führen kann. Der noch flüssige Teil der Gießschmelze wird durch den Flächenkontakt zwischen beiden Flanken auch bei einer bevorzugten, aber nicht notwendigen Druckbeaufschlagung der Schmelze durch den Speiser in Position gehalten und an einem vorzeitigen Austreten aus der Bodenkokille gehindert. Weiterhin wirkt die Nutfläche als druckdichte Fläche bei einer Druckbeaufschlagung durch den Speiser. Dies ist besonders dann vorteilhaft, wenn durch die gute Wärmeisolierung des Speisermaterials die Schmelze im Speiser noch keine stabile Randschale gebildet hat und somit die flüssige Schmelze durch die Druckbeaufschlagung durch den Speiser poröse Einlegeteile zum Beispiel zur Muldenrandbewehrung infiltrieren kann. Während sich besonders beim Infiltrieren von porösen Einlegeteilen eine Druckbeaufschlagung der Schmelze als vorteilhaft erwiesen hat und bevorzugt wird, kann die Ausbildung einer Brennraummulde in einem aufgeschrumpften Werkstück auch ohne Druckbeaufschlagung erfolgen und erfindungsgemäß durch schnelle Abkühlung eine gerichtete Erstarrung bewirken.The invention is therefore based on the basic idea of supplementing a casting base used in the casting process by a preferably annular groove encircling the feeder or a preferably annular collar encircling the feeder, which collar is also arranged radially spaced from the feeder. The casting melt fed by the feeder or an inlet into the casting mold can, for example, solidify in this groove to form a circumferential sealing rib, the inner flank of which lies sealingly against a corresponding inner flank of the groove. During solidification, the casting shrinks onto the groove flank, especially when there are different coefficients of thermal expansion, such as between an aluminum melt and a steel mold. In the case of a bottom shape typically made of steel, the high thermal conductivity of the steel causes the melt to cool and solidify rapidly at the contact points, which can lead to directional solidification with the formation of a fine, columnar, solidified structure. The still liquid part of the casting melt is held in position by the surface contact between the two flanks even when the melt is pressurized by the feeder, but is preferred but not necessary, and exits prematurely the bottom mold hindered. Furthermore, the groove surface acts as a pressure-tight surface when pressure is applied by the feeder. This is particularly advantageous if, due to the good thermal insulation of the feeder material, the melt in the feeder has not yet formed a stable edge shell and the liquid melt can thus infiltrate porous inserts, for example for reinforcement of the trough edge, due to the pressurization by the feeder. While pressurization of the melt has proven to be advantageous and is preferred, particularly when infiltrating porous inserts, the formation of a combustion chamber trough in a shrunk-on workpiece can also take place without pressurization and, according to the invention, cause directional solidification by rapid cooling.

Von besonderem Vorteil bei dem Gießwerkzeug ist dabei, dass die umlaufende Nut bzw. der umlaufende Kragen vom Speiser radial beabstandet und von diesem getrennt angeordnet ist, so dass der Speiser an sich beim Erstarren der Gießschmelze nicht durch Aufschrumpfen der Gießschmelze belastet wird, wie dies beispielsweise bei dem Speiser aus der DE 10 2004 052 231 A1 der Fall ist.It is particularly advantageous in the case of the casting tool that the circumferential groove or collar is radially spaced from the feeder and is arranged separately therefrom, so that the feeder itself is not burdened by shrinking of the pouring melt when the pouring melt solidifies, as is the case, for example at the feeder from the DE 10 2004 052 231 A1 the case is.

Das Gießwerkzeug für einen Kolben umfasst dabei die erwähnte Gießform zum Formen des Kolbens aus der Gießschmelze, den Gießboden mit dem zentral angeordneten Speiser zum Speisen der Gießschmelze in die Gießform und eine in den Speiser mündende Druckgasleitung zum Komprimieren der Gießschmelze innerhalb der Gießform. In dem Gießboden ist dabei wahlweise die um den Speiser umlaufende und zu diesem radial beabstandete, vorzugsweise ringförmige, insbesondere kreisringförmige Nut und/oder der um den Speiser umlaufende und zu diesem radial beabstandete, vorzugsweise ringförmige, insbesondere kreisringförmige Kragen vorgesehen. Die Nut weist eine innere Nutflanke zum Formen der Gießschmelze zu einer ringförmigen Dichtrippe dergestalt auf, dass eine innere Rippenflanke der Dichtrippe abdichtend an der inneren Nutflanke anliegt, wenn die Gießschmelze in der Nut erstarrt, wogegen der Kragen eine äußere Kragenflanke zum Formen der Gießschmelze zu einer ringförmigen Dichtnut dergestalt besitzt, dass eine äußere Nutflanke der Dichtnut abdichtend an der äußeren Kragenflanke anliegt, wenn die Gießschmelze erstarrt. Beiden komplementären Ausführungsformen ist dabei gemein, dass bei einem Erstarren der Gießschmelze keine Belastung auf den Speiser, insbesondere den Speiserkragen wie aus DE 10 2004 052 231 A1 bekannt, ausgeübt wird und keine vorzeitige Erstarrung im Speiser stattfindet.The casting tool for a piston comprises the above-mentioned casting mold for shaping the piston from the casting melt, the casting base with the centrally arranged feeder for feeding the casting melt into the casting mold and a compressed gas line opening into the feeder for compressing the casting melt within the casting mold. In the pouring bottom, there is optionally provided the circumferential, preferably ring-shaped, in particular circular groove around the feeder and radially spaced from it and / or the preferably annular, in particular circular, collar surrounding and circumferential to the feeder. The groove has an inner groove flank for shaping the casting melt into an annular sealing rib in such a way that an inner rib flank of the sealing rib lies sealingly against the inner groove flank when the casting melt solidifies in the groove, whereas the collar has an outer collar flank for shaping the casting melt into one annular sealing groove has that an outer groove flank of the sealing groove lies sealingly against the outer collar flank when the casting melt solidifies. Both complementary embodiments have in common that when the casting melt solidifies, there is no load on the feeder, in particular the feeder collar DE 10 2004 052 231 A1 is known, exercised and there is no premature solidification in the feeder.

Zur Realisierung einer vorteilhaften Leichtbauweise des Kolbens kommt dabei etwa die Verwendung einer geeigneten Aluminiumlegierung als Gießschmelze in Betracht. Durch die Wahl spezifischer Legierungselemente, die in das durch Schmelzen verflüssigte Aluminium eingebracht werden, lassen sich Eigenschaften wie Härte, Vibrationsabsorbtion, Zähigkeit sowie Zerspanbarkeit des Kolbenrohlings für die mechanische Bearbeitung gezielt beeinflussen.In order to realize an advantageous lightweight construction of the piston, the use of a suitable aluminum alloy as a casting melt can be considered. The choice of specific alloying elements that are introduced into the aluminum liquefied by melting enables properties such as hardness, vibration absorption, toughness and machinability of the piston blank to be influenced in a targeted manner for mechanical processing.

Wegen ihrer Dünnflüssigkeit, geringen Schwindung und anderer positiver Gießeigenschaften hat sich beispielsweise eine Aluminium-Silizium-Legierung als leichtmetallische Gießschmelze bewährt, die ihr Eutektikum bei einem Masseanteil von annähernd 12% Silizium aufweist. Für das vorgeschlagene Verfahren empfiehlt sich hier gleichwohl ein untereutektisches oder auch leicht übereutektisches Mischungsverhältnis, das der resultierenden Aluminiumlegierung einen Erstarrungsbereich verleiht, in dem neben der Gießschmelze bereits auch ein kleiner Anteil fester Phasen vorliegt. Die erfindungsgemäße Dichtwirkung der erstarrenden Rippe wird auf diesem Wege frühzeitig erzielt. Auch die Beimischung eines Massenanteils von bis zu 6 % Kupfer, bis zu 3% Nickel und bis zu 1% Magnesium mag als zielführend erachtet werden, um die Festigkeit des Kolbenrohlings zusätzlich zu erhöhen. Alle Legierungsanteile sind in Gewichts-% angegeben.Because of its thin liquid, low shrinkage and other positive casting properties, an aluminum-silicon alloy, for example, has proven itself as a light-metal casting melt which has its eutectic with a mass fraction of approximately 12% silicon. For the proposed method, a hypereutectic or slightly hypereutectic mixture ratio is nevertheless recommended, which gives the resulting aluminum alloy a solidification range in which a small proportion of solid phases is already present in addition to the casting melt. The sealing effect of the solidifying rib according to the invention is achieved early in this way. The addition of a mass fraction of up to 6% copper, up to 3% nickel and up to 1% magnesium may also be considered to be expedient in order to additionally increase the strength of the piston blank. All alloy proportions are given in% by weight.

Die Erfindung beruht auf dem allgemeinen Gedanken, bei einem Verfahren zur Herstellung eines Kolbens mittels eines mehrteiligen Gießwerkzeugs, eine Gießschmelze über einen separaten Einlauf des Gießwerkzeugs einzufüllen, wobei die Gießschmelze mittels einer in den Speiser mündenden Druckgasleitung innerhalb des Gießbodens mit Druck beaufschlagt wird. Dabei wird das infolge der Schwindung der erstarrenden Schmelze und der Infiltration ggfs. vorhandener poröser Einlegeteile fehlende Volumen aus dem Speiser in die Gießform nachgeliefert. Die Gießschmelze erstarrt dabei in einer den Speiser in dem Gießboden umlaufenden und von diesem radial beabstandeten Nut derart zu einer ringförmigen Dichtrippe, dass eine innere Rippenflanke der Dichtrippe abdichtend an einer inneren Nutflanke der Nut vom Kolbengießwerkzeug anliegt. Alternativ dazu kann an dem Gießboden anstelle der Nut oder zusätzlich zu dieser auch ein Kragen vorgesehen sein, sodass die Gießschmelze an diesem umlaufenden und von dem Speiser radial beabstandeten Kragen derart zu einer ringförmigen Dichtnut erstarrt, dass eine äußere Nutflanke der Dichtnut abdichtend an einer äußeren Kragenflanke des Kragens des Kolbengießwerkzeugs anliegt. Wenigstens ein Einlegeteil wird dabei in die Gießform eingelegt und mittels auf die Gießschmelze ausgeübten Druckes infiltriert, wobei die Infiltration durch Erzeugen eines Unterdrucks mittels Saugleitungen unterstützt wird.The invention is based on the general idea of filling a casting melt via a separate inlet of the casting tool in a method for producing a piston by means of a multi-part casting tool, the Casting melt is pressurized by means of a compressed gas line opening into the feeder within the casting floor. The missing volume due to the shrinkage of the solidifying melt and the infiltration of any porous inserts that may be present is subsequently supplied from the feeder into the casting mold. The pouring melt solidifies in a groove encircling the feeder in the casting base and radially spaced therefrom into an annular sealing rib in such a way that an inner rib flank of the sealing rib lies sealingly against an inner groove flank of the groove from the piston casting tool. As an alternative to this, a collar can also be provided on the casting base instead of or in addition to the groove, so that the casting melt solidifies to form an annular sealing groove on this circumferential collar which is radially spaced from the feeder in such a way that an outer groove flank of the sealing groove seals on an outer collar flank the collar of the piston mold. At least one insert is placed in the casting mold and infiltrated by means of pressure exerted on the casting melt, the infiltration being supported by generating a negative pressure by means of suction lines.

Beiden Ausführungsformen ist dabei gemein, dass bei einem Erstarren der Gießschmelze keine mechanische Belastung auf den Speiser durch Aufschrumpfen ausgeübt wird, sondern sich das aufgeschrumpfte Gussstück durch eine über die Dichtfläche ausgeübte Druckkraft unmittelbar am Gießboden abstützt und dabei entlang der Dichtfläche eine Abdichtung bewirkt.Both embodiments have in common that when the casting melt solidifies, no mechanical stress is exerted on the feeder by shrinking on, but the shrunk-on casting is supported directly on the casting base by a pressure force exerted on the sealing surface and thereby seals along the sealing surface.

Eine besonders günstige Ausführung ergibt sich dann, wenn der Kragen der Bodenform bereits möglichst konturnah zur Form der späteren Verbrennungsmulde, insbesondere des Muldenrandes und -halses ausgeführt wird. Durch das Einbringen von Kühlkanälen im Gießboden nahe der Nut oder dem Kragen und durch eine entsprechende Kühlung in Verbindung mit dem Flächenkontakt an der Dichtfläche unter dem Aufschrumpfdruck kann der Wärmeentzug aus der Schmelze beschleunigt werden. Dies führt in der Umgebung der Kontaktfläche zu einer verbesserten Gefügeausprägung und dadurch höheren Gussteilqualität durch die beschleunigte Erstarrung. Ferner ermöglicht die schnellere Erstarrung eine frühere Druckbeaufschlagung zur besseren Infiltration von porösen Einlegeteilen.A particularly favorable design results when the collar of the bottom shape is already as close as possible to the shape of the later combustion bowl, in particular the bowl rim and bowl. By introducing cooling channels in the casting floor near the groove or the collar and by appropriate cooling in conjunction with the surface contact on the sealing surface under the shrinkage pressure, the heat removal from the melt can be accelerated. This leads to an improved in the vicinity of the contact area Structure and thus higher casting quality due to the accelerated solidification. Furthermore, the faster solidification enables earlier pressurization for better infiltration of porous inserts.

In einer bevorzugten Ausführungsform wird das vorgeschlagene Herstellungsverfahren dabei als Schwerkraftkokillen- oder Niederdruckgussverfahren unter einem Druck zwischen 0,3 bar und 20 bar durchgeführt. Bei gegenüber zweckähnlichen Sandgussverfahren verringertem Platzbedarf wird auf diesem Wege eine weitgehende Vollmechanisierung mittels geeigneter Roboter ermöglicht, was die Gießleistung beträchtlich erhöhen kann.In a preferred embodiment, the proposed production process is carried out as a gravity mold or low-pressure casting process under a pressure between 0.3 bar and 20 bar. In the case of a reduced space requirement compared to purpose-based sand casting processes, extensive full mechanization by means of suitable robots is made possible in this way, which can considerably increase the casting performance.

Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.Further important features and advantages of the invention result from the subclaims, from the drawings and from the associated description of the figures with reference to the drawings.

Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It goes without saying that the features mentioned above and those yet to be explained below can be used not only in the combination specified in each case, but also in other combinations or on their own without departing from the scope of the present invention.

Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen.Preferred exemplary embodiments of the invention are illustrated in the drawings and are explained in more detail in the following description, the same reference symbols referring to the same or similar or functionally identical components.

Es zeigen, jeweils schematisch

Fig. 1
eine Schnittdarstellung durch ein erfindungsgemäßes Gießwerkzeugs gemäß einer ersten Ausführungsform, mit radial außen liegender Nut im Gießboden des Kolbengießwerkzeuges,
Fig. 2
eine Schnittdarstellung durch ein erfindungsgemäßes Gießwerkzeugs gemäß einer zweiten Ausführungsform, mit radial innen liegender Nut im Gießboden des Kolbengießwerkzeuges,
Fig. 3
eine Schnittdarstellung durch ein erfindungsgemäßes Gießwerkzeugs gemäß einer dritten Ausführungsform, mit radial außenliegendem Ringkragen im Gießboden des Kolbengießwerkzeuges , der Ringkragen kann analog Figur 2 auch innenliegend ausgeführt werden
Fig. 4a
eine Detaildarstellung A aus Fig. 1 und 2,
Fig. 4b
eine Detaildarstellung B aus Fig. 3,
Fig. 5
eine Darstellung wie in Fig. 1, jedoch mit porösem Einlegeteil,
Fig. 6
eine Darstellung wie in Fig. 2, jedoch mit porösem Einlegeteil,
Fig. 7
eine Darstellung wie in Fig. 3, jedoch mit porösem Einlegeteil.
Fig. 8
eine der Fig. 3 mit Ringkragen im Gießboden ähnliche Darstellung, in der eine durch den Ringkragen vorgegossene Muldenform eingezeichnet ist.
It shows, each schematically
Fig. 1
2 shows a sectional view through a casting tool according to the invention in accordance with a first embodiment, with a radially outer groove in the casting base of the piston casting tool,
Fig. 2
2 shows a sectional illustration through a casting tool according to the invention in accordance with a second embodiment, with a radially inner groove in the casting base of the piston casting tool,
Fig. 3
a sectional view through an inventive casting tool according to a third embodiment, with a radially outer ring collar in the casting bottom of the piston casting tool, the ring collar can be analog Figure 2 can also be carried out inside
Fig. 4a
a detailed display A. 1 and 2 ,
Fig. 4b
a detailed representation B. Fig. 3 ,
Fig. 5
a representation like in Fig. 1 , but with a porous insert,
Fig. 6
a representation like in Fig. 2 , but with a porous insert,
Fig. 7
a representation like in Fig. 3 , but with a porous insert.
Fig. 8
one of the Fig. 3 with ring collar in the casting floor similar representation, in which a trough shape is drawn by the ring collar.

Entsprechend den Fig. 1 bis 3 und 5 bis 8, weist ein erfindungsgemäßes Gießwerkzeug 1 für einen Kolben 2 eine Gießform 3 zum Formen des Kolbens 2 aus einer Gießschmelze 4 auf (vgl. Fig. 2). Die Gießform 3 besitzt einen Gießboden 5 mit einem vorzugsweise zentral angeordneten Speiser 6 zum Speisen der Gießschmelze 4 in die Gießform 3 und eine in den Speiser 6 mündende Druckgasleitung 7 zum Komprimieren der Gießschmelze 4 innerhalb der Gießform 3 (vgl. Fig. 2). Der Speiser kann beispielsweise aus Keramik ausgebildet sein. Gemäß der Erfindung ist nun eine in dem Gießboden 5 angeordnete, um den Speiser 6 ringförmig umlaufende und zu diesem radial beabstandete Nut 8 vorgesehen ist, mit einer inneren Nutflanke 9 (vgl. Fig. 4a) zum Formen der Gießschmelze 4 zu einer ringförmigen Dichtrippe 10 dergestalt, dass eine innere Rippenflanke 11 der Dichtrippe 10 abdichtend an der inneren Nutflanke 9 anliegt, wenn die Gießschmelze 4 in der Nut 8 erstarrt. Alternativ (oder zusätzlich) hierzu kann auch ein in dem Gießboden 5 angeordneter, um den Speiser 6 ringförmig umlaufender und zu diesem radial beabstandeter Ringkragen 12 vorgesehen sein (vgl. Fig. 3, 7 und 8), mit einer äußeren Kragenflanke 13 zum Formen der Gießschmelze 4 zu einer ringförmigen Dichtnut 14 dergestalt, dass eine äußere Nutflanke 15 der Dichtnut 14 abdichtend an der äußeren Kragenflanke 13 anliegt, wenn die Gießschmelze 4 unter Schwindung erstarrt. Dies bietet den großen Vorteil, dass der Speiser 6 beim Erstarren der Gießschmelze 4 nicht durch ein Schrumpfen der Gießschmelze 4 belastet wird. Zugleich wird einer vorzeitigen Ablösung des Kolbens 2 vorgebeugt. Die Dichtrippe 10 bzw. die Dichtflächen der Dichtnut 14 werden nach dem Entformen des Kolbens 2 beim Herstellen der endgültigen Form des Kolbenbodens abgedreht.According to the 1 to 3 and 5 to 8 , a casting tool 1 according to the invention for a piston 2 has a casting mold 3 for forming the piston 2 from a casting melt 4 (cf. Fig. 2 ). The casting mold 3 has a casting base 5 with a preferably centrally arranged feeder 6 for feeding the casting melt 4 into the casting mold 3 and a pressurized gas line 7 opening into the feeder 6 for compressing the casting melt 4 inside the casting mold 3 (cf. Fig. 2 ). The feeder can be made of ceramic, for example. According to the invention, a groove 8, which is arranged in the casting base 5 and has a ring around the feeder 6 and is radially spaced therefrom, is provided with an inner groove flank 9 (cf. Fig. 4a ) for molding the pouring melt 4 into an annular sealing rib 10 such that an inner rib flank 11 of the sealing rib 10 lies sealingly against the inner groove flank 9 when the pouring melt 4 solidifies in the groove 8. As an alternative (or in addition) to this, an annular collar 12 which is arranged in the casting base 5, surrounds the feeder 6 in a ring shape and is radially spaced from this can be provided (cf. Fig. 3 , 7 and 8th ), with an outer collar flank 13 for shaping the pouring melt 4 into an annular sealing groove 14 such that an outer groove flank 15 of the sealing groove 14 lies sealingly against the outer collar flank 13 when the pouring melt 4 solidifies with shrinkage. This offers the great advantage that the feeder 6 is not burdened by a shrinkage of the pouring melt 4 when the pouring melt 4 solidifies. At the same time, premature detachment of the piston 2 is prevented. The sealing rib 10 or the sealing surfaces of the sealing groove 14 are turned off after the piston 2 has been removed from the mold when producing the final shape of the piston crown.

Gemäß den Fig. 1 sowie 5 ist dabei die Nut 9 bzw. der Kragen 12 radial außen angeordnet, wogegen sie gemäß den Fig. 2 und 6 radial innen angeordnet ist, das heißt einen geringeren Radialabstand zum Speiser 6 aufweist, als die in den Fig. 1 und 5 gezeigte Nut 9. Alternativ hierzu kann anstelle der Nut 9 selbstverständlich auch ein Ringkragen 12 vorgesehen sein, wie dies in den Fig. 3 und 7, dargestellt ist. Auch hier ist denkbar, dass der Ringkragen 12 weiter außen oder weiter innen angeordnet ist, wobei immer ein Abstand zum Speiser 6 besteht.According to the Fig. 1 and 5, the groove 9 or the collar 12 is arranged radially on the outside, whereas it is according to the Fig. 2 and 6 is arranged radially on the inside, that is to say has a smaller radial distance from the feeder 6 than that in FIGS Fig. 1 and 5 shown groove 9. Alternatively, instead of the groove 9 can of course an annular collar 12 may also be provided, as shown in FIGS Fig. 3 and 7 , is shown. It is also conceivable here that the ring collar 12 is arranged further out or further in, there being always a distance from the feeder 6.

Die Nutflanke 9 oder die Kragenflanke 13 können dabei einen Neigungswinkel α zwischen 3° und 20°, vorzugsweise von 10°bis 15°, gegenüber einer Lotrechten 16 auf eine Oberfläche des Gießbodens 5 aufweisen. Einerseits ist der Neigungswinkel α klein genug zu wählen, um im Hinblick auf den Reibungskoeffizienten einen sicheren Halt des aufgeschrumpften Gussstücks an der Dichtfläche zu gewährleisten. Andererseits soll der Neigungswinkel α noch ausreichend groß sein, um ein leichtes Ausschalen des fertig gegossenen Kolbens 2 ermöglichen. Diese geometrische Gestalt gewährleistet zudem, dass die nach dem Aushärten der Gießschmelze 4 gebildete Dichtrippe 10 bzw. Dichtnut 14 ihrerseits eine innere Rippenflanke 11 bzw. äußere Nutflanke 15 definiert, die flächig an der besagten inneren Nutflanke 9 oder äußeren Kragenflanke 13 anliegt und den Gießboden 5 bzw. die Bodenkokille somit gegen ein vorzeitiges und unerwünschtes Austreten des Gießdrucks abdichtet und damit eine bestimmungsgerechte Infiltration der porösen Einlegeteile ermöglicht.The groove flank 9 or the collar flank 13 can have an inclination angle α between 3 ° and 20 °, preferably from 10 ° to 15 °, with respect to a perpendicular 16 on a surface of the casting floor 5. On the one hand, the angle of inclination α is to be chosen small enough to ensure that the shrunk-on casting is held securely on the sealing surface with regard to the coefficient of friction. On the other hand, the angle of inclination α should still be sufficiently large to enable the cast piston 2 to be easily stripped out. This geometrical shape also ensures that the sealing rib 10 or sealing groove 14 formed after the casting melt 4 has hardened itself defines an inner rib flank 11 or outer groove flank 15, which lies flat against said inner groove flank 9 or outer collar flank 13 and the casting base 5 or the bottom mold thus seals against a premature and undesired escape of the casting pressure and thus enables the porous inserts to be infiltrated in accordance with the intended purpose.

Mittels des Gießwerkzeugs 1 lässt sich ein Kolben 2 wie folgt herstellen: Zunächst wird die Gießschmelze 4 über den Einlauf 21 in den Gießboden 5 und darüber in die Gießform 3 des Gießwerkzeugs 1 eingespeist, wobei die Gießschmelze 4 mittels der in den Speiser 6 mündenden Druckgasleitung 7 innerhalb des Gießbodens 5 mit Druck beaufschlagt wird, um eine Lunkerbildung zu vermeiden und um poröse Eingießteile zu infiltrieren. Beim Eingießen der Gießschmelze 4 in die Gießform 3 tritt diese auch in die den Speiser 6 in dem Gießboden 5 ringförmig umlaufende und von diesem radial beabstandete Nut 8 und erstarrt zu einer ringförmigen Dichtrippe 10, wobei sich die jeweils innere Rippenflanke 11 der Dichtrippe 10 dicht an der inneren Nutflanke 9 der Nut 8 anlegt (vgl. die Fig. 1, 2, 4a, 5 und 6). Alternativ hierzu kann die Gießschmelze 4 auch an dem den Speiser 6 in dem Gießboden 5 ringförmig umlaufenden und von diesem radial beabstandeten Ringkragen 12 derart unter Bildung einer ringförmigen Dichtnut 14 erstarren, dass eine äußere Nutflanke 15 der Dichtnut 14 abdichtend an der äußeren Kragenflanke 13 des Ringkragens 12 anliegt.A piston 2 can be produced by means of the casting tool 1 as follows: First, the casting melt 4 is fed via the inlet 21 into the casting base 5 and above into the casting mold 3 of the casting tool 1, the casting melt 4 using the compressed gas line 7 opening into the feeder 6 is pressurized within the casting base 5 in order to avoid the formation of voids and to infiltrate porous pouring parts. When the casting melt 4 is poured into the casting mold 3, it also enters the groove 8, which surrounds the feeder 6 in the casting base 5 in an annular manner and is radially spaced therefrom, and solidifies to form an annular sealing rib 10, the respective inner rib flank 11 of the sealing rib 10 being tight the inner groove flank 9 of the groove 8 (see 1, 2 , 4a, 5 and 6 ). As an alternative to this, the casting melt 4 can also solidify on the ring collar 12, which surrounds the feeder 6 in the casting floor 5 in a ring shape and is radially spaced therefrom, forming an annular sealing groove 14 in such a way that an outer groove flank 15 of the sealing groove 14 seals against the outer collar flank 13 of the ring collar 12 is present.

Die Gießschmelze 4 soll dabei nach dem Füllen der Gießform 3 und vor der vollständigen Erstarrung der Gießschmelze mit Druck beaufschlagt werden, frühestens nach dem Füllen der Gießform 3 und nach dem teilweise Erstarren einer Randschale des Kolbens sowie Teilbereiche des Einlaufs 21. Um besonders hoch belastete Bereiche, wie beispielsweise einen Muldenrand 17 oder einen Ringträgerbereich des Kolbens verstärken zu können, kann vorgesehen sein, dort ein poröses Einlegeteil 18 (vgl. Fig. 5 bis 8) einzulegen. Darüber hinaus kann der Kolben weitere, nicht zu infiltrierende Einlegeteile enthalten, wie zum Beispiel Ringträger oder Salzkerne zur Bildung von Kühlkanälen.The casting melt 4 should be pressurized after the casting mold 3 has been filled and before the casting melt has completely solidified, at the earliest after the casting mold 3 has been filled and after the partial solidification of an edge shell of the piston and partial areas of the inlet 21. Around particularly highly stressed areas , such as being able to reinforce a trough edge 17 or a ring carrier area of the piston, it can be provided that there is a porous insert 18 (cf. 5 to 8 ) to insert. In addition, the piston can contain other inserts that are not to be infiltrated, such as ring carriers or salt cores for forming cooling channels.

Das Einlegeteil 18, insbesondere ein Ringträger oder ein Muldenrandschutz, kann beispielsweise porös sein und mittels auf die Gießschmelze 4 ausgeübtem Druck infiltriert werden. Gleichzeitig kann die Infiltration durch Erzeugen eines Unterdrucks mittels Saugleitungen 20 unterstützt werden. Für die Gießschmelze 4 kommt insbesondere eine naheutektische Aluminiumlegierung in Betracht, die einen Masseanteil von 10 % bis 14% Silizium und/oder einen weiteren Masseanteil von bis zu 6 % Kupfer, bis zu 3% Nickel und/oder bis zu 1% Magnesium umfasst. Außerdem können zur Steigerung der Warmfestigkeit weitere Elemente, wie z.B. V und Zr (jeweils <0,2%), und zur Kornfeinung z.B. Ti (<0,2%) und P (<0,01 %) beigefügt werden. Als vorteilhaft für die Infiltrierbarkeit der porösen Einlegeteile hat sich eine naheutektische oder sogar untereutektische Auslegung der AlSi-Legierungen gezeigt. Außerdem wird eine Gießschmelze bevorzugt, die weitgehend frei von Verunreinigungen durch niedrigschmelzende Elemente mit einem Schmelzpunkt <490°C, wie z.B. Pb, Bi, Sn, Zn ist, wobei die Konzentrationen dieser Elemente einzeln jeweils unterhalb von 0,01% liegen.The insert 18, in particular a ring carrier or a trough edge protector, can for example be porous and be infiltrated by means of pressure exerted on the casting melt 4. At the same time, the infiltration can be supported by generating a negative pressure by means of suction lines 20. A near-eutectic aluminum alloy is particularly suitable for the casting melt 4, which comprises a mass fraction of 10% to 14% silicon and / or a further mass fraction of up to 6% copper, up to 3% nickel and / or up to 1% magnesium. In addition, other elements such as V and Zr (each <0.2%) can be added to increase the heat resistance, and Ti (<0.2%) and P (<0.01%) for grain refinement. A near-eutectic or even under-eutectic design of the AlSi alloys has proven to be advantageous for the infiltrability of the porous inserts. In addition, a casting melt is preferred that is largely free of contamination by low-melting elements with a Melting point <490 ° C, such as Pb, Bi, Sn, Zn, the concentrations of these elements individually being below 0.01%.

Das Gießen der Kolben 2 erfolgt im Schwerkraftkokillenguss- oder Niederdruckgussverfahren, die Erstarrung der Gießschmelze in der Gießform insbesondere unter einem Druck zwischen 0,3 bar und 20 bar.The pistons 2 are cast by gravity die casting or low-pressure casting, and the casting melt solidifies in the casting mold, in particular under a pressure between 0.3 bar and 20 bar.

In an sich bekannter Weise wird über den Einlauf 21 die beschriebene Gießschmelze 4 in das Gießwerkzeug 1 eingefüllt, so dass sich die freien Bereiche der Gießform 3 um einen Kern 19, der später das kleine Pleuelauge des Kolbens 2 bildet, herum mit Gießschmelze 4 auffüllen. Die spezielle Ausgestaltung von Gießboden 5 und Speiser 6 erlaubt die Bildung der den Speiserinhalt in Position haltenden Dichtrippe 10 bzw. Dichtnut 14, wenn das Gießwerkzeug zur Realisierung kurzer Zykluszeiten verfahrensgemäß zu einem Zeitpunkt geöffnet wird, bei dem der Inhalt des Speisers 6 noch teilweise innen flüssig sein kann. Die stabilisierende Wirkung der Dichtrippe 10 bzw. Dichtnut 14 wird dabei durch die erfindungswesentliche, den Speiser 6 in dem Gießboden 5 umlaufende Nut 8 bzw. in der komplementären Ausführungsform durch den Ringkragen 12 unterstützt, innerhalb welcher die Gießschmelze 4 unter Ausbildung der ringförmigen Dichtrippe 10 bzw. Dichtnut 14 erstarrt.In a manner known per se, the described casting melt 4 is poured into the casting tool 1 via the inlet 21, so that the free areas of the casting mold 3 are filled with casting melt 4 around a core 19, which later forms the small connecting rod eye of the piston 2. The special design of the pouring base 5 and feeder 6 allows the formation of the sealing rib 10 or sealing groove 14, which holds the feeder content in position, if the casting tool is opened according to the method to achieve short cycle times at a time when the contents of the feeder 6 are still partially liquid inside can be. The stabilizing effect of the sealing rib 10 or sealing groove 14 is supported by the groove 8 encircling the feeder 6 in the casting base 5 or, in the complementary embodiment, by the annular collar 12, within which the casting melt 4 forms the annular sealing rib 10 or Sealing groove 14 solidifies.

Innerhalb des Speisers 6 kann die Gießschmelze 4 hierzu bis auf ein gewünschtes Maß ansteigen, so dass oberhalb der eingefüllten Gießschmelze 4 nach dem Beenden der Zuführung von Gießschmelze 4 innerhalb des Speisers 6 ein Freiraum entsteht, über den die Gießschmelze 4 mit einem Gasdruck zwischen 0,3 bar und 20 bar beaufschlagt wird. Als vorteilhaft hat sich gezeigt, den Gießboden 5 des Kolbengießwerkzeuges 1 so zu gestalten, dass der Speiser 6 im Gießboden 5 im Außendurchmesser durch eine Hülse 22 geführt wird, an die die Druckleitung 7 druckdicht angeflanscht wird. Das Gas zur Druckbeaufschlagung wird dem Speiser 6 über die Druckgasleitung 7 zugeführt, die während des Einfüllvorganges der Gießschmelze 4 gegenüber der Umgebung hin offen ist, so dass ein Druckausgleich stattfinden kann (vgl. Fig. 2). Die Druckgasleitung 7 ist der Einfachheit halber lediglich in Fig. 2 und der Einlauf 21 und die Hülse 22 sind nur in Fig. 8 eingezeichnet, wobei klar ist, dass diese auch in anderen Ausführungsformen vorhanden sein können.For this purpose, the pouring melt 4 can rise to a desired level within the feeder 6, so that above the poured pouring melt 4, after the supply of pouring melt 4 has ended, there is a free space within the feeder 6, via which the pouring melt 4 with a gas pressure between 0. 3 bar and 20 bar is applied. It has proven to be advantageous to design the casting base 5 of the piston casting tool 1 in such a way that the feeder 6 in the casting base 5 is passed through the outer diameter through a sleeve 22 to which the pressure line 7 is flanged in a pressure-tight manner. The gas for pressurization will fed to the feeder 6 via the compressed gas line 7, which is open to the environment during the pouring process of the casting melt 4, so that pressure equalization can take place (cf. Fig. 2 ). The compressed gas line 7 is only in for the sake of simplicity Fig. 2 and the inlet 21 and the sleeve 22 are only in Fig. 8 drawn in, it being clear that these may also be present in other embodiments.

Claims (7)

  1. Method for producing a piston (2) by means of a multipart casting die (1), in which
    - a casting melt (4) is introduced into a casting bed (5) of the casting die (1) via an inlet (21),
    characterised in that
    - the casting melt (4) solidifies in a preferably annular groove (8), which surrounds the riser (6) in the casting bed (5) and is spaced apart radially from the latter, into a preferably annular sealing rib (10), in that an inner rib flank (11) of the sealing rib (10) bears in a sealing manner on an inner groove flank (9) of the groove (8) and/or
    - the casting melt (4) solidifies on a preferably annular collar (12) surrounding the riser (6) in the casting bed (5) and spaced apart radially from the latter by forming a preferably annular sealing groove (14), in that an outer groove flank (15) of the sealing groove (14) bears in a sealing manner on an outer collar flank (13) of the collar (12),
    - at least one insert (18) is placed into the casting mould (3) and is infiltrated by pressure exerted on the casting melt (4),
    - the infiltration is supported by generating a negative pressure by means of suction lines (20).
  2. Method according to claim 1,
    characterised in that
    the groove (8) and/or the collar (12) is cooled by passing a cooling medium through channels which are arranged in the casting bed in the region of the groove (8) and/or the collar (12).
  3. Method according to claim 1 or 2,
    characterised in that
    the casting melt (4) is charged with pressure inside the casting bed (5).
  4. Method according to claim 3,
    characterised n that
    the casting melt (4) is pressurised after filling the casting mould (3) and after partial solidification by a pressure of between 0.35 bar and 20 bar.
  5. Method according to any of claims 1 to 4,
    characterised in that
    the casting melt (4) comprises an aluminium melt containing 10% to 14% by weight silicon and also up to 6% by weight copper, up to 3% by weight nickel and/or up to 1% by weight magnesium.
  6. Method according to claim 5,
    characterised in that
    impurities present in the casting melt (4) consist of low-melting elements with a melting point <490°C in an amount of less than 0.01%.
  7. Method according to any of claims 1 to 6,
    characterised in that
    the method is performed by a gravity die casting or low-pressure die casting method.
EP15741531.6A 2014-08-20 2015-07-21 Method for producing a piston for an internal combustion engine Active EP3183080B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15741531T PL3183080T3 (en) 2014-08-20 2015-07-21 Method for producing a piston for an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014216517.2A DE102014216517A1 (en) 2014-08-20 2014-08-20 Casting tool and method of manufacturing a piston for an internal combustion engine
PCT/EP2015/066598 WO2016026638A1 (en) 2014-08-20 2015-07-21 Casting tool and method for producing a piston for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP3183080A1 EP3183080A1 (en) 2017-06-28
EP3183080B1 true EP3183080B1 (en) 2020-06-03

Family

ID=53719766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15741531.6A Active EP3183080B1 (en) 2014-08-20 2015-07-21 Method for producing a piston for an internal combustion engine

Country Status (8)

Country Link
US (1) US11623272B2 (en)
EP (1) EP3183080B1 (en)
JP (1) JP6568930B2 (en)
CN (1) CN106573296B (en)
BR (1) BR112017002972B1 (en)
DE (1) DE102014216517A1 (en)
PL (1) PL3183080T3 (en)
WO (1) WO2016026638A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107598088A (en) * 2017-09-25 2018-01-19 泰州康乾机械制造有限公司 A kind of method for lifting thin-wall special-shaped aluminium alloy castings yield rate
USD872781S1 (en) 2018-04-13 2020-01-14 Foseco International Limited Breaker core
CN112719222A (en) * 2020-12-30 2021-04-30 安徽省恒泰动力科技有限公司 Double-horn-mouth ceramic fiber riser sleeve and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105980A1 (en) * 2003-05-29 2004-12-09 Kolbenschmidt K.K. Apparatus and method of producing fiber-reinforced aluminum alloy piston

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3566952A (en) * 1967-10-26 1971-03-02 Wyman Curtis Lane Pressure feeding of casting using a feeder head
FR2237712A1 (en) * 1973-07-16 1975-02-14 Peugeot & Renault Gravity die casting light alloys - using compressed air above molten metal in combined downstick and feeder
JPS5732869A (en) * 1980-08-08 1982-02-22 Toyota Motor Corp Pressure casting method
US4491168A (en) * 1981-01-13 1985-01-01 Imperial Clevite Inc. Wear resistant insert for cast lightweighted pistons and method of casting
IN155115B (en) * 1981-01-13 1985-01-05 Imp Clevite Inc
JPS5886968A (en) * 1981-11-20 1983-05-24 Izumi Jidosha Kogyo Kk Production of fiber reinforced aluminum alloy piston
JPH0347640U (en) * 1989-09-12 1991-05-02
CN2114521U (en) * 1991-12-05 1992-09-02 贾振玉 Gravity casting sequence crystalization piston metal mould
JP3212245B2 (en) * 1995-08-30 2001-09-25 マツダ株式会社 Casting method, casting apparatus and casting
DE19701085A1 (en) * 1997-01-15 1998-07-16 Kolbenschmidt Ag Casting engine piston using support ring
JP3126704B2 (en) * 1999-06-30 2001-01-22 マツダ株式会社 Casting method for castings with composite materials cast
DE29924140U1 (en) * 1999-07-09 2002-03-07 Al Sibai Faruk Device for gravity casting of castings
CN1152189C (en) * 2002-02-26 2004-06-02 刘毅 Aluminium piston of IC engine and its casting method
US7682469B2 (en) * 2002-07-22 2010-03-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Piston made of aluminum cast alloy and method of manufacturing the same
JP4217560B2 (en) * 2002-07-22 2009-02-04 昭和電工株式会社 Aluminum alloy continuous casting rod manufacturing equipment
JP2004351472A (en) * 2003-05-29 2004-12-16 Kolben Schmidt Kk Method for manufacturing piston made of fiber reinforced aluminum alloy
JP4237576B2 (en) * 2003-08-11 2009-03-11 富士重工業株式会社 Piston of internal combustion engine
DE102004052231A1 (en) * 2004-10-27 2006-05-11 Ks Kolbenschmidt Gmbh Method for series production of pistons for internal combustion engines under gas pressure
DE102004056519B4 (en) * 2004-11-24 2017-07-13 Mahle Gmbh Method for producing a piston for an internal combustion engine
DE102005027540A1 (en) * 2005-06-15 2006-12-28 Ks Kolbenschmidt Gmbh Shortening the cycle time in the series production of pistons for internal combustion engines
JP5916494B2 (en) * 2012-04-18 2016-05-11 日立オートモティブシステムズ株式会社 Manufacturing method of piston for internal combustion engine
JP5859395B2 (en) * 2012-07-27 2016-02-10 日立オートモティブシステムズ株式会社 Piston for internal combustion engine and method for manufacturing the piston
CN102943192B (en) * 2012-10-29 2014-05-07 中国兵器工业第五二研究所 Aluminum piston manufacturing method
JP6028546B2 (en) * 2012-11-30 2016-11-16 いすゞ自動車株式会社 Aluminum alloy
CN203900447U (en) * 2014-06-06 2014-10-29 沧州福沃德精工机械有限公司 Die for casting insert ring inner-cooling piston

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105980A1 (en) * 2003-05-29 2004-12-09 Kolbenschmidt K.K. Apparatus and method of producing fiber-reinforced aluminum alloy piston

Also Published As

Publication number Publication date
US20180361470A1 (en) 2018-12-20
US11623272B2 (en) 2023-04-11
DE102014216517A1 (en) 2016-02-25
PL3183080T3 (en) 2020-11-02
JP2017528324A (en) 2017-09-28
EP3183080A1 (en) 2017-06-28
WO2016026638A1 (en) 2016-02-25
JP6568930B2 (en) 2019-08-28
BR112017002972B1 (en) 2021-08-31
BR112017002972A2 (en) 2017-12-12
CN106573296B (en) 2020-10-27
CN106573296A (en) 2017-04-19

Similar Documents

Publication Publication Date Title
EP1929146B1 (en) Method for producing a piston for an internal combustion engine and the thus produced piston
EP1815124B1 (en) Method for producing a piston for a combustion engine
EP3109337B1 (en) Method for the preparation of tial forged components
EP2091678A1 (en) Casting mould for casting a cast part and use of such a casting mould
DE112009000915B4 (en) Method of die casting an aluminum or magnesium alloy article using a sacrificial sleeve
WO2016087237A1 (en) Method for producing a lost casting core, casting core and cooling channel piston produced by using such a casting core
EP3183080B1 (en) Method for producing a piston for an internal combustion engine
EP3337968A1 (en) Steel or aluminium piston for a combustion engine, as well as method for producing at least one part of a steel or aluminium piston for a combustion engine
DE10058428B4 (en) Cylinder liner and cylinder block and method for producing the same
EP0872295A1 (en) Casting mould and method for the production of hollow castings and hollow castings
WO2017032624A1 (en) Method for producing a piston
WO2009112177A1 (en) Cylinder crankcase, and method for the production thereof
DE102012108079B3 (en) Producing a salt core salt core useful as a hollow space holder for die-casting process comprises introducing a liquid salt mixture into a metal mold, and solidifying a part of the salt mixture on walls of the metal mold
EP2340901B9 (en) Method for making a cast component
DE102007010839B4 (en) A method of manufacturing a piston and piston having an annular reinforcement comprising a plurality of reinforcing segments
DE102010051356B4 (en) Method for producing an insert for the creation of a cavity in a cast component and insert
EP1779943B1 (en) Method and device for casting light metal crankcases in sand moulds
WO2014053414A1 (en) Method for the production of salt cores for producing workpieces by casting
DE102007060502B4 (en) Method for producing a cylinder crankcase
WO2013072151A1 (en) Casting mould for a piston
DE102007052498A1 (en) Manufacturing forged piston for internal combustion engine with piston shaft and piston head, comprises inserting holder for insert parts into a casting mold, fixing the insert part in the holder by retaining means, and casting a cast part
EP1498197A1 (en) Casting process for reciprocating-piston combustion engine block
DE102007003135B3 (en) Manufacturing multi-cylinder engine block and crank case, fastens metal strip around cylinder liner to assist location in mold used for casting block
DE102013105769A1 (en) Apparatus and method for die casting a crankcase
DE19621264B4 (en) Method for producing a cylinder liner

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015012719

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B22C0009060000

Ipc: B22C0009080000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 15/02 20060101ALI20200116BHEP

Ipc: B22D 27/13 20060101ALI20200116BHEP

Ipc: B22C 9/08 20060101AFI20200116BHEP

INTG Intention to grant announced

Effective date: 20200206

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1276499

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012719

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200903

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200904

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200903

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201003

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012719

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200803

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200721

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

26N No opposition filed

Effective date: 20210304

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200903

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200721

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1276499

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230720

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230714

Year of fee payment: 9

Ref country code: DE

Payment date: 20230719

Year of fee payment: 9