EP3175192A1 - Method for the cryogenic separation of air and air separation plant - Google Patents

Method for the cryogenic separation of air and air separation plant

Info

Publication number
EP3175192A1
EP3175192A1 EP15742185.0A EP15742185A EP3175192A1 EP 3175192 A1 EP3175192 A1 EP 3175192A1 EP 15742185 A EP15742185 A EP 15742185A EP 3175192 A1 EP3175192 A1 EP 3175192A1
Authority
EP
European Patent Office
Prior art keywords
air
pressure
pressure level
turbine
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP15742185.0A
Other languages
German (de)
French (fr)
Inventor
Tobias Lautenschlager
Dimitri GOLUBEV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP3175192A1 publication Critical patent/EP3175192A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04121Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04145Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/40Separating high boiling, i.e. less volatile components from air, e.g. CO2, hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Definitions

  • the invention relates to a method for the cryogenic separation of air in an air separation plant and a corresponding air separation plant according to the preambles of the independent claims.
  • Air separation plants have distillation column systems which can be designed, for example, as two-column systems, in particular as classic Linde double-column systems, but also as three-column or multi-column systems. In addition to the
  • gaseous oxygen GOX
  • liquid nitrogen LIN
  • Nitrogen, GAN ie the distillation columns for nitrogen-oxygen separation
  • distillation columns can be provided for obtaining further air components, in particular the noble gases krypton, xenon and / or argon.
  • distillation column systems are operated at different operating pressures in their respective distillation columns.
  • Known double column systems have, for example, a so-called high-pressure column (sometimes also referred to as
  • Pressure column called) and a so-called low pressure column.
  • the operating pressure of the high-pressure column is, for example, 4.3 to 6.9 bar, preferably about 5.0 bar.
  • the low pressure column is at an operating pressure of, for example, 1, 3 to 1, 7 bar, preferably about 1, 5 bar, operated.
  • the pressures given here and below are absolute pressures.
  • HAP high-air pressure
  • Distillationsklalensystems typically well above the operating pressure of the high pressure column is.
  • the pressure difference is at least 2 or 4 bar and preferably between 6 and 16 bar.
  • the pressure is at least twice as high as the operating pressure of the high-pressure column.
  • HAP methods are e.g. from EP 2 466 236 A1, EP 2 458 311 A1 and US Pat. No. 5,329,776 A. In HAP processes can be due to the greater compression of the
  • the compressed air quantity in the main air compressor can also be decoupled from the process air quantity.
  • process air so used for the actual rectification and fed into the high-pressure column.
  • process air so used for the actual rectification and fed into the high-pressure column.
  • Another part is relaxed to recover cold, whereby the amount of cold can be adjusted independently of the process air.
  • decoupling is not provided in all HAP methods.
  • Post-compressor are also known as MAC / BAC (Main Air
  • Compressor / Booster Air Compressor In a MAC / BAC process, therefore, not all of the feed air, but only a part is compressed to a pressure well above the highest operating pressure of the distillation column system.
  • the so-called internal compression can be used.
  • a liquid stream is taken from the distillation column system and at least partially brought to liquid pressure.
  • the liquid brought to pressure is heated in a main heat exchanger of the air separation plant against a heat transfer medium and evaporated or, in the presence of appropriate pressures, transferred from the liquid to the supercritical state.
  • the liquid stream may in particular be liquid oxygen, but also nitrogen or argon.
  • the internal compression is thus used to obtain appropriate gaseous printed products.
  • the advantage of internal compression processes is that corresponding fluids do not have to be compressed outside the air separation plant in a gaseous state, which often proves to be very complicated and / or requires considerable safety measures.
  • the internal compression is described in the literature cited above.
  • the collective term "liquefaction" is used for the transfer from the liquid to the supercritical or gaseous state.
  • the transition from the supercritical or gaseous to the liquid state, whose product is a clearly defined liquid, is referred to as "liquefaction”.
  • a heat transfer fluid is liquefied.
  • Heat transfer medium is usually formed by a part of the air separation plant air supplied. In order to efficiently heat and liquefy the stream brought to liquid pressure, this heat transfer medium must be due to
  • thermodynamic conditions have a higher pressure than the fluidly pressurized stream. Therefore, a correspondingly high-density power must be provided.
  • This is also referred to as "throttle flow", because it is conventionally by means of a relaxation valve ("throttle") relaxed, thereby at least partially liquefied and used in the
  • the present invention proposes a method for
  • common wave can be coupled to other expansion turbines or energy converters such as oil brakes, generators or compressors is set up to relax a gaseous or at least partially liquid stream.
  • expansion turbines may be designed for use in the present invention as a turboexpander. If a compressor is driven by one or more expansion turbines, but without externally, for example by means of an electric motor, supplied energy, the term “turbine-driven compressor” or alternatively “turbine booster” is used.
  • a “compressor” is a device that is capable of compressing at least one
  • Compressor is supplied to at least one final pressure at which this the
  • a compressor forms a structural unit, which, however, can have a plurality of “compressor stages” in the form of piston, screw and / or Schaufelrad- or turbine assemblies (ie axial or radial compressor stages). This also applies in particular to the "main (air) compressor” of an air separation plant, which is characterized by the fact that all or most of it is fed into the air separation plant
  • Air quantity ie the total feed air flow
  • a "secondary compressor” in which a part of the air quantity compressed in the main air compressor is brought to an even higher pressure in the MAC / BAC process, is often also of multi-stage design.
  • corresponding compressor stages are driven by means of a common drive, for example via a common shaft.
  • MAC / BAC processes use recompressors that are driven by externally supplied energy; in HAP processes, such recompressors are not.
  • turbine boosters are typically present in both cases, in particular in order to be able to make sensible use of shaft power released during the expansion for cooling purposes.
  • a "heat exchanger" serves for the indirect transfer of heat between
  • At least two e.g. in countercurrent flow such as a warm compressed air stream and one or more cold streams or a cryogenic liquid air product and one or more hot streams.
  • Heat exchangers may be formed from a single or multiple heat exchanger sections connected in parallel and / or in series, e.g. from one or more plate heat exchanger blocks.
  • a heat exchanger for example, the used in an air separation plant "main heat exchanger", thereby
  • pressure level and "temperature level”, causing the It should be stated that appropriate pressures and temperatures in a corresponding plant need not be used in the form of exact pressure or temperature values in order to realize the inventive concept. However, such pressures and temperatures typically range in certain ranges, such as ⁇ 1%, 5%, 10%, 20%, or even 50%
  • Corresponding pressure levels and temperature levels can be in disjoint areas or in areas that overlap one another.
  • pressure levels include unavoidable or expected pressure drops, for example, due to cooling effects.
  • temperature levels include unavoidable or expected pressure drops, for example, due to cooling effects.
  • the inventive method uses an air separation plant with a main air compressor, a main heat exchanger and a distillation column system with a operated at a first pressure level low pressure column and operated at a second pressure level high pressure column.
  • a feed air stream which comprises the entire feed air supplied to the air separation plant, is compressed in the main air compressor to a third pressure level, which is at least 2 bar, in particular
  • the third pressure level may for example also be twice the second pressure level.
  • a first portion is cooled at least once in the main heat exchanger and expanded in a first expansion turbine, starting from the third pressure level.
  • cooled at least once is understood here and below that a corresponding stream before and / or after the relaxation at least once at least through a section of
  • a second portion is treated similarly, ie also cooled at least once in the main heat exchanger and starting in a second expansion turbine relaxed from the third pressure level.
  • the second part is the so-called turbine flow, its relaxation takes place in order to provide additional cooling in a corresponding system and to be able to regulate this.
  • a third portion is further compressed to a fourth pressure level and then also cooled at least once in the main heat exchanger and expanded from the fourth pressure level.
  • the third portion is the so-called inductor current, which, as explained above, in particular the
  • Air of the first portion and / or the second portion and / or the third portion is then at the first and / or at the second pressure level in the
  • the entire air of the first portion is fed to the second pressure level in the high-pressure column.
  • the whole or part of the air of the second share may be on the first
  • Pressure level are fed into the low pressure column and / or at the second pressure level in the high pressure column. The same applies to the third share.
  • the present invention is based on the finding that a combination of a HAP method combined with the energy efficiency of a MAC / BAC
  • Dichtfluidexpander achievable energy saving is coupled to the occurring at the Dichtfluidexpander pressure difference. At lower inlet pressures and thus lower pressure differences, the use is less rewarding overall. Also, improved by the increased pressures of a MAC / BAC process Q, T-profiles can not be conventionally achieved by a HAP method.
  • the final pressure of the main air compressor (in this case the "third pressure level") is determined both by the internal compression pressures, ie the pressures of the gaseous air products to be provided by internal compression, and by the amount of liquid air products to be extracted.
  • the first dependence results from the essentially set by the pressure
  • the plant may only have a variation of the
  • Liquid turbine appears advantageous. As mentioned, the use of a
  • the present invention therefore proposes to further densify the third portion successively in a booster compressor, a first turbine booster and a second turbine booster to the fourth pressure level.
  • a booster compressor a first turbine booster and a second turbine booster
  • at least three compression steps are used, two of which are implemented by a respective turbine booster and one by a secondary compressor.
  • a significantly higher fourth pressure level can be achieved.
  • At least the first turbine booster is operated in the warm, so not as
  • the booster is formed in the invention in one stage, two stages or multi-stage.
  • the booster used in the context of the present invention is to a compressor driven by external energy, which is thus not or at least not exclusively driven by relaxation of a previously compressed in the air separation plant itself fluid.
  • the invention makes it possible by the said compression to provide the third portion (throttle flow) at a significantly increased fourth pressure level, which makes the use of a sealing fluid expander energetically meaningful. thats why
  • the third portion may be the second turbine boosters in particular depending on the amount of liquid or the liquid products that are obtained in a corresponding air separation plant and this should be taken on
  • Turbine booster at a temperature level of 0 to 50 ° C and the second turbine booster at a temperature level of -40 to 50 ° C supply.
  • the second turbine booster is therefore not a typical cold compressor, so no "cold” turbine booster.
  • this is the third portion (throttle current) possibly supplied well below the ambient temperature, downstream of the second turbine booster, however, its temperature is above the ambient temperature.
  • cold turbine boosters are less advantageous because the entire available cooling capacity is used to provide these liquid air products.
  • a cold turbine booster inevitably introduces heat into the system since the heat of compression from the compressed stream typically can not be dissipated in an aftercooler, but only in the main heat exchanger, coupled with a corresponding input of heat.
  • Cooling water enables effective heat dissipation in a conventional aftercooler.
  • the compression in this is substantially heat-neutral, since the compression work is compensated here by the aftercooler.
  • the third portion of the first turbine booster at a temperature level of 0 to 50 ° C and the second turbine booster at a temperature level of -140 to -20 ° C.
  • the second turbine booster is in this case a typical cold compressor, so a "cold" turbine booster. This is the third portion (inductor current) supplied below the ambient temperature, downstream of the second turbine booster, its temperature is still (significantly) below the ambient temperature.
  • the temperature of the second turbine booster is in this case a typical cold compressor, so a "cold" turbine booster.
  • Turbine Booster's condensed third portion may be directly downstream of the second
  • Turbine booster for example, at -90 to 20 ° C lie.
  • a cold turbine booster adds heat to the system since the heat of compression from the compressed stream is typically not present in an aftercooler
  • Cooling water is operated, but only in the main heat exchanger itself, combined with a corresponding heat input, is dissipated.
  • a cold turbine booster permits particularly good heating and liquefaction of internal compression products and is suitable for air separation plants for generating large quantities of corresponding gaseous printed products and comparatively small amounts of liquid air products.
  • the use of a second turbine booster operated at the mentioned low inlet temperatures permits removal of a comparatively small amount of up to 3 mol% of the feed air stream in the form of liquid air products, for example liquid oxygen (LOX), liquid nitrogen (LIN) and / or liquid argon (LAR).
  • LOX liquid oxygen
  • LIN liquid nitrogen
  • LAR liquid argon
  • the invention advantageously provides that said turbine boosters each be driven by one of the expansion turbines, for example the first
  • Turbine booster with the first expansion turbine.
  • After-compressor is, however, driven by external energy, so not via associated expansion turbines, each relax the air portions of the feed air stream. For example, it can be advantageous to use the after-compressor
  • At least one compressor stage of the main air compressor and at least one compressor stage of the secondary compressor are arranged, for example, on a common shaft. Even a use of several appropriate measures can be done simultaneously.
  • the third portion is taken from or fed to the main heat exchanger at appropriate temperature levels.
  • additional after-cooling may be provided downstream of the second turbine booster and before being reintroduced into the main heat exchanger. If, however, the second turbine booster operated at the lower temperatures mentioned, this is, as explained, not the case.
  • the cooling in the main heat exchanger after the recompression in the second turbine booster is advantageously carried out by a temperature level that depends on the inlet and outlet temperature of the second turbine booster and a possible aftercooling, ie, for example, 10 to 50 ° C or -90 to 20 ° C to a temperature level of -140 to -180 ° C. It may also be advantageous if the first portion is cooled to a temperature level of 0 to 150 ° C. before being expanded in the first expansion turbine in the main heat exchanger.
  • the first pressure level is 1 to 2 bar and / or the second pressure level is 5 to 6 bar and / or the third
  • Pressure level 8 to 23 bar and / or the fourth pressure level 50 to 70 bar absolute pressure can be achieved in each case still with conventional HAP main air compressors, the fourth, in particular achieved with the aid of said Nachverêtrs pressure level allows the use of a
  • Dense fluid expander The fourth pressure level is at supercritical pressure.
  • the inventive method allows in particular, the
  • At least one liquid air product distillationklalens fluidly pressurized to evaporate in the main heat exchanger or in the supercritical state (to "liquefy") and run as at least one internal compression product from the air separation plant, so as mentioned several times for use with a internal compression process.
  • the at least one internal compression product can be carried out at a pressure of 6 bar to 100 bar from the air separation plant.
  • the invention Method is due to the additional, above-mentioned heat input in particular for providing internal compression products at a relatively high pressure, ie at least 30 bar, when the second turbine booster is operated at the mentioned lower temperatures.
  • FIG. 1 shows an air separation plant according to an embodiment of the invention in the form of a schematic plant diagram.
  • Figure 2 shows an air separation plant according to an embodiment of the invention in the form of a schematic plant diagram.
  • FIG. 1 shows an air separation plant according to a particularly preferred embodiment
  • Embodiment of the invention shown schematically and designated 100 in total.
  • the air separation plant 100 is used air (AIR) in the form of a
  • the main air compressor 2 is illustrated very schematically.
  • the main air compressor 2 typically has several
  • Compressor stages that have a common shaft with one or more
  • Electric motors can be driven.
  • the third pressure level in the illustrated example is well above the operating pressure of a typical high-pressure column of an air separation plant, as explained above. This is a HAP procedure.
  • the feed air stream b is successively divided into the streams c, d and e.
  • the current c is referred to as the first portion, the current d as the second portion, and the current e as the third portion of the feed air flow b.
  • the streams c and d are separated warm side one
  • the stream c is after removal from the main heat exchanger 4 in an expansion turbine 5, which is referred to in the context of this application as the first expansion turbine to a pressure level of for example 5 to 6 bar, which is referred to in the context of this application as a second pressure level, relaxed, and again passed through a section of the main heat exchanger 4.
  • the stream d is also released to the second pressure level after removal from the main heat exchanger 4 in an expansion turbine 6, which is referred to in the context of this application as a second expansion turbine.
  • the current e is the so-called inductor current, which in particular enables internal compression.
  • the current e is this in a first
  • Expansion turbine 6 powered turbine boosters will be the first here
  • Turbine booster however, referred to as the second turbine booster.
  • the recompression takes place at a pressure level of, for example 50 to 70 bar, which is referred to in this application as the fourth pressure level.
  • Downstream of the booster 7 and upstream of the turbine booster the current e is at a pressure level of for example 26 to 36 bar.
  • the booster 7 is with external energy, ie not by a relaxation of compressed
  • Air fractions of the feed air stream b driven.
  • the current e is recooled in each case in non-separately designated aftercoolers of the turbine boosters to a temperature which corresponds approximately to the cooling water temperature. A further cooling takes place as shown by means of the main heat exchanger 4 as needed.
  • the current e is thus again passed through an aftercooler and then through the main heat exchanger 4 and then expanded in a sealing fluid expander 8.
  • the fourth pressure level is well above the critical pressure for nitrogen and above the critical pressure for oxygen.
  • Dichtfluidexpanders 8 is the current e in the liquid state at
  • the sealing fluid expander 8 is coupled, for example, with a generator or an oil brake (without designation). After relaxation, the current e is here at the second pressure level. He is still liquid, but is at a subcritical pressure.
  • the distillation column system 10 is shown greatly simplified. It comprises at least one at a pressure level of 1 to 2 bar (referred to here as the first pressure level) operated low pressure column 11 and operated at the second pressure level high pressure column 12 of a double column system in which the low pressure column 11 and the high pressure column 12 via a main condenser 13 in heat exchanging connection stand.
  • the first pressure level a pressure level of 1 to 2 bar
  • the second pressure level high pressure column 12 of a double column system in which the low pressure column 11 and the high pressure column 12 via a main condenser 13 in heat exchanging connection stand.
  • valves, pumps, other heat exchangers and the like has been omitted for clarity.
  • the streams c, d and e are fed into the high pressure column 12 in the example shown. However, it may also be provided, for example, the stream d and / or the stream e is not fed into the distillation column system after appropriate expansion into the low-pressure column 1 1 and / or fractions.
  • the distillation column system 10 the currents f, g and h can be removed in the example shown.
  • the air separation plant 100 is set up to carry out an internal compression process, as explained in more detail.
  • the flows f and g which are a liquid,
  • Oxygen-rich stream f and a liquid, nitrogen-rich stream g can act, therefore pressurized by means of pumps 9 in the liquid state and in the
  • Main heat exchanger 4 evaporates or, depending on the pressure, transferred from the liquid to the supercritical state.
  • Fluid of the streams f and g may be the
  • Air separation plant 100 as internally compressed oxygen (GOX-IC) or
  • FIG. 10 illustrates one or more streams taken from the distillation column system 10 in the gaseous state at the first pressure level.
  • FIG. 2 shows an air separation plant according to a particularly preferred embodiment
  • Embodiment of the invention shown schematically and generally designated 200.
  • the same or comparable plant components and streams as in the air separation plant 100 shown in Figure 1 are given identical reference numerals and will not be explained repeatedly.
  • the feed air stream b is also present downstream of the cleaning device 3 at a third pressure level, which, however, here is for example 9 to 17 bar.
  • the fourth pressure level, to which the current e (inductor current) is compressed, is for example 30 to 80 bar here. While the stream e here after the
  • Cooling water temperature corresponds, cooling takes place downstream of the second
  • Turbine Boosters only by means of the main heat exchanger 4, but not by means of an aftercooler as in the air separation plant 100 of Figure 1. Since the second turbine booster is operated as a "cold" turbine booster, the current e downstream of this second turbine booster at a correspondingly low temperature level is well below the ambient temperature in front. In the example shown, the air separation plant 100, the drive of the booster 7 is carried out together with one or more compressor stages of the
  • a pressurized fluid e.g. Compressed steam
  • an air separation plant 100 according to FIG. 1, in which the second turbine booster is operated as a "warm” turbine booster, is particularly suitable for providing larger quantities of liquid air products (not shown), whereas an air separation plant 200 according to FIG.
  • Turbine booster is operated as a "cold" turbine booster, especially for the provision of high pressure gaseous internal compression products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

What is proposed is a method for the cryogenic separation of air (AIR) in an air separation plant (100) having a main air compressor (2), a main heat exchanger (4) and a distillation column system (10) having a low-pressure column (11) operated at a first pressure and a high-pressure column (12) operated at a second pressure, in which a feed air flow (a), which comprises all of the feed air fed to the air separation plant (100, 200), is compressed in the main air compressor (2) to a third pressure that is at least 2 bar above the second pressure, wherein a first fraction (c) of the compressed feed air flow (b) is cooled at least once in the main heat exchanger (4) and is expanded from the third pressure in a first expansion turbine (5), a second fraction (d) is cooled at least once in the main heat exchanger (4) and is expanded from the third pressure in a second expansion turbine (6), and a third fraction (e) is further compressed to a fourth pressure, is cooled at least once in the main heat exchanger (4) and is expanded from the fourth pressure, wherein air of the first fraction (c) and/or of the second fraction (d) and/or of the third fraction (e) is fed into the distillation column system (10) at the first and/or at the second pressure. It is provided that the third fraction (e) is further compressed to the fourth pressure in sequence in a recompressor (7), a hot first turbine booster and a second turbine booster, and for expanding the third fraction (e) use is made of a dense fluid expander (8) to which the third fraction (e) is fed in the liquid state and at the fourth pressure. The invention also relates to an air separation plant (100).

Description

Beschreibung  description
Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegunqsanlage Process for the cryogenic separation of air and air separation plant
Die Erfindung betrifft ein Verfahren zur Tieftemperaturzerlegung von Luft in einer Luftzerlegungsanlage sowie eine entsprechende Luftzerlegungsanlage gemäß den Oberbegriffen der unabhängigen Patentansprüche. The invention relates to a method for the cryogenic separation of air in an air separation plant and a corresponding air separation plant according to the preambles of the independent claims.
Stand der Technik State of the art
Die Herstellung von Luftprodukten in flüssigem oder gasförmigem Zustand durch Tieftemperaturzerlegung von Luft in Luftzerlegungsanlagen ist bekannt und in der Fachliteratur, beispielsweise bei H.-W. Häring (Hrsg.), Industrial Gases Processing, Wiley-VCH 2006, insbesondere Abschnitt 2.2.5, "Cryogenic Rectification", beschrieben. Luftzerlegungsanlagen weisen Destillationssäulensysteme auf, die beispielsweise als Zweisäulensysteme, insbesondere als klassische Linde-Doppelsäulensysteme, aber auch als Drei- oder Mehrsäulensysteme ausgebildet sein können. Neben den The production of air products in the liquid or gaseous state by cryogenic separation of air in air separation plants is known and in the literature, for example H.-W. Häring (ed.), Industrial Gas Processing, Wiley-VCH 2006, especially Section 2.2.5, "Cryogenic Rectification". Air separation plants have distillation column systems which can be designed, for example, as two-column systems, in particular as classic Linde double-column systems, but also as three-column or multi-column systems. In addition to the
Destillationssäulen zur Gewinnung von Stickstoff und/oder Sauerstoff in flüssigem und/oder gasförmigem Zustand (beispielsweise flüssigem Sauerstoff, LOX,  Distillation columns for the recovery of nitrogen and / or oxygen in the liquid and / or gaseous state (for example, liquid oxygen, LOX,
gasförmigem Sauerstoff, GOX, flüssigem Stickstoff, LIN und/oder gasförmigem gaseous oxygen, GOX, liquid nitrogen, LIN and / or gaseous
Stickstoff, GAN), also den Destillationssäulen zur Stickstoff-Sauerstoff-Trennung, können Destillationssäulen zur Gewinnung weiterer Luftkomponenten, insbesondere der Edelgase Krypton, Xenon und/oder Argon, vorgesehen sein. Nitrogen, GAN), ie the distillation columns for nitrogen-oxygen separation, distillation columns can be provided for obtaining further air components, in particular the noble gases krypton, xenon and / or argon.
Die Destillationssäulensysteme werden bei unterschiedlichen Betriebsdrücken in ihren jeweiligen Destillationssäulen betrieben. Bekannte Doppelsäulensysteme weisen beispielsweise eine sogenannte Hochdrucksäule (bisweilen auch lediglich als The distillation column systems are operated at different operating pressures in their respective distillation columns. Known double column systems have, for example, a so-called high-pressure column (sometimes also referred to as
Drucksäule bezeichnet) und eine sogenannte Niederdrucksäule auf. Der Betriebsdruck der Hochdrucksäule beträgt beispielsweise 4,3 bis 6,9 bar, vorzugsweise etwa 5,0 bar. Die Niederdrucksäule wird bei einem Betriebsdruck von beispielsweise 1 ,3 bis 1 ,7 bar, vorzugsweise etwa 1 ,5 bar, betrieben. Bei den hier und im Folgenden angegebenen Drücken handelt es sich um Absolutdrücke.  Pressure column called) and a so-called low pressure column. The operating pressure of the high-pressure column is, for example, 4.3 to 6.9 bar, preferably about 5.0 bar. The low pressure column is at an operating pressure of, for example, 1, 3 to 1, 7 bar, preferably about 1, 5 bar, operated. The pressures given here and below are absolute pressures.
Bei der Luftzerlegung können sogenannte High-Air-Pressure-Verfahren (HAP- Verfahren) eingesetzt werden. Bei einem HAP-Verfahren wird die gesamte, der Luftzerlegungsanlage zugeführte bzw. die in einem entsprechenden Verfahren insgesamt eingesetzte Luft (als Einsatzluft bezeichnet) in einem Hauptluftverdichter auf einen Druck verdichtet, der deutlich über dem höchsten Betriebsdruck des In air separation, so-called high-air pressure (HAP) processes can be used. In a HAP process, the entire, the Air separation plant supplied or used in a corresponding process total air (referred to as feed air) compressed in a main air compressor to a pressure well above the highest operating pressure of
Destillationssäulensystems, typischerweise also deutlich über dem Betriebsdruck der Hochdrucksäule, liegt. Der Druckunterschied beträgt mindestens 2 oder 4 bar und vorzugsweise zwischen 6 und 16 bar. Beispielsweise ist der Druck mindestens doppelt so hoch wie der Betriebsdruck der Hochdrucksäule. HAP-Verfahren sind z.B. aus der EP 2 466 236 A1 , der EP 2 458 311 A1 und der US 5 329 776 A bekannt. Bei HAP-Verfahren lassen sich aufgrund der stärkeren Verdichtung die zur Distillationssäulensystems, typically well above the operating pressure of the high pressure column is. The pressure difference is at least 2 or 4 bar and preferably between 6 and 16 bar. For example, the pressure is at least twice as high as the operating pressure of the high-pressure column. HAP methods are e.g. from EP 2 466 236 A1, EP 2 458 311 A1 and US Pat. No. 5,329,776 A. In HAP processes can be due to the greater compression of the
Luftreinigung erforderlichen Behälter- und Leitungsdimensionen verringern. Ferner sinkt der absolute Wassergehalt der verdichteten Luft. Je nach den vorliegenden Randbedingungen kann auf eine Kälteanlage zur Luftreinigung verzichtet werden. In HAP-Verfahren kann die im Hauptlufttverdichter verdichtete Luftmenge ferner von der Prozessluftmenge entkoppelt werden. In einem derartigen Fall wird nur ein Teil der auf den genannten Druck verdichteten Einsatzluft als sogenannte Prozessluft genutzt, also für die eigentliche Rektifikation verwendet und in die Hochdrucksäule eingespeist. Ein weiterer Teil wird zur Gewinnung von Kälte entspannt, wobei die Kältemenge unabhängig von der Prozessluft eingestellt werden kann. Eine derartige Entkopplung ist jedoch nicht in allen HAP-Verfahren vorgesehen.  Reduce air cleaning required tank and pipe dimensions. Furthermore, the absolute water content of the compressed air decreases. Depending on the existing boundary conditions can be dispensed with a refrigeration system for air purification. In HAP processes, the compressed air quantity in the main air compressor can also be decoupled from the process air quantity. In such a case, only a portion of the compressed to the said pressure feed air is used as so-called process air, so used for the actual rectification and fed into the high-pressure column. Another part is relaxed to recover cold, whereby the amount of cold can be adjusted independently of the process air. However, such decoupling is not provided in all HAP methods.
Ferner sind Verfahren bekannt, bei denen die Einsatzluft in dem Hauptluftverdichter nur auf den höchsten Betriebsdruck des Destillationssäulensystems, typischerweise also nur den Betriebsdruck der Hochdrucksäule oder geringfügig darüber, verdichtet wird. Ein Teil der Einsatzluft kann daher nach Abkühlung ohne weitere Entspannung in das Destillationssäulensystem eingespeist werden. Nur bestimmte Anteile, die beispielsweise zur zusätzlichen Kälteproduktion oder auch zur Erwärmung flüssiger Ströme (siehe sogleich) benötigt werden, werden in einem oder mehreren Further, methods are known in which the feed air in the main air compressor only to the highest operating pressure of the distillation column system, typically only the operating pressure of the high pressure column or slightly above, is compressed. A portion of the feed air can therefore be fed after cooling without further relaxation in the distillation column system. Only certain proportions, which are needed, for example, for additional cooling production or also for heating liquid streams (see below) are in one or more
Nachverdichtern weiter verdichtet. Derartige Verfahren mit Haupt- und After-compressing further compressed. Such methods with main and
Nachverdichter(n) werden auch als MAC/BAC-Verfahren (engl. Main Air Post-compressor (s) are also known as MAC / BAC (Main Air
Compressor/Booster Air Compressor) bezeichnet. In einem MAC/BAC-Verfahren wird also nicht die gesamte Einsatzluft, sondern nur ein Teil auf einen Druck deutlich über dem höchsten Betriebsdruck des Destillationssäulensystems verdichtet. Bei der Luftzerlegung kann die sogenannte Innenverdichtung zum Einsatz kommen. Bei der Innenverdichtung wird dem Destillationssäulensystem ein flüssiger Strom entnommen und zumindest zum Teil flüssig auf Druck gebracht. Der flüssig auf Druck gebrachte Strom wird in einem Hauptwärmetauscher der Luftzerlegungsanlage gegen einen Wärmeträger erwärmt und verdampft oder, beim Vorliegen entsprechender Drücke, vom flüssigen in den überkritischen Zustand überführt. Bei dem flüssigen Strom kann es sich insbesondere um flüssigen Sauerstoff, jedoch auch um Stickstoff oder Argon handeln. Die Innenverdichtung wird damit zur Gewinnung entsprechender gasförmiger Druckprodukte eingesetzt. Der Vorteil an Innenverdichtungsverfahren ist unter anderem, dass entsprechende Fluide nicht außerhalb der Luftzerlegungsanlage in gasförmigem Zustand verdichtet werden müssen, was sich häufig als sehr aufwendig erweist und/oder beträchtliche Sicherheitsmaßnahmen erfordert. Auch die Innenverdichtung ist in der eingangs zitierten Fachliteratur beschrieben. Nachfolgend wird für die Überführung aus dem flüssigen in den überkritischen oder gasförmigen Zustand der Sammelbegriff "Entflüssigung" verwendet. Die Überführung aus dem überkritischen oder gasförmigen in den flüssigen Zustand, deren Produkt eine eindeutig definierte Flüssigkeit ist, wird als "Verflüssigung" bezeichnet. Gegen den zu entflüssigenden Strom wird ein Wärmeträger verflüssigt. Der Compressor / Booster Air Compressor). In a MAC / BAC process, therefore, not all of the feed air, but only a part is compressed to a pressure well above the highest operating pressure of the distillation column system. In air separation, the so-called internal compression can be used. In the internal compression, a liquid stream is taken from the distillation column system and at least partially brought to liquid pressure. The liquid brought to pressure is heated in a main heat exchanger of the air separation plant against a heat transfer medium and evaporated or, in the presence of appropriate pressures, transferred from the liquid to the supercritical state. The liquid stream may in particular be liquid oxygen, but also nitrogen or argon. The internal compression is thus used to obtain appropriate gaseous printed products. Amongst other things, the advantage of internal compression processes is that corresponding fluids do not have to be compressed outside the air separation plant in a gaseous state, which often proves to be very complicated and / or requires considerable safety measures. The internal compression is described in the literature cited above. Subsequently, the collective term "liquefaction" is used for the transfer from the liquid to the supercritical or gaseous state. The transition from the supercritical or gaseous to the liquid state, whose product is a clearly defined liquid, is referred to as "liquefaction". Against the stream to be liquefied, a heat transfer fluid is liquefied. Of the
Wärmeträger wird dabei üblicherweise durch einen Teil der der Luftzerlegungsanlage zugeführten Luft gebildet. Um den flüssig auf Druck gebrachten Strom effizient erwärmen und entflüssigen zu können, muss dieser Wärmeträger aufgrund  Heat transfer medium is usually formed by a part of the air separation plant air supplied. In order to efficiently heat and liquefy the stream brought to liquid pressure, this heat transfer medium must be due to
thermodynamischer Gegebenheiten einen höheren Druck als der flüssig auf Druck gebrachte Strom aufweisen. Daher muss ein entsprechend hoch verdichteter Strom bereitgestellt werden. Dieser wird auch als "Drosselstrom" bezeichnet, weil er herkömmlicherweise mittels eines Entspannungsventils ("Drossel") entspannt, hierdurch zumindest zum Teil entflüssigt und in das verwendete thermodynamic conditions have a higher pressure than the fluidly pressurized stream. Therefore, a correspondingly high-density power must be provided. This is also referred to as "throttle flow", because it is conventionally by means of a relaxation valve ("throttle") relaxed, thereby at least partially liquefied and used in the
Destillationssäulensystem eingespeist wird. Is fed distillation column system.
Die Herstellung von innenverdichtetem, gasförmigem Sauerstoff mittels HAP-Verfahren ist insbesondere aufgrund des Wegfalls eines Nachverdichters zur Bereitstellung eines entsprechend hoch verdichteten Stroms vergleichsweise kostengünstig und in unterschiedlichen Ausgestaltungen realisierbar. In bestimmten Fällen können sich jedoch MAC/BAC-Verfahren als energetisch günstiger erweisen, was insbesondere auf den Einsatz einer Turbine (statt des herkömmlichen Entspannungsventils) The production of internally compressed, gaseous oxygen by means of the HAP process is comparatively cost-effective and can be implemented in different embodiments, in particular due to the omission of a secondary compressor for providing a correspondingly highly compressed stream. In certain cases, however, MAC / BAC methods may prove to be more energetically favorable, which is particularly the case the use of a turbine (instead of the conventional expansion valve)
zurückzuführen ist, der der Drosselstrom im flüssigen Zustand bei überkritischem Druck zugeführt und in weiterhin flüssigem Zustand bei unterkritischem Druck entnommen wird. Eine derartige Turbine wird im Rahmen dieser Anmeldung als Dichtfluidexpander bezeichnet (engl. Dense Liquid Expander bzw. Dense Fluidattributed to the throttling flow is supplied in the liquid state at supercritical pressure and removed in a further liquid state at subcritical pressure. Such a turbine is referred to in the context of this application as Dichtfluidexpander (English Dense Liquid Expander or Dense Fluid
Expander, DLE). Die energetischen Vorteile eines derartigen Dichtfluidexpanders sind ebenfalls in der eingangs zitierten Fachliteratur, beispielsweise Abschnitt 2.2.5.6, "Apparatus", Seite 48 und 49, beschrieben. Ziel der vorliegenden Erfindung ist es, die mit den HAP-Verfahren verbundenen niedrigen Investitionskosten mit den Effizienzvorteilen von herkömmlichen MAC/BAC- Verfahren zu kombinieren. Expander, DLE). The energetic advantages of such a sealing fluid expander are likewise described in the specialist literature cited at the beginning, for example Section 2.2.5.6, "Apparatus", pages 48 and 49. The aim of the present invention is to combine the low investment costs associated with HAP processes with the efficiency advantages of conventional MAC / BAC processes.
Offenbarung der Erfindung Disclosure of the invention
Vor diesem Hintergrund schlägt die vorliegende Erfindung ein Verfahren zur Against this background, the present invention proposes a method for
Tieftemperaturzerlegung von Einsatzluft in einer Luftzerlegungsanlage sowie eine entsprechende Luftzerlegungsanlage mit den Merkmalen der unabhängigen Cryogenic separation of feed air in an air separation plant and a corresponding air separation plant with the characteristics of the independent
Patentansprüche vor. Bevorzugte Ausgestaltungen sind jeweils Gegenstand der abhängigen Patentansprüche sowie der nachfolgenden Beschreibung. Claims. Preferred embodiments are the subject of the dependent claims and the following description.
Vor der Erläuterung der Merkmale und Vorteile der vorliegenden Erfindung werden deren Grundlagen und die verwendeten Begriffe erläutert. Eine "Entspannungsturbine" bzw. "Entspannungsmaschine", die über eine Before explaining the features and advantages of the present invention, its principles and the terms used will be explained. An "expansion turbine" or "relaxation machine", which has a
gemeinsame Welle mit weiteren Entspannungsturbinen oder Energiewandlern wie Ölbremsen, Generatoren oder Verdichtern gekoppelt sein kann, ist zur Entspannung eines gasförmigen oder zumindest teilweise flüssigen Stroms eingerichtet. common wave can be coupled to other expansion turbines or energy converters such as oil brakes, generators or compressors is set up to relax a gaseous or at least partially liquid stream.
Insbesondere können Entspannungsturbinen zum Einsatz in der vorliegenden Erfindung als Turboexpander ausgebildet sein. Wird ein Verdichter mit einer oder mehreren Entspannungsturbinen angetrieben, jedoch ohne extern, beispielsweise mittels eines Elektromotors, zugeführte Energie, wird der Begriff "turbinengetriebener Verdichter" oder alternativ "Turbinenbooster" verwendet. Ein "Verdichter" ist eine Vorrichtung, die zum Verdichten wenigstens eines In particular, expansion turbines may be designed for use in the present invention as a turboexpander. If a compressor is driven by one or more expansion turbines, but without externally, for example by means of an electric motor, supplied energy, the term "turbine-driven compressor" or alternatively "turbine booster" is used. A "compressor" is a device that is capable of compressing at least one
gasförmigen Stroms von wenigstens einem Eingangsdruck, bei dem dieser dem gaseous stream of at least one inlet pressure at which this the
Verdichter zugeführt wird, auf wenigstens einen Enddruck, bei dem dieser dem Compressor is supplied to at least one final pressure at which this the
Verdichter entnommen wird, eingerichtet ist. Ein Verdichter bildet eine bauliche Einheit, die jedoch mehrere "Verdichterstufen" in Form von Kolben-, Schrauben- und/oder Schaufelrad- bzw. Turbinenanordnungen (also Axial- oder Radialverdichterstufen) aufweisen kann. Dies gilt auch insbesondere für den "Haupt(luft)verdichter" einer Luftzerlegungsanlage, der sich dadurch auszeichnet, dass durch diesen die gesamte oder der überwiegende Anteil der in die Luftzerlegungsanlage eingespeisten Compressor is removed, is set up. A compressor forms a structural unit, which, however, can have a plurality of "compressor stages" in the form of piston, screw and / or Schaufelrad- or turbine assemblies (ie axial or radial compressor stages). This also applies in particular to the "main (air) compressor" of an air separation plant, which is characterized by the fact that all or most of it is fed into the air separation plant
Luftmenge, also der gesamte Einsatzluftstrom, verdichtet wird. Ein "Nachverdichter", in dem in MAC/BAC-Verfahren ein Teil der im Hauptluftverdichter verdichteten Luftmenge auf einen nochmals höheren Druck gebracht wird, ist häufig ebenfalls mehrstufig ausgebildet. Insbesondere werden entsprechende Verdichterstufen mittels eines gemeinsamen Antriebs, beispielsweise über eine gemeinsame Welle, angetrieben. Air quantity, ie the total feed air flow, is compressed. A "secondary compressor", in which a part of the air quantity compressed in the main air compressor is brought to an even higher pressure in the MAC / BAC process, is often also of multi-stage design. In particular, corresponding compressor stages are driven by means of a common drive, for example via a common shaft.
Herkömmlicherweise kommen in MAC/BAC-Verfahren Nachverdichter zum Einsatz, die mittels extern zugeführter Energie angetrieben werden, in HAP-Verfahren finden sich derartige Nachverdichter nicht. Turbinenbooster sind jedoch typischerweise in beiden Fällen vorhanden, insbesondere um bei der Entspannung zur Kälteproduktion freiwerdende Wellenleistung sinnvoll nutzen zu können. Conventionally, MAC / BAC processes use recompressors that are driven by externally supplied energy; in HAP processes, such recompressors are not. However, turbine boosters are typically present in both cases, in particular in order to be able to make sensible use of shaft power released during the expansion for cooling purposes.
Ein "Wärmetauscher" dient zur indirekten Übertragung von Wärme zwischen A "heat exchanger" serves for the indirect transfer of heat between
zumindest zwei z.B. im Gegenstrom zueinander geführten Strömen, beispielsweise einem warmen Druckluftstrom und einem oder mehreren kalten Strömen oder einem tiefkalten flüssigen Luftprodukt und einem oder mehreren warmen Strömen. Ein at least two e.g. in countercurrent flow, such as a warm compressed air stream and one or more cold streams or a cryogenic liquid air product and one or more hot streams. One
Wärmetauscher kann aus einem einzelnen oder mehreren parallel und/oder seriell verbundenen Wärmetauscherabschnitten gebildet sein, z.B. aus einem oder mehreren Plattenwärmetauscherblöcken. Ein Wärmetauscher, beispielsweise auch der in einer Luftzerlegungsanlage eingesetzte "Hauptwärmetauscher", der sich dadurch Heat exchangers may be formed from a single or multiple heat exchanger sections connected in parallel and / or in series, e.g. from one or more plate heat exchanger blocks. A heat exchanger, for example, the used in an air separation plant "main heat exchanger", thereby
auszeichnet, dass durch ihn der Hauptanteil der abzukühlenden bzw. zu erwärmenden Ströme abgekühlt bzw. erwärmt wird, weist "Passagen" auf, die als voneinander getrennte Fluidkanäle mit Wärmeaustauschflächen ausgebildet sind. characterized in that the main part of the streams to be cooled or heated to be cooled or heated by him, has "passages", which are formed as separate fluid channels with heat exchange surfaces.
Die vorliegende Anmeldung verwendet zur Charakterisierung von Drücken und The present application is used for the characterization of pressures and
Temperaturen die Begriffe "Druckniveau" und "Temperaturniveau", wodurch zum Ausdruck gebracht werden soll, dass entsprechende Drücke und Temperaturen in einer entsprechenden Anlage nicht in Form exakter Druck- bzw. Temperaturwerte verwendet werden müssen, um das erfinderische Konzept zu verwirklichen. Jedoch bewegen sich derartige Drücke und Temperaturen typischerweise in bestimmten Bereichen, die beispielsweise ± 1%, 5%, 10%, 20% oder sogar 50% um einen Temperatures the terms "pressure level" and "temperature level", causing the It should be stated that appropriate pressures and temperatures in a corresponding plant need not be used in the form of exact pressure or temperature values in order to realize the inventive concept. However, such pressures and temperatures typically range in certain ranges, such as ± 1%, 5%, 10%, 20%, or even 50%
Mittelwert liegen. Entsprechende Druckniveaus und Temperaturniveaus können dabei in disjunkten Bereichen liegen oder in Bereichen, die einander überlappen.  Mean value. Corresponding pressure levels and temperature levels can be in disjoint areas or in areas that overlap one another.
Insbesondere schließen beispielsweise Druckniveaus unvermeidliche oder zu erwartende Druckverluste, beispielsweise aufgrund von Abkühlungseffekten, ein. Entsprechendes gilt für Temperaturniveaus. In particular, for example, pressure levels include unavoidable or expected pressure drops, for example, due to cooling effects. The same applies to temperature levels.
Vorteile der Erfindung Advantages of the invention
Das erfindungsgemäße Verfahren verwendet eine Luftzerlegungsanlage mit einem Hauptluftverdichter, einem Hauptwärmetauscher und einem Destillationssäulensystem mit einer auf einem ersten Druckniveau betriebenen Niederdrucksäule und einer auf einem zweiten Druckniveau betriebenen Hochdrucksäule. Die genannten und weitere verwendete Druckniveaus sind unten im Detail angegeben. In dem erfindungsgemäßen Verfahren wird ein Einsatzluftstrom, der die gesamte, der Luftzerlegungsanlage zugeführte Einsatzluft umfasst, in dem Hauptluftverdichter auf ein drittes Druckniveau verdichtet, welches mindestens 2 bar, insbesondere The inventive method uses an air separation plant with a main air compressor, a main heat exchanger and a distillation column system with a operated at a first pressure level low pressure column and operated at a second pressure level high pressure column. The above and other used pressure levels are given below in detail. In the method according to the invention, a feed air stream, which comprises the entire feed air supplied to the air separation plant, is compressed in the main air compressor to a third pressure level, which is at least 2 bar, in particular
mindestens 4 bar, oberhalb des zweiten Druckniveaus liegt. Das dritte Druckniveau kann beispielsweise auch das Doppelte des zweiten Druckniveaus betragen. Es wird also ein HAP-Verfahren durchgeführt. at least 4 bar, above the second pressure level. The third pressure level may for example also be twice the second pressure level. Thus, a HAP method is performed.
Von dem verdichteten Einsatzluftstrom wird ein erster Anteil mindestens einmal in dem Hauptwärmetauscher abgekühlt und in einer ersten Entspannungsturbine ausgehend von dem dritten Druckniveau entspannt. Unter "mindestens einmal abgekühlt" wird hier und im Folgenden verstanden, dass ein entsprechender Strom vor und/oder nach der Entspannung mindestens einmal zumindest durch einen Abschnitt des From the compressed feed air stream, a first portion is cooled at least once in the main heat exchanger and expanded in a first expansion turbine, starting from the third pressure level. By "cooled at least once" is understood here and below that a corresponding stream before and / or after the relaxation at least once at least through a section of
Hauptwärmetauschers geführt wird. Main heat exchanger.
Ein zweiter Anteil wird ähnlich behandelt, d.h. ebenfalls mindestens einmal in dem Hauptwärmetauscher abgekühlt und in einer zweiten Entspannungsturbine ausgehend von dem dritten Druckniveau entspannt. Bei dem zweiten Anteil handelt es sich um den sogenannten Turbinenstrom, seine Entspannung erfolgt, um in einer entsprechenden Anlage zusätzliche Kälte bereitstellen und diese regeln zu können. Ein dritter Anteil wird auf ein viertes Druckniveau weiter verdichtet und dann ebenfalls mindestens einmal in dem Hauptwärmetauscher abgekühlt und ausgehend von dem vierten Druckniveau entspannt. Bei dem dritten Anteil handelt es sich um den sogenannten Drosselstrom, der, wie zuvor erläutert, insbesondere die A second portion is treated similarly, ie also cooled at least once in the main heat exchanger and starting in a second expansion turbine relaxed from the third pressure level. The second part is the so-called turbine flow, its relaxation takes place in order to provide additional cooling in a corresponding system and to be able to regulate this. A third portion is further compressed to a fourth pressure level and then also cooled at least once in the main heat exchanger and expanded from the fourth pressure level. The third portion is the so-called inductor current, which, as explained above, in particular the
Innenverdichtung ermöglicht. Internal compression allows.
Luft des ersten Anteils und/oder des zweiten Anteils und/oder des dritten Anteils wird anschließend auf dem ersten und/oder auf dem zweiten Druckniveau in das Air of the first portion and / or the second portion and / or the third portion is then at the first and / or at the second pressure level in the
Destillationssäulensystem eingespeist. Typischerweise wird dabei die gesamte Luft des ersten Anteils auf dem zweiten Druckniveau in die Hochdrucksäule eingespeist. Die gesamte oder ein Teil der Luft des zweiten Anteils kann auf dem ersten Fed to the distillation column system. Typically, the entire air of the first portion is fed to the second pressure level in the high-pressure column. The whole or part of the air of the second share may be on the first
Druckniveau in die Niederdrucksäule und/oder auf dem zweiten Druckniveau in die Hochdrucksäule eingespeist werden. Entsprechendes gilt für den dritten Anteil.  Pressure level are fed into the low pressure column and / or at the second pressure level in the high pressure column. The same applies to the third share.
Die vorliegende Erfindung beruht auf der Erkenntnis, dass eine Kombination eines HAP-Verfahrens verbunden mit der energetischen Effizienz eines MAC/BAC-The present invention is based on the finding that a combination of a HAP method combined with the energy efficiency of a MAC / BAC
Verfahrens sowohl hinsichtlich der Erstellungs- als auch hinsichtlich der Betriebskosten einer Luftzerlegungsanlage besonders vorteilhaft ist. Wie erläutert, ist insbesondere der Einsatz eines Dichtfluidexpanders aus energetischer Sicht (also hinsichtlich der Betriebskosten) besonders günstig, wohingegen der Einsatz eines HAP-Verfahrens geringe Erstellungskosten ermöglicht. Der Einsatz eines Dichtfluidexpanders ist jedoch in herkömmlichen HAP-Verfahren nicht vorteilhaft, weil die durch einen Method is particularly advantageous in terms of both the creation as well as the operating costs of an air separation plant. As explained, in particular the use of a sealing fluid expander from an energetic point of view (ie in terms of operating costs) is particularly favorable, whereas the use of a HAP method allows low creation costs. However, the use of a Dichtfluidexpanders is not advantageous in conventional HAP processes, because by a
Dichtfluidexpander erzielbare Energieeinsparung an die an dem Dichtfluidexpander auftretende Druckdifferenz gekoppelt ist. Bei geringeren Eintrittsdrücken und damit geringeren Druckdifferenzen ist der Einsatz insgesamt weniger lohnend. Auch die durch die erhöhten Drücke eines MAC/BAC-Verfahrens verbesserten Q,T-Profile lassen sich herkömmlicherweise mittels eines HAP-Verfahrens nicht erreichen. Dichtfluidexpander achievable energy saving is coupled to the occurring at the Dichtfluidexpander pressure difference. At lower inlet pressures and thus lower pressure differences, the use is less rewarding overall. Also, improved by the increased pressures of a MAC / BAC process Q, T-profiles can not be conventionally achieved by a HAP method.
Bei HAP-Verfahren ist der Enddruck des Hauptluftverdichters (hier also das "dritte Druckniveau") sowohl von den Innenverdichtungsdrücken, also den Drücken der mittels Innenverdichtung bereitzustellenden gasförmigen Luftprodukte, als auch von der Menge der zu gewinnenden flüssigen Luftprodukte abhängig. Erstere Abhängigkeit ergibt sich aus der im Wesentlichen durch den Druck eingestellten In HAP process, the final pressure of the main air compressor (in this case the "third pressure level") is determined both by the internal compression pressures, ie the pressures of the gaseous air products to be provided by internal compression, and by the amount of liquid air products to be extracted. The first dependence results from the essentially set by the pressure
Verdampfungskapazität eines entsprechenden Stroms, letztere aus der durch die Entnahme der flüssigen Luftprodukte "entzogenen" Kältemenge, die durch Evaporation capacity of a corresponding stream, the latter from the "withdrawn" by the removal of the liquid air products amount of cold by
Entspannung eines weiteren Stroms ausgeglichen werden muss. Relaxation of another stream must be compensated.
Da die Luftmenge des Einsatzluftstroms, also die Luftmenge der gesamten, durch den Hauptluftverdichter verdichteten Einsatzluft, durch die Menge der erzeugten Since the amount of air of the feed air stream, ie the amount of air of the total, compressed by the main air compressor feed air, generated by the amount of
Luftprodukte festgelegt ist, kann der Anlage aber nur über eine Variation des However, the plant may only have a variation of the
Enddrucks des Hauptluftverdichters mehr oder weniger Exergie zugeführt werden. Aufgrund technisch-ökonomischer Grenzen (eingesetzte Rohrklassen) ist dieser typischerweise auf ca. 23 bar limitiert. Final pressure of the main air compressor are fed more or less exergy. Due to technical-economical limits (used pipe classes) this is typically limited to approx. 23 bar.
Unter diesen Randbedingungen kann in herkömmlichen HAP-Verfahren kein ausreichender Druck zur Verfügung gestellt werden, der den Einsatz einer Under these conditions, conventional HAP processes can not provide sufficient pressure to allow the use of a HAP process
Flüssigturbine vorteilhaft erscheinen lässt. Wie erwähnt, ist der Einsatz einer Liquid turbine appears advantageous. As mentioned, the use of a
Flüssigturbine nur dann technisch vorteilhaft, wenn hierüber eine ausreichende Liquid turbine only technically advantageous if this is a sufficient
Druckdifferenz erzielt werden kann. Die vorliegende Erfindung schlägt daher vor, den dritten Anteil nacheinander in einem Nachverdichter, einem ersten Turbinenbooster und einem zweiten Turbinenbooster auf das vierte Druckniveau weiter zu verdichten. Es werden also statt den üblichen maximal zwei Verdichtungsschritten, die typischerweise durch zwei Turbinenbooster realisiert sind, zumindest drei Verdichtungsschritte eingesetzt, von denen zwei durch jeweils einen Turbinenbooster und einer durch einen Nachverdichter realisiert werden. Hierdurch kann ein deutlich höheres viertes Druckniveau erzielt werden. Dabei wird zumindest der erste Turbinenbooster im Warmen betrieben, also nicht als Pressure difference can be achieved. The present invention therefore proposes to further densify the third portion successively in a booster compressor, a first turbine booster and a second turbine booster to the fourth pressure level. Thus, instead of the usual maximum of two compression steps, which are typically realized by two turbine boosters, at least three compression steps are used, two of which are implemented by a respective turbine booster and one by a secondary compressor. As a result, a significantly higher fourth pressure level can be achieved. At least the first turbine booster is operated in the warm, so not as
Kaltverdichter. Dies erlaubt einen energetisch besonders günstigen Betrieb des Prozesses. Der Nachverdichter ist bei der Erfindung einstufig, zweistufig oder mehrstufig ausgebildet. Cold compressor. This allows a particularly energetically favorable operation of the process. The booster is formed in the invention in one stage, two stages or multi-stage.
Wie erwähnt, kommen herkömmlicherweise zwar in MAC/BAC-Verfahren, jedoch nicht in HAP-Verfahren, Nachverdichter zum Einsatz, die mittels extern zugeführter Energie angetrieben werden. Die vorliegende Erfindung schlägt jedoch ebendies vor. Bei dem im Rahmen der vorliegenden Erfindung eingesetzten Nachverdichter handelt es sich um einen mit externer Energie angetriebenen Verdichter, der also nicht oder zumindest nicht ausschließlich durch Entspannung eines zuvor in der Luftzerlegungsanlage selbst verdichteten Fluids angetrieben wird. Zu den unterschiedlichen Möglichkeiten, einen erfindungsgemäß bereitgestellten Nachverdichter mit externer Energie anzutreiben, sei auf die Erläuterungen unten verwiesen. As mentioned, although in MAC / BAC processes, but not in HAP processes, recompressors which are driven by externally supplied energy are conventionally used. However, the present invention proposes the same. The booster used in the context of the present invention is to a compressor driven by external energy, which is thus not or at least not exclusively driven by relaxation of a previously compressed in the air separation plant itself fluid. For the different possibilities of driving a booster with external energy provided according to the invention, reference is made to the explanations below.
Die Erfindung ermöglicht durch die genannte Verdichtung eine Bereitstellung des dritten Anteils (Drosselstrom) auf einem deutlich erhöhten vierten Druckniveau, das den Einsatz eines Dichtfluidexpanders energetisch sinnvoll macht. Daher ist The invention makes it possible by the said compression to provide the third portion (throttle flow) at a significantly increased fourth pressure level, which makes the use of a sealing fluid expander energetically meaningful. thats why
erfindungsgemäß vorgesehen, zum Entspannen des dritten Anteils einen According to the invention, for relaxing the third portion a
entsprechenden Dichtfluidexpander zu verwenden, dem der dritte Anteil in flüssigem Zustand und auf dem vierten (überkritischen) Druckniveau zugeführt wird. appropriate Dichtfluidexpander to use the third portion is supplied in the liquid state and at the fourth (supercritical) pressure level.
Der dritte Anteil (Drosselstrom) kann dem zweiten Turbinenbooster insbesondere je nach der Menge des oder der flüssigen Luftprodukte, die in einer entsprechenden Luftzerlegungsanlage gewonnen und dieser entnommen werden sollen, auf The third portion (throttle flow) may be the second turbine boosters in particular depending on the amount of liquid or the liquid products that are obtained in a corresponding air separation plant and this should be taken on
unterschiedlichen Temperaturniveaus zugeführt werden. be supplied to different temperature levels.
Für eine Bereitstellung größerer Mengen eines oder mehrerer flüssiger Luftprodukte hat es sich als besonders vorteilhaft erwiesen, den dritten Anteil dem ersten For a provision of larger amounts of one or more liquid air products, it has proved to be particularly advantageous, the third portion of the first
Turbinenbooster auf einem Temperaturniveau von 0 bis 50 °C und dem zweiten Turbinenbooster auf einem Temperaturniveau von—40 bis 50 °C zuzuführen. Auch der zweite Turbinenbooster ist daher kein typischer Kaltverdichter, also kein "kalter" Turbinenbooster. Zwar wird diesem der dritte Anteil (Drosselstrom) ggf. deutlich unterhalb der Umgebungstemperatur zugeführt, stromab des zweiten Turbinenboosters liegt seine Temperatur jedoch oberhalb der Umgebungstemperatur.  Turbine booster at a temperature level of 0 to 50 ° C and the second turbine booster at a temperature level of -40 to 50 ° C supply. The second turbine booster is therefore not a typical cold compressor, so no "cold" turbine booster. Although this is the third portion (throttle current) possibly supplied well below the ambient temperature, downstream of the second turbine booster, however, its temperature is above the ambient temperature.
Sollen einer entsprechenden Luftzerlegungsanlage größere Mengen von Luftprodukten flüssig entnommen werden, sind "kalte" Turbinenbooster weniger vorteilhaft, weil die gesamte zur Verfügung stehende Kälteleistung zur Bereitstellung dieser flüssigen Luftprodukte verwendet wird. Ein kalter Turbinenbooster trägt aber unvermeidlich Wärme in das System ein, da die Verdichtungswärme aus dem verdichteten Strom typischerweise nicht in einem Nachkühler, sondern nur im Hauptwärmetauscher, verbunden mit einem entsprechendem Wärmeeintrag, abgeführt werden kann. Ein bei höheren Eintrittstemperaturen betriebener Turbinenbooster, bei dem der verdichtete Strom deutlich höhere Temperaturen aufweist als beispielsweise vorhandenes If a corresponding air separation plant larger quantities of air products are removed liquid, "cold" turbine boosters are less advantageous because the entire available cooling capacity is used to provide these liquid air products. However, a cold turbine booster inevitably introduces heat into the system since the heat of compression from the compressed stream typically can not be dissipated in an aftercooler, but only in the main heat exchanger, coupled with a corresponding input of heat. An operated at higher inlet temperatures turbine booster in which the compressed Current significantly higher temperatures than, for example, existing
Kühlwasser, ermöglicht eine effektive Wärmeabfuhr in einem üblichen Nachkühler. Durch das Abführen der Verdichtungswärme stromab des zweiten Turbinenboosters ist die Verdichtung in diesem weitgehend wärmeneutral, da die Verdichtungsarbeit hier durch den Nachkühler kompensiert wird. Cooling water, enables effective heat dissipation in a conventional aftercooler. By dissipating the heat of compression downstream of the second turbine booster, the compression in this is substantially heat-neutral, since the compression work is compensated here by the aftercooler.
Insgesamt erlaubt die Verwendung eines bei den erwähnten höheren Overall, the use of one of the mentioned higher permits
Eintrittstemperaturen betriebenen zweiten Turbinenboosters daher eine Entnahme einer vergleichsweise großen Menge von 3 bis 10 Mol.-% des Einsatzluftstroms in Form von flüssigen Luftprodukten, beispielsweise flüssigem Sauerstoff (LOX), flüssigem Stickstoff (LIN) und/oder flüssigem Argon (LAR). Therefore, intake temperatures operated second turbine booster extraction of a comparatively large amount of 3 to 10 mol .-% of the feed air stream in the form of liquid air products, such as liquid oxygen (LOX), liquid nitrogen (LIN) and / or liquid argon (LAR).
Für eine Luftzerlegungsanlage, die hingegen überwiegend oder ausschließlich gasförmige Luftprodukte bereitstellen soll (die aber auch beispielsweise mittels For an air separation plant, however, the predominantly or exclusively provide gaseous air products (but also for example by means of
Innenverdichtungsverfahren aus flüssigen Zwischenprodukten gewonnen werden können), ist es hingegen vorteilhaft, den dritten Anteil dem ersten Turbinenbooster auf einem Temperaturniveau von 0 bis 50 °C und dem zweiten Turbinenbooster auf einem Temperaturniveau von -140 bis -20 °C zuzuführen. Der zweite Turbinenbooster ist in diesem Fall ein typischer Kaltverdichter, also ein "kalter" Turbinenbooster. Diesem wird der dritte Anteil (Drosselstrom) unterhalb der Umgebungstemperatur zugeführt, stromab des zweiten Turbinenboosters liegt seine Temperatur weiterhin (deutlich) unterhalb der Umgebungstemperatur. Die Temperatur des in dem zweiten Internal compression method can be obtained from liquid intermediates), it is advantageous to supply the third portion of the first turbine booster at a temperature level of 0 to 50 ° C and the second turbine booster at a temperature level of -140 to -20 ° C. The second turbine booster is in this case a typical cold compressor, so a "cold" turbine booster. This is the third portion (inductor current) supplied below the ambient temperature, downstream of the second turbine booster, its temperature is still (significantly) below the ambient temperature. The temperature of the second
Turbinenboosters verdichteten dritten Anteils kann direkt stromab des zweiten Turbine Booster's condensed third portion may be directly downstream of the second
Turbinenboosters beispielsweise bei -90 bis 20 °C liegen. Turbine booster, for example, at -90 to 20 ° C lie.
Ein kalter Turbinenbooster trägt Wärme in das System ein, da die Verdichtungswärme aus dem verdichteten Strom typischerweise nicht in einem Nachkühler, der mit A cold turbine booster adds heat to the system since the heat of compression from the compressed stream is typically not present in an aftercooler
Kühlwasser betrieben wird, sondern nur im Hauptwärmetauscher selbst, verbunden mit einem entsprechenden Wärmeeintrag, abgeführt wird. Ein kalter Turbinenbooster ermöglicht durch diesen im vorliegenden Fall gewollten Wärmeeintrag eine besonders gute Erwärmung und Entflüssigung von Innenverdichtungsprodukten und eignet sich für Luftzerlegungsanlagen zur Erzeugung großer Mengen entsprechender gasförmiger Druckprodukte und vergleichsweise geringer Mengen an flüssigen Luftprodukten. Insgesamt erlaubt die Verwendung eines bei den erwähnten niedrigen Eintrittstemperaturen betriebenen zweiten Turbinenboosters daher eine Entnahme einer vergleichsweise geringen Menge von bis zu 3 Mol.-% des Einsatzluftstroms in Form von flüssigen Luftprodukten, beispielsweise flüssigem Sauerstoff (LOX), flüssigem Stickstoff (LIN) und/oder flüssigem Argon (LAR). Cooling water is operated, but only in the main heat exchanger itself, combined with a corresponding heat input, is dissipated. By means of this heat input, which is intended in the present case, a cold turbine booster permits particularly good heating and liquefaction of internal compression products and is suitable for air separation plants for generating large quantities of corresponding gaseous printed products and comparatively small amounts of liquid air products. Overall, therefore, the use of a second turbine booster operated at the mentioned low inlet temperatures permits removal of a comparatively small amount of up to 3 mol% of the feed air stream in the form of liquid air products, for example liquid oxygen (LOX), liquid nitrogen (LIN) and / or liquid argon (LAR).
Die Erfindung sieht vorteilhafterweise vor, die genannten Turbinenbooster jeweils mit einer der Entspannungsturbinen anzutreiben, beispielsweise den ersten  The invention advantageously provides that said turbine boosters each be driven by one of the expansion turbines, for example the first
Turbinenbooster mit der zweiten Entspannungsturbine und den zweiten Turbine booster with the second expansion turbine and the second
Turbinenbooster mit der ersten Entspannungsturbine. Turbine booster with the first expansion turbine.
Der zusätzlich zur Verdichtung des dritten Anteils (Drosselstrom) eingesetzte The used in addition to the compression of the third portion (inductor current)
Nachverdichter wird hingegen mit externer Energie angetrieben, also nicht über zugeordnete Entspannungsturbinen, die jeweils Luftanteile des Einsatzluftstroms entspannen. Vorteilhaft kann beispielsweise sein, den Nachverdichter mit After-compressor is, however, driven by external energy, so not via associated expansion turbines, each relax the air portions of the feed air stream. For example, it can be advantageous to use the after-compressor
Hochdruckfluid und/oder elektrisch und/oder zusammen mit einer Verdichterstufe des Hauptluftverdichters anzutreiben. In letzterem Fall sind zumindest eine Verdichterstufe des Hauptluftverdichters und zumindest eine Verdichterstufe des Nachverdichters beispielsweise auf einer gemeinsamen Welle angeordnet. Auch ein Einsatz mehrerer entsprechender Maßnahmen gleichzeitig kann erfolgen. To drive high-pressure fluid and / or electrically and / or together with a compressor stage of the main air compressor. In the latter case, at least one compressor stage of the main air compressor and at least one compressor stage of the secondary compressor are arranged, for example, on a common shaft. Even a use of several appropriate measures can be done simultaneously.
Besonders vorteilhaft ist es, den dritten Anteil vor und nach dem weiteren Verdichten in dem zweiten Turbinenbooster in dem Hauptwärmetauscher abzukühlen. Der dritte Anteil wird dem Hauptwärmetauscher dabei auf geeigneten Temperaturniveaus entnommen bzw. zugeführt. Wie erläutert, kann ferner in Fällen, in denen der zweite Turbinenbooster bei den erwähnten höheren Temperaturen betrieben wird, eine zusätzliche Nachkühlung stromab des zweiten Turbinenboosters und vor einer erneuten Einspeisung in den Hauptwärmetauscher vorgesehen sein. Wird dagegen der zweite Turbinenbooster bei den erwähnten geringeren Temperaturen betrieben, ist dies, wie erläutert, nicht der Fall. It is particularly advantageous to cool the third portion before and after the further compression in the second turbine booster in the main heat exchanger. The third portion is taken from or fed to the main heat exchanger at appropriate temperature levels. As explained above, in cases where the second turbine booster is operated at the higher temperatures mentioned, additional after-cooling may be provided downstream of the second turbine booster and before being reintroduced into the main heat exchanger. If, however, the second turbine booster operated at the lower temperatures mentioned, this is, as explained, not the case.
Die Abkühlung in dem Hauptwärmetauscher nach dem Nachverdichten in dem zweiten Turbinenbooster erfolgt dabei vorteilhafterweise von einem Temperaturniveau, das sich nach der Ein- und Austrittstemperatur des zweiten Turbinenboosters und einer möglichen Nachkühlung richtet, also von beispielsweise 10 bis 50 °C oder -90 bis 20 °C auf ein Temperaturniveau von -140 bis -180 °C. Vorteilhaft kann auch sein, wenn der erste Anteil vor dem Entspannen in der ersten Entspannungsturbine in dem Hauptwärmetauscher auf ein Temperaturniveau von 0 bis -150 °C abgekühlt wird. Vorteilhafterweise wird der erste Anteil nach dem Entspannen in der ersten Entspannungsturbine in dem Hauptwärmetauscher auf ein The cooling in the main heat exchanger after the recompression in the second turbine booster is advantageously carried out by a temperature level that depends on the inlet and outlet temperature of the second turbine booster and a possible aftercooling, ie, for example, 10 to 50 ° C or -90 to 20 ° C to a temperature level of -140 to -180 ° C. It may also be advantageous if the first portion is cooled to a temperature level of 0 to 150 ° C. before being expanded in the first expansion turbine in the main heat exchanger. Advantageously, the first portion after relaxing in the first expansion turbine in the main heat exchanger on a
Temperaturniveau von -130 bis -180 °C abgekühlt. Mit anderen Worten wird der erste Anteil nach der Entspannung in der ersten Entspannungsturbine also nochmals durch den Hauptwärmetauscher geführt. Der zweite Anteil wird vorteilhafterweise vor dem Entspannen in der zweiten  Temperature level of -130 to -180 ° C cooled. In other words, after the expansion in the first expansion turbine, the first portion is again passed through the main heat exchanger. The second portion is advantageously before relaxing in the second
Entspannungsturbine in dem Hauptwärmetauscher auf ein Temperaturniveau von -50 bis -150 °C abgekühlt.  Relaxation turbine in the main heat exchanger to a temperature level of -50 to -150 ° C cooled.
Im Rahmen der vorliegenden Erfindung beträgt vorteilhafterweise das erste In the context of the present invention is advantageously the first
Druckniveau 1 bis 2 bar und/oder das zweite Druckniveau 5 bis 6 bar und/oder das dritte Druckniveau 8 bis 23 bar und/oder das vierte Druckniveau 50 bis 70 bar Pressure level 1 to 2 bar and / or the second pressure level 5 to 6 bar and / or the third pressure level 8 to 23 bar and / or the fourth pressure level 50 to 70 bar
Absolutdruck, wenn der zweite Turbinenbooster bei den erwähnten höheren Absolute pressure when the second turbine booster at the mentioned higher
Temperaturen betrieben wird. Wird der zweite Turbinenbooster bei den erwähnten niedrigeren Temperaturen betrieben, beträgt vorteilhafterweise das erste Druckniveau 1 bis 2 bar und/oder das zweite Druckniveau 5 bis 6 bar und/oder das dritte Temperatures is operated. If the second turbine booster is operated at the lower temperatures mentioned, advantageously the first pressure level is 1 to 2 bar and / or the second pressure level is 5 to 6 bar and / or the third
Druckniveau 8 bis 23 bar und/oder das vierte Druckniveau 50 bis 70 bar Absolutdruck. Das dritte Druckniveau lässt sich dabei jeweils noch mit üblichen HAP- Hauptluftverdichtern erreichen, das vierte, insbesondere mit Hilfe des genannten Nachverdichters erzielte Druckniveau ermöglicht den Einsatz eines  Pressure level 8 to 23 bar and / or the fourth pressure level 50 to 70 bar absolute pressure. The third pressure level can be achieved in each case still with conventional HAP main air compressors, the fourth, in particular achieved with the aid of said Nachverdichters pressure level allows the use of a
Dichtfluidexpanders. Das vierte Druckniveau liegt dabei bei überkritischem Druck. Dense fluid expander. The fourth pressure level is at supercritical pressure.
Das erfindungsgemäße Verfahren ermöglicht es insbesondere, dem The inventive method allows in particular, the
Destillationssäulensystem zumindest ein flüssiges Luftprodukt zu entnehmen, flüssig mit Druck zu beaufschlagen, in dem Hauptwärmetauscher zu verdampfen oder in den überkritischen Zustand zu überführen (zu "entflüssigen") und als wenigstens ein Innenverdichtungsprodukt aus der Luftzerlegungsanlage auszuführen, also wie mehrfach erwähnt zum Einsatz mit einem Innenverdichtungsverfahren. At least one liquid air product distillationsäulens, fluidly pressurized to evaporate in the main heat exchanger or in the supercritical state (to "liquefy") and run as at least one internal compression product from the air separation plant, so as mentioned several times for use with a internal compression process.
Das wenigstens eine Innenverdichtungsprodukt kann bei einem Druck von 6 bar bis 100 bar aus der Luftzerlegungsanlage ausgeführt werden. Das erfindungsgemäße Verfahren eignet sich aufgrund des zusätzlichen, oben erläuterten Wärmeeintrags insbesondere zur Bereitstellung von Innenverdichtungsprodukten bei vergleichsweise hohem Druck, d.h. bei mindestens 30 bar, wenn der zweite Turbinenbooster bei den erwähnten geringeren Temperaturen betrieben wird. The at least one internal compression product can be carried out at a pressure of 6 bar to 100 bar from the air separation plant. The invention Method is due to the additional, above-mentioned heat input in particular for providing internal compression products at a relatively high pressure, ie at least 30 bar, when the second turbine booster is operated at the mentioned lower temperatures.
Zu den Merkmalen der erfindungsgemäßen Luftzerlegungsanlage sei auf den entsprechenden Vorrichtungsanspruch verwiesen. Eine derartige Luftzerlegungsanlage weist insbesondere sämtliche Mittel auf, die sie zur Durchführung eines zuvor erläuterten Verfahrens befähigen. Auf die Merkmale und Vorteile, die zuvor erläutert wurden, wird daher ausdrücklich verwiesen. For the features of the air separation plant according to the invention, reference is made to the corresponding device claim. In particular, such an air separation plant has all the means which enable it to carry out a previously explained method. The features and advantages discussed above are therefore expressly referred to.
Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügte Zeichnung näher erläutert, welche bevorzugte Ausführungsformen der Erfindung zeigen. Kurze Beschreibung der Zeichnung The invention will be explained in more detail below with reference to the accompanying drawing, which show preferred embodiments of the invention. Short description of the drawing
Figur 1 zeigt eine Luftzerlegungsanlage gemäß einer Ausführungsform der Erfindung in Form eines schematischen Anlagendiagramms. Figur 2zeigt eine Luftzerlegungsanlage gemäß einer Ausführungsform der Erfindung in Form eines schematischen Anlagendiagramms. FIG. 1 shows an air separation plant according to an embodiment of the invention in the form of a schematic plant diagram. Figure 2 shows an air separation plant according to an embodiment of the invention in the form of a schematic plant diagram.
Ausführliche Beschreibung der Zeichnung In Figur 1 ist eine Luftzerlegungsanlage gemäß einer besonders bevorzugten DETAILED DESCRIPTION OF THE DRAWING FIG. 1 shows an air separation plant according to a particularly preferred embodiment
Ausführungsform der Erfindung schematisch dargestellt und insgesamt mit 100 bezeichnet. Der Luftzerlegungsanlage 100 wird Einsatzluft (AIR) in Form eines Embodiment of the invention shown schematically and designated 100 in total. The air separation plant 100 is used air (AIR) in the form of a
Einsatzluftstroms a zugeführt, durch ein Filter 1 vorgereinigt und anschließend einem Hauptluftverdichter 2 zugeführt. Der Hauptluftverdichter 2 ist stark schematisiert veranschaulicht. Der Hauptluftverdichter 2 verfügt typischerweise über mehrere Feed air flow supplied a, pre-cleaned by a filter 1 and then fed to a main air compressor 2. The main air compressor 2 is illustrated very schematically. The main air compressor 2 typically has several
Verdichterstufen, die über eine gemeinsame Welle mit einem oder mehreren Compressor stages that have a common shaft with one or more
Elektromotoren angetrieben werden können. Electric motors can be driven.
Stromab des Hauptluftverdichters 2 wird der in diesem verdichtete Einsatzluftstrom a, bei dem es sich hier um die gesamte, in der Luftzerlegungsanlage 100 behandelte Einsatzluft handelt, einer nicht dargestellten Reinigungseinrichtung 3 zugeführt und dort beispielsweise von Restfeuchtigkeit und Kohlendioxid befreit. Es wird ein verdichteter (und aufgereinigter) Einsatzluftstrom b erhalten, der stromab der Downstream of the main air compressor 2 is the compressed in this compressed feed air flow a, which here is the entire, treated in the air separation plant 100 Feed air is supplied to a cleaning device 3, not shown, and there, for example, freed of residual moisture and carbon dioxide. A compressed (and purified) feed air stream b is obtained downstream of the
Reinigungseinrichtung 3 auf einem Druckniveau von beispielsweise 15 bis 23 bar, im Rahmen dieser Anmeldung als drittes Druckniveau bezeichnet, vorliegt. Das dritte Druckniveau liegt im dargestellten Beispiel deutlich über dem Betriebsdruck einer typischen Hochdrucksäule einer Luftzerlegungsanlage, wie eingangs erläutert. Es handelt sich damit um ein HAP-Verfahren. Der Einsatzluftstrom b wird nacheinander in die Ströme c, d und e aufgeteilt. Der Strom c wird im Rahmen dieser Anmeldung als erster Anteil, der Strom d als zweiter Anteil und der Strom e als dritter Anteil des Einsatzluftstroms b bezeichnet. Cleaning device 3 at a pressure level of, for example, 15 to 23 bar, referred to in the context of this application as the third pressure level, is present. The third pressure level in the illustrated example is well above the operating pressure of a typical high-pressure column of an air separation plant, as explained above. This is a HAP procedure. The feed air stream b is successively divided into the streams c, d and e. In the context of this application, the current c is referred to as the first portion, the current d as the second portion, and the current e as the third portion of the feed air flow b.
Die Ströme c und d werden getrennt voneinander warmseitig einem The streams c and d are separated warm side one
Hauptwärmetauscher 4 der Luftzerlegungsanlage 100 zugeführt und diesem auf unterschiedlichen Zwischentemperaturniveaus wieder entnommen. Der Strom c wird nach der Entnahme aus dem Hauptwärmetauscher 4 in einer Entspannungsturbine 5, die im Rahmen dieser Anmeldung als erste Entspannungsturbine bezeichnet wird, auf ein Druckniveau von beispielsweise 5 bis 6 bar, das im Rahmen dieser Anmeldung als zweites Druckniveau bezeichnet wird, entspannt, und nochmals durch einen Abschnitt des Hauptwärmetauschers 4 geführt. Der Strom d wird nach der Entnahme aus dem Hauptwärmetauscher 4 in einer Entspannungsturbine 6, die im Rahmen dieser Anmeldung als zweite Entspannungsturbine bezeichnet wird, ebenfalls auf das zweite Druckniveau entspannt. Main heat exchanger 4 of the air separation plant 100 fed and this removed again at different intermediate temperature levels. The stream c is after removal from the main heat exchanger 4 in an expansion turbine 5, which is referred to in the context of this application as the first expansion turbine to a pressure level of for example 5 to 6 bar, which is referred to in the context of this application as a second pressure level, relaxed, and again passed through a section of the main heat exchanger 4. The stream d is also released to the second pressure level after removal from the main heat exchanger 4 in an expansion turbine 6, which is referred to in the context of this application as a second expansion turbine.
Bei dem Strom e handelt es sich um den sogenannten Drosselstrom, der insbesondere die Innenverdichtung ermöglicht. Der Strom e wird hierzu zunächst in einem The current e is the so-called inductor current, which in particular enables internal compression. The current e is this in a first
Nachverdichter 7 und anschließend in zwei Turbinenboostern, die jeweils durch die erste Entspannungsturbine 5 und die zweite Entspannungsturbine 6 angetrieben werden (nicht gesondert bezeichnet), nachverdichtet. Der durch die zweite After-compressor 7 and then in two turbine booster, which are each driven by the first expansion turbine 5 and the second expansion turbine 6 (not separately designated), recompressed. The second
Entspannungsturbine 6 angetriebene Turbinenbooster wird hier als erster Expansion turbine 6 powered turbine boosters will be the first here
Turbinenbooster, der durch die erste Entspannungsturbine 5 angetriebene Turbine booster driven by the first expansion turbine 5
Turbinenbooster hingegen als zweiter Turbinenbooster bezeichnet. Grundsätzlich kann die Zuordnung der Turbinenbooster zu den Entspannungsturbinen 5, 6 auch umgekehrt sein. Die Nachverdichtung erfolgt auf ein Druckniveau von beispielsweise 50 bis 70 bar, das im Rahmen dieser Anmeldung als viertes Druckniveau bezeichnet wird. Stromab des Nachverdichters 7 und stromauf der Turbinenbooster liegt der Strom e auf einem Druckniveau von beispielsweise 26 bis 36 bar vor. Der Nachverdichter 7 wird mit externer Energie, d.h. nicht durch eine Entspannung von verdichteten Turbine booster, however, referred to as the second turbine booster. In principle, the assignment of the turbine boosters to the expansion turbines 5, 6 can also be reversed. The recompression takes place at a pressure level of, for example 50 to 70 bar, which is referred to in this application as the fourth pressure level. Downstream of the booster 7 and upstream of the turbine booster the current e is at a pressure level of for example 26 to 36 bar. The booster 7 is with external energy, ie not by a relaxation of compressed
Luftanteilen des Einsatzluftstroms b, angetrieben. Air fractions of the feed air stream b, driven.
Nach den Nachverdichtungsschritten in den zwei Turbinenboostern wird der Strom e jeweils in nicht gesondert bezeichneten Nachkühlern der Turbinenbooster auf eine Temperatur rückgekühlt, die etwa der Kühlwassertemperatur entspricht. Eine weitere Abkühlung erfolgt wie dargestellt mittels des Hauptwärmetauschers 4 je nach Bedarf. Auf dem vierten Druckniveau wird der Strom e also nochmals durch einen Nachkühler und danach durch den Hauptwärmetauscher 4 geführt und anschließend in einem Dichtfluidexpander 8 entspannt. Das vierte Druckniveau liegt deutlich oberhalb des kritischen Drucks für Stickstoff und oberhalb des kritischen Drucks für Sauerstoff. After the recompression steps in the two turbine boosters, the current e is recooled in each case in non-separately designated aftercoolers of the turbine boosters to a temperature which corresponds approximately to the cooling water temperature. A further cooling takes place as shown by means of the main heat exchanger 4 as needed. At the fourth pressure level, the current e is thus again passed through an aftercooler and then through the main heat exchanger 4 and then expanded in a sealing fluid expander 8. The fourth pressure level is well above the critical pressure for nitrogen and above the critical pressure for oxygen.
Nach der Abkühlung in dem Hauptwärmetauscher 4 und stromauf des After cooling in the main heat exchanger 4 and upstream of the
Dichtfluidexpanders 8 befindet sich der Strom e in flüssigem Zustand bei Dichtfluidexpanders 8 is the current e in the liquid state at
überkritischem Druck. Der Dichtfluidexpander 8 ist beispielsweise mit einem Generator oder einer Ölbremse gekoppelt (ohne Bezeichnung). Nach der Entspannung liegt der Strom e hier auf dem zweiten Druckniveau vor. Er ist weiterhin flüssig, befindet sich jedoch auf einem unterkritischen Druck. supercritical pressure. The sealing fluid expander 8 is coupled, for example, with a generator or an oil brake (without designation). After relaxation, the current e is here at the second pressure level. He is still liquid, but is at a subcritical pressure.
Das Destillationssäulensystem 10 ist stark vereinfacht gezeigt. Es umfasst zumindest eine auf einem Druckniveau von 1 bis 2 bar (hier als erstes Druckniveau bezeichnet) betriebene Niederdrucksäule 11 und eine auf dem zweiten Druckniveau betriebene Hochdrucksäule 12 eines Doppelsäulensystems, in dem die Niederdrucksäule 11 und die Hochdrucksäule 12 über einen Hauptkondensator 13 in wärmetauschender Verbindung stehen. Auf die konkrete Darstellung von die Niederdrucksäule 1 1 und die Hochdrucksäule 12 speisenden und diese und den Hauptkondensator 13 verbindenden Leitungen, Ventilen, Pumpen, weiteren Wärmetauschern und dergleichen wurde der Übersichtlichkeit halber verzichtet. The distillation column system 10 is shown greatly simplified. It comprises at least one at a pressure level of 1 to 2 bar (referred to here as the first pressure level) operated low pressure column 11 and operated at the second pressure level high pressure column 12 of a double column system in which the low pressure column 11 and the high pressure column 12 via a main condenser 13 in heat exchanging connection stand. On the specific presentation of the low pressure column 1 1 and the high pressure column 12 feeding and connecting them and the main condenser 13 lines, valves, pumps, other heat exchangers and the like has been omitted for clarity.
Die Ströme c, d und e werden im dargestellten Beispiel in die Hochdrucksäule 12 eingespeist. Es kann jedoch auch vorgesehen sein, beispielsweise den Strom d und/oder den Strom e nach entsprechender Entspannung in die Niederdrucksäule 1 1 und/oder Anteile nicht in das Destillationssäulensystem einzuspeisen. The streams c, d and e are fed into the high pressure column 12 in the example shown. However, it may also be provided, for example, the stream d and / or the stream e is not fed into the distillation column system after appropriate expansion into the low-pressure column 1 1 and / or fractions.
Dem Destillationssäulensystem 10 können im dargestellten Beispiel die Ströme f, g und h entnommen werden. Die Luftzerlegungsanlage 100 ist zur Durchführung eines Innenverdichtungsverfahrens eingerichtet, wie mehrfach erläutert. Im dargestellten Beispiel werden die Ströme f und g, bei denen es sich um einen flüssigen, The distillation column system 10, the currents f, g and h can be removed in the example shown. The air separation plant 100 is set up to carry out an internal compression process, as explained in more detail. In the example shown, the flows f and g, which are a liquid,
sauerstoffreichen Strom f und einen flüssigen, stickstoffreichen Strom g handeln kann, daher mittels Pumpen 9 in flüssigem Zustand druckbeaufschlagt und in dem Oxygen-rich stream f and a liquid, nitrogen-rich stream g can act, therefore pressurized by means of pumps 9 in the liquid state and in the
Hauptwärmetauscher 4 verdampft oder, je nach Druck, vom flüssigen in den überkritischen Zustand überführt. Fluid der Ströme f und g kann der Main heat exchanger 4 evaporates or, depending on the pressure, transferred from the liquid to the supercritical state. Fluid of the streams f and g may be the
Luftzerlegungsanlage 100 als innenverdichteter Sauerstoff (GOX-IC) bzw. Air separation plant 100 as internally compressed oxygen (GOX-IC) or
innenverdichteter Stickstoff (GAN-IC) entnommen werden. Der Strom h internally compressed nitrogen (GAN-IC) are removed. The current h
veranschaulicht einen oder mehrere dem Destillationssäulensystem 10 in gasförmigem Zustand auf dem ersten Druckniveau entnommene Ströme. illustrates one or more streams taken from the distillation column system 10 in the gaseous state at the first pressure level.
In Figur 2 ist eine Luftzerlegungsanlage gemäß einer besonders bevorzugten FIG. 2 shows an air separation plant according to a particularly preferred embodiment
Ausführungsform der Erfindung schematisch dargestellt und insgesamt mit 200 bezeichnet. Gleiche oder vergleichbare Anlagenkomponenten und Ströme wie in der in Figur 1 gezeigten Luftzerlegungsanlage 100 sind mit identischen Bezugszeichen angegeben und werden nicht wiederholt erläutert. Embodiment of the invention shown schematically and generally designated 200. The same or comparable plant components and streams as in the air separation plant 100 shown in Figure 1 are given identical reference numerals and will not be explained repeatedly.
Der Einsatzluftstrom b liegt auch hier stromab der Reinigungseinrichtung 3 auf einem dritten Druckniveau vor, das jedoch hier beispielsweise 9 bis 17 bar beträgt. Das vierte Druckniveau, auf das der Strom e (Drosselstrom) verdichtet wird, beträgt hier beispielsweise 30 bis 80 bar. Während der Strom e auch hier nach dem The feed air stream b is also present downstream of the cleaning device 3 at a third pressure level, which, however, here is for example 9 to 17 bar. The fourth pressure level, to which the current e (inductor current) is compressed, is for example 30 to 80 bar here. While the stream e here after the
Nachverdichtungsschritt in dem ersten Turbinenbooster in einem nicht gesondert bezeichneten Nachkühler auf eine Temperatur rückgekühlt wird, die etwa der Nachverdichtungsschritt is recooled in the first turbine booster in a not separately designated aftercooler to a temperature which is about the
Kühlwassertemperatur entspricht, erfolgt eine Abkühlung stromab des zweiten Cooling water temperature corresponds, cooling takes place downstream of the second
Turbinenboosters nur mittels des Hauptwärmetauschers 4, nicht jedoch mittels eines Nachkühlers wie in der Luftzerlegungsanlage 100 gemäß Figur 1. Da der zweite Turbinenbooster als "kalter" Turbinenbooster betrieben wird, liegt der Strom e stromab dieses zweiten Turbinenboosters auf einem entsprechend tiefen Temperaturniveau deutlich unterhalb der Umgebungstemperatur vor. Im dargestellten Beispiel der Luftzerlegungsanlage 100 erfolgt der Antrieb des Nachverdichters 7 gemeinsam mit einer oder mehreren Verdichterstufen des Turbine Boosters only by means of the main heat exchanger 4, but not by means of an aftercooler as in the air separation plant 100 of Figure 1. Since the second turbine booster is operated as a "cold" turbine booster, the current e downstream of this second turbine booster at a correspondingly low temperature level is well below the ambient temperature in front. In the example shown, the air separation plant 100, the drive of the booster 7 is carried out together with one or more compressor stages of the
Hauptluftverdichters 2 und unter Verwendung eines Druckfluids, z.B. Druckdampf, das in einer Entspannungsturbine (nicht gesondert bezeichnet) entspannt wird. Main air compressor 2 and using a pressurized fluid, e.g. Compressed steam, which is in an expansion turbine (not separately designated) is relaxed.
Wie erwähnt, eignet sich eine Luftzerlegungsanlage 100 gemäß Figur 1 , bei der der zweite Turbinenbooster als "warmer" Turbinenbooster betrieben wird, besonders für die Bereitstellung größerer Mengen flüssiger Luftprodukte (nicht dargestellt), eine Luftzerlegungsanlage 200 gemäß Figur 2 hingegen, bei der der zweite As mentioned, an air separation plant 100 according to FIG. 1, in which the second turbine booster is operated as a "warm" turbine booster, is particularly suitable for providing larger quantities of liquid air products (not shown), whereas an air separation plant 200 according to FIG
Turbinenbooster als "kalter" Turbinenbooster betrieben wird, besonders für die Bereitstellung von gasförmigen Innenverdichtungsprodukten auf hohem Druck. Turbine booster is operated as a "cold" turbine booster, especially for the provision of high pressure gaseous internal compression products.

Claims

Patentansprüche Patent claims
1. Verfahren zur Tieftemperaturzerlegung von Luft (AIR) in einer 1. Process for the low-temperature separation of air (AIR) in one
Luftzerlegungsanlage (100, 200) mit einem Hauptluftverdichter (2), einem Air separation plant (100, 200) with a main air compressor (2), a
Hauptwärmetauscher (4) und einem Destillationssäulensystem (10) mit einer auf einem ersten Druckniveau betriebenen Niederdrucksäule (11) und einer auf einem zweiten Druckniveau betriebenen Hochdrucksäule (12), bei dem Main heat exchanger (4) and a distillation column system (10) with a low-pressure column (11) operated at a first pressure level and a high-pressure column (12) operated at a second pressure level, in which
- ein Einsatzluftstrom (a), der die gesamte, der Luftzerlegungsanlage (100, 200) zugeführte Einsatzluft umfasst, in dem Hauptluftverdichter (2) auf ein drittes Druckniveau verdichtet wird, welches mindestens 2 bar oberhalb des zweiten Druckniveaus liegt, wobei von dem verdichteten Einsatzluftstrom (b) - a feed air stream (a), which comprises all of the feed air supplied to the air separation plant (100, 200), in which the main air compressor (2) is compressed to a third pressure level, which is at least 2 bar above the second pressure level, from the compressed feed air flow (b)
- ein erster Anteil (c) mindestens einmal in dem Hauptwärmetauscher - a first portion (c) at least once in the main heat exchanger
(4) (4)
abgekühlt und ausgehend von dem dritten Druckniveau in einer ersten cooled and starting from the third pressure level in a first
Entspannungsturbine relaxation turbine
(5) entspannt wird, (5) is relaxed,
- ein zweiter Anteil (d) mindestens einmal in dem Hauptwärmetauscher (4) abgekühlt und ausgehend von dem dritten Druckniveau in einer zweiten Entspannungsturbine - A second portion (d) is cooled at least once in the main heat exchanger (4) and, starting from the third pressure level, in a second expansion turbine
(6) entspannt wird, und (6) is relaxed, and
- ein dritter Anteil (e) weiter auf ein viertes Druckniveau verdichtet, mindestens einmal in dem Hauptwärmetauscher (4) abgekühlt und ausgehend von dem vierten Druckniveau entspannt wird, wobei - a third portion (e) is further compressed to a fourth pressure level, cooled at least once in the main heat exchanger (4) and expanded starting from the fourth pressure level, whereby
Luft des ersten Anteils (c) und/oder des zweiten Anteils (d) und/oder des dritten Anteils (e) auf dem ersten und/oder auf dem zweiten Druckniveau in das Destillationssäulensystem (10) eingespeist wird, dadurch gekennzeichnet, dass Air of the first portion (c) and/or the second portion (d) and/or the third portion (e) is fed into the distillation column system (10) at the first and/or at the second pressure level, characterized in that
- der dritte Anteil (e) nacheinander in einem Nachverdichter - the third part (e) one after the other in a booster
(7), einem ersten Turbinenbooster und einem zweiten Turbinenbooster auf das vierte (7), a first turbine booster and a second turbine booster on the fourth
Druckniveau weiter verdichtet wird, und - zum Entspannen des dritten Anteils (e) ein Dichtfluidexpander Pressure level is further compressed, and - a sealing fluid expander to expand the third portion (e).
(8) verwendet wird, dem der dritte Anteil (e) in flüssigem Zustand und auf dem vierten Druckniveau zugeführt wird, und (8) is used, to which the third portion (e) is supplied in a liquid state and at the fourth pressure level, and
der dritte Anteil (e) dem ersten Turbinenbooster auf einem Temperaturniveau von 0 bis 50 °C zugeführt wird. the third portion (e) is fed to the first turbine booster at a temperature level of 0 to 50 ° C.
Verfahren nach Anspruch 1 , bei dem der dritte Anteil (e) dem zweiten Method according to Claim 1, in which the third portion (e) corresponds to the second
Turbinenbooster auf einem Temperaturniveau von—40 bis 50 °C zugeführt wird. Turbine booster is supplied at a temperature level of -40 to 50 °C.
Verfahren nach Anspruch 2, bei dem der Luftzerlegungsanlage (100, 200) wenigstens ein flüssiges Luftprodukt in einem Anteil von 3 bis 10 Mol.-% des Einsatzluftstroms (a) entnommen wird. Method according to claim 2, in which at least one liquid air product is removed from the air separation plant (100, 200) in a proportion of 3 to 10 mol% of the feed air stream (a).
Verfahren nach Anspruch 2 oder 3, bei dem der dritte Anteil (e) nach dem Method according to claim 2 or 3, in which the third portion (e) after
Nachverdichten in dem zweiten Turbinenbooster in einem Nachkühler ausgehend von einem Temperaturniveau oberhalb der Umgebungstemperatur und danach in dem Hauptwärmetauscher (4) von einem Temperaturniveau von 10 bis 50 °C auf ein Temperaturniveau von -140 bis -180 °C abgekühlt wird. Post-compression in the second turbine booster in an aftercooler starting from a temperature level above the ambient temperature and then cooled in the main heat exchanger (4) from a temperature level of 10 to 50 ° C to a temperature level of -140 to -180 ° C.
Verfahren nach einem der Ansprüche 1 bis 4, bei dem das erste Druckniveau bei 1 bis 2 bar, das zweite Druckniveau bei 5 bis 6 bar, das dritte Druckniveau bei 8 bis 23 bar und/oder das vierte Druckniveau bei 50 bis 70 bar Absolutdruck liegt. Method according to one of claims 1 to 4, in which the first pressure level is 1 to 2 bar, the second pressure level is 5 to 6 bar, the third pressure level is 8 to 23 bar and / or the fourth pressure level is 50 to 70 bar absolute pressure .
Verfahren nach Anspruch 1 , bei dem der dritte Anteil (e) dem ersten Method according to Claim 1, in which the third portion (e) corresponds to the first
Turbinenbooster auf einem Temperaturniveau von 0 bis 50 °C und dem zweiten Turbinenbooster auf einem Temperaturniveau von -140 bis -20 °C zugeführt wird. Turbine booster is supplied at a temperature level of 0 to 50 °C and the second turbine booster at a temperature level of -140 to -20 °C.
Verfahren nach Anspruch 6, bei dem der Luftzerlegungsanlage (100, 200) wenigstens ein flüssiges Luftprodukt in einem Anteil von bis zu 3 ol.-% des Einsatzluftstroms (a) entnommen wird. Method according to claim 6, in which at least one liquid air product is removed from the air separation plant (100, 200) in a proportion of up to 3 ol.-% of the feed air stream (a).
Verfahren nach Anspruch 6 oder 7, bei dem der dritte Anteil (e) nach dem Method according to claim 6 or 7, in which the third portion (e) after
Nachverdichten in dem zweiten Turbinenbooster in dem Hauptwärmetauscher (4) ausgehend von einem Temperaturniveau von -90 bis 20 °C auf ein Post-compression in the second turbine booster in the main heat exchanger (4) starting from a temperature level of -90 to 20 °C
Temperaturniveau von -140 bis -180 °C abgekühlt wird. Temperature level of -140 to -180 °C is cooled.
9. Verfahren nach einem der Ansprüche 6 bis 8, bei dem das erste Druckniveau bei 1 bis 2 bar, das zweite Druckniveau bei 5 bis 6 bar, das dritte Druckniveau bei 9 bis 17 bar und/oder das vierte Druckniveau bei 30 bis 80 bar Absolutdruck liegt. 9. The method according to any one of claims 6 to 8, in which the first pressure level is at 1 to 2 bar, the second pressure level is at 5 to 6 bar, the third pressure level is at 9 to 17 bar and/or the fourth pressure level is at 30 to 80 bar Absolute pressure is.
10. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Turbinenbooster jeweils mit einer der Entspannungsturbinen (5, 6) angetrieben werden. 10. Method according to one of the preceding claims, in which the turbine boosters are each driven by one of the expansion turbines (5, 6).
1 1. Verfahren nach einem der vorstehenden Ansprüche, bei dem der Nachverdichter (7) mit Hochdruckfluid und/oder elektrisch und/oder zusammen mit einer 1 1. Method according to one of the preceding claims, in which the booster (7) with high-pressure fluid and / or electrically and / or together with a
Verdichterstufe des Hauptluftverdichters (2) angetrieben wird. Compressor stage of the main air compressor (2) is driven.
12. Verfahren nach einem der vorstehenden Ansprüche, bei dem der erste Anteil (c) in dem Hauptwärmetauscher (4) vor dem Entspannen auf ein Temperaturniveau von 0 bis -150 °C abgekühlt wird. 12. The method according to any one of the preceding claims, in which the first portion (c) in the main heat exchanger (4) is cooled to a temperature level of 0 to -150 ° C before relaxation.
13. Verfahren nach einem der vorstehenden Ansprüche, bei dem der erste Anteil (c) in dem Hauptwärmetauscher (4) nach dem Entspannen auf ein Temperaturniveau von -150 bis -180 °C abgekühlt wird. 13. The method according to any one of the preceding claims, in which the first portion (c) in the main heat exchanger (4) is cooled after relaxation to a temperature level of -150 to -180 ° C.
14. Verfahren nach einem der vorstehenden Ansprüche, bei dem der zweite Anteil (d) in dem Hauptwärmetauscher (4) vor dem Entspannen auf ein Temperaturniveau von -100 bis -160 °C abgekühlt wird. 14. The method according to any one of the preceding claims, in which the second portion (d) in the main heat exchanger (4) is cooled to a temperature level of -100 to -160 ° C before relaxation.
15. Luftzerlegungsanlage (100), die zur Tieftemperaturzerlegung von Luft (AIR) 15. Air separation plant (100), which is used for the low-temperature separation of air (AIR)
gemäß einem Verfahren nach einem der Ansprüche 1 bis 14 eingerichtet ist und einen Hauptluftverdichter (2), einen Hauptwärmetauscher (4) und ein is set up according to a method according to one of claims 1 to 14 and a main air compressor (2), a main heat exchanger (4) and a
Destillationssäulensystem (10) mit einer auf einem ersten Druckniveau Distillation column system (10) with one at a first pressure level
betriebenen Niederdrucksäule (1 1 ) und einer auf einem zweiten Druckniveau betriebenen Hochdrucksäule (12) aufweist, wobei die Luftzerlegungsanlage (100) operated low-pressure column (1 1) and a high-pressure column (12) operated at a second pressure level, the air separation plant (100)
Mittel aufweist die dafür eingerichtet sind, einen Einsatzluftstrom (a), der die gesamte, der Luftzerlegungsanlage (100, 200) zugeführte Einsatzluft umfasst, in dem Hauptluftverdichter (2) auf ein drittes Druckniveau zu verdichten, welches mindestens 2 bar oberhalb des zweiten Druckniveaus liegt, und von dem verdichteten Einsatzluftstrom (b) Has means which are designed to generate a feed air flow (a), which includes all of the feed air supplied to the air separation plant (100, 200), in the main air compressor (2). to compress a third pressure level, which is at least 2 bar above the second pressure level, and from the compressed feed air flow (b)
- einen ersten Anteil (c) mindestens einmal in dem Hauptwärmetauscher (4) abzukühlen und ausgehend von dem dritten Druckniveau in einer ersten Entspannungsturbine (5) zu entspannen, - to cool a first portion (c) at least once in the main heat exchanger (4) and to expand it in a first expansion turbine (5) starting from the third pressure level,
- einen zweiten Anteil (d) mindestens einmal in dem Hauptwärmetauscher (4) abzukühlen und ausgehend von dem dritten Druckniveau in einer zweiten Entspannungsturbine (6) zu entspannen, einen dritten Anteil (e) weiter auf ein viertes Druckniveau zu verdichten, mindestens einmal in dem Hauptwärmetauscher (4) abzukühlen und ausgehend von dem vierten Druckniveau zu entspannen, und - to cool a second portion (d) at least once in the main heat exchanger (4) and to expand it starting from the third pressure level in a second expansion turbine (6), to further compress a third portion (e) to a fourth pressure level, at least once in the Main heat exchanger (4) to cool and relax starting from the fourth pressure level, and
- Luft des ersten Anteils (c) und/oder des zweiten Anteils (d) und/oder des dritten Anteils (e) auf dem ersten und/oder auf dem zweiten Druckniveau in das Destillationssäulensystem (10) einzuspeisen, gekennzeichnet durch Mittel, die dafür eingerichtet sind, - to feed air of the first portion (c) and/or the second portion (d) and/or the third portion (e) into the distillation column system (10) at the first and/or at the second pressure level, characterized by means for this are set up,
- den dritten Anteil (e) nacheinander in einem Nachverdichter (7), einem ersten Turbinenbooster und einem zweiten Turbinenbooster auf das vierte - the third portion (e) one after the other in a booster (7), a first turbine booster and a second turbine booster to the fourth
Druckniveau weiter zu verdichten, to further compress the pressure level,
- den dritten Anteil (e) in einem Dichtfluidexpander (8) zu entspannen und diesem den dritten Anteil (e) in flüssigem Zustand und auf dem vierten Druckniveau zuzuführen und den dritten Anteil (e) dem ersten Turbinenbooster auf einem - to relax the third portion (e) in a sealing fluid expander (8) and to supply the third portion (e) in the liquid state and at the fourth pressure level and the third portion (e) to the first turbine booster on a
Temperaturniveau von 0 bis 50 °C zuzuführen. Temperature level from 0 to 50 °C.
EP15742185.0A 2014-07-31 2015-07-28 Method for the cryogenic separation of air and air separation plant Pending EP3175192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14002683.2A EP2980514A1 (en) 2014-07-31 2014-07-31 Method for the low-temperature decomposition of air and air separation plant
PCT/EP2015/001554 WO2016015860A1 (en) 2014-07-31 2015-07-28 Method for the cryogenic separation of air and air separation plant

Publications (1)

Publication Number Publication Date
EP3175192A1 true EP3175192A1 (en) 2017-06-07

Family

ID=51266069

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14002683.2A Withdrawn EP2980514A1 (en) 2014-07-31 2014-07-31 Method for the low-temperature decomposition of air and air separation plant
EP15742185.0A Pending EP3175192A1 (en) 2014-07-31 2015-07-28 Method for the cryogenic separation of air and air separation plant

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP14002683.2A Withdrawn EP2980514A1 (en) 2014-07-31 2014-07-31 Method for the low-temperature decomposition of air and air separation plant

Country Status (5)

Country Link
US (1) US10480853B2 (en)
EP (2) EP2980514A1 (en)
CN (1) CN106716033B (en)
SA (1) SA517380791B1 (en)
WO (1) WO2016015860A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3179186A1 (en) * 2015-12-07 2017-06-14 Linde Aktiengesellschaft Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus
EP3312533A1 (en) 2016-10-18 2018-04-25 Linde Aktiengesellschaft Method for air separation and air separation plant
DE102017010001A1 (en) 2016-11-04 2018-05-09 Linde Aktiengesellschaft Process and installation for the cryogenic separation of air
DE102016015292A1 (en) 2016-12-22 2018-06-28 Linde Aktiengesellschaft Method of providing one or more air products with an air separation plant
EP3343158A1 (en) 2016-12-28 2018-07-04 Linde Aktiengesellschaft Method for producing one or more air products, and air separation system
WO2018219501A1 (en) 2017-05-31 2018-12-06 Linde Aktiengesellschaft Method for obtaining one or more air products and air separation plant
HUE045459T2 (en) 2017-06-02 2019-12-30 Linde Ag Method for producing one or more air products and air separation system
WO2019214847A1 (en) 2018-05-07 2019-11-14 Linde Aktiengesellschaft Method for obtaining one or more air products and air separation system
EP3620739A1 (en) 2018-09-05 2020-03-11 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
KR20210070988A (en) 2018-10-09 2021-06-15 린데 게엠베하 Method for obtaining at least one air product and an air separation system
WO2020083520A1 (en) 2018-10-26 2020-04-30 Linde Aktiengesellschaft Method for obtaining one or more air products, and air separation unit
DE202018005045U1 (en) 2018-10-31 2018-12-17 Linde Aktiengesellschaft Plant for the production of argon by cryogenic separation of air
EP3671085A1 (en) 2018-12-18 2020-06-24 Linde GmbH Assembly and method for recovering compression heat from the air which is compressed and processed in an air processing system
DE102019000335A1 (en) 2019-01-18 2020-07-23 Linde Aktiengesellschaft Process for providing air products and air separation plant
EP3696486A1 (en) 2019-02-13 2020-08-19 Linde GmbH Method and apparatus for providing one or more gaseous oxygen rich air products
EP3699535A1 (en) 2019-02-19 2020-08-26 Linde GmbH Method and air separation system for variable provision of a gaseous pressurised air product
EP3699534A1 (en) 2019-02-19 2020-08-26 Linde GmbH Method and air separation system for variable provision of a gaseous pressurised air product
EP3980705A1 (en) * 2019-06-04 2022-04-13 Linde GmbH Method and system for low-temperature air separation
WO2022053173A1 (en) 2020-09-08 2022-03-17 Linde Gmbh Method and plant for cryogenic fractionation of air
EP4211409A1 (en) 2020-09-08 2023-07-19 Linde GmbH Method for obtaining one or more air products, and air fractionation plant
CN112361716A (en) * 2020-10-26 2021-02-12 乔治洛德方法研究和开发液化空气有限公司 Method and device for producing high-pressure gas from an air separation plant
EP4237773A1 (en) * 2020-10-27 2023-09-06 Fabrum IP Holdings Limited Air treatment system and method of treating air
CN116547488A (en) 2020-11-24 2023-08-04 林德有限责任公司 Method and apparatus for cryogenic separation of air
WO2022263013A1 (en) 2021-06-17 2022-12-22 Linde Gmbh Method and plant for providing a pressurized oxygen-rich, gaseous air product
DE202021002439U1 (en) 2021-07-17 2021-10-20 Linde Gmbh compressor
TW202326047A (en) 2021-09-02 2023-07-01 德商林德有限公司 Method for recovering one or more air products, and air separation plant
DE202021002895U1 (en) 2021-09-07 2022-02-09 Linde GmbH Plant for the low-temperature separation of air
EP4151940A1 (en) 2021-09-18 2023-03-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for cryogenic air separation
CN113758150A (en) * 2021-09-18 2021-12-07 乔治洛德方法研究和开发液化空气有限公司 Method for low-temperature separation of air and air separation plant
CN117940727A (en) 2021-09-29 2024-04-26 林德有限责任公司 Method and air separation plant for the cryogenic separation of air

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2909678B2 (en) 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for producing gaseous oxygen under pressure
US5564290A (en) * 1995-09-29 1996-10-15 Praxair Technology, Inc. Cryogenic rectification system with dual phase turboexpansion
US20030000248A1 (en) * 2001-06-18 2003-01-02 Brostow Adam Adrian Medium-pressure nitrogen production with high oxygen recovery
US6962062B2 (en) * 2003-12-10 2005-11-08 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US7272954B2 (en) * 2004-07-14 2007-09-25 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Proceded Georges Claude Low temperature air separation process for producing pressurized gaseous product
EP1767884A1 (en) * 2005-09-23 2007-03-28 L'Air Liquide Société Anon. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US7533540B2 (en) * 2006-03-10 2009-05-19 Praxair Technology, Inc. Cryogenic air separation system for enhanced liquid production
DE102006012241A1 (en) * 2006-03-15 2007-09-20 Linde Ag Method and apparatus for the cryogenic separation of air
US8136369B2 (en) * 2006-07-14 2012-03-20 L'air Liquide Societe Anonyme Pour L'etude System and apparatus for providing low pressure and low purity oxygen
US20080223077A1 (en) * 2007-03-13 2008-09-18 Neil Mark Prosser Air separation method
DE102007014643A1 (en) * 2007-03-27 2007-09-20 Linde Ag Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
DE102007031765A1 (en) * 2007-07-07 2009-01-08 Linde Ag Process for the cryogenic separation of air
DE102007031759A1 (en) * 2007-07-07 2009-01-08 Linde Ag Method and apparatus for producing gaseous pressure product by cryogenic separation of air
US20090320520A1 (en) * 2008-06-30 2009-12-31 David Ross Parsnick Nitrogen liquefier retrofit for an air separation plant
US8443625B2 (en) * 2008-08-14 2013-05-21 Praxair Technology, Inc. Krypton and xenon recovery method
US8397535B2 (en) * 2009-06-16 2013-03-19 Praxair Technology, Inc. Method and apparatus for pressurized product production
US9182170B2 (en) * 2009-10-13 2015-11-10 Praxair Technology, Inc. Oxygen vaporization method and system
DE102010052544A1 (en) 2010-11-25 2012-05-31 Linde Ag Process for obtaining a gaseous product by cryogenic separation of air
DE102010052545A1 (en) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Method and apparatus for recovering a gaseous product by cryogenic separation of air
EP2520886A1 (en) * 2011-05-05 2012-11-07 Linde AG Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
EP2634517B1 (en) * 2012-02-29 2018-04-04 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US20130255313A1 (en) * 2012-03-29 2013-10-03 Bao Ha Process for the separation of air by cryogenic distillation
US9518778B2 (en) * 2012-12-26 2016-12-13 Praxair Technology, Inc. Air separation method and apparatus
WO2014102014A2 (en) * 2012-12-27 2014-07-03 Linde Aktiengesellschaft Method and device for low-temperature air separation
PL2770286T3 (en) * 2013-02-21 2017-10-31 Linde Ag Method and apparatus for the production of high pressure oxygen and high pressure nitrogen
AU2014234685B2 (en) * 2013-03-19 2019-04-18 Linde Aktiengesellschaft Method and device for generating gaseous compressed nitrogen.
FR3010778B1 (en) * 2013-09-17 2019-05-24 Air Liquide PROCESS AND APPARATUS FOR PRODUCING GAS OXYGEN BY CRYOGENIC DISTILLATION OF AIR
US20160025408A1 (en) * 2014-07-28 2016-01-28 Zhengrong Xu Air separation method and apparatus
US20160245585A1 (en) * 2015-02-24 2016-08-25 Henry E. Howard System and method for integrated air separation and liquefaction

Also Published As

Publication number Publication date
US20170234614A1 (en) 2017-08-17
WO2016015860A1 (en) 2016-02-04
US10480853B2 (en) 2019-11-19
CN106716033A (en) 2017-05-24
EP2980514A1 (en) 2016-02-03
SA517380791B1 (en) 2020-12-16
CN106716033B (en) 2020-03-31

Similar Documents

Publication Publication Date Title
EP3175192A1 (en) Method for the cryogenic separation of air and air separation plant
WO2007104449A1 (en) Method and apparatus for fractionating air at low temperatures
EP2789958A1 (en) Method for the low-temperature decomposition of air and air separation plant
EP2963370B1 (en) Method and device for the cryogenic decomposition of air
DE102010052545A1 (en) Method and apparatus for recovering a gaseous product by cryogenic separation of air
EP3343158A1 (en) Method for producing one or more air products, and air separation system
EP3410050B1 (en) Method for producing one or more air products and air separation system
EP3101374A2 (en) Method and installation for cryogenic decomposition of air
EP2835507B1 (en) Method for generating electrical energy and energy generation system
EP2963369B1 (en) Method and device for the cryogenic decomposition of air
EP3019804A2 (en) Method for producing at least one air product, air separation system, method and device for producing electrical energy
WO2020164799A1 (en) Method and system for providing one or more oxygen-rich, gaseous air products
EP3034974A1 (en) Method and assembly for the liquefaction of air and for electrical energy storage and recovery
EP2824407A1 (en) Method for generating at least one air product, air separation plant, method and device for generating electrical energy
WO2015014485A2 (en) Method and device for producing compressed nitrogen
DE202021002895U1 (en) Plant for the low-temperature separation of air
EP1199532A1 (en) Three-column system for the cryogenic separation of air
EP3312533A1 (en) Method for air separation and air separation plant
EP4133227A2 (en) Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants
EP2770286B1 (en) Method and apparatus for the production of high pressure oxygen and high pressure nitrogen
EP2835506A1 (en) Method for generating electrical energy and energy generation system
EP2784420A1 (en) Method for air separation and air separation plant
EP3179188B1 (en) Method for the low-temperature decomposition of air and air separation plant
EP4127583B1 (en) Process and plant for low-temperature separation of air
EP3870916B1 (en) Method for producing one or more air products and air separation unit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

17P Request for examination filed

Effective date: 20170113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GOLUBEV, DIMITRI

Inventor name: LAUTENSCHLAGER, TOBIAS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210331

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240603