EP3140519A1 - Method and arrangement for operating a steam turbine plant in combination with thermal water treatment - Google Patents

Method and arrangement for operating a steam turbine plant in combination with thermal water treatment

Info

Publication number
EP3140519A1
EP3140519A1 EP15724551.5A EP15724551A EP3140519A1 EP 3140519 A1 EP3140519 A1 EP 3140519A1 EP 15724551 A EP15724551 A EP 15724551A EP 3140519 A1 EP3140519 A1 EP 3140519A1
Authority
EP
European Patent Office
Prior art keywords
water
raw water
evaporator
steam turbine
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15724551.5A
Other languages
German (de)
French (fr)
Other versions
EP3140519B1 (en
Inventor
Alexander Tremel
Markus Ziegmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3140519A1 publication Critical patent/EP3140519A1/en
Application granted granted Critical
Publication of EP3140519B1 publication Critical patent/EP3140519B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/06Returning energy of steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel or plant

Definitions

  • the invention relates to a method and an arrangement for operating a steam turbine plant in combination with a thermal water treatment plant for the purification of condensate from the exhaust gas of a steam turbine process.
  • Steam power plants are the predominant type of power plants for power generation. High demands on the water quality of the boiler feed water ⁇ the water cycle such power stations. When vaporizing the boiler feed water to steam, liquid water is transferred completely to the gas phase on hot surfaces, depending on the design.
  • solar energy is transferred completely to the gas phase on hot surfaces, depending on the design.
  • SAmtli ⁇ che non-volatile boiler feed water components become deposited on this hot surface. Disadvantageously, these deposits hinder the heat transfer or lead to mechanical failure of, for example, valves.
  • many inorganic constituents in boiler feed water ⁇ cause the corrosion tendency of the components in the water-steam cycle further increases. This can result in components, especially steel components, result in clamping voltage ⁇ torn.
  • Degradation products of the resin material may disadvantageously deposit on dry surfaces of various components in the heat-steam circuit.
  • the cleaning supply of boiler feed water can be accomplished with a reverse osmosis process. In reverse osmosis, but ho he loads the raw water lead adversely to a decrement ⁇ th Flux in reverse osmosis. Furthermore, the most ⁇ th processes are very energy intensive.
  • Object of the present invention is to provide a method and an arrangement for water treatment for a steam cycle, which overcome the disadvantages mentioned the ⁇ .
  • the inventive method for operating a steam turbines ⁇ nena position in combination with a thermal water treatment system comprises several steps. First, what ⁇ serdampf condensed from a steam turbine plant in a first capacitor to raw water. At least a portion of the raw water is gege ben with a carrier gas in a vaporizer, wherein in the evaporator between raw water and the carrier gas take place, a mass transfer and a heat transfer. The raw water and the carrier gas are passed in the evaporator in countercurrent. In this case, the carrier gas is heated in the Ver ⁇ dunster and pure water is taken from the raw water from the Trä gergas.
  • the raw water cools down and the contami ⁇ fixing certificates, especially the semi-volatile contaminants, focus on in the raw water.
  • the raw water with the concentrated impurities is collected in a tank after the evaporator.
  • the loaded with pure water The carrier gas is conducted into a second condenser.
  • the purified water is condensed from the carrier gas, wherein the second condenser is cooled with raw ⁇ water from the tank.
  • the purified water is then returned to a steam cycle.
  • the preheated in the second condenser raw water is fed to a first heater, wherein heat from the steam turbine or the water vapor circuit passes to the preheated raw water.
  • the preheated raw water is then fed from the Hei ⁇ zer in the evaporator.
  • the arrangement for operating a steam turbine plant in combination ⁇ nation with a thermal water treatment system includes fully a first condenser for condensing water vapor from the steam turbine plant to the raw water. Furthermore, it includes a vaporizer for operation with raw water and a carrier gas, wherein in the vaporizer material and heat ⁇ transmission takes place. Furthermore, the arrangement comprises a tank for collecting the raw water concentrated with impurities. The arrangement further comprises a second condenser for condensing the pure water from the carrier gas after the evaporator. The arrangement also includes at least one steam turbine for operation with at least a portion of the purified water.
  • the method and the arrangement advantageously use both heat from the steam turbine process and the steam cycle, in particular the steam generator, as well as components of the exhaust gas of the steam turbine, in particular the water vapor.
  • the evaporation of the raw water from the exhaust gas of the steam turbine works on the principle of forced convection.
  • the raw water cooled second capacitor advantageously provides for the recovery of the heat of evaporation.
  • the water and the carrier gas are advantageously conducted in countercurrent through the evaporator. The temperature of the carrier gas increases during the countercurrent process, while the temperature of the raw water decreases. At an altitude or a separation stage of the evaporator, the air temperature is lower as the temperature of the raw water.
  • a low electrical energy requirement and low other operating costs of the cleaning process of the boiler feed water of the steam turbine are achieved by the coupling of the heat flows. Furthermore, it is possible with the method can be provided regardless of the quality of the raw water, th as a product fully ent ⁇ desalinated water which has been cleaned of low volatile components with consistent product quality preserver ⁇ .
  • heat must only at a low temperature level, , The water treatment comes with almost no additional electrical energy input.
  • the required thermal energy is taken advantage of the steam turbine installation or to the water steam cycle.
  • the steam cycle typically includes at least one steam generator, multiple condensers, and heaters.
  • the raw water comprises ammonia as a conditioning agent for the boiler feed water for the steam turbine process.
  • the pH of the raw water before the evaporator is adjusted so acidic that the ammonia remains in the evaporator in the raw water.
  • Ammonia by itself is a volatile component.
  • Ammonia in water can be so konditi ⁇ oniert that the ammonia is present as ammonium ion. This is the case for low pHs of at least one pH unit below the pKa of ammonia of 9.2. If ammonia is hydrolyzed in water as an ammonium ion, it loses its volatility. This can be removed in Ver ⁇ dunster because it is not exceeded in the gas phase.
  • ammonia should also be present in the water after the purification in order to influence the corrosion properties of the water.
  • the pH is selected to be so high that it is above the pKa value of the ammonia, so that it is volatile and merges with the carrier gas and is thus reconstituted with the purified water in the condenser. can become.
  • conditioned water is already available as boiler feed water.
  • fresh raw water is added to the tank.
  • This raw water is in particular water from the condensate of the exhaust gas of the steam turbine.
  • the raw water can also be river water, seawater or wastewater or come from another source of water.
  • the process of evaporation makes it possible to use heavily polluted wastewater.
  • Rohwas ⁇ sers which is obtained from the condensate of the exhaust gas of the steam turbine, so even more water can be supplied to the process.
  • Temperature of the raw water in the evaporator from 60 ° C to 100 ° C. Due to this low temperature level, it is advantageously possible to heat the raw water only by means of the waste heat of the steam cycle, in particular of the steam generator, or of the exhaust gas of the steam turbine. This is advantageous very energy efficient.
  • the heater is operated with the heat of the exhaust gas of a steam generator of the steam turbine process.
  • the Wasseraufbe ⁇ preparation thus comes advantageously almost without additional electrical energy input.
  • the required thermal energy is advantageously completely men from the water vapor ⁇ circuit or the exhaust gas of the steam turbine process entnom-.
  • the evaporator is a falling film evaporator or a trickle stream evaporator.
  • the boundary surface between the carrier gas, in particular air, and the raw water is advantageously particularly large in order to allow material and heat transfer.
  • the carrier gas from bottom to top the raw water is passed from top to bottom.
  • Figure 1 shows an arrangement with a steam cycle, Turbi ⁇ ne, capacitors and thermal water treatment
  • FIG. 2 shows a thermal water treatment arrangement with a diffuser and a condenser.
  • FIG 1 shows a an arrangement 1 with a coupling of the steam turbine power plant with thermal Wasseraufberei ⁇ processing arrangement 5.
  • the steam generator 4 generates by means of heat supply 12, typically an external heat source, live steam 7 from boiler feed water 14.
  • the live steam 7 is then ge in the turbine 2 for generating electricity ⁇ passes.
  • the exhaust gas 6, which is produced during the steam generation 4, is conducted to a heater 15, which heats the raw water 10 of the thermal water treatment arrangement 5.
  • the steam 8 leaves the turbine 2 and is then condensed in a first condenser 3 to condensate 9. A portion of this condensate 9 is passed as raw water 10 in the thermal water treatment see 5.
  • thermal water treatment 5 additional fresh raw water 11 can be added from another external source. This can be, for example, sea or river water.
  • raw water 19 concentrated with impurities leaves the thermal water treatment arrangement 5.
  • purified water 22 leaves the thermal water treatment system 5.
  • the boiler feed water 14 is then in turn fed to the steam generator 4.
  • a purified proportion of boiler feed water 14 with an uncleaned portion of condensate 9 can be fed to boiler feed water 14. be mixed.
  • heat of the exhaust gas 6 is too low after steam generation in the steam generator 4
  • heat can also be removed at various points of the steam cycle, in the case of several turbine stages and between stages, to heat the heater 15.
  • FIG. 2 shows the thermal water treatment arrangement 5 in detail.
  • the core of the thermal water treatment ⁇ arrangement 5 is the evaporator.
  • a Rieselstromverdunster 16 is used.
  • the raw water 10 to be cleaned flows from top to bottom through a structured Verdunsterpackung.
  • the air 13 as a carrier gas is passed from bottom to top through the Rieselstromverdunster 16.
  • the temperatures in the trickle flow evaporator 16 are in a range between 60 C and
  • the Rieselstromverdunster 16 works by means of convective assisted evaporation of water.
  • the pure water evaporates into the counter-current air 13 and can then be condensed again in a second condenser 17 and fed back into the steam generator 4 as clean water 22.
  • the second condenser 17 is cooled with raw water 10.
  • the already heated raw water 18 is then passed through the heater 15 to bring the Roh ⁇ water to the temperature that is needed in the trickle steam evaporator 16.
  • the raw water 18 is subsequently irrigated ⁇ chd over a suitable Verdunstermaterial.
  • materials in particular structured packings of plastic, metal or cellulose with a specific surface area of 100 m 2 / m 3 to 300 m 2 / m 3 are used.
  • the Rieselstromverdunster 16 is operated in countercurrent. That is, the temperature of the downflowing raw water 18 drops from the head to the bottom of Rieselstromverdunsters 16 because the water is extracted by evaporation and air heating energy. By contrast, the temperature of the countercurrent air rises from the foot to the head of the trickle flow evaporator 16. On a separation stage, that is, at a height in the trickle stream evaporator 16, the temperature of the air always remains lower than the temperature of the raw water. Thus, the heat transfer from the falling water to the rising air, and according to the rising temperature, the air in the upper part of the Rieselstromverdunster 16 absorb more water vapor.
  • the concentrated with impurities raw water 19 is partially introduced into a tank 20 for storage, partly it is conveyed out of the system through ⁇ out.
  • the tank 20 is filled with fresh raw water 11.
  • the fresh raw water 11 may on the one hand be the condensed water from the turbine 2, but on the other hand also water from other water sources, such as river water, seawater or sewage treatment plant.
  • the advantage of the evaporation process used is that even the treatment of heavily polluted waste water is possible.
  • the boiler feed water 14 is typically conditioned prior to steam generation to operate the steam turbine such that the tendency to corrosion decreases. This is done ⁇ example, with the addition of volatile alkalizing agents, in particular ammonia.
  • volatile alkalizing agents in particular ammonia.
  • usual ammonia concentrations range from 0.5 mg / L to 1 mg / L (with the addition of phosphate) or> 5 mg / L (without added phosphate).
  • Ammonia can in high concen ⁇ tions in the presence of foreign ions such as phosphate, however, turn to corrosion, especially due to the formation of ammonium salts, lead heat steam cycle. Therefore, depending on the driving style, it may be necessary to remove ammonia in the thermal water treatment assembly 5 from the system.
  • Ammonia is a volatile component and would pass into the vapor phase in Rieselstromverdunster 16 without conditioning the raw water and so burden the purified water.
  • the pH of the raw water 18 is adjusted to be at least one pH unit below the pKa of ammonia of 9.2. In this pH range, the ammonia is present as ammonium ion in water. The ammonium ion is hydrolyzed and by a little fleeting.
  • the trickle stream evaporator 16 does not pass into the gas phase, but leaves the trickle stream evaporator 16 with the concentrated raw water 19. Ammonia can then be added again to the boiler feed water 14 in the desired concentration.
  • a pH value can be selected, which is Wenig ⁇ least one pH unit above the pKa value of 9.2.
  • the ammonia can be fed into the second condenser 17 together with the air 21 charged with the purified water.
  • This water can be recycled directly as a conditioned boiler ⁇ feed water 14 in the steam circuit of the turbine 2 ⁇ .
  • an operation of the water treatment plant is enriched al lerdings ammonia due to its high vapor pressure in Kon ⁇ condensate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The invention relates to an arrangement and a method for operating a steam turbine plant in combination with a thermal water treatment plant having a first condenser for condensing raw water from exhaust gas of a steam turbine, an evaporator for operation with raw water and air, wherein transfers of material and of heat take place in the evaporator, a tank for receiving the raw water with increased concentrations of impurities, a second condenser for condensing the pure water from the air downstream of the evaporator, at least one steam turbine for operation with the purified water.

Description

Beschreibung description
VERFAHREN UND ANORDNUNG ZUM BETRIEB EINER DAMPFTURBINENANLAGE IN KOMBINATION MIT EINER THERMISCHEN METHOD AND ARRANGEMENT FOR OPERATING A STEAM TURBINE SYSTEM IN COMBINATION WITH A THERMAL
WASSERAUFBEREITUNG WATER TREATMENT
Die Erfindung betrifft ein Verfahren und eine Anordnung zum Betrieb einer Dampfturbinenanlage in Kombination mit einer thermischen Wasseraufbereitungsanlage zur Reinigung von Kondensat aus dem Abgas eines Dampfturbinenprozesses . The invention relates to a method and an arrangement for operating a steam turbine plant in combination with a thermal water treatment plant for the purification of condensate from the exhaust gas of a steam turbine process.
Dampfkraftwerke gehören zur vorherrschenden Bauart der Kraftwerke zur Stromerzeugung. An die Wasserqualität des Kessel¬ speisewassers des Wasserkreislaufs solcher Kraftwerke werden hohe Anforderungen gestellt. Beim Verdampfen des Kesselspei- sewassers zu Dampf wird je nach Bauart auf heißen Oberflächen flüssiges Wasser komplett in die Gasphase überführt. Sämtli¬ che nichtflüchtige Kesselspeisewasserkomponenten werden dabei auf dieser heißen Oberfläche abgelagert. Nachteiligerweise behindern diese Ablagerungen den Wärmeübergang oder führen zum mechanischen Ausfall von beispielsweise Ventilen. Weiterhin führen viele anorganische Inhaltsstoffe im Kesselspeise¬ wasser dazu, dass die Korrosionsneigung der Bauteile im Wasserdampfkreislauf noch weiter zunimmt. Dies kann zu Span¬ nungsrissen in Bauteilen, insbesondere Bauteilen aus Stahl, führen. Steam power plants are the predominant type of power plants for power generation. High demands on the water quality of the boiler feed water ¬ the water cycle such power stations. When vaporizing the boiler feed water to steam, liquid water is transferred completely to the gas phase on hot surfaces, depending on the design. Sämtli ¬ che non-volatile boiler feed water components become deposited on this hot surface. Disadvantageously, these deposits hinder the heat transfer or lead to mechanical failure of, for example, valves. Furthermore, many inorganic constituents in boiler feed water ¬ cause the corrosion tendency of the components in the water-steam cycle further increases. This can result in components, especially steel components, result in clamping voltage ¬ torn.
Zur Minderung der korrosiven Eigenschaften von Wasser bzw. Wasserdampf in Wasserdampfkreisläufen existieren verschiedene Verfahren der Konditionierung. Hierzu zählen vor allem die Alkalisierung des Wassers und die Sauerstoffdosierung . Sowohl ein erhöhter pH-Wert als auch eine erhöhte Redoxspannung führen zu einer verminderten Löslichkeit von Eisenoxid. Allerdings kann eine Alkalisierung mit festen Alkalisierungs- mitteln nachteiligerweise nicht in Durchlauferhitzern ange- wandt werden, da hier das Wasser vollständig verdampft wird und somit Ablagerungen auftreten würden. Daher wird in diesem Fall häufig Ammoniak als flüchtiges Alkalisierungsmittel ein¬ gesetzt. Zur Reinigung des Kesselspeisewassers von Verunreinigungen sind unterschiedliche Aufbereitungsverfahren bekannt. Diese Verfahren basieren in der Regel auf Ionenaustausch. Ionenaus tauschprozesse können allerdings auch als Kontaminationsquel le auftreten. Abbauprodukte des Harzmaterials können sich au trockenen Oberflächen verschiedener Bauteile im Wärmedampfkreislauf nachteilerweise ablagern. Weiterhin kann die Reini gung des Kesselspeisewassers mit einem Umkehrosmoseprozess bewerkstelligt werden. Bei der Umkehrosmose jedoch führen ho he Belastungen des Rohwassers nachteilig zu einem erniedrig¬ ten Flux bei der Umkehrosmose. Des Weiteren sind die bekann¬ ten Verfahren sehr energieintensiv. To reduce the corrosive properties of water or water vapor in steam circuits, there are various methods of conditioning. These include above all the alkalization of the water and the oxygen dosage. Both an increased pH and an increased redox potential lead to a reduced solubility of iron oxide. However, alkalization with solid alkalizers can disadvantageously not be used in instantaneous water heaters, since here the water is completely evaporated and thus deposits would occur. Therefore, ammonia is often used as a volatile alkalizing agent in this case. For purification of the boiler feed water from impurities different treatment methods are known. These methods are usually based on ion exchange. However, ion exchange processes can also occur as sources of contamination. Degradation products of the resin material may disadvantageously deposit on dry surfaces of various components in the heat-steam circuit. Furthermore, the cleaning supply of boiler feed water can be accomplished with a reverse osmosis process. In reverse osmosis, but ho he loads the raw water lead adversely to a decrement ¬ th Flux in reverse osmosis. Furthermore, the most ¬ th processes are very energy intensive.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Anordnung zur Wasseraufbereitung für einen Wasserdampfkreislauf anzugeben, welche die genannten Nachteile überwin¬ den . Object of the present invention is to provide a method and an arrangement for water treatment for a steam cycle, which overcome the disadvantages mentioned the ¬ .
Die Aufgabe wird mittels eines Verfahrens gemäß Anspruch 1 und mittels einer Anordnung gemäß Anspruch 9 gelöst. The object is achieved by means of a method according to claim 1 and by means of an arrangement according to claim 9.
Das erfindungsgemäße Verfahren zum Betrieb einer Dampfturbi¬ nenanlage in Kombination mit einer thermischen Wasseraufbereitungsanlage umfasst mehrere Schritte. Zunächst wird Was¬ serdampf aus einer Dampfturbinenanlage in einem ersten Kondensator zu Rohwasser kondensiert. Wenigstens ein Anteil des Rohwassers wird mit einem Trägergas in einen Verdunster gege ben, wobei in dem Verdunster zwischen Rohwasser und dem Trägergas ein Stoff- und ein Wärmeübergang stattfinden. Das Roh wasser und das Trägergas werden in dem Verdunster im Gegenstrom geführt. Dabei erwärmt sich das Trägergas in dem Ver¬ dunster und reines Wasser wird aus dem Rohwasser von dem Trä gergas aufgenommen. Das Rohwasser kühlt ab und die Verunrei¬ nigungen, insbesondere die schwer flüchtigen Verunreinigungen, konzentrieren sich in dem Rohwasser auf. Das Rohwasser mit den aufkonzentrierten Verunreinigungen wird nach dem Ver dunster in einem Tank gesammelt. Das mit reinem Wasser bela- dene Trägergas wird in einen zweiten Kondensator geführt. In dem zweiten Kondensator wird das gereinigte Wasser aus dem Trägergas kondensiert, wobei der zweite Kondensator mit Roh¬ wasser aus dem Tank gekühlt wird. Das gereinigte Wasser wird anschließend in einen Wasserdampfkreislauf zurückgeführt. Das im zweiten Kondensator vorgewärmte Rohwasser wird zu einem ersten Heizer geführt, wobei Wärme aus der Dampfturbinenanla- ge oder dem Wasserdampfkreislauf an das vorgewärmte Rohwasser übergeht. Das vorgewärmte Rohwasser wird danach aus dem Hei¬ zer in den Verdunster geführt. The inventive method for operating a steam turbines ¬ nena position in combination with a thermal water treatment system comprises several steps. First, what ¬ serdampf condensed from a steam turbine plant in a first capacitor to raw water. At least a portion of the raw water is gege ben with a carrier gas in a vaporizer, wherein in the evaporator between raw water and the carrier gas take place, a mass transfer and a heat transfer. The raw water and the carrier gas are passed in the evaporator in countercurrent. In this case, the carrier gas is heated in the Ver ¬ dunster and pure water is taken from the raw water from the Trä gergas. The raw water cools down and the contami ¬ fixing certificates, especially the semi-volatile contaminants, focus on in the raw water. The raw water with the concentrated impurities is collected in a tank after the evaporator. The loaded with pure water The carrier gas is conducted into a second condenser. In the second condenser, the purified water is condensed from the carrier gas, wherein the second condenser is cooled with raw ¬ water from the tank. The purified water is then returned to a steam cycle. The preheated in the second condenser raw water is fed to a first heater, wherein heat from the steam turbine or the water vapor circuit passes to the preheated raw water. The preheated raw water is then fed from the Hei ¬ zer in the evaporator.
Die Anordnung zum Betrieb einer Dampfturbinenanlage in Kombi¬ nation mit einer thermischen Wasseraufbereitungsanlage um- fasst einen ersten Kondensator zum Kondensieren von Wasserdampf aus der Dampfturbinenanlage zu Rohwasser. Weiterhin um- fasst sie einen Verdunster zum Betrieb mit Rohwasser und einem Trägergas, wobei in dem Verdunster Stoff- und Wärme¬ übertragung stattfindet. Weiterhin umfasst die Anordnung einen Tank zum Auffangen des mit Verunreinigungen aufkonzentrierten Rohwassers. Die Anordnung umfasst weiterhin einen zweiten Kondensator zum Kondensieren des reinen Wassers aus dem Trägergas nach dem Verdunster. Die Anordnung umfasst auch wenigstens eine Dampfturbine zum Betrieb mit wenigstens einem Anteil des gereinigten Wassers. The arrangement for operating a steam turbine plant in combination ¬ nation with a thermal water treatment system includes fully a first condenser for condensing water vapor from the steam turbine plant to the raw water. Furthermore, it includes a vaporizer for operation with raw water and a carrier gas, wherein in the vaporizer material and heat ¬ transmission takes place. Furthermore, the arrangement comprises a tank for collecting the raw water concentrated with impurities. The arrangement further comprises a second condenser for condensing the pure water from the carrier gas after the evaporator. The arrangement also includes at least one steam turbine for operation with at least a portion of the purified water.
Das erfindungsgemäße Verfahren und die Anordnung nutzen vorteilhafterweise sowohl Wärme aus dem Dampfturbinenprozess und dem Wasserdampfkreislauf, insbesondere dem Dampferzeuger, als auch Komponenten des Abgases der Dampfturbine, insbesondere den Wasserdampf. Die Verdunstung des Rohwassers aus dem Abgas der Dampfturbine arbeitet nach dem Prinzip der erzwungenen Konvektion. Der Rohwasser gekühlte zweite Kondensator sorgt vorteilhaft für die Rückgewinnung der Verdunstungswärme. Das Wasser und das Trägergas werden vorteilhaft im Gegenstrom durch den Verdunster geführt. Die Temperatur des Trägergases steigt dabei während des Gegenstromprozesses an, während die Temperatur des Rohwassers sinkt. Auf einer Höhe bzw. einer Trennstufe des Verdunsters ist die Lufttemperatur niedriger als die Temperatur des Rohwassers. Vorteilhafterweise wird durch die Kopplung der Wärmeströme ein geringer elektrischer Energiebedarf und geringe sonstige Betriebskosten des Reinigungsprozesses des Kesselspeisewassers der Dampfturbine er- reicht. Weiterhin ist es mit dem Verfahren möglich, unabhängig von der Qualität des Rohwassers, als Produkt voll ent¬ salztes Wasser, welches von schwer flüchtigen Komponenten gereinigt wurde, mit gleichbleibender Produktqualität zu erhal¬ ten. Vorteilhaft muss Wärme lediglich bei niedrigem Tempera- turniveau bereitgestellt werden. Die Wasseraufbereitung kommt nahezu ohne zusätzlichen elektrischen Energieeintrag aus. Die erforderliche thermische Energie wird vorteilhaft der Dampf¬ turbinenanlage oder dem Wasserdampfkreislauf entnommen. Der Wasserdampfkreislauf umfasst typischerweise wenigstens einen Dampferzeuer, mehrere Kondensatoren und Heizer. The method and the arrangement advantageously use both heat from the steam turbine process and the steam cycle, in particular the steam generator, as well as components of the exhaust gas of the steam turbine, in particular the water vapor. The evaporation of the raw water from the exhaust gas of the steam turbine works on the principle of forced convection. The raw water cooled second capacitor advantageously provides for the recovery of the heat of evaporation. The water and the carrier gas are advantageously conducted in countercurrent through the evaporator. The temperature of the carrier gas increases during the countercurrent process, while the temperature of the raw water decreases. At an altitude or a separation stage of the evaporator, the air temperature is lower as the temperature of the raw water. Advantageously, a low electrical energy requirement and low other operating costs of the cleaning process of the boiler feed water of the steam turbine are achieved by the coupling of the heat flows. Furthermore, it is possible with the method can be provided regardless of the quality of the raw water, th as a product fully ent ¬ desalinated water which has been cleaned of low volatile components with consistent product quality preserver ¬. Advantageously, heat must only at a low temperature level, , The water treatment comes with almost no additional electrical energy input. The required thermal energy is taken advantage of the steam turbine installation or to the water steam cycle. The steam cycle typically includes at least one steam generator, multiple condensers, and heaters.
In einer vorteilhaften Weiterbildung der Erfindung umfasst das Rohwasser Ammoniak als Konditionierungsmittel für das Kesselspeisewasser für den Dampfturbinenprozess . Weiterhin wird der pH-Wert des Rohwassers vor dem Verdunster derart sauer eingestellt, dass das Ammoniak im Verdunster im Rohwasser verbleibt. Ammoniak für sich gesehen ist eine leicht flüchtige Komponente. Ammoniak in Wasser kann derart konditi¬ oniert werden, dass das Ammoniak als Ammonium-Ion vorliegt. Dies ist für niedrige pH-Werte von wenigstens einer pH- Einheit unterhalb des pKs-Wertes von Ammoniak von 9,2 der Fall. Liegt Ammoniak in Wasser hydrolysiert als Ammonium-Ion vor, verliert es seine Flüchtigkeit. Dadurch kann es im Ver¬ dunster abgetrennt werden, da es nicht in die Gasphase über- geht. In an advantageous development of the invention, the raw water comprises ammonia as a conditioning agent for the boiler feed water for the steam turbine process. Furthermore, the pH of the raw water before the evaporator is adjusted so acidic that the ammonia remains in the evaporator in the raw water. Ammonia by itself is a volatile component. Ammonia in water can be so konditi ¬ oniert that the ammonia is present as ammonium ion. This is the case for low pHs of at least one pH unit below the pKa of ammonia of 9.2. If ammonia is hydrolyzed in water as an ammonium ion, it loses its volatility. This can be removed in Ver ¬ dunster because it is not exceeded in the gas phase.
Es ist ebenso denkbar, dass Ammoniak in dem Wasser auch nach der Reinigung vorliegen soll, um die Korrosionseigenschaften des Wassers zu beeinflussen. In dieser vorteilhaften Weiter- bildung der Erfindung wird der pH-Wert derart hoch gewählt, dass er oberhalb des pKs-Wertes vom Ammoniak liegt, so dass dieses leichtflüchtig ist und mit in das Trägergas übergeht und so mit dem gereinigten Wasser im Kondensator wiedergewon- nen werden kann. In diesem Fall steht bereits konditioniertes Wasser als Kesselspeisewasser zu Verfügung. It is also conceivable that ammonia should also be present in the water after the purification in order to influence the corrosion properties of the water. In this advantageous development of the invention, the pH is selected to be so high that it is above the pKa value of the ammonia, so that it is volatile and merges with the carrier gas and is thus reconstituted with the purified water in the condenser. can become. In this case, conditioned water is already available as boiler feed water.
In einer Ausgestaltung der Erfindung wird in den Tank fri- sches Rohwasser hinzugegeben. Dieses Rohwasser ist insbesondere Wasser aus dem Kondensat des Abgases der Dampfturbine. Das Rohwasser kann auch Flusswasser, Meerwasser oder Abwasser sein oder aus einer weiteren Wasserquelle stammen. Durch den Prozess der Verdunstung ist es möglich, auch stark ver- schmutztes Abwasser zu verwenden. Je nach Menge des Rohwas¬ sers, welches aus dem Kondensat des Abgases der Dampfturbine anfällt, kann so noch weiteres Wasser dem Prozess zugeführt werden . In einer weiteren Ausgestaltung der Erfindung beträgt dieIn one embodiment of the invention, fresh raw water is added to the tank. This raw water is in particular water from the condensate of the exhaust gas of the steam turbine. The raw water can also be river water, seawater or wastewater or come from another source of water. The process of evaporation makes it possible to use heavily polluted wastewater. Depending on the amount of Rohwas ¬ sers, which is obtained from the condensate of the exhaust gas of the steam turbine, so even more water can be supplied to the process. In a further embodiment of the invention, the
Temperatur des Rohwassers im Verdunster von 60°C bis 100°C. Durch dieses niedrige Temperaturniveau ist es vorteilhaft möglich, das Rohwasser lediglich mittels der Abwärme des Wasserdampfkreislaufs, insbesondere des Dampferzeugers, oder des Abgases der Dampfturbine zu erhitzen. Dies ist vorteilhaft sehr energiesparend. Temperature of the raw water in the evaporator from 60 ° C to 100 ° C. Due to this low temperature level, it is advantageously possible to heat the raw water only by means of the waste heat of the steam cycle, in particular of the steam generator, or of the exhaust gas of the steam turbine. This is advantageous very energy efficient.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird der Heizer mit der Wärme des Abgases eines Dampferzeu- gers des Dampfturbinenprozesses betrieben. Die Wasseraufbe¬ reitung kommt somit vorteilhaft nahezu ohne zusätzlichen elektrischen Energieeintrag aus. Die benötigte thermische Energie wird vorteilhaft vollständig aus dem Wasserdampf¬ kreislauf oder dem Abgas des Dampfturbinenprozesses entnom- men. In a further advantageous embodiment of the invention, the heater is operated with the heat of the exhaust gas of a steam generator of the steam turbine process. The Wasseraufbe ¬ preparation thus comes advantageously almost without additional electrical energy input. The required thermal energy is advantageously completely men from the water vapor ¬ circuit or the exhaust gas of the steam turbine process entnom-.
In einer weiteren Ausgestaltung der Erfindung ist der Verdunster ein Fallfilmverdunster oder ein Rieselstromver- dunster. Bei diesen Verdunsterausführungen ist vorteilhaft die Grenzfläche zwischen dem Trägergas, insbesondere Luft, und dem Rohwasser besonders groß, um Stoff- und Wärmeübergang zu ermöglichen. Typischerweise wird das Trägergas von unten nach oben, das Rohwasser von oben nach unten geführt. Die Erfindung wird nachfolgend anhand eines Ausführungsbei¬ spiels unter Bezugnahme auf die angehängten Zeichnungen beschrieben. Es zeigen: In a further embodiment of the invention, the evaporator is a falling film evaporator or a trickle stream evaporator. In these evaporator embodiments, the boundary surface between the carrier gas, in particular air, and the raw water is advantageously particularly large in order to allow material and heat transfer. Typically, the carrier gas from bottom to top, the raw water is passed from top to bottom. The invention will be described below with reference to an Ausführungsbei ¬ game with reference to the accompanying drawings. Show it:
Figur 1 eine Anordnung mit einem Wasserdampfkreislauf, Turbi¬ ne, Kondensatoren und thermischer Wasseraufbereitung; Figure 1 shows an arrangement with a steam cycle, Turbi ¬ ne, capacitors and thermal water treatment;
Figur 2 eine thermische Wasseraufbereitungsanordnung mit Ver- dunster und Kondensator. FIG. 2 shows a thermal water treatment arrangement with a diffuser and a condenser.
Figur 1 zeigt einen eine Anordnung 1 mit einer Kopplung des Dampfturbinenkraftwerks mit der thermischen Wasseraufberei¬ tungsanordnung 5. Exemplarisch ist in Figur 1 nur eine Turbi- nenstufe 2 dargestellt. Der Dampferzeuger 4 erzeugt mit Hilfe von Wärmezufuhr 12, typischerweise einer externen Wärmequelle, Frischdampf 7 aus Kesselspeisewasser 14. Der Frischdampf 7 wird anschließend in die Turbine 2 zur Stromerzeugung ge¬ leitet. Das Abgas 6, welches bei der Dampferzeugung 4 ent- steht wird zu einem Heizer 15 geleitet, welcher das Rohwasser 10 der thermischen Wasseraufbereitungsanordnung 5 erwärmt. Der Dampf 8 verlässt die Turbine 2 und wird anschließend in einem ersten Kondensator 3 zu Kondensat 9 kondensiert. Ein Teil dieses Kondensats 9 wird als Rohwasser 10 in die thermi- sehe Wasseraufbereitung 5 geleitet. Es ist ebenso möglich, das gesamte Kondensat 9 in die thermische Wasseraufbereitung 5 zu führen. Zur thermischen Wasseraufbereitung 5 kann zusätzlich frisches Rohwasser 11 aus einer anderen externen Quelle hinzugefügt werden. Dies kann beispielsweise Meer- oder Flusswasser sein. Nach der Wasseraufbereitung 5 verlässt mit Verunreinigungen aufkonzentriertes Rohwasser 19 die thermische Wasseraufbereitungsanordnung 5. Weiterhin verlässt gereinigtes Wasser 22 die thermische Wasseraufbereitungsanord¬ nung 5. Das Kesselspeisewasser 14 wird anschließend wiederum dem Dampferzeuger 4 zugeführt. Je nach Grad der Verunreinigung des Dampfes 8 beziehungsweise des Kondensats 9 kann ein gereinigter Anteil Kesselspeisewasser 14 mit einem nicht gereinigten Anteil Kondensat 9 zu Kesselspeisewasser 14 ge- mischt werden. Für den Fall, dass die Wärme des Abgases 6 nach der Dampferzeugung im Dampferzeuger 4 zu gering ist, kann zusätzlich an verschiedenen Stellen des Wasserdampfkreislaufs, im Falle mehrere Turbinenstufen auch zwischen den Stufen, Wärme entnommen werden, um den Heizer 15 zu erwärmen. Figure 1 shows a an arrangement 1 with a coupling of the steam turbine power plant with thermal Wasseraufberei ¬ processing arrangement 5. As an example is shown in Figure 1, only one turbine 2 shown nenstufe. The steam generator 4 generates by means of heat supply 12, typically an external heat source, live steam 7 from boiler feed water 14. The live steam 7 is then ge in the turbine 2 for generating electricity ¬ passes. The exhaust gas 6, which is produced during the steam generation 4, is conducted to a heater 15, which heats the raw water 10 of the thermal water treatment arrangement 5. The steam 8 leaves the turbine 2 and is then condensed in a first condenser 3 to condensate 9. A portion of this condensate 9 is passed as raw water 10 in the thermal water treatment see 5. It is also possible to lead the entire condensate 9 into the thermal water treatment 5. For thermal water treatment 5, additional fresh raw water 11 can be added from another external source. This can be, for example, sea or river water. After the water treatment 5, raw water 19 concentrated with impurities leaves the thermal water treatment arrangement 5. Furthermore, purified water 22 leaves the thermal water treatment system 5. The boiler feed water 14 is then in turn fed to the steam generator 4. Depending on the degree of contamination of the steam 8 or of the condensate 9, a purified proportion of boiler feed water 14 with an uncleaned portion of condensate 9 can be fed to boiler feed water 14. be mixed. In the event that the heat of the exhaust gas 6 is too low after steam generation in the steam generator 4, heat can also be removed at various points of the steam cycle, in the case of several turbine stages and between stages, to heat the heater 15.
Figur 2 zeigt die thermische Wasseraufbereitungsanordnung 5 im Detail. Das Kernstück der thermischen Wasseraufbereitungs¬ anordnung 5 ist der Verdunster. In diesem Beispiel wird ins- besondere ein Rieselstromverdunster 16 eingesetzt. Dabei fließt das zu reinigende Rohwasser 10 von oben nach unten durch eine strukturierte Verdunsterpackung. Die Luft 13 als Trägergas wird von unten nach oben durch den Rieselstromverdunster 16 geführt. Die Temperaturen in dem Rieselstrom- verdunster 16 liegen in einem Bereich zwischen 60 C und FIG. 2 shows the thermal water treatment arrangement 5 in detail. The core of the thermal water treatment ¬ arrangement 5 is the evaporator. In this example, in particular a Rieselstromverdunster 16 is used. The raw water 10 to be cleaned flows from top to bottom through a structured Verdunsterpackung. The air 13 as a carrier gas is passed from bottom to top through the Rieselstromverdunster 16. The temperatures in the trickle flow evaporator 16 are in a range between 60 C and
100°C. Der Rieselstromverdunster 16 arbeitet mittels einer konvektiv unterstützten Verdunstung von Wasser. Das reine Wasser verdunstet in die im Gegenstrom geführte Luft 13 und kann anschließend in einem zweiten Kondensator 17 wieder kon- densiert werden und als sauberes Wasser 22 zurück in den Dampferzeuger 4 geführt werden. Der zweite Kondensator 17 wird mit Rohwasser 10 gekühlt. Das schon erwärmte Rohwasser 18 wird anschließend durch den Heizer 15 geführt, um das Roh¬ wasser auf die Temperatur zu bringen, die im Rieselstrom- verdunster 16 benötigt wird. Das Rohwasser 18 wird anschlie¬ ßend über einem geeigneten Verdunstermaterial verrieselt. As Materialen werden insbesondere strukturierte Packungen aus Kunststoff, Metall oder Cellulose mit einer spezifischen Oberfläche von 100 m2/m3 bis 300 m2/m3 verwendet. 100 ° C. The Rieselstromverdunster 16 works by means of convective assisted evaporation of water. The pure water evaporates into the counter-current air 13 and can then be condensed again in a second condenser 17 and fed back into the steam generator 4 as clean water 22. The second condenser 17 is cooled with raw water 10. The already heated raw water 18 is then passed through the heater 15 to bring the Roh ¬ water to the temperature that is needed in the trickle steam evaporator 16. The raw water 18 is subsequently irrigated ¬ ßend over a suitable Verdunstermaterial. As materials, in particular structured packings of plastic, metal or cellulose with a specific surface area of 100 m 2 / m 3 to 300 m 2 / m 3 are used.
Der Rieselstromverdunster 16 wird im Gegenstrom betrieben. Das heißt, die Temperatur des abwärts strömenden Rohwassers 18 sinkt vom Kopf zum Fuß des Rieselstromverdunsters 16, weil dem Wasser durch Verdunstung und Lufterwärmung Energie entzo- gen wird. Die Temperatur der entgegenströmenden Luft steigt dagegen vom Fuß zum Kopf des Rieselstromverdunsters 16 an. Auf einer Trennstufe, das heißt auf einer Höhe im Riesel¬ stromverdunster 16, bleibt die Temperatur der Luft immer niedriger als die Temperatur des Rohwassers. Damit erfolgt die Wärmeübertragung vom fallenden Wasser auf die aufsteigende Luft, und entsprechend der ansteigenden Temperatur kann die Luft im oberen Bereich des Rieselstromverdunster 16 mehr Wasserdampf aufnehmen. Das mit Verunreinigungen aufkonzentrierte Rohwasser 19 wird teilweise in einen Tank 20 zur Speicherung vorgelegt, teilweise wird es aus dem System hin¬ aus befördert. Je nach Bedarfsmenge des Kesselspeisewassers 14 und nach Qualität des aufkonzentrierten Rohwassers 19 wird der Tank 20 mit frischem Rohwasser 11 aufgefüllt. Das frische Rohwasser 11 kann einerseits das kondensierte Wasser aus der Turbine 2 sein, andererseits aber auch Wasser aus anderen Wasserquellen, wie beispielsweise Flusswasser, Meerwasser oder Abwasser einer Kläranlage. Der Vorteil des eingesetzten Verdunstungsverfahrens ist, dass selbst die Aufbereitung von stark verschmutzten Abwässern möglich ist. The Rieselstromverdunster 16 is operated in countercurrent. That is, the temperature of the downflowing raw water 18 drops from the head to the bottom of Rieselstromverdunsters 16 because the water is extracted by evaporation and air heating energy. By contrast, the temperature of the countercurrent air rises from the foot to the head of the trickle flow evaporator 16. On a separation stage, that is, at a height in the trickle stream evaporator 16, the temperature of the air always remains lower than the temperature of the raw water. Thus, the heat transfer from the falling water to the rising air, and according to the rising temperature, the air in the upper part of the Rieselstromverdunster 16 absorb more water vapor. The concentrated with impurities raw water 19 is partially introduced into a tank 20 for storage, partly it is conveyed out of the system through ¬ out. Depending on the requirement quantity of the boiler feed water 14 and the quality of the concentrated raw water 19, the tank 20 is filled with fresh raw water 11. The fresh raw water 11 may on the one hand be the condensed water from the turbine 2, but on the other hand also water from other water sources, such as river water, seawater or sewage treatment plant. The advantage of the evaporation process used is that even the treatment of heavily polluted waste water is possible.
Das Kesselspeisewasser 14 wird typischerweise vor der Dampferzeugung zum Betrieb der Dampfturbine derart konditioniert, dass die Korrosionsneigung abnimmt. Dies geschieht beispiels¬ weise mit der Zugabe von flüchtigen Alkalisierungsmitteln, insbesondere von Ammoniak. Übliche Ammoniakkonzentrationen liegen in Abhängigkeit der Fahrweise in einem Bereich von 0,5 mg/L bis 1 mg/L (unter Zugabe von Phosphat) oder >5 mg/L (ohne Phosphatzugabe) . Ammoniak kann in zu hohen Konzentra¬ tionen in Gegenwart von Fremdionen wie Phosphat allerdings wiederum zur Korrosion, insbesondere aufgrund der Bildung von Ammoniumsalzen, im Wärmedampfkreislauf führen. Daher kann es in Abhängigkeit der Fahrweise nötig sein, Ammoniak in der thermischen Wasseraufbereitungsanordnung 5 aus dem System zu entfernen. Ammoniak ist eine flüchtige Komponente und würde im Rieselstromverdunster 16 ohne eine Konditionierung des Rohwassers in die Gasphase übergehen und so das gereinigte Wasser belasten. Um dies zu verhindern, wird der pH-Wert des Rohwassers 18 derart eingestellt, dass er um wenigstens eine pH-Einheit unterhalb des pKs-Werts von Ammoniak von 9,2 liegt. In diesem pH-Bereich liegt das Ammoniak als Ammonium- Ion in Wasser vor. Das Ammonium-Ion ist hydrolysiert und da- durch wenig flüchtig. Somit geht es im Rieselstromverdunster 16 nicht in die Gasphase über, sondern verlässt den Riesel¬ stromverdunster 16 mit dem aufkonzentrierten Rohwasser 19. Ammoniak kann anschließend wieder dem Kesselspeisewasser 14 in der gewünschten Konzentration hinzugegeben werden. The boiler feed water 14 is typically conditioned prior to steam generation to operate the steam turbine such that the tendency to corrosion decreases. This is done ¬ example, with the addition of volatile alkalizing agents, in particular ammonia. Depending on the driving style, usual ammonia concentrations range from 0.5 mg / L to 1 mg / L (with the addition of phosphate) or> 5 mg / L (without added phosphate). Ammonia can in high concen ¬ tions in the presence of foreign ions such as phosphate, however, turn to corrosion, especially due to the formation of ammonium salts, lead heat steam cycle. Therefore, depending on the driving style, it may be necessary to remove ammonia in the thermal water treatment assembly 5 from the system. Ammonia is a volatile component and would pass into the vapor phase in Rieselstromverdunster 16 without conditioning the raw water and so burden the purified water. To prevent this, the pH of the raw water 18 is adjusted to be at least one pH unit below the pKa of ammonia of 9.2. In this pH range, the ammonia is present as ammonium ion in water. The ammonium ion is hydrolyzed and by a little fleeting. Thus, the trickle stream evaporator 16 does not pass into the gas phase, but leaves the trickle stream evaporator 16 with the concentrated raw water 19. Ammonia can then be added again to the boiler feed water 14 in the desired concentration.
Für den Fall, dass Ammoniak nicht aus dem Rohwasser entfernt 10 werden soll, kann ein pH-Wert gewählt werden, der wenigs¬ tens eine pH-Einheit oberhalb des pKs-Werts von 9,2 liegt. So kann das Ammoniak zusammen mit der mit dem gereinigten Wasser beladenen Luft 21 in den zweiten Kondensator 17 geführt werden. Dieses Wasser kann direkt als konditioniertes Kessel¬ speisewasser 14 in den Wasserdampfkreislauf der Turbine 2 zu¬ rückgeführt werden. Bei einer solchen Betriebsweise wird al- lerdings Ammoniak aufgrund seines hohen Dampfdruckes im Kon¬ densat der Wasseraufbereitungsanlage angereichert. In the case that ammonia is not to be removed from the raw water 10, a pH value can be selected, which is Wenig ¬ least one pH unit above the pKa value of 9.2. Thus, the ammonia can be fed into the second condenser 17 together with the air 21 charged with the purified water. This water can be recycled directly as a conditioned boiler ¬ feed water 14 in the steam circuit of the turbine 2 ¬ . In such an operation of the water treatment plant is enriched al lerdings ammonia due to its high vapor pressure in Kon ¬ condensate.
Die Notwendigkeit einer Entfernung des Ammoniaks hängt von mehreren Faktoren ab. In erster Linie ist die Art der Kessel- speisewasserkonditionierung entscheidend. Für den Fall, dass die Ammoniakkonzentration begrenzt werden muss, gilt es zu beachten, ob, wie in Figur 1 gezeigt, direkt ein Teil des Kondensats 9 nach der Turbine 2 wieder in den Dampferzeuger 4 geführt wird. Für den Fall, dass ein Teil des Kondensats 9 direkt ohne Aufbereitung in den Dampferzeuger 4 geführt wird, ist eine Reinigung auch vom Verhältnis dieser Kondensatmenge 9 zu der Menge an eingesetztem Rohwassers 10 abhängig. Dieses nicht gereinigte Kondensat 9 beinhaltet Ammoniak in einer de¬ finierten Konzentration. In Abhängigkeit dieser Konzentration muss nun in der thermischen Wasseraufbereitung 5 das Ammoniak entsprechend erniedrigt werden, um die gewünschte Ammoniak¬ konzentration im Kesselspeisewasser 14 einzustellen. The need for ammonia removal depends on several factors. First and foremost, the type of boiler feedwater conditioning is crucial. In the event that the ammonia concentration must be limited, it should be noted whether, as shown in Figure 1, directly a part of the condensate 9 is passed to the turbine 2 again in the steam generator 4. In the event that a portion of the condensate 9 is fed directly without treatment in the steam generator 4, a cleaning is also dependent on the ratio of this condensate 9 to the amount of raw water 10 used. This non-purified condensate 9 contains ammonia in a de ¬ fined concentration. Depending on this concentration, the ammonia must now be correspondingly lowered in the thermal water treatment 5 to set the desired ammonia concentration in the boiler feedwater ¬ fourteenth
Im Falle, dass Ammoniak nicht vollständig aus dem Rohwasser 10 entfernt werden soll, aber auch nicht vollständig im Roh¬ wasser 10 verbleiben oder sogar aufkonzentriert werden soll, besteht die Möglichkeit, durch entsprechende Wahl eines pH- Wertes innerhalb des Bereiches (pKs -1) < pH < (pKs + l)die gewünschte Ammoniak-Konzentration einzustellen. In the event that ammonia is not completely removed from the raw water 10, but also does not remain completely in the raw water ¬ 10 or even to be concentrated, it is possible by appropriate choice of a pH Value within the range (pKs -1) <pH <(pKs + l) to set the desired ammonia concentration.

Claims

Patentansprüche claims
1. Verfahren zum Betrieb einer Dampfturbinenanlage in Kombi¬ nation mit einer thermischen Wasseraufbereitungsanlage (5) mit folgenden Schritten: 1. A method for operating a steam turbine plant in combination ¬ nation with a thermal water treatment plant (5) with the following steps:
- Kondensieren von Wasserdampf aus der Dampfturbinenanlage zu Rohwasser in einem ersten Kondensator (3) ,  Condensing water vapor from the steam turbine plant to raw water in a first condenser (3),
- Zugeben von einem Trägergas (13) und wenigstens einem An¬ teil des Rohwassers (10) zu einem Verdunster (16), wobei in dem Verdunster (16) zwischen dem Rohwasser (10) und dem- adding a carrier gas (13) and at least one at ¬ part of the raw water (10) to a Verdunster (16), wherein in the Verdunster (16) between the raw water (10) and the
Trägergas (13) ein Stoff- und Wärmeübergang stattfinden,Carrier gas (13) take place a mass and heat transfer,
- Führen des Rohwassers (10) und des Trägergases (13) im - Leading the raw water (10) and the carrier gas (13) in
Gegenstrom in dem Verdunster (16), wobei sich das Trägergas (13) in dem Verdunster (16) erwärmt und reines Wasser aus dem Rohwasser (10) aufnimmt und sich das Rohwasser (10) ab¬ kühlt und sich die Verunreinigungen aufkonzentrieren, Countercurrent in the evaporator (16), wherein the carrier gas (13) in the evaporator (16) heats up and receives pure water from the raw water (10) and the raw water (10) from ¬ cools and concentrate the impurities,
- Sammeln des Rohwassers (10) mit den aufkonzentrierten Verunreinigungen (19) nach dem Verdunster (16) in einem Tank - Collecting the raw water (10) with the concentrated impurities (19) after the evaporator (16) in a tank
(20) , (20),
- Führen des mit reinem Wasser beladenen Trägergases (21) in einen zweiten Kondensator (17), - Carrying the pure water laden carrier gas (21) in a second capacitor (17),
- Kondensieren von gereinigtem Wasser (22) aus dem Trägergas - Condensation of purified water (22) from the carrier gas
(21) in dem zweiten Kondensator (17), wobei der zweite Kondensator (17) mit dem Rohwasser (10) aus dem Tank (20) ge- kühlt wird, (21) in the second condenser (17), wherein the second condenser (17) is cooled with the raw water (10) from the tank (20),
- Führen des gereinigten Wassers (22) in einen Wasserdampfkreislauf der Dampfturbinenanlage (2),  - Guiding the purified water (22) in a steam cycle of the steam turbine plant (2),
- Führen des vorgewärmten Rohwassers (18) aus dem zweiten  - Lead the preheated raw water (18) from the second
Kondensator (17) zu einem ersten Heizer (15), wobei Wärme aus der Dampfturbinenanlage oder dem Wasserdampfkreislauf an das vorgewärmte Rohwasser (18) übergeht,  Condenser (17) to a first heater (15), wherein heat from the steam turbine plant or the steam cycle passes to the preheated raw water (18),
- Führen des vorgewärmten Rohwassers (18) aus dem Heizer (15) in den Verdunster (16) .  - Leading the preheated raw water (18) from the heater (15) in the evaporator (16).
2. Verfahren nach Anspruch 1, wobei das Rohwasser (10) Ammoniak umfasst und der pH-Wert des Rohwassers (10) derart sauer eingestellt wird, dass das Ammoniak im Verdunster (16) im Rohwasser (10) verbleibt. 2. The method of claim 1, wherein the raw water (10) comprises ammonia and the pH of the raw water (10) is adjusted so acidic that the ammonia in the evaporator (16) in the raw water (10) remains.
3. Verfahren nach Anspruch 1, wobei das Rohwasser (10) Ammoniak umfasst und der pH-Wert des Rohwassers (10) derart ba¬ sisch eingestellt wird, dass das Ammoniak in das Trägergas (13) übergeht. 3. The method of claim 1, wherein the raw water (10) comprises ammonia and the pH of the raw water (10) is adjusted ba ¬ sisch such that the ammonia passes into the carrier gas (13).
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei in den Tank (20) frisches Rohwasser (11) zugegeben wird. 4. The method according to any one of the preceding claims, wherein in the tank (20) fresh raw water (11) is added.
5. Verfahren nach Anspruch 4, wobei das frische Rohwasser5. The method of claim 4, wherein the fresh raw water
(11) Kondensatwasser aus dem Abgas der Dampfturbine, Fluss¬ wasser, Meerwasser oder Abwasser ist. (11) condensate water from the exhaust gas of the steam turbine, river ¬ water, seawater or wastewater is.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Temperatur des Rohwassers (18) im Verdunster (16) in dem6. The method according to any one of the preceding claims, wherein the temperature of the raw water (18) in the evaporator (16) in the
Bereich 60°C bis 100°C liegt. Range 60 ° C to 100 ° C.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Heizer (15) mit der Wärme des Abgases (6) eines Dampfer- zeugers (4) des Wasserdampfkreislaufs betrieben wird. 7. The method according to any one of the preceding claims, wherein the heater (15) with the heat of the exhaust gas (6) of a steam generator (4) of the steam cycle is operated.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei als Trägergas (13) Luft verwendet wird. 8. The method according to any one of the preceding claims, wherein as the carrier gas (13) air is used.
9. Anordnung zum Betrieb einer Dampfturbinenanlage in Kombi¬ nation mit einer thermischen Wasseraufbereitungsanlage (5) mit 9. Arrangement for operating a steam turbine plant in Kombi ¬ nation with a thermal water treatment plant (5) with
- einem ersten Kondensator (3) zum Kondensieren von Wasserdampf aus der Dampfturbinenanlage zu Rohwasser (10),  - A first capacitor (3) for condensing water vapor from the steam turbine plant to raw water (10),
- einem Verdunster (16) zum Betrieb mit Rohwasser (10) und einem Trägergas (13), wobei in dem Verdunster (16) Stoff- und Wärmeübertragung stattfinden, - a vaporizer (16) for operation with raw water (10) and a carrier gas (13), wherein in the evaporator (16) material and heat transfer take place,
- einem Tank (20) zum Auffangen des mit Verunreinigungen aufkonzentrierten Rohwassers (19),  a tank (20) for collecting raw water (19) concentrated with impurities,
- einem zweiten Kondensator (17) zum Kondensieren des reinen Wassers aus dem Trägergas (21) nach dem Verdunster (16),a second condenser (17) for condensing the pure water from the carrier gas (21) downstream of the evaporator (16),
- wenigstens einer Dampfturbine (2) zum Betrieb mit wenigs¬ tens einem Anteil des gereinigten Wassers (22) . - At least one steam turbine (2) for operation with wenigs ¬ least a proportion of the purified water (22).
10. Anordnung nach Anspruch 9, wobei der Verdunster ein Fall- filmverdunster oder ein Rieselstromverdunster (16) ist. 10. Arrangement according to claim 9, wherein the evaporator is a falling film evaporator or a Rieselstromverdunster (16).
EP15724551.5A 2014-08-29 2015-05-11 Method and system for operating a steam turbine plant with a thermal water treatment Not-in-force EP3140519B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014217280.2A DE102014217280A1 (en) 2014-08-29 2014-08-29 Method and arrangement of a steam turbine plant in combination with a thermal water treatment
PCT/EP2015/060321 WO2016030029A1 (en) 2014-08-29 2015-05-11 Method and arrangement for operating a steam turbine plant in combination with thermal water treatment

Publications (2)

Publication Number Publication Date
EP3140519A1 true EP3140519A1 (en) 2017-03-15
EP3140519B1 EP3140519B1 (en) 2018-07-25

Family

ID=53267317

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15724551.5A Not-in-force EP3140519B1 (en) 2014-08-29 2015-05-11 Method and system for operating a steam turbine plant with a thermal water treatment

Country Status (6)

Country Link
US (1) US20170306799A1 (en)
EP (1) EP3140519B1 (en)
KR (1) KR101915066B1 (en)
CN (1) CN106605042B (en)
DE (1) DE102014217280A1 (en)
WO (1) WO2016030029A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220666A1 (en) 2014-10-13 2016-04-14 Siemens Aktiengesellschaft Apparatus and method for cooling a thermal treatment plant by means of evaporation
WO2017157487A1 (en) * 2016-03-15 2017-09-21 Siemens Aktiengesellschaft Raw water treatment
WO2017157488A1 (en) * 2016-03-15 2017-09-21 Siemens Aktiengesellschaft Ammonium reduction in wastewater from power stations
DE102016214019A1 (en) * 2016-07-29 2018-02-01 Siemens Aktiengesellschaft Device for separating product water from contaminated raw water and method for operating this device
DE102016218347A1 (en) 2016-09-23 2018-03-29 Siemens Aktiengesellschaft Power plant
DE102018207875A1 (en) * 2018-05-18 2019-11-21 Siemens Aktiengesellschaft Combined use of waste heat and sewage / brine for drinking water production in gas and steam power plants
DE102022109435A1 (en) 2022-04-19 2023-10-19 Oliver Kerschgens SYSTEM FOR WATER TREATMENT AND DESALINATION

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE505083A (en) *
US3438202A (en) * 1967-10-27 1969-04-15 Saline Water Conversion Corp Condensing power plant system
DE3427302A1 (en) * 1984-07-20 1986-01-30 Kraftwerk Union AG, 4330 Mülheim Steam power plant for generating steam from salt-containing raw water
HUT47173A (en) * 1988-08-19 1990-01-30 Energiagazdalkodasi Intezet Apparatus for replacing the feedwater of power plant
US5405503A (en) * 1993-11-05 1995-04-11 Simpson; Gary D. Process for desalinating water while producing power
JPH0874602A (en) * 1994-09-02 1996-03-19 Kawasaki Heavy Ind Ltd Gas turbine cogeneration system
DE19549139A1 (en) * 1995-12-29 1997-07-03 Asea Brown Boveri Process and apparatus arrangement for heating and multi-stage degassing of water
US5896740A (en) 1996-09-12 1999-04-27 Shouman; Ahmad R. Dual cycle turbine engine having increased efficiency and heat recovery system for use therein
DE10230610A1 (en) 2001-07-23 2003-02-13 Alstom Switzerland Ltd Method and device for preventing deposits in steam systems
JP2006103561A (en) * 2004-10-07 2006-04-20 Mitsubishi Heavy Ind Ltd Fresh water generator, exhaust gas heat-hot water conversion device, and fresh water generation method for ship
EP1662096A1 (en) * 2004-11-30 2006-05-31 Siemens Aktiengesellschaft Method of operating a steam power plant, in particular of a steam power plant of a power station for the production of at least electricity and corresponding steam power plant
US7531096B2 (en) * 2005-12-07 2009-05-12 Arizona Public Service Company System and method of reducing organic contaminants in feed water
GB2436128B (en) 2006-03-16 2008-08-13 Rolls Royce Plc Gas turbine engine
FR2906529B1 (en) * 2006-10-02 2009-03-06 Air Liquide PROCESS AND PLANT FOR THE JOINT PRODUCTION OF ELECTRICITY, STEAM AND DESALINATED WATER.
JP2008212900A (en) * 2007-03-07 2008-09-18 Miura Co Ltd Device carrying out concentration, cooling, and degassing, and cogeneration system using the same
EP2246531A1 (en) * 2009-04-30 2010-11-03 Alstom Technology Ltd Power plant with CO2 capture and water treatment plant
DE102009022491A1 (en) 2009-05-25 2011-01-05 Kirchner, Hans Walter, Dipl.-Ing. Process for combining power plant with steam injected gas turbine and high pressure steam turbine, involves utilizing task obtained in high pressure steam turbine and steam injected gas turbine for current generation
US9114406B2 (en) * 2009-12-10 2015-08-25 Ex-Tar Technologies Steam driven direct contact steam generation
MA33957B1 (en) * 2010-02-10 2013-01-02 Basf Se PROCESS FOR TREATING WATER
US20130269347A1 (en) * 2012-04-12 2013-10-17 General Electric Company Combined power and water production system and method
WO2013170916A1 (en) * 2012-05-14 2013-11-21 Siemens Aktiengesellschaft Method and device for cleaning waste process water
DE102012217717A1 (en) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Process for the recovery of process waste water from a steam power plant
DE102013208002A1 (en) * 2013-05-02 2014-11-06 Siemens Aktiengesellschaft Thermal water treatment at STIG power plant concepts

Also Published As

Publication number Publication date
US20170306799A1 (en) 2017-10-26
KR101915066B1 (en) 2018-11-05
DE102014217280A1 (en) 2016-03-03
CN106605042A (en) 2017-04-26
EP3140519B1 (en) 2018-07-25
CN106605042B (en) 2018-05-11
KR20170044734A (en) 2017-04-25
WO2016030029A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
EP3140519B1 (en) Method and system for operating a steam turbine plant with a thermal water treatment
EP2382028B1 (en) Method for separating carbon dioxide from an exhaust gas of a fossil fired power plant
EP3174622B1 (en) Method for the regeneration of a membrane wall in a distillation device
EP2885578B1 (en) Method for recovering process wastewater from a steam power plant
EP2986910B1 (en) System and method for preheating makeup water in steam power plants, with process steam outcoupling
AT507297B1 (en) SOLAR CONDENSATION SYSTEM WITH CASCADE EVAPORATION
DE69501897T2 (en) METHOD AND DEVICE FOR CLEANING A STEAM
EP3448813B1 (en) Sea water desalination device for desalinating sea water
EP0981014A1 (en) Power plant and process for starting and for purification of its water-steam cycle
WO2014195110A1 (en) System and method for processing water
DE102009007193A1 (en) Purifying salt-containing water using hot exhaust gases of combustion device of gas-turbine power plant, comprises partially evaporating the water to be cleaned with exhaust gas by direct heat transfer and then removing droplets of steam
CH625015A5 (en)
DE102014220666A1 (en) Apparatus and method for cooling a thermal treatment plant by means of evaporation
EP3280883B1 (en) Method for processing a liquid medium and processing system
DE102009031246A1 (en) System for the desalination of seawater, comprises an evaporation body, a first line system, which guides salt-containing raw water to the evaporation body, a heater arranged to the evaporation body, and a second line system
DE3214647A1 (en) Process and plant for treating dirty water
EP3705458B1 (en) Method for the production of liquids containing ammonia and installation for carrying out the method
EP3271509B1 (en) Method and device for increasing a solid matter content in a material, control device, installation for processing a material and paper mill
DE102013227061A1 (en) Process for separating water from a fluid mixture containing water
DE19903781A1 (en) Multi-stage continually-operated water distillation process uses poorer quality raw water without loss of output water quality
DE4408464C2 (en) Food processing plant with steam injection
DE102014112140A1 (en) Method and device for treating wastewater from production or work processes
DE102021105702A1 (en) Water treatment device for the thermal treatment of water and method for water treatment and heat pump for a water treatment device
EP3557156A1 (en) Device with a jet pump and method for operating such a device
WO2017157488A1 (en) Ammonium reduction in wastewater from power stations

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180321

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1021999

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005227

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180725

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181026

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015005227

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190528

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190517

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190509

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015005227

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190511

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1021999

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725