EP3136822B1 - Method for determining a temperature - Google Patents

Method for determining a temperature Download PDF

Info

Publication number
EP3136822B1
EP3136822B1 EP16184674.6A EP16184674A EP3136822B1 EP 3136822 B1 EP3136822 B1 EP 3136822B1 EP 16184674 A EP16184674 A EP 16184674A EP 3136822 B1 EP3136822 B1 EP 3136822B1
Authority
EP
European Patent Office
Prior art keywords
induction heating
cooking vessel
coil
measuring
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16184674.6A
Other languages
German (de)
French (fr)
Other versions
EP3136822A1 (en
Inventor
Marcus Frank
Elmar Herweg
Marius Lehner
Michael Stober
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Geratebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGO Elektro Geratebau GmbH filed Critical EGO Elektro Geratebau GmbH
Priority to PL16184674T priority Critical patent/PL3136822T3/en
Publication of EP3136822A1 publication Critical patent/EP3136822A1/en
Application granted granted Critical
Publication of EP3136822B1 publication Critical patent/EP3136822B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • H05B6/065Control, e.g. of temperature, of power for cooking plates or the like using coordinated control of multiple induction coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/03Heating plates made out of a matrix of heating elements that can define heating areas adapted to cookware randomly placed on the heating plate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Definitions

  • the invention relates to a method for determining the temperature in an induction hob with a plurality of induction heating coils.
  • an induction hob and a method for its operation with a temperature determination are known.
  • a large number of infrared sensors are provided for this purpose, which are arranged in the center of induction heating coils. This allows the temperature of a cooking vessel to be detected, which is placed above the induction heating coil for heating it and thus also above the IR sensor.
  • the invention has for its object to provide a method mentioned above, with which problems of the prior art can be solved and in particular it is possible to carry out the temperature determination in the cooking vessel advantageously and accurately, in particular to determine when water boils in the cooking vessel.
  • a cooking vessel with water or a liquid mainly containing water in it is placed on the induction hob in such a way that there are at least two induction heating coils covered. It advantageously covers three to five induction heating coils, which are then made correspondingly small, for example with diameters or widths in the range between 6 cm and 18 cm.
  • These induction heating coils detect the coverage by the cooking vessel, in particular to a previously defined extent or with a predefined coverage level, for example at least 50% of the area of the induction heating coil.
  • each induction heating coil heats the region of the cooking vessel base arranged above it in a known manner.
  • the energy input occurs in the lowest area of the bottom of the cooking vessel, usually the lowest 1mm to 2mm. From there, the heat spreads upwards to the top of the bottom of the cooking vessel and from there it is transferred into the water.
  • the induction heating coils of a hotplate work advantageously with the same power level or resulting area power density of the power transferred into the vessel.
  • the vibration response on at least one induction heating coil is used to determine whether the temperature of the bottom of the cooking vessel changes over this induction heating coil or whether this temperature rises.
  • a temperature gradient of the bottom of the cooking vessel can be detected by the induction heating coil, which is preferred according to a method such as that mentioned in the introduction EP 2330866 A2 is described. The content of this is hereby made express reference to the content of the present application. If this determination of the vibration response takes place only periodically, it should be about once per second, advantageously every 0.1 seconds to 2 seconds.
  • the vibration response of an induction heating coil can be understood as the evaluation of the change in the resonant circuit parameters due to temperature changes in the bottom of the cooking vessel, in particular the changing inductance.
  • the vibration response of each induction heating coil can preferably be recorded.
  • the induction heating coils are operated in heating mode at least until an induction heating coil detects that the temperature gradient of the bottom of the cooking vessel is above zero or becomes zero.
  • a temperature of a cooking vessel base heated by means of an induction heating coil is advantageously determined.
  • the method comprises the steps: creating one Intermediate circuit voltage at least temporarily as a function of a single-phase or multi-phase, in particular three-phase, AC mains voltage, generating a high-frequency drive voltage or a drive current from the intermediate circuit voltage, for example with a frequency in a range from 20 kHz to 70 kHz, and applying a resonant circuit comprising the induction heating coil with the drive voltage the control current.
  • induction heating of the bottom of the cooking vessel takes place conventionally.
  • the following steps are carried out for temperature measurement: generation of the intermediate circuit voltage during predetermined periods, in particular periodically, with a constant voltage level, the intermediate circuit voltage being preferably generated independently of the mains alternating voltage during the periods, generation of the drive voltage during the predetermined periods such that the resonant circuit essentially dampens at its natural resonance frequency, measuring at least one oscillation parameter of the oscillation during the predetermined time periods and evaluating the at least one measured oscillation parameter to determine the temperature. Since the intermediate circuit voltage is kept constant during the temperature measurement, signal influences due to a variable intermediate circuit voltage can be eliminated, which enables reliable and interference-free temperature determination.
  • the method comprises the steps: determining zero crossings of the AC line voltage and selecting the time segments in the area of the zero crossings.
  • the DC link voltage usually decreases sharply.
  • the constant voltage level is preferably selected such that it is greater than the voltage level which is usually set in the region of the zero crossings, so that the intermediate circuit voltage is clamped to the constant voltage level in the region of the zero crossings. Then there are constant voltage conditions in the area of the zero crossings, which enable reliable temperature measurement.
  • the induction heating coils are all operated in heating mode at least until a first induction heating coil detects that the temperature gradient of the area of the cooking vessel bottom above this induction heating coil becomes zero. All induction heating coils can also be operated in heating mode until the temperature gradient of the cooking vessel base located above them becomes zero over each of the induction heating coils. If the temperature gradient becomes zero, this means that the temperature of the cooking vessel base does not increase any further, which in turn means that the water in the cooking vessel is directly above this cooking vessel base region or at the boundary layer between Water and the bottom of the cookware boil, so the temperature does not increase any further.
  • the temperature of the water directly at the bottom of the cooking vessel particularly when inductively heating a cooking vessel with water, at which very high powers are introduced into the bottom of the cooking vessel, which is intended to cause the water to boil very quickly can quickly increase to 100 ° C at least in some areas. This is where the typical detachment of very large water vapor bubbles takes place, which is where the water boils or bubbles. However, not all of the water in the cooking vessel has yet reached the temperature of 100 ° C, which is actually desirable.
  • induction cooktops can be set to a very high output with the well-known boost function for boiling, the formation and detachment of water vapor bubbles occurs when the temperature of the water in the upper area is only about 80 away from the boundary layer between the water and the bottom of the cooking vessel ° C to 90 ° C, so it is still clearly away from cooking or the corresponding 100 ° C.
  • high heat flows for example approx. 10W / cm 2
  • temperature differences between the water temperature and the inside of the pot bottom of approx. 10 ° C to 40 ° C occur.
  • the bottom of the cooking vessel has a further temperature difference of approx. 10 ° C between the inside and the outside.
  • the invention determines at least one of the induction heating coils as a measuring coil. Several methods can be used for this, which will be carried out in more detail later.
  • This measuring coil is then operated in measuring mode and no longer in heating mode, with the change or stopping of heating mode not necessarily having to take place immediately after being determined as a measuring coil.
  • the measuring coil In measuring mode itself, the measuring coil is operated with a so-called measuring power of up to 10% or 20%, advantageously a maximum of 50%, of the maximum power for a short time, in particular only for a half-wave, or transmits correspondingly little or less energy to the over area of the bottom of the cooking vessel. Up to 20% of the maximum power, the measuring power can be regarded as a small power.
  • the measuring coil detects the feedback vibration response in the aforementioned manner.
  • the time course of this vibration response is then evaluated after coupling the low energy several times, that is to say essentially a procedure similar to that used previously for recording the vibration response at each induction heating coil. Then, in the event that the gradient of this time course becomes zero, the water in the cooking vessel is determined to be boiling, namely all of the water.
  • the vibration response is really recorded on every induction heating coil.
  • the measuring coil can already be determined beforehand, for example as the induction heating coil with the lowest degree of coverage or the worst power input into the bottom of the cooking vessel. Then only their vibration response needs to be evaluated.
  • the measuring coil no longer heats the bottom of the cooking vessel and, as a result, the true temperature of the water in the cooking vessel or the heat flow through the pot bottom and the heat flow in the transition can be detected in the area of the cooking vessel bottom above the measuring coil
  • the bottom of the pot becomes infinitesimally small and the true temperature of the water and the temperature of the inside and the bottom of the cooking vessel become the same.
  • series-connected temperature differences of about 10 ° C to 40 ° C from the inside of the cooking vessel to water and about 10 ° C between the inside and outside of the cooking vessel become almost zero.
  • the water in the cooking vessel Due to the already started formation of bubbles in the water on the bottom of the cooking vessel, the water in the cooking vessel is mixed to a certain extent, in particular by the rising water. This is not enough to bring all the water in the cooking vessel to a boil very quickly, by repeatedly bringing some cooler water to the bottom of the cooking vessel for heating due to the decrease in heat. In the unheated area of the bottom of the cooking vessel above the measuring coil, however, it is very likely that cooler water will be present, both due to the lack of heating and due to the mixing of the water in the cooking vessel. By stopping the heating operation of the measuring coil, an effect that falsifies the measurement result is exposed.
  • the measuring coil works at least a certain time after the determination as a measuring coil only as a kind of sensor.
  • the coupling of a signal or a power for generating the vibration response for its evaluation can be regarded as negligible with regard to heating the area of the cooking vessel base directly above the measuring coil.
  • an essential essence of the invention is to make a temperature determination in a method for boiling water in a cooking vessel, for which several induction heating coils are used, more precise by using one of the induction heating coils as a measuring coil and then no longer working in heating mode, but only in measurement mode. In this way, falsifications of the measurement result are avoided or at least greatly reduced. This reduces the total heating output for the cooking vessel, but increases the accuracy. On the one hand, it is possible to quickly remove the measuring coil from heating mode to switch to measuring mode, for example after it or possibly another induction heating coil has detected a temperature of 100 ° C. on the bottom of the cooking vessel for the first time because the temperature gradient of the vibration response has become zero.
  • induction heating coil it is possible to determine that induction heating coil as the measuring coil whose temperature gradient of the vibration response first becomes zero during the general heating operation and above all during its own heating operation. This is, so to speak, the induction heating coil with the hottest area of the cooking vessel bottom above itself at this time.
  • the induction heating coil can also be determined and used as the measuring coil in which this temperature gradient ultimately becomes zero. This is then the induction heating coil that has the coolest area of the cooking vessel bottom above it. Then it can be assumed that the water in the cooking vessel as a whole is already significantly closer to the state that it is boiling overall or is completely around 100 ° C.
  • induction heating coil as the measuring coil which has the lowest power input into the cooking vessel and / or which has the lowest degree of coverage by the cooking vessel.
  • the first criterion can be determined during heating operation and can also be checked repeatedly or permanently, for example.
  • the second criterion can already be determined at the beginning of the cooking process, that is, if it is determined at all which induction heating coils are covered by the cooking vessel and which consequently start the heating operation as a common cooking point.
  • this criterion should also be checked during heating operation, since it may well happen that the cooking vessel is above the induction heating coils or is moved on the hotplate and then the degree of coverage of individual or all induction heating coils changes.
  • all induction heating coils are of identical design, that is to say they are of the same size. This simplifies the manufacture of an induction hob. Furthermore, it is advantageously also possible to operate all induction heating coils, which together form a hotplate for a single cooking vessel, identically. This applies above all to the performance level. This means that induction heating coils with a recognized lower degree of coverage can also be operated in the same way as induction heating coils with a high or complete degree of coverage.
  • the heating operation of all induction heating coils that work for this cooking vessel or this hotplate remains constant for a certain time Service is continued.
  • This time should be less than 1 minute and can be, for example, at least 10 seconds, advantageously at least 20 seconds.
  • the previously determined measuring coil is then operated in measuring mode, advantageously with the aforementioned measuring power.
  • the measuring coil which has either already been determined beforehand or is only determined thereby, does not immediately come out of the heating mode is taken, because then the total heating output at the hotplate would be unnecessarily reduced.
  • the heating is continued with the maximum possible output for rapid heating. Only after a certain time will the measuring coil be operated in measuring mode, since only then can it be expected that the 100 ° C in the entire water will soon be reached. This time can also be varied depending on how much water needs to be brought to the boil or how large the cooking vessel is. For this purpose, for example, the previous duration can be used as a criterion when the first induction heating coil detects the temperature gradient that has become zero.
  • the measuring coil is not the first induction heating coil that can be used, but the last induction heating coil, the temperature gradient of which becomes zero. Even then, even the measuring coil can continue to be operated in heating mode for a certain time, since even in this case the bottom of the cooking vessel is everywhere 100 ° C, most likely not all of the water in the cooking vessel is 100 ° C.
  • This time for the continued operation of the measuring coil in heating mode should be significantly shorter than 1 minute and can in particular be shorter than the previously mentioned time, for example 5 seconds to 20 seconds.
  • the measuring coil is only operated in measuring mode after this time has elapsed, although again it may either have been determined as the measuring coil either at the beginning of the heating mode or only later.
  • the power of the measuring coil has been significantly reduced or if it is only operated as a measuring coil with the measuring power, to equate the time course of the water temperature of the water in the cooking vessel with the time course of the period of the vibration response at the Measuring coil, at least as far as the relative course is concerned.
  • This measuring coil then works as a temperature sensor for the region of the cooking vessel base lying above it, which in turn determines the temperature of the water in the cooking vessel brought to it by swirling.
  • This area of the bottom of the cooking vessel then works, so to speak, as a first part of a sensor.
  • the second part of this sensor is the measuring coil, which queries the temperature of this first part, so to speak.
  • the measuring operation of the measuring coil should advantageously be such that it does not bring any additional heating power into the area of the cooking vessel bottom above it, in order to reduce falsifications in temperature detection or temperature determination or to avoid them as far as possible.
  • a half-wave can already suffice for the power input, which in turn is then only carried out with the aforementioned low power or measuring power.
  • FIG. 1 is shown schematically how a plurality of individual induction heating coils 13, here with a round shape, can be present in an induction hob 11.
  • a cooking vessel 15 is set up in such a way that it covers four induction heating coils 13a to 13d by more than 50%.
  • the induction heating coils 13b and 13d are completely covered, and the induction heating coils 13a and 13c to about 70% to 80%.
  • the cooking vessel 15 has a cooking vessel base 16 which is suitable for inductive heating and usually has a thickness of a few millimeters, for example 4 mm to 10 mm.
  • a cooking vessel base 16 is of multilayer design with an uppermost layer, which consists of the same material as the side wall of the cooking vessel 15 and is usually produced by deep drawing, that is to say with a one-piece material transition.
  • a heat-distributing layer of copper with a thickness of a few millimeters is often arranged underneath.
  • a thin layer of stainless steel can be provided, which is also suitable for inductive heating.
  • Their thickness can be a maximum of 1mm to 2mm. At the same time, this is approximately the maximum penetration depth of inductive fields, which will be explained below.
  • the induction heating coils 13a and 13b are connected to a controller 19 of the induction hob 11 and are supplied with power in a controlled manner, usually via a power unit (not shown here) or corresponding resonant circuit arrangements.
  • the thin arrows show a power input 21a and 21b from each of the induction heating coils 13a and 13b into the cooking vessel 15 and into the cooking vessel bottom 16. This is known to the person skilled in the art and need not be discussed in more detail. As previously mentioned, the depth of penetration of the power input 21 is less than 2 mm, advantageously less than 1 mm. From this lowermost layer of the cooking vessel base 16, the heat generated is distributed upward through the further structure of the cooking vessel base 16, possibly with a corresponding transverse distribution. At the top of the cooking vessel base 16, the heat transfer takes place in the water 17 located above it in the cooking vessel 15. This heated water rises as a result of the heat introduced, which is illustrated by the broad arrows. Of course, a kind of mixing of the water flows 23a and 23b takes place, also shown here by further water flows 23.
  • the temperature T W of the water 17 in the cooking vessel 15 is recorded as a kind of average temperature, ie not only measured at individual discrete points, but as an average at many points. In particular, this can also be a temperature at the water surface, where the temperature of the water 17 will usually be the lowest when boiling.
  • the temperature of the water above the left induction heating coil 21a near the cooking vessel base 16 is shown with a thick dashed line.
  • the water 17 will probably be the hottest and the quickest to boil.
  • the temperature of the water is 17th the value of 100 ° C is shown.
  • the course heights are approximately to scale relative to each other.
  • the measured value or the period signal of the induction heating coil 13b which is used as the measuring coil in the measuring operation is shown with a thin solid line.
  • the dashed thin line shows the period signal of the induction heating coil 13a operated in heating mode.
  • these two period signals do not have to be of different sizes, this is only shown here for the sake of clarity in order to better show their relative courses. In particular, they can be largely congruent, especially at the beginning.
  • the controller 19 detects in a known manner which induction heating coils are covered at all and to what extent or with what degree of coverage.
  • the induction heating coils 13 of the configuration of the Fig. 1 the aforementioned induction heating coils 13a to 13d are sufficiently covered. If an operator has now selected a power level for operating the induction hob 11, with which the water 17 in the cooking vessel 15 is to be brought to a boil as quickly as possible, the heating operation of the four induction heating coils 13a to 13d starts.
  • the induction heating coils 13a and 13b generate a power input 21a and 21b in the cooking vessel bottom 16, in particular in its bottom layer.
  • the inductively generated heat spreads upwards and enters or is transferred to the water 17 at the top of the cooking vessel base 16. This creates water flows 23, in particular strong water flows 23a and 23b rising from the top of the cooking vessel base 16.
  • the induction heating coil 13b can now be determined as the measuring coil, since it has the recognizable lowest degree of coverage by the cooking vessel 15 or the cooking vessel base 16. This determination can be made even if the measuring coil 13b is also operated together with the others in heating mode as a hotplate. Alternatively, this can be done in Fig. 4 Period signal shown in dashed lines, which will initially be relatively the same for most induction heating coils, can be evaluated for each induction heating coil 13. Then the induction heating coil can be determined as the measuring coil and switch to measuring mode, in which the gradient first becomes approximately zero. In in yet another embodiment of the invention, that induction heating coil can be used as the measuring coil in the measuring mode, in which this curve becomes the last to be constant or has zero slope compared to the other induction heating coils.
  • this case applies that the slope has become the last to be zero for the induction heating coil 13b. This means that the temperature above all other induction heating coils 13 of the hotplate is higher or was previously high.
  • the dashed water temperature at the time when the slope of the period signal of one of the induction heating coils becomes zero also comes to the shown maximum value of 100 ° C. as the water temperature.
  • this is the temperature of the water just above the bottom 16 of the cooking vessel above the induction heating coil with the course of the period signal shown in dashed lines.
  • the thick solid line as the temperature T W of the water 17 in the cooking vessel 15 rises approximately constant at the beginning after a short delay.
  • the induction heating coil 13b which is now operated in measuring mode as a measuring coil with the measuring power, has the continuous course with the thin line.
  • the measuring power is, for example, 5% of the maximum power.
  • the course of the period signal at the measuring coil 13b also shows that after the change to the measuring mode, this measuring coil transmits almost no energy into the bottom of the cooking vessel and thus does not attempt to heat it up. Since the water 17 in the cooking vessel 15 does not yet have a total of 100.degree. C., that is to say does not yet boil overall, but instead only has, for example, only 80.degree. C. to 90.degree. C., this relatively cooler water falls back onto this area of the cooking vessel bottom and cools it to less than 100 ° C.
  • the conditions in the cooking vessel 15 during this period are in Fig. 3 to see.
  • the induction heating coil 13a in the heating mode also causes the power input 21a into the cooking vessel bottom 16 above it, which generates the strong water flow 23a. This circulates, so to speak, and has the effect that water 17 located in the upper area appears as a water flow 23 shown with thin arrows down onto the area of the cooking vessel base 16 which lies above the measuring coil 13b.
  • experience values which can be stored in the control 19 as explained above, can also allow a certain continuation time be determined for the induction heating coil 13b in heating mode, after which the water in the cooking vessel 15 is still not completely boiled.
  • the total or average temperature of the entire water has reached about 100 ° C. due to the continuous power input of the remaining three induction heating coils, which advantageously takes place with the same or maximum output, in particular after sufficient mixing of the from the bottom 16 of the heating coils heated water with the rest of the water.
  • the thin and solid period signal of the measuring coil again has the slope zero or becomes constant, then all the water 17 boils in the cooking vessel 15. This also applies to the temperature T W of the water.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Cookers (AREA)
  • Induction Heating Cooking Devices (AREA)

Description

Anwendungsgebiet und Stand der TechnikField of application and state of the art

Die Erfindung betrifft ein Verfahren zur Temperaturbestimmung bei einem Induktionskochfeld mit mehreren Induktionsheizspulen.The invention relates to a method for determining the temperature in an induction hob with a plurality of induction heating coils.

Aus der EP 2330866 A2 ist es bekannt, bei Heizbetrieb einer Induktionsheizspule für eine Kochstelle für ein Kochgefäß mit Wasser darin, die Temperatur des Kochgefäßbodens an der Induktionsheizspule zu erfassen, vor allem um zu bestimmen, wann Wasser in dem Kochgefäß kocht. Dazu wird eine Schwingungsantwort der Induktionsheizspule erfasst und ausgewertet.From the EP 2330866 A2 it is known, when heating an induction heating coil for a hotplate for a cooking vessel with water, to detect the temperature of the bottom of the cooking vessel on the induction heating coil, in particular to determine when water boils in the cooking vessel. For this purpose, a vibration response of the induction heating coil is recorded and evaluated.

Aus der EP 1463383 A1 ist es bekannt, mit mehreren Induktionsheizspulen, die jeweils einzeln ansteuerbar sind, bei einem Induktionskochfeld im gemeinsamen Heizbetrieb eine Kochstelle für ein Kochgefäß zu bilden. Dabei kann durch die Induktionsheizspulen selbst oder andere Erkennungsmittel erkannt werden, dass das Kochgefäß diese Induktionsheizspulen jeweils in ausreichendem Maß überdeckt. So ist es möglich, die Größe einer Kochstelle an die Größe eines davon beheizten Kochgefäßes in gewissem Maß anzupassen.From the EP 1463383 A1 it is known to form a hotplate for a cooking vessel with several induction heating coils, each of which can be controlled individually, in an induction hob in the common heating mode. It can be recognized by the induction heating coils themselves or other detection means that the cooking vessel covers each of these induction heating coils to a sufficient extent. It is thus possible to adapt the size of a hotplate to a certain extent to the size of a cooking vessel heated by it.

Aus der EP 2911473 A1 sind ein Induktionskochfeld sowie ein Verfahren zu seinem Betrieb mit einer Temperaturbestimmung bekannt. Dafür ist eine Vielzahl von Infrarot-Sensoren vorgesehen, die mittig zu Induktionsheizspulen angeordnet sind. Damit kann die Temperatur eines Kochgefäßes erfasst werden, das über der Induktionsheizspule zu dessen Beheizung und somit auch über dem IR-Sensor aufgestellt ist.From the EP 2911473 A1 an induction hob and a method for its operation with a temperature determination are known. A large number of infrared sensors are provided for this purpose, which are arranged in the center of induction heating coils. This allows the temperature of a cooking vessel to be detected, which is placed above the induction heating coil for heating it and thus also above the IR sensor.

Aufgabe und LösungTask and solution

Der Erfindung liegt die Aufgabe zugrunde, ein eingangs genanntes Verfahren zu schaffen, mit dem Probleme des Stands der Technik gelöst werden können und es insbesondere möglich ist, die Temperaturbestimmung im Kochgefäß vorteilhaft und genau durchzuführen, insbesondere zu bestimmen, wenn Wasser in dem Kochgefäß kocht.The invention has for its object to provide a method mentioned above, with which problems of the prior art can be solved and in particular it is possible to carry out the temperature determination in the cooking vessel advantageously and accurately, in particular to determine when water boils in the cooking vessel.

Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 1. Vorteilhafte sowie bevorzugte Ausgestaltungen der Erfindung sind Gegenstand der weiteren Ansprüche und werden im Folgenden näher erläutert. Der Wortlaut der Ansprüche wird durch ausdrückliche Bezugnahme zum Inhalt der Beschreibung gemacht.This object is achieved by a method having the features of claim 1. Advantageous and preferred embodiments of the invention are the subject of the further claims and are explained in more detail below. The wording of the claims is made the content of the description by express reference.

Bei dem Verfahren, das in einem Induktionskochfeld mit mehreren einzeln ansteuerbaren Induktionsheizspulen durchgeführt wird, werden folgende Schritte durchgeführt:
Ein Kochgefäß mit Wasser oder einer hauptsächlich Wasser enthaltenden Flüssigkeit darin wird so auf das Induktionskochfeld aufgestellt, dass es mindestens zwei Induktionsheizspulen überdeckt. Vorteilhaft überdeckt es drei bis fünf Induktionsheizspulen, die dann eben entsprechend klein ausgebildet sind, beispielsweise mit Durchmessern bzw. Breiten im Bereich zwischen 6cm und 18cm. Diese Induktionsheizspulen erkennen die Überdeckung durch das Kochgefäß, insbesondere in einem vorher definierten Ausmaß bzw. mit einem vordefinierten Überdeckungsgrad, beispielsweise mindestens 50% der Fläche der Induktionsheizspule. Diese entsprechend überdeckten Induktionsheizspulen werden dann als gemeinsame Kochstelle gemeinsam betrieben, und zwar im Heizbetrieb bzw. für den Kochvorgang, um das Wasser in dem Kochgefäß durch Heizen zum Kochen zu bringen. Dieses Kochen des Wassers soll eben erfindungsgemäß als Temperaturbestimmung erfasst werden.
The following steps are carried out in the process, which is carried out in an induction hob with a plurality of individually controllable induction heating coils:
A cooking vessel with water or a liquid mainly containing water in it is placed on the induction hob in such a way that there are at least two induction heating coils covered. It advantageously covers three to five induction heating coils, which are then made correspondingly small, for example with diameters or widths in the range between 6 cm and 18 cm. These induction heating coils detect the coverage by the cooking vessel, in particular to a previously defined extent or with a predefined coverage level, for example at least 50% of the area of the induction heating coil. These correspondingly covered induction heating coils are then operated together as a common hotplate, specifically in heating mode or for the cooking process, in order to bring the water in the cooking vessel to a boil by heating. This boiling of the water is to be recorded according to the invention as a temperature determination.

Während des dann folgenden Heizbetriebs beheizt jede Induktionsheizspule den über ihr angeordneten Bereich des Kochgefäßbodens auf bekannte Art und Weise. Der Energieeintrag erfolgt dabei in den untersten Bereich des Kochgefäßbodens, üblicherweise die untersten 1mm bis 2mm. Von dort aus breitet sich die Wärme nach oben an die Oberseite des Kochgefäßbodens aus und von dort wird sie ins Wasser übertragen. Die Induktionsheizspulen einer Kochstelle arbeiten dabei vorteilhaft mit gleicher Leistungsstufe bzw. resultierender Flächenleistungsdichte der ins Gefäß übertragenen Leistung.During the subsequent heating operation, each induction heating coil heats the region of the cooking vessel base arranged above it in a known manner. The energy input occurs in the lowest area of the bottom of the cooking vessel, usually the lowest 1mm to 2mm. From there, the heat spreads upwards to the top of the bottom of the cooking vessel and from there it is transferred into the water. The induction heating coils of a hotplate work advantageously with the same power level or resulting area power density of the power transferred into the vessel.

Während des Heizbetriebs wird anhand der Schwingungsantwort an mindestens einer Induktionsheizspule erfasst, ob sich die Temperatur des Kochgefäßbodens über dieser Induktionsheizspule ändert bzw. ob diese Temperatur ansteigt. So kann ein Temperaturgradient des Kochgefäßbodens von der Induktionsheizspule erfasst werden, was bevorzugt gemacht wird entsprechend einem Verfahren, wie es in der eingangs genannten EP 2330866 A2 beschrieben ist. Deren Inhalt wird hiermit diesbezüglich durch ausdrückliche Bezugnahme zum Inhalt der vorliegenden Anmeldung gemacht. Findet diese Bestimmung der Schwingungsantwort nur periodisch statt sollte es etwa einmal pro Sekunde sein, vorteilhaft alle 0,1 Sekunden bis 2 Sekunden. Im Allgemeinen kann als Schwingungsantwort einer Induktionsheizspule die Auswertung der Veränderung von Schwingkreisparametern aufgrund von Temperaturänderungen des Kochgefäßbodens, im Besonderen der sich ändernden Induktivität, verstanden werden. Bevorzugt kann die Schwingungsantwort jeder Induktionsheizspule erfasst werden. Die Induktionsheizspulen werden mindestens so lange im Heizbetrieb betrieben, bis eine Induktionsheizspule erfasst, dass der Temperaturgradient des Kochgefäßbodens über ihr nahe Null liegt oder zu Null wird.During heating operation, the vibration response on at least one induction heating coil is used to determine whether the temperature of the bottom of the cooking vessel changes over this induction heating coil or whether this temperature rises. Thus, a temperature gradient of the bottom of the cooking vessel can be detected by the induction heating coil, which is preferred according to a method such as that mentioned in the introduction EP 2330866 A2 is described. The content of this is hereby made express reference to the content of the present application. If this determination of the vibration response takes place only periodically, it should be about once per second, advantageously every 0.1 seconds to 2 seconds. In general, the vibration response of an induction heating coil can be understood as the evaluation of the change in the resonant circuit parameters due to temperature changes in the bottom of the cooking vessel, in particular the changing inductance. The vibration response of each induction heating coil can preferably be recorded. The induction heating coils are operated in heating mode at least until an induction heating coil detects that the temperature gradient of the bottom of the cooking vessel is above zero or becomes zero.

Vorteilhaft wird im Heizbetrieb eine Temperatur eines mittels einer Induktionsheizspule erwärmten Kochgefäßbodens ermittelt. Das Verfahren umfasst die Schritte: Erzeugen einer Zwischenkreisspannung zumindest zeitweise in Abhängigkeit von einer einphasigen oder mehrphasigen, insbesondere dreiphasigen, Netzwechselspannung, Erzeugen einer hochfrequenten Ansteuerspannung oder eines Ansteuerstroms aus der Zwischenkreisspannung, beispielsweise mit einer Frequenz in einem Bereich von 20kHz bis 70kHz, und Beaufschlagen eines Schwingkreises umfassend die Induktionsheizspule mit der Ansteuerspannung bzw. dem Ansteuerstrom. Auf diese Weise erfolgt herkömmlich eine induktive Erwärmung des Kochgefäßbodens. Zur Temperaturmessung werden folgende Schritte durchgeführt: Erzeugen der Zwischenkreisspannung während vorgegebener Zeitabschnitte, insbesondere periodisch, mit einem konstanten Spannungspegel, wobei während der Zeitabschnitte bevorzugt die Zwischenkreisspannung unabhängig von der Netzwechselspannung erzeugt wird, Erzeugen der Ansteuerspannung während der vorgegebenen Zeitabschnitte derart, dass der Schwingkreis im Wesentlichen entdämpft mit seiner Eigenresonanzfrequenz schwingt, Messen mindestens eines Schwingungsparameters der Schwingung während der vorgegebenen Zeitabschnitte und Auswerten des mindestens einen gemessenen Schwingungsparameters zum Ermitteln der Temperatur. Da die Zwischenkreisspannung während der Temperaturmessung konstant gehalten wird, können Signalbeeinflussungen aufgrund einer veränderlichen Zwischenkreisspannung eliminiert werden, wodurch eine zuverlässige und störsichere Temperaturermittlung ermöglicht wird.In heating mode, a temperature of a cooking vessel base heated by means of an induction heating coil is advantageously determined. The method comprises the steps: creating one Intermediate circuit voltage at least temporarily as a function of a single-phase or multi-phase, in particular three-phase, AC mains voltage, generating a high-frequency drive voltage or a drive current from the intermediate circuit voltage, for example with a frequency in a range from 20 kHz to 70 kHz, and applying a resonant circuit comprising the induction heating coil with the drive voltage the control current. In this way, induction heating of the bottom of the cooking vessel takes place conventionally. The following steps are carried out for temperature measurement: generation of the intermediate circuit voltage during predetermined periods, in particular periodically, with a constant voltage level, the intermediate circuit voltage being preferably generated independently of the mains alternating voltage during the periods, generation of the drive voltage during the predetermined periods such that the resonant circuit essentially dampens at its natural resonance frequency, measuring at least one oscillation parameter of the oscillation during the predetermined time periods and evaluating the at least one measured oscillation parameter to determine the temperature. Since the intermediate circuit voltage is kept constant during the temperature measurement, signal influences due to a variable intermediate circuit voltage can be eliminated, which enables reliable and interference-free temperature determination.

In einer Weiterbildung umfasst das Verfahren die Schritte: Bestimmen von Nulldurchgängen der Netzwechselspannung und Wählen der Zeitabschnitte im Bereich der Nulldurchgänge. Im Bereich der Nulldurchgänge bei einphasiger Netzwechselspannung nimmt die Zwischenkreisspannung üblicherweise stark ab. Der konstante Spannungspegel wird bevorzugt derart gewählt, dass er größer als der sich üblicherweise im Bereich der Nulldurchgänge einstellende Spannungspegel ist, sodass die Zwischenkreisspannung im Bereich der Nulldurchgänge auf den konstanten Spannungspegel geklemmt wird. Es herrschen dann im Bereich der Nulldurchgänge konstante Spannungsverhältnisse, die eine zuverlässige Temperaturmessung ermöglichen.In one development, the method comprises the steps: determining zero crossings of the AC line voltage and selecting the time segments in the area of the zero crossings. In the area of zero crossings with single-phase AC mains voltage, the DC link voltage usually decreases sharply. The constant voltage level is preferably selected such that it is greater than the voltage level which is usually set in the region of the zero crossings, so that the intermediate circuit voltage is clamped to the constant voltage level in the region of the zero crossings. Then there are constant voltage conditions in the area of the zero crossings, which enable reliable temperature measurement.

Die Induktionsheizspulen werden mindestens so lange alle im Heizbetrieb betrieben, bis eine erste Induktionsheizspule erfasst, dass der Temperaturgradient des Bereichs des Kochgefäßbodens über dieser Induktionsheizspule zu Null wird. Es können auch alle Induktionsheizspulen so lange im Heizbetrieb betrieben werden, bis über jeder der Induktionsheizspulen der Temperaturgradient des darüber befindlichen Kochgefäßbodens zu Null wird. Wenn der Temperaturgradient zu Null wird bedeutet dies, dass sich die Temperatur des Kochgefäßbodens nicht weiter erhöht, was wiederum bedeutet, dass das Wasser im Kochgefäß direkt über diesem Kochgefäßbodenbereich bzw. an der Grenzschicht zwischen Wasser und Kochgefäßboden kocht, sich die Temperatur also nicht weiter erhöht. Nun hat sich aber im Rahmen der Erfindung herausgestellt, dass sich gerade beim induktiven Beheizen eines Kochgefäßes mit Wasser darin, bei dem sehr hohe Leistungen in den Kochgefäßboden eingebracht werden, was ein sehr schnelles Kochen des Wassers bewirken soll, die Temperatur des Wassers direkt am Kochgefäßboden zumindest bereichsweise sehr schnell auf 100°C erhöhen kann. Dort erfolgt dann auch schon die für das Kochen typische Ablösung von teils sehr großen Wasserdampfblasen, dort kocht das Wasser also bzw. sprudelt. Allerdings hat dann noch nicht unbedingt das gesamte Wasser im Kochgefäß die Temperatur von 100°C erreicht, was ja aber eigentlich gewünscht ist. Und weil bei Induktionskochfeldern mit der bekannten Boost-Funktion zum Ankochen eine sehr hohe Leistung eingestellt werden kann, gibt es die Bildung und Ablösung von Wasserdampfblasen bereits dann, wenn die Temperatur des Wassers im oberen Bereich entfernt von der Grenzschicht zwischen Wasser und Kochgefäßboden nur etwa 80°C bis 90°C aufweist, also noch deutlich vom Kochen bzw. den entsprechenden 100°C entfernt ist. Bei hohen Wärmeströmen, beispielsweise ca. 10W/cm2, kommen also Temperaturdifferenzen zwischen der Wassertemperatur und der Topfbodeninnenseite von ca. 10°C bis 40°C zu Stande. Zusätzlich hat der Kochgefäßboden zwischen Innenseite und Außenseite eine weitere Temperaturdifferenz von ca. 10°C.The induction heating coils are all operated in heating mode at least until a first induction heating coil detects that the temperature gradient of the area of the cooking vessel bottom above this induction heating coil becomes zero. All induction heating coils can also be operated in heating mode until the temperature gradient of the cooking vessel base located above them becomes zero over each of the induction heating coils. If the temperature gradient becomes zero, this means that the temperature of the cooking vessel base does not increase any further, which in turn means that the water in the cooking vessel is directly above this cooking vessel base region or at the boundary layer between Water and the bottom of the cookware boil, so the temperature does not increase any further. However, it has now been found within the scope of the invention that the temperature of the water directly at the bottom of the cooking vessel, particularly when inductively heating a cooking vessel with water, at which very high powers are introduced into the bottom of the cooking vessel, which is intended to cause the water to boil very quickly can quickly increase to 100 ° C at least in some areas. This is where the typical detachment of very large water vapor bubbles takes place, which is where the water boils or bubbles. However, not all of the water in the cooking vessel has yet reached the temperature of 100 ° C, which is actually desirable. And because induction cooktops can be set to a very high output with the well-known boost function for boiling, the formation and detachment of water vapor bubbles occurs when the temperature of the water in the upper area is only about 80 away from the boundary layer between the water and the bottom of the cooking vessel ° C to 90 ° C, so it is still clearly away from cooking or the corresponding 100 ° C. At high heat flows, for example approx. 10W / cm 2 , temperature differences between the water temperature and the inside of the pot bottom of approx. 10 ° C to 40 ° C occur. In addition, the bottom of the cooking vessel has a further temperature difference of approx. 10 ° C between the inside and the outside.

Demzufolge bestimmt die Erfindung mindestens eine der Induktionsheizspulen als Messspule. Dazu können mehrere Verfahren genommen werden, die später noch genauer ausgeführt werden.Accordingly, the invention determines at least one of the induction heating coils as a measuring coil. Several methods can be used for this, which will be carried out in more detail later.

Diese Messspule wird dann im Messbetrieb und nicht mehr im Heizbetrieb betrieben, wobei der Wechsel bzw. das Stoppen des Heizbetriebs nicht zwingend sofort nach Bestimmung als Messspule erfolgen muss. Im Messbetrieb selbst wird die Messspule mit einer sogenannten Mess-Leistung bis 10% oder 20%, vorteilhaft maximal 50%, der maximalen Leistung für kurze Zeit, insbesondere nur für eine Halbwelle, betrieben bzw. überträgt entsprechend wenig bzw. geringere Energie in den über der Messspule liegenden Bereich des Kochgefäßbodens. Bis zu 20% der maximalen Leistung kann die Mess-Leistung als kleine Leistung angesehen werden. Dann erfasst die Messspule die zurückgekoppelte Schwingungsantwort auf zuvor genannte Art und Weise. Dann wird der zeitliche Verlauf dieser Schwingungsantwort nach mehreren Malen Einkoppeln der geringen Energie ausgewertet, also im Wesentlichen ein ähnliches Verfahren angewendet wie schon zuvor bei der Erfassung der Schwingungsantwort an jeder Induktionsheizspule. Dann wird in dem Fall, dass der Gradient dieses zeitlichen Verlaufs zu Null wird, das Wasser in dem Kochgefäß als kochend bestimmt, und zwar das gesamte Wasser.This measuring coil is then operated in measuring mode and no longer in heating mode, with the change or stopping of heating mode not necessarily having to take place immediately after being determined as a measuring coil. In measuring mode itself, the measuring coil is operated with a so-called measuring power of up to 10% or 20%, advantageously a maximum of 50%, of the maximum power for a short time, in particular only for a half-wave, or transmits correspondingly little or less energy to the over area of the bottom of the cooking vessel. Up to 20% of the maximum power, the measuring power can be regarded as a small power. The measuring coil then detects the feedback vibration response in the aforementioned manner. The time course of this vibration response is then evaluated after coupling the low energy several times, that is to say essentially a procedure similar to that used previously for recording the vibration response at each induction heating coil. Then, in the event that the gradient of this time course becomes zero, the water in the cooking vessel is determined to be boiling, namely all of the water.

Dabei ist es nicht zwingend notwendig, dass die Schwingungsantwort wirklich an jeder Induktionsheizspule erfasst wird. Unter Umständen kann die Messspule nämlich bereits zuvor bestimmt werden, beispielsweise als diejenige Induktionsheizspule mit dem geringsten Überdeckungsgrad bzw. dem schlechtesten Leistungseintrag in den Kochgefäßboden. Dann braucht nur deren Schwingungsantwort ausgewertet zu werden.It is not absolutely necessary that the vibration response is really recorded on every induction heating coil. Under certain circumstances, the measuring coil can already be determined beforehand, for example as the induction heating coil with the lowest degree of coverage or the worst power input into the bottom of the cooking vessel. Then only their vibration response needs to be evaluated.

Mit der Erfindung wird nämlich im Wesentlichen bewirkt, dass die Messspule nicht mehr den Kochgefäßboden heizt und dadurch im Bereich des Kochgefäßbodens über der Messspule sozusagen eher die wahre Temperatur des Wassers im Kochgefäß erfasst werden kann bzw. der Wärmestrom durch den Topfboden sowie der Wärmestrom im Übergang Topfboden zu Wasser verschwindend klein werden und dadurch die wahre Temperatur des Wassers und die Temperatur der Kochgefäßinnenseite als auch der -unterseite gleich werden. Die zuvor beschriebenen, in Reihe geschalteten, Temperaturdifferenzen von etwa 10°C bis 40°C von Kochgefäßinnenseite zu Wasser und etwa 10°C zwischen Kochgefäßinnen- und -außenseite werden annähernd zu Null. Durch die bereits begonnene Blasenbildung im Wasser am Kochgefäßboden wird das Wasser im Kochgefäß in gewissem Maß durchgemischt, insbesondere durch das aufsteigende Wasser. Dies reicht zwar nicht, um sehr schnell das gesamte Wasser im Kochgefäß zum Kochen zu bringen, indem immer wieder etwas kühleres Wasser an den Kochgefäßboden herangetragen wird zur Erwärmung aufgrund Wärmeabnahme. In dem unbeheizten Bereich des Kochgefäßbodens über der Messspule wird aber mit großer Wahrscheinlichkeit eher kühleres Wasser vorhanden sein, und zwar sowohl aufgrund der fehlenden Beheizung als auch aufgrund der Durcheinandermischung des Wassers im Kochgefäß. Durch das Stoppen des Heizbetriebs der Messspule wird also eine das Messergebnis verfälschende Wirkung ausgesetzt. Die Messspule arbeitet zumindest eine bestimmte Zeit nach der Bestimmung als Messspule nur noch als eine Art Sensor. Das Einkoppeln eines Signals bzw. einer Leistung zur Erzeugung der Schwingungsantwort für deren Auswertung kann als vernachlässigbar angesehen werden bezüglich einer Erhitzung des Bereichs des Kochgefäßbodens direkt über der Messspule.With the invention it is essentially brought about that the measuring coil no longer heats the bottom of the cooking vessel and, as a result, the true temperature of the water in the cooking vessel or the heat flow through the pot bottom and the heat flow in the transition can be detected in the area of the cooking vessel bottom above the measuring coil The bottom of the pot becomes infinitesimally small and the true temperature of the water and the temperature of the inside and the bottom of the cooking vessel become the same. The previously described, series-connected temperature differences of about 10 ° C to 40 ° C from the inside of the cooking vessel to water and about 10 ° C between the inside and outside of the cooking vessel become almost zero. Due to the already started formation of bubbles in the water on the bottom of the cooking vessel, the water in the cooking vessel is mixed to a certain extent, in particular by the rising water. This is not enough to bring all the water in the cooking vessel to a boil very quickly, by repeatedly bringing some cooler water to the bottom of the cooking vessel for heating due to the decrease in heat. In the unheated area of the bottom of the cooking vessel above the measuring coil, however, it is very likely that cooler water will be present, both due to the lack of heating and due to the mixing of the water in the cooking vessel. By stopping the heating operation of the measuring coil, an effect that falsifies the measurement result is exposed. The measuring coil works at least a certain time after the determination as a measuring coil only as a kind of sensor. The coupling of a signal or a power for generating the vibration response for its evaluation can be regarded as negligible with regard to heating the area of the cooking vessel base directly above the measuring coil.

Somit besteht ein wesentlicher Kern der Erfindung darin, eine Temperaturbestimmung bei einem Verfahren zum Kochen von Wasser in einem Kochgefäß, wofür mehrere Induktionsheizspulen verwendet werden, dadurch genauer zu machen, dass eine der Induktionsheizspulen als Messspule verwendet wird und dazu dann nicht mehr im Heizbetrieb arbeitet, sondern nur noch im Messbetrieb. So werden Verfälschungen des Messergebnisses vermieden oder zumindest stark reduziert. Damit wird zwar die gesamte Heizleistung für das Kochgefäß reduziert, dafür steigt aber die Genauigkeit. Einerseits ist es möglich, die Messspule schnell vom Heizbetrieb auf den Messbetrieb umzustellen, beispielsweise nachdem sie oder eventuell auch eine andere Induktionsheizspule zum ersten Mal dadurch, dass der Temperaturgradient der Schwingungsantwort zu Null geworden ist, eine Temperatur von 100°C am Kochgefäßboden erfasst hat. Da erfahrungsgemäß dann aber der Großteil des in dem Kochgefäß befindlichen Wassers noch nicht kocht bzw. noch nicht die 100°C erreicht hat, wird es andererseits als vertretbar und insgesamt vorteilhafter angesehen, auch die Messspule dann noch für eine bestimmte eher kurze Zeit im Heizbetrieb zu betreiben, beispielsweise 10 Sekunden bis 60 Sekunden oder sogar 300 Sekunden. Es ist nämlich in aller Regel erst dann damit zu rechnen, dass auf die gesamte Wassermenge bezogen bald die 100°C bzw. der kochende Zustand vorliegen. Auch hierzu sind Varianten möglich, die nachfolgend näher erläutert werden.Thus, an essential essence of the invention is to make a temperature determination in a method for boiling water in a cooking vessel, for which several induction heating coils are used, more precise by using one of the induction heating coils as a measuring coil and then no longer working in heating mode, but only in measurement mode. In this way, falsifications of the measurement result are avoided or at least greatly reduced. This reduces the total heating output for the cooking vessel, but increases the accuracy. On the one hand, it is possible to quickly remove the measuring coil from heating mode to switch to measuring mode, for example after it or possibly another induction heating coil has detected a temperature of 100 ° C. on the bottom of the cooking vessel for the first time because the temperature gradient of the vibration response has become zero. However, since experience has shown that the majority of the water in the cooking vessel is not yet boiling or has not yet reached 100 ° C, on the other hand it is considered justifiable and generally more advantageous to also close the measuring coil in heating mode for a certain rather short time operate, for example 10 seconds to 60 seconds or even 300 seconds. It is usually only then to be expected that the total amount of water will soon reach 100 ° C or the boiling state. Variants are also possible here, which are explained in more detail below.

In Ausgestaltung der Erfindung ist es möglich, diejenige Induktionsheizspule als Messspule zu bestimmen, deren Temperaturgradient der Schwingungsantwort während des allgemeinen Heizbetriebs und vor allem auch während ihres eigenen Heizbetriebs zuerst zu Null wird. Dies ist dann sozusagen die Induktionsheizspule mit dem zu diesem Zeitpunkt heißesten Bereich des Kochgefäßbodens über sich. Alternativ dazu kann auch diejenige Induktionsheizspule als Messspule bestimmt und verwendet werden, bei der dieser Temperaturgradient zuletzt zu Null wird. Dies ist dann entsprechend diejenige Induktionsheizspule, die den kühlsten Bereich des Kochgefäßbodens über sich aufweist. Dann kann davon ausgegangen werden, dass das Wasser im Kochgefäß insgesamt bereits deutlich näher an dem Zustand ist, dass es insgesamt kocht bzw. vollständig etwa 100°C aufweist. Während bei der ersten Alternative noch mit einer relativ längeren Zeit des Heizbetriebs zu rechnen ist, bis das gesamte Wasser kocht, beispielsweise 20 Sekunden bis 40 Sekunden, ist bei der zweiten Alternative eher nur mit einer kürzeren Zeit zu rechnen, beispielsweise 5 Sekunden bis 20 Sekunden. Dies ist bei den weiteren Vorgehensmöglichkeiten für die Temperaturbestimmung und für den Betrieb der Induktionsheizspulen zu beachten.In an embodiment of the invention, it is possible to determine that induction heating coil as the measuring coil whose temperature gradient of the vibration response first becomes zero during the general heating operation and above all during its own heating operation. This is, so to speak, the induction heating coil with the hottest area of the cooking vessel bottom above itself at this time. As an alternative to this, the induction heating coil can also be determined and used as the measuring coil in which this temperature gradient ultimately becomes zero. This is then the induction heating coil that has the coolest area of the cooking vessel bottom above it. Then it can be assumed that the water in the cooking vessel as a whole is already significantly closer to the state that it is boiling overall or is completely around 100 ° C. While in the first alternative a relatively longer time of heating operation can be expected until all the water boils, for example 20 seconds to 40 seconds, in the second alternative only a shorter time is to be expected, for example 5 seconds to 20 seconds . This has to be taken into account in the further procedure options for temperature determination and for the operation of the induction heating coils.

In weiterer Ausgestaltung der Erfindung ist es möglich, diejenige Induktionsheizspule als Messspule zu bestimmen, die den geringsten Leistungseintrag in das Kochgefäß und/oder die den geringsten Überdeckungsgrad durch das Kochgefäß aufweist. Das erste Kriterium kann während des Heizbetriebs ermittelt werden und beispielsweise auch wiederholt oder permanent überprüft werden. Das zweite Kriterium kann bereits zu Beginn des Kochvorgangs bestimmt werden, also wenn überhaupt bestimmt wird, welche Induktionsheizspulen von dem Kochgefäß überdeckt sind und welche demzufolge überhaupt als gemeinsame Kochstelle mit dem Heizbetrieb starten. Dabei sollte aber auch dieses Kriterium während des Heizbetriebs überprüft werden, da es durchaus vorkommen kann, dass das Kochgefäß über den Induktionsheizspulen bzw. auf der Kochstelle bewegt wird und sich dann der Überdeckungsgrad einzelner oder aller Induktionsheizspulen ändert.In a further embodiment of the invention, it is possible to determine that induction heating coil as the measuring coil which has the lowest power input into the cooking vessel and / or which has the lowest degree of coverage by the cooking vessel. The first criterion can be determined during heating operation and can also be checked repeatedly or permanently, for example. The second criterion can already be determined at the beginning of the cooking process, that is, if it is determined at all which induction heating coils are covered by the cooking vessel and which consequently start the heating operation as a common cooking point. However, this criterion should also be checked during heating operation, since it may well happen that the cooking vessel is above the induction heating coils or is moved on the hotplate and then the degree of coverage of individual or all induction heating coils changes.

In vorteilhafter Ausgestaltung der Erfindung sind sämtliche Induktionsheizspulen identisch ausgebildet, also vor allem auch gleich groß. Dies vereinfacht die Herstellung eines Induktionskochfelds. Des Weiteren ist es vorteilhaft auch möglich, sämtliche Induktionsheizspulen, die gemeinsam eine Kochstelle für ein einziges Kochgefäß bilden, identisch zu betreiben. Dies gilt vor allem für die Leistungsstufe. Also können auch Induktionsheizspulen mit einem erkannten geringeren Überdeckungsgrad genauso betrieben werden wie Induktionsheizspulen mit einem hohen oder vollständigen Überdeckungsgrad.In an advantageous embodiment of the invention, all induction heating coils are of identical design, that is to say they are of the same size. This simplifies the manufacture of an induction hob. Furthermore, it is advantageously also possible to operate all induction heating coils, which together form a hotplate for a single cooking vessel, identically. This applies above all to the performance level. This means that induction heating coils with a recognized lower degree of coverage can also be operated in the same way as induction heating coils with a high or complete degree of coverage.

In einer Ausgestaltung der Erfindung ist es möglich, dass dann, nachdem die erste Induktionsheizspule einen Temperaturgradienten aufweist bzw. erfasst, der zu Null geworden ist, für eine bestimmte Zeit der Heizbetrieb aller Induktionsheizspulen, die für dieses Kochgefäß bzw. diese Kochstelle arbeiten, mit gleichbleibender Leistung weitergeführt wird. Diese Zeit sollte weniger als 1 Minute betragen und kann beispielsweise mindestens 10 Sekunden betragen, vorteilhaft mindestens 20 Sekunden betragen. Nach Ablauf dieser Zeit wird die zuvor bestimmte Messspule dann im Messbetrieb betrieben, vorteilhaft mit der vorgenannten Mess-Leistung. Hier wird also berücksichtigt, dass in dem zuvor bereits genannten Fall, dass die erste Stelle des Kochgefäßbodens eine Temperatur von etwa 100°C aufweist, die Messspule, die entweder zuvor bereits bestimmt worden ist oder erst dadurch bestimmt wird, doch nicht sofort aus dem Heizbetrieb genommen wird, da dann die gesamte Heizleistung an der Kochstelle unnötig reduziert werden würde. Durch das Weiterheizen aller Induktionsheizspulen, insbesondere auch der Messspule, wird, da davon ausgegangen werden kann, dass das Wasser im Kochgefäß noch keine 100°C hat, noch mit maximal möglicher Leistung weitergeheizt für ein schnelles Aufheizen. Erst nach der gewissen Zeit wird dann die Messspule im Messbetrieb betrieben, da erst dann damit zu rechnen ist, dass die 100°C im gesamten Wasser bald erreicht sein werden. Diese Zeit kann auch variiert werden abhängig davon, wieviel Wasser zum Kochen gebracht werden muss bzw. wie groß das Kochgefäß ist. Dazu kann beispielsweise die bisherige Dauer als Kriterium herangezogen werden, wann eben die erste Induktionsheizspule den zu Null gewordenen Temperaturgradienten erfasst.In one embodiment of the invention, it is possible that after the first induction heating coil has or detects a temperature gradient that has become zero, the heating operation of all induction heating coils that work for this cooking vessel or this hotplate remains constant for a certain time Service is continued. This time should be less than 1 minute and can be, for example, at least 10 seconds, advantageously at least 20 seconds. After this time, the previously determined measuring coil is then operated in measuring mode, advantageously with the aforementioned measuring power. It is therefore taken into account here that, in the case already mentioned above, that the first point of the bottom of the cooking vessel has a temperature of approximately 100 ° C., the measuring coil, which has either already been determined beforehand or is only determined thereby, does not immediately come out of the heating mode is taken, because then the total heating output at the hotplate would be unnecessarily reduced. By continuing to heat all induction heating coils, especially the measuring coil, since it can be assumed that the water in the cooking vessel has not yet reached 100 ° C, the heating is continued with the maximum possible output for rapid heating. Only after a certain time will the measuring coil be operated in measuring mode, since only then can it be expected that the 100 ° C in the entire water will soon be reached. This time can also be varied depending on how much water needs to be brought to the boil or how large the cooking vessel is. For this purpose, for example, the previous duration can be used as a criterion when the first induction heating coil detects the temperature gradient that has become zero.

In einer anderen Ausgestaltung der Erfindung kann nicht die erste Induktionsheizspule herangezogen werden, sondern die letzte Induktionsheizspule, deren Temperaturgradient zu Null wird. Auch dann kann wiederum selbst die Messspule noch für eine bestimmte Zeit weiter im Heizbetrieb betrieben werden, da selbst in diesem Fall, dass überall der Kochgefäßboden 100°C beträgt, sehr wahrscheinlich noch nicht das gesamte Wasser im Kochgefäß 100°C aufweist. Diese Zeit für den Weiterbetrieb der Messspule im Heizbetrieb sollte deutlich kürzer als 1 Minute sein und kann insbesondere kürzer als die zuvor genannte Zeit, beispielsweise 5 Sekunden bis 20 Sekunden betragen. Auch hier wird wiederum erst nach Ablauf dieser Zeit die Messspule im Messbetrieb betrieben, wobei sie auch hier wiederum entweder bereits zu Beginn des Heizbetriebs oder erst später zur Messspule bestimmt worden sein kann.In another embodiment of the invention, it is not the first induction heating coil that can be used, but the last induction heating coil, the temperature gradient of which becomes zero. Even then, even the measuring coil can continue to be operated in heating mode for a certain time, since even in this case the bottom of the cooking vessel is everywhere 100 ° C, most likely not all of the water in the cooking vessel is 100 ° C. This time for the continued operation of the measuring coil in heating mode should be significantly shorter than 1 minute and can in particular be shorter than the previously mentioned time, for example 5 seconds to 20 seconds. Here too, the measuring coil is only operated in measuring mode after this time has elapsed, although again it may either have been determined as the measuring coil either at the beginning of the heating mode or only later.

Es ist vorteilhaft möglich, wenn an der Messspule deren Leistung deutlich reduziert worden ist bzw. sie nur noch als Messspule mit der Mess-Leistung betrieben wird, den zeitlichen Verlauf der Wassertemperatur des Wassers im Kochgefäß gleichzusetzen mit dem zeitlichen Verlauf der Periodendauer der Schwingungsantwort an der Messspule, zumindest was den relativen Verlauf betrifft. Diese Messspule arbeitet dann nämlich als Temperatursensor für den über ihr liegenden Bereich des Kochgefäßbodens, der wiederum die Temperatur des an ihn durch Verwirbelung herangeführten Wassers im Kochgefäß bestimmt. Dieser Bereich des Kochgefäßbodens arbeitet dann sozusagen als ein erster Teil eines Sensors. Als zweiter Teil dieses Sensors arbeitet die Messspule, die sozusagen die Temperatur dieses ersten Teils abfragt.It is advantageously possible, if the power of the measuring coil has been significantly reduced or if it is only operated as a measuring coil with the measuring power, to equate the time course of the water temperature of the water in the cooking vessel with the time course of the period of the vibration response at the Measuring coil, at least as far as the relative course is concerned. This measuring coil then works as a temperature sensor for the region of the cooking vessel base lying above it, which in turn determines the temperature of the water in the cooking vessel brought to it by swirling. This area of the bottom of the cooking vessel then works, so to speak, as a first part of a sensor. The second part of this sensor is the measuring coil, which queries the temperature of this first part, so to speak.

Der Messbetrieb der Messspule sollte vorteilhaft so sein, dass sie keine zusätzliche Heizleistung in den über ihr liegenden Bereich des Kochgefäßbodens einbringt, um Verfälschungen bei der Temperaturerfassung bzw. Temperaturbestimmung zu reduzieren oder möglichst ganz zu vermeiden. Wie zuvor kurz erwähnt worden ist, kann hier bereits eine Halbwelle für den Leistungseintrag ausreichen, was dann auch wiederum nur mit einer vorgenannten geringen Leistung bzw. Mess-Leistung gemacht wird.The measuring operation of the measuring coil should advantageously be such that it does not bring any additional heating power into the area of the cooking vessel bottom above it, in order to reduce falsifications in temperature detection or temperature determination or to avoid them as far as possible. As has been mentioned briefly above, a half-wave can already suffice for the power input, which in turn is then only carried out with the aforementioned low power or measuring power.

Es ist möglich, nach dem Erkennen des Kochens des Wassers im Kochgefäß die Leistung der Induktionsheizspulen bzw. der Kochstelle zu reduzieren, um ein Überkochen des Wassers zu verhindern. Dies kann um mindestens 10% bis 20% erfolgen, vorteilhaft sogar um mindestens 50% bis 70%.It is possible to reduce the power of the induction heating coils or the hotplate after the water has boiled in the cooking vessel in order to prevent the water from boiling over. This can be done by at least 10% to 20%, advantageously even by at least 50% to 70%.

Kurzbeschreibung der ZeichnungenBrief description of the drawings

Ausführungsbeispiele der Erfindung sind in den Zeichnungen schematisch dargestellt und werden im Folgenden näher erläutert. In den Zeichnungen zeigen:

Fig.1
eine schematische Ansicht einer Anordnung mehrerer Induktionsheizspulen eines Induktionskochfelds mit aufgestelltem Kochgefäß,
Fig. 2
eine schematische Seitenansicht einer Beheizung des Kochgefäßes aus Fig. 1 mit den darunter befindlichen Induktionsheizspulen, wobei zwei Induktionsheizspulen im Heizbetrieb arbeiten samt entstehender Wasserströmungen,
Fig. 3
eine Abwandlung der Darstellung aus Fig. 2, wobei eine Induktionsheizspule im Heizbetrieb und eine im Messbetrieb arbeitet samt entstehender Wasserströmungen und
Fig. 4
eine Darstellung von Verläufen sowohl der Wassertemperatur an zwei Stellen im Kochgefäß als auch von Signalen einer Induktionsheizspule im Heizbetrieb einerseits und einer im Messbetrieb andererseits.
Exemplary embodiments of the invention are shown schematically in the drawings and are explained in more detail below. The drawings show:
Fig. 1
1 shows a schematic view of an arrangement of a plurality of induction heating coils of an induction hob with the cooking vessel set up,
Fig. 2
a schematic side view of a heating of the cooking vessel Fig. 1 with the induction heating coils underneath, whereby two induction heating coils work in heating mode with the resulting water flows,
Fig. 3
a modification of the presentation Fig. 2 , where an induction heating coil works in heating mode and one in measuring mode including water flows and
Fig. 4
a representation of profiles both of the water temperature at two points in the cooking vessel and of signals from an induction heating coil in heating mode on the one hand and one in measuring mode on the other.

Detaillierte Beschreibung der AusführungsbeispieleDetailed description of the exemplary embodiments

In der Fig. 1 ist schematisch dargestellt, wie bei einem Induktionskochfeld 11 eine Vielzahl von einzelnen Induktionsheizspulen 13, hier mit runder Form, vorhanden sein kann. Dies ist aus der vorgenannten EP 1463383 A1 bekannt. Ein Kochgefäß 15 ist aufgestellt, und zwar derart, dass es vier Induktionsheizspulen 13a bis 13d zu mehr als 50% bedeckt. Die Induktionsheizspulen 13b und 13d sind vollständig überdeckt, und die Induktionsheizspulen 13a und 13c zu etwa 70% bis 80%. Links und rechts neben der Induktionsheizspule 13d sind auch Induktionsheizspulen zu einem geringen Grad überdeckt. Dieser Überdeckungsgrad ist allerdings so gering, dass dies erkannt wird und sie definitiv nicht im Heizbetrieb als Kochstelle für das Kochgefäß 15 verwendet werden.In the Fig. 1 is shown schematically how a plurality of individual induction heating coils 13, here with a round shape, can be present in an induction hob 11. This is from the aforementioned EP 1463383 A1 known. A cooking vessel 15 is set up in such a way that it covers four induction heating coils 13a to 13d by more than 50%. The induction heating coils 13b and 13d are completely covered, and the induction heating coils 13a and 13c to about 70% to 80%. To the left and right of the induction heating coil 13d, induction heating coils are also covered to a small extent. However, this degree of coverage is so low that this is recognized and they are definitely not used as a hotplate for the cooking vessel 15 in heating mode.

In der Seitenansicht der Fig. 2 des erfindungsgemäßen Induktionskochfelds 11 mit einer Kochfeldplatte 12 ist zu ersehen, wie die zwei Induktionsheizspulen 13a und 13b unter dem Kochgefäß 15 liegen bzw. dieses über sie auf der Kochfeldplatte 12 aufgestellt ist. Die Induktionsheizspulen 13c und 13d sind hier nicht dargestellt, für sie gilt aber im Wesentlichen dasselbe. Das Kochgefäß 15 weist einen Kochgefäßboden 16 auf, der sich für induktive Beheizung eignet und üblicherweise eine Dicke von einigen Millimetern aufweist, beispielsweise 4mm bis 10mm. In der Regel ist ein solcher Kochgefäßboden 16 mehrschichtig ausgebildet mit einer obersten Schicht, die aus demselben Material wie die seitliche Wandung des Kochgefäßes 15 besteht und meistens durch Tiefziehen hergestellt ist, also mit einem einstückigen Materialübergang. Darunter ist häufig eine wärmeverteilende Schicht aus Kupfer mit einer Stärke von wenigen Millimetern angeordnet. Unterhalb dieser wiederum kann eine dünne Schicht aus Edelstahl vorgesehen sein, welche ebenfalls für induktive Beheizung geeignet ist. Deren Dicke kann maximal 1mm bis 2mm betragen. Gleichzeitig ist dies in etwa die maximale Eindringtiefe von induktiven Feldern, was nachfolgend noch erläutert wird.In the side view of the Fig. 2 of the induction hob 11 according to the invention with a hob 12 can be seen how the two induction heating coils 13a and 13b lie under the cooking vessel 15 or this is placed above them on the hob 12. The induction heating coils 13c and 13d are not shown here, but they essentially apply the same thing. The cooking vessel 15 has a cooking vessel base 16 which is suitable for inductive heating and usually has a thickness of a few millimeters, for example 4 mm to 10 mm. As a rule, such a cooking vessel base 16 is of multilayer design with an uppermost layer, which consists of the same material as the side wall of the cooking vessel 15 and is usually produced by deep drawing, that is to say with a one-piece material transition. A heat-distributing layer of copper with a thickness of a few millimeters is often arranged underneath. Below this, in turn, a thin layer of stainless steel can be provided, which is also suitable for inductive heating. Their thickness can be a maximum of 1mm to 2mm. At the same time, this is approximately the maximum penetration depth of inductive fields, which will be explained below.

Die Induktionsheizspulen 13a und 13b sind mit einer Steuerung 19 des Induktionskochfelds 11 verbunden und werden über diese angesteuert mit Leistung versorgt, üblicherweise über ein hier nicht dargestelltes Leistungsteil bzw. entsprechende Schwingkreisanordnungen.The induction heating coils 13a and 13b are connected to a controller 19 of the induction hob 11 and are supplied with power in a controlled manner, usually via a power unit (not shown here) or corresponding resonant circuit arrangements.

Mit dünnen Pfeilen dargestellt ist jeweils ein Leistungseintrag 21a und 21b von jeder der Induktionsheizspulen 13a und 13b in das Kochgefäß 15 bzw. in den Kochgefäßboden 16. Dies ist dem Fachmann bekannt und darauf muss nicht näher eingegangen werden. Wie zuvor erwähnt, beträgt die Eindringtiefe des Leistungseintrags 21 weniger als 2mm, vorteilhaft weniger als 1mm. Von dieser untersten Schicht des Kochgefäßbodens 16 verteilt sich die entstehende Wärme nach oben durch den weiteren Aufbau des Kochgefäßbodens 16 hindurch, unter Umständen mit einer entsprechenden Querverteilung. An der Oberseite des Kochgefäßbodens 16 erfolgt der Wärmeübergang in darüber im Kochgefäß 15 befindliches Wasser 17. Durch die eingebrachte Wärme steigt dieses aufgewärmte Wasser auf, was durch die breiten Pfeile veranschaulicht ist. Selbstverständlich erfolgt eine Art Durchmischung der Wasserströmungen 23a und 23b, hier auch noch dargestellt durch weitere Wasserströmungen 23.The thin arrows show a power input 21a and 21b from each of the induction heating coils 13a and 13b into the cooking vessel 15 and into the cooking vessel bottom 16. This is known to the person skilled in the art and need not be discussed in more detail. As previously mentioned, the depth of penetration of the power input 21 is less than 2 mm, advantageously less than 1 mm. From this lowermost layer of the cooking vessel base 16, the heat generated is distributed upward through the further structure of the cooking vessel base 16, possibly with a corresponding transverse distribution. At the top of the cooking vessel base 16, the heat transfer takes place in the water 17 located above it in the cooking vessel 15. This heated water rises as a result of the heat introduced, which is illustrated by the broad arrows. Of course, a kind of mixing of the water flows 23a and 23b takes place, also shown here by further water flows 23.

In Fig. 4 ist in einem schematisch zu verstehenden Diagramm mit dicker durchgezogener Linie die Temperatur TW des Wassers 17 im Kochgefäß 15 aufgezeichnet als eine Art Durchschnittstemperatur, also nicht nur an einzelnen diskreten Punkten gemessen, sondern als Durchschnitt an vielen Punkten. Insbesondere kann dies auch eine Temperatur an der Wasseroberfläche sein, wo üblicherweise die Temperatur des Wassers 17 am geringsten sein wird beim Kochen.In Fig. 4 In a diagram to be understood schematically with a thick solid line, the temperature T W of the water 17 in the cooking vessel 15 is recorded as a kind of average temperature, ie not only measured at individual discrete points, but as an average at many points. In particular, this can also be a temperature at the water surface, where the temperature of the water 17 will usually be the lowest when boiling.

Mit dicker gestrichelter Linie ist die Temperatur des Wassers über der linken Induktionsheizspule 21a nahe dem Kochgefäßboden 16 dargestellt. Hier wird das Wasser 17 wohl am heißesten sein und am schnellsten kochen. Außerdem ist für die Temperatur des Wassers 17 der Wert von 100°C eingezeichnet. Bei den Wassertemperaturen mit dicken Linien sind die Verlaufshöhen relativ zueinander in etwa maßstäblich.The temperature of the water above the left induction heating coil 21a near the cooking vessel base 16 is shown with a thick dashed line. Here the water 17 will probably be the hottest and the quickest to boil. In addition, the temperature of the water is 17th the value of 100 ° C is shown. At the water temperatures with thick lines, the course heights are approximately to scale relative to each other.

Mit dünner durchgezogener Linie ist der eingangs genannte Messwert bzw. das Periodensignal derjenigen Induktionsheizspule 13b dargestellt, die als Messspule im Messbetrieb verwendet wird. Mit gestrichelter dünner Linie ist das Periodensignal der im Heizbetrieb betriebenen Induktionsheizspule 13a dargestellt. Diese beiden Periodensignale müssen absolut gesehen nicht unterschiedlich groß sein, dies ist hier nur der Übersichtlichkeit halber dargestellt, um ihre relativen Verläufe besser zu zeigen. Insbesondere können sie vor allem am Anfang weitgehend deckungsgleich sein.The measured value or the period signal of the induction heating coil 13b which is used as the measuring coil in the measuring operation is shown with a thin solid line. The dashed thin line shows the period signal of the induction heating coil 13a operated in heating mode. In absolute terms, these two period signals do not have to be of different sizes, this is only shown here for the sake of clarity in order to better show their relative courses. In particular, they can be largely congruent, especially at the beginning.

Zur Durchführung des erfindungsgemäßen Verfahrens wird nach dem Aufsetzen des Kochgefäßes 15 auf das Induktionskochfeld 11 bzw. über die Induktionsheizspulen 13 von der Steuerung 19 auf bekannte Art und Weise erfasst, welche Induktionsheizspulen überhaupt überdeckt sind und in wie stark bzw. mit welchem Überdeckungsgrad. Bei den Induktionsheizspulen 13 der Konfiguration der Fig. 1 sind die vorgenannten Induktionsheizspulen 13a bis 13d ausreichend überdeckt. Hat nun eine Bedienperson eine Leistungsstufe für den Betrieb des Induktionskochfelds 11 ausgewählt, mit der das Wasser 17 im Kochgefäß 15 möglichst schnell zum Kochen gebracht werden soll, so startet der Heizbetrieb der vier Induktionsheizspulen 13a bis 13d. Diese bilden dabei eine gemeinsame Kochstelle. Sie können mit der maximalen Leistung, insbesondere einer für Induktionsheizspulen bekannten Boost-Leistung, betrieben werden. Dies ist in der Fig. 2 dargestellt, die Induktionsheizspulen 13a und 13b erzeugen einen Leistungseintrag 21a und 21b in den Kochgefäßboden 16, insbesondere in dessen unterste Schicht. Die induktiv erzeugte Wärme breitet sich nach oben aus und tritt an der Oberseite des Kochgefäßbodens 16 in das Wasser 17 ein bzw. wird dort übertragen. Dadurch entstehen Wasserströmungen 23, insbesondere von der Oberseite des Kochgefäßbodens 16 aufsteigende starke Wasserströmungen 23a und 23b.To carry out the method according to the invention, after the cooking vessel 15 has been placed on the induction hob 11 or via the induction heating coils 13, the controller 19 detects in a known manner which induction heating coils are covered at all and to what extent or with what degree of coverage. In the induction heating coils 13 of the configuration of the Fig. 1 the aforementioned induction heating coils 13a to 13d are sufficiently covered. If an operator has now selected a power level for operating the induction hob 11, with which the water 17 in the cooking vessel 15 is to be brought to a boil as quickly as possible, the heating operation of the four induction heating coils 13a to 13d starts. These form a common cooking area. They can be operated with the maximum power, in particular a boost power known for induction heating coils. This is in the Fig. 2 shown, the induction heating coils 13a and 13b generate a power input 21a and 21b in the cooking vessel bottom 16, in particular in its bottom layer. The inductively generated heat spreads upwards and enters or is transferred to the water 17 at the top of the cooking vessel base 16. This creates water flows 23, in particular strong water flows 23a and 23b rising from the top of the cooking vessel base 16.

Gemäß einer ersten Variante des Verfahrens kann nun die Induktionsheizspule 13b als Messspule bestimmt werden, da sie den erkennbar geringsten Überdeckungsgrad durch das Kochgefäß 15 bzw. den Kochgefäßboden 16 aufweist. Diese Bestimmung kann erfolgen, selbst wenn auch die Messspule 13b mit den anderen zusammen noch im Heizbetrieb als Kochstelle betrieben wird. Alternativ kann das in Fig. 4 gestrichelt dargestellte Periodensignal, das zu Beginn für die meisten Induktionsheizspulen relativ gleich verlaufen wird, für jede Induktionsheizspule 13 ausgewertet werden. Dann kann diejenige Induktionsheizspule als Messspule bestimmt und in den Messbetrieb wechseln, bei der zuerst die Steigung in etwa Null wird. In nochmals weiterer Ausgestaltung der Erfindung kann diejenige Induktionsheizspule als Messspule im Messbetrieb verwendet werden, bei der dieser Verlauf im Vergleich zu den anderen Induktionsheizspulen als letzter konstant wird bzw. Null Steigung aufweist.According to a first variant of the method, the induction heating coil 13b can now be determined as the measuring coil, since it has the recognizable lowest degree of coverage by the cooking vessel 15 or the cooking vessel base 16. This determination can be made even if the measuring coil 13b is also operated together with the others in heating mode as a hotplate. Alternatively, this can be done in Fig. 4 Period signal shown in dashed lines, which will initially be relatively the same for most induction heating coils, can be evaluated for each induction heating coil 13. Then the induction heating coil can be determined as the measuring coil and switch to measuring mode, in which the gradient first becomes approximately zero. In In yet another embodiment of the invention, that induction heating coil can be used as the measuring coil in the measuring mode, in which this curve becomes the last to be constant or has zero slope compared to the other induction heating coils.

Im hier beschriebenen Ausführungsbeispiel gilt dieser Fall, dass die Steigung als letzte zu Null geworden ist, für die Induktionsheizspule 13b. Das bedeutet, dass über allen anderen Induktionsheizspulen 13 der Kochstelle die Temperatur höher ist bzw. früher schon hoch war.In the exemplary embodiment described here, this case applies that the slope has become the last to be zero for the induction heating coil 13b. This means that the temperature above all other induction heating coils 13 of the hotplate is higher or was previously high.

Gleichzeitig ist aus der Fig. 4 zu ersehen, wie die gestrichelt dargestellte Wassertemperatur zu dem Zeitpunkt, zu dem die Steigung des Periodensignals einer der Induktionsheizspulen zu Null wird, ebenfalls auf den dargestellten Maximalwert von 100°C als Wassertemperatur kommt. Insbesondere ist dies die Temperatur des Wassers knapp oberhalb des Kochgefäßbodens 16 über eben der Induktionsheizspule mit dem gestrichelt dargestellten Verlauf des Periodensignals. Durch die nicht mehr ansteigende Wassertemperatur bei 100°C kann sich auch der Kochgefäßboden 16 in diesem Bereich nicht mehr weiter erhitzen, so dass deswegen auch das Periodensignal an der Induktionsheizspule nicht mehr weiter ansteigt. Die dicke durchgezogene Linie als Temperatur TW des Wassers 17 im Kochgefäß 15 steigt nach kurzer Verzögerung am Anfang in etwa konstant an. Durch das Umstellen einer Induktionsheizspule als Messspule verringert sich die eingebrachte Leistung und der Anstieg wird dann flacher.At the same time is from the Fig. 4 to see how the dashed water temperature at the time when the slope of the period signal of one of the induction heating coils becomes zero also comes to the shown maximum value of 100 ° C. as the water temperature. In particular, this is the temperature of the water just above the bottom 16 of the cooking vessel above the induction heating coil with the course of the period signal shown in dashed lines. As a result of the water temperature no longer rising at 100 ° C., the bottom 16 of the cooking vessel can no longer heat up in this area either, so that the period signal at the induction heating coil therefore no longer rises. The thick solid line as the temperature T W of the water 17 in the cooking vessel 15 rises approximately constant at the beginning after a short delay. By switching an induction heating coil as a measuring coil, the power input is reduced and the rise then becomes flatter.

Die nun im Messbetrieb als Messspule mit der Mess-Leistung betriebene Induktionsheizspule 13b weist den durchgezogenen Verlauf mit der dünnen Linie auf. Die Mess-Leistung beträgt beispielsweise 5% der maximalen Leistung. Der Verlauf des Periodensignals an der Messspule 13b zeigt auch, dass nach dem Wechsel in den Messbetrieb ja diese Messspule nahezu keine Energie mehr in den Kochgefäßboden überträgt und diesen somit nicht weiter aufzuheizen versucht. Da das in dem Kochgefäß 15 befindliche Wasser 17 insgesamt noch keine 100°C hat, also noch nicht insgesamt kocht, sondern beispielsweise nur 80°C bis 90°C aufweist, fällt dieses relativ kühlere Wasser wieder auf diesen Bereich des Kochgefäßbodens herunter und kühlt ihn auf weniger als 100°C ab. Er wird also im Vergleich zu dem vorherigen Heizbetrieb der Messspule 13b gekühlt. Dies ist zu erkennen an dem dargestellten Abfall des Periodensignals der Messspule. Nach einer gewissen Zeit, beispielsweise 10 Sekunden bis 30 Sekunden, weist dieser Bereich des Kochgefäßbodens die Temperatur des relativ kühleren herabströmenden Wassers auf, so dass auch das Periodensignal der Messspule quasi gleich verläuft wie die Wassertemperatur. Dies ist der Verständlichkeit halber hier gemeinsam bzw. in Überdeckung dargestellt, muss aber nicht so sein.The induction heating coil 13b, which is now operated in measuring mode as a measuring coil with the measuring power, has the continuous course with the thin line. The measuring power is, for example, 5% of the maximum power. The course of the period signal at the measuring coil 13b also shows that after the change to the measuring mode, this measuring coil transmits almost no energy into the bottom of the cooking vessel and thus does not attempt to heat it up. Since the water 17 in the cooking vessel 15 does not yet have a total of 100.degree. C., that is to say does not yet boil overall, but instead only has, for example, only 80.degree. C. to 90.degree. C., this relatively cooler water falls back onto this area of the cooking vessel bottom and cools it to less than 100 ° C. It is therefore cooled in comparison to the previous heating operation of the measuring coil 13b. This can be recognized from the drop in the period signal of the measuring coil shown. After a certain time, for example 10 seconds to 30 seconds, this area of the bottom of the cooking vessel has the temperature of the relatively cooler water flowing down, so that the period signal of the measuring coil also runs virtually the same as the water temperature. For the sake of clarity, this is shown here together or in overlap, but need not be so.

Gleichzeitig ist zu sehen, wie die gestrichelt dargestellte Temperatur des Wassers beispielsweise über der weiterhin im Heizbetrieb betriebenen Induktionsheizspule 13a gemäß Fig. 2 und 3 bei 100°C bleibt. Höher werden kann die Temperatur nicht, und schließlich erfolgt weiterhin ein Energieeintrag durch die Heizspule. Deswegen bleibt die Temperatur sozusagen am oberen Anschlag.At the same time it can be seen how the temperature of the water shown in dashed lines, for example, according to the induction heating coil 13a which is still operated in heating mode 2 and 3 remains at 100 ° C. The temperature cannot get higher, and finally the heating coil continues to introduce energy. That is why the temperature stays at the upper limit, so to speak.

Die Zustände im Kochgefäß 15 in diesem Zeitraum sind in Fig. 3 zu ersehen. Die Induktionsheizspule 13a im Heizbetrieb bewirkt weiterhin den Leistungseintrag 21a in den Kochgefäßboden 16 über ihr, welcher die starke Wasserströmung 23a erzeugt. Diese zirkuliert sozusagen und bewirkt, dass im oberen Bereich befindliches Wasser 17 als mit dünnen Pfeilen dargestellte Wasserströmung 23 nach unten auf den Bereich des Kochgefäßbodens 16 auftritt, der über der Messspule 13b liegt. Durch das Wechseln des Betriebs von der Induktionsheizspule 13b vom Heizbetrieb in den Messbetrieb, bei dem diese dann fast keine Leistung mehr in den Kochgefäßboden einkoppelt, fallen immerhin fast 25% der Heizleistung weg. Da mit dem erfindungsgemäßen Verfahren ja im Wesentlichen nur das Erreichen des Durchkochens des Wassers festgestellt werden soll und keine genaue Temperaturmessung bei einer beliebigen Temperatur darunter stattfinden soll, kann aus Erfahrungswerten, die wie oben erläutert in der Steuerung 19 abgespeichert sein können, noch eine gewisse Weiterlaufzeit für die Induktionsheizspule 13b im Heizbetrieb bestimmt werden, nach deren Ablauf das Wasser im Kochgefäß 15 immer noch nicht vollständig durchgekocht ist.The conditions in the cooking vessel 15 during this period are in Fig. 3 to see. The induction heating coil 13a in the heating mode also causes the power input 21a into the cooking vessel bottom 16 above it, which generates the strong water flow 23a. This circulates, so to speak, and has the effect that water 17 located in the upper area appears as a water flow 23 shown with thin arrows down onto the area of the cooking vessel base 16 which lies above the measuring coil 13b. By changing the operation of the induction heating coil 13b from the heating mode to the measuring mode, in which this then almost no more power is coupled into the bottom of the cooking vessel, almost 25% of the heating power is lost. Since with the method according to the invention essentially only the achievement of the boiling-through of the water is to be determined and no exact temperature measurement is to take place at any temperature below it, experience values, which can be stored in the control 19 as explained above, can also allow a certain continuation time be determined for the induction heating coil 13b in heating mode, after which the water in the cooking vessel 15 is still not completely boiled.

Nach einiger Zeit dann hat durch den fortwährenden Leistungseintrag der übrigen drei Induktionsheizspulen, der vorteilhaft mit gleicher bzw. maximaler Leistung erfolgt, die gesamte bzw. gemittelte Temperatur des gesamten Wassers etwa 100°C erreicht, insbesondere nach ausreichender Durchmischung des vom Kochgefäßboden 16 über den Heizspulen aufgeheizten Wassers mit dem restlichen Wasser. Wenn dann in Fig. 4 im rechten Bereich das dünn und durchgezogene Periodensignal der Messspule wieder die Steigung Null aufweist bzw. konstant wird, so kocht das gesamte Wasser 17 im Kochgefäß 15. Dies gilt auch für die Temperatur TW des Wassers.After some time, the total or average temperature of the entire water has reached about 100 ° C. due to the continuous power input of the remaining three induction heating coils, which advantageously takes place with the same or maximum output, in particular after sufficient mixing of the from the bottom 16 of the heating coils heated water with the rest of the water. Then if in Fig. 4 in the right-hand area, the thin and solid period signal of the measuring coil again has the slope zero or becomes constant, then all the water 17 boils in the cooking vessel 15. This also applies to the temperature T W of the water.

Bei den mit dicken Pfeilen dargestellten Wasserströmungen 23a und 23b in der Fig. 2 ist zu beachten, dass hier auch die Bildung von teils großen oder sogar sehr großen Wasserdampfblasen erfolgt, die nach oben aufsteigen. Sie bewirken auch einen großen Teil der Selbstvermischung des Wassers 17 im Kochgefäß 15.In the water flows 23a and 23b shown with thick arrows in the Fig. 2 It should be noted that the formation of partly large or even very large water vapor bubbles takes place here, which rise upwards. They also cause a large part of the self-mixing of the water 17 in the cooking vessel 15.

Anhand der Beschreibung zu den Fig. 1 bis 3 und anhand der Verläufe in Fig. 4 ist auch leicht vorstellbar, wie eingangs erläutert, wie nach dem Erreichen eines konstanten Periodensignals durch die Messspule der Heizbetrieb aller Induktionsheizspulen, insbesondere auch der als spätere Messspule bestimmten Induktionsheizspule, für eine gewisse Zeit weitergeführt wird. Aus dem Diagramm der Fig. 4 ist zu ersehen, dass es noch eine gewisse Zeit dauert, beispielsweise 10 Sekunden bis 40 Sekunden nach dem Kochen des Wassers kurz oberhalb des Kochgefäßbodens, bis sämtliches Wasser im Kochgefäß kocht.Based on the description of the 1 to 3 and based on the courses in Fig. 4 is also easily imaginable, as explained at the beginning, how the heating operation of all induction heating coils, in particular also the induction heating coil determined as the later measuring coil, is continued for a certain time after the measuring coil has reached a constant period signal. From the diagram of the Fig. 4 it can be seen that it takes a certain time, for example 10 seconds to 40 seconds after boiling the water just above the bottom of the cooking vessel, until all the water in the cooking vessel boils.

Claims (10)

  1. Method for temperature determination in an induction hob (11) comprising a plurality of induction heating coils (13), wherein the induction heating coils (13) can be individually driven and, in a common heating mode, form a cooking point for a cooking vessel (15) containing water,
    characterized in that the method comprises the following steps:
    - a cooking vessel (15) containing water is positioned such that it covers at least two induction heating coils (13) by way of a cooking vessel base (16),
    - the induction heating coils (13) are operated in the heating mode in order to bring the water (17) in the cooking vessel (15) to boil, which is to be detected as temperature determination,
    - during the heating mode, each induction heating coil (13) heats that region of the cooking vessel base (16) which is arranged above it,
    - during the heating mode, the oscillation response on at least one induction heating coil (13) is used to detect whether the temperature of the region of the cooking vessel base (16) above this induction heating coil (13) changes or increases,
    - the induction heating coils (13) are operated in the heating mode at least until one induction heating coil (13) detects that the temperature gradient of the cooking vessel base (16) above this induction heating coil is approaching zero or has reached zero,
    - at least one of the induction heating coils (13) is determined to be a measuring coil,
    - the measuring coil is operated in the measuring mode and no longer in the heating mode, wherein the measuring coil, in the measuring mode with a measuring power of up to a maximum of 50% of the maximum power, transmits energy into the cooking vessel base (16) for a short time and then detects the fed-back oscillation response, wherein the time profile of this oscillation response is evaluated after several coupling-in operations of the measuring power, wherein then, in case that the gradient of this time profile is approaching zero or has reached zero, the water (17) in the cooking vessel (15) is determined to be boiling.
  2. Method according to claim 1, characterized in that that induction heating coil (13) which first has a temperature gradient which reaches zero during the heating mode is determined to be a measuring coil.
  3. Method according to claim 1, characterized in that that induction heating coil (13) which has the lowest power input into the cooking vessel (15) and/or the lowest degree of coverage by the cooking vessel is determined to be a measuring coil.
  4. Method according to any of the preceding claims, characterized in that all of the induction heating coils (13) are operated in the heating mode at least until the temperature gradient of the cooking vessel base (16) which is located above each of the induction heating coils has reached zero.
  5. Method according to any of the preceding claims, characterized in that the measuring coil transmits energy into the cooking vessel base (16) in the measuring mode with the measuring power for half a cycle, and then detects the fed-back oscillation response.
  6. Method according to any of the preceding claims, characterized in that, after the first induction heating coil (13) has or detects a temperature gradient which has reached zero, the heating mode of all of the induction heating coils (13), which operate in the heating mode for this cooking vessel (15), is continued for at least 10 seconds, preferably for at least 30 seconds, at a constant power, wherein the previously determined measuring coil is operated in the measuring mode after this time has elapsed.
  7. Method according to any of the claims 1 to 5, characterized in that, after all of the induction heating coils (13) of the cooking point have or have detected a temperature gradient which has reached zero, the heating mode of all of the induction heating coils (13), which operate in the heating mode for this cooking vessel (15), is continued for at least 10 seconds, preferably for at least 30 seconds, at a constant power.
  8. Method according to any of the preceding claims, characterized in that, on the basis of values which are stored in a memory, for the level of the total added power input of all of the induction heating coils (13), which are operated jointly as a cooking point in the heating mode for a cooking vessel (15), into the cooking vessel and, on the basis of the time until the temperature gradient of the first induction heating coil or the temperature gradient of the last induction heating coil has reached zero, the time for which the heating mode is continued, after the temperature gradient of the first induction heating coil or the last induction heating coil has reached zero up to the time at which one of the induction heating coils is operated as a measuring coil, is determined.
  9. Method according to any of the preceding claims, characterized in that, after the considerable reduction in the power at the measuring coil (13) during the temperature determination by the measuring coil, the profile of the water temperature of water (17) in the cooking vessel (15) is set equal to the profile of the cycle duration at the measuring coil.
  10. Method according to any of the preceding claims, characterized in that, after it is identified that the water (17) in the cooking vessel (15) is boiling, the power of the induction heating coils (13) or of the cooking point is reduced, in particular by at least 50%, in order to prevent the water from boiling over.
EP16184674.6A 2015-08-27 2016-08-18 Method for determining a temperature Active EP3136822B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16184674T PL3136822T3 (en) 2015-08-27 2016-08-18 Method for determining a temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015216455.1A DE102015216455A1 (en) 2015-08-27 2015-08-27 Method for temperature determination

Publications (2)

Publication Number Publication Date
EP3136822A1 EP3136822A1 (en) 2017-03-01
EP3136822B1 true EP3136822B1 (en) 2020-04-29

Family

ID=56738019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16184674.6A Active EP3136822B1 (en) 2015-08-27 2016-08-18 Method for determining a temperature

Country Status (6)

Country Link
US (1) US10219327B2 (en)
EP (1) EP3136822B1 (en)
CN (1) CN106488601B (en)
DE (1) DE102015216455A1 (en)
ES (1) ES2804108T3 (en)
PL (1) PL3136822T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802584A (en) * 2017-03-22 2017-06-06 广东美的厨房电器制造有限公司 Cooking methods, cooker and cooking apparatus
EP3714747B1 (en) * 2019-03-29 2024-02-21 Vorwerk & Co. Interholding GmbH Kitchen appliance with boiling point monitoring

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011083397A1 (en) * 2011-09-26 2013-03-28 E.G.O. Elektro-Gerätebau GmbH Method for preparing food by means of an induction heating device and induction heating device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540408A1 (en) 1995-10-30 1997-05-07 Herchenbach Wolfgang Cooking system
DE10314690A1 (en) 2003-03-27 2004-10-07 E.G.O. Elektro-Gerätebau GmbH Heating device for flat heating with induction heating elements
JP4381875B2 (en) * 2004-04-21 2009-12-09 パナソニック株式会社 Induction heating cooker
WO2006032292A1 (en) * 2004-09-23 2006-03-30 E.G.O. Elektro-Gerätebau GmbH Heating device for a planar heater with induction heating elements
FR2903564B1 (en) * 2006-07-06 2011-07-01 Seb Sa COOKING PLATE FOR DETECTING THE TEMPERATURE OF A CULINARY ARTICLE
DE102009047185B4 (en) * 2009-11-26 2012-10-31 E.G.O. Elektro-Gerätebau GmbH Method and induction heating device for determining a temperature of a cooking vessel bottom heated by means of an induction heating coil
CH704318B1 (en) 2011-01-07 2016-03-15 Inducs Ag Induction cooking device for temperature-controlled cooking.
CH704364B1 (en) * 2011-01-14 2015-01-30 Inducs Ag Modular Warming System for Food.
DE102011083383A1 (en) * 2011-09-26 2013-03-28 E.G.O. Elektro-Gerätebau GmbH Method for heating a liquid contained in a cooking vessel and induction heating device
US9699834B2 (en) 2012-10-22 2017-07-04 Panasonic Intellectual Property Management Co., Ltd. Induction heating cooker
EP2779787B1 (en) * 2013-03-11 2015-06-17 Electrolux Appliances Aktiebolag Method of detecting cookware on an induction hob, induction hob and cooking appliance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011083397A1 (en) * 2011-09-26 2013-03-28 E.G.O. Elektro-Gerätebau GmbH Method for preparing food by means of an induction heating device and induction heating device

Also Published As

Publication number Publication date
CN106488601B (en) 2020-10-27
PL3136822T3 (en) 2020-11-02
EP3136822A1 (en) 2017-03-01
CN106488601A (en) 2017-03-08
DE102015216455A1 (en) 2017-03-02
ES2804108T3 (en) 2021-02-03
US20170064776A1 (en) 2017-03-02
US10219327B2 (en) 2019-02-26

Similar Documents

Publication Publication Date Title
EP3267113B1 (en) Method for operating a cooking hob
EP2087770B1 (en) Method for controlling an induction cooking appliance and induction cooking appliance
EP3177107B1 (en) Method for operating an induction cooking hob
EP2574144B1 (en) Method for heating a cooking vessel using an induction heating device and induction heating device
DE102004003126B4 (en) Driving method for heating elements and device
EP1732357A2 (en) Heating device for induction cooking devices
EP2574143B1 (en) Method for heating a liquid contained in a cooking vessel and induction heating device
EP2574145B1 (en) Method for preparing food by means of an induction heating device and induction heating device
DE19648397A1 (en) Method and device for recognizing the cooking point of food
EP3307018B1 (en) Method for controlling an induction hob and induction hob
EP3136822B1 (en) Method for determining a temperature
DE102005003672A1 (en) High-frequency pulse oscillator
DE3642180C2 (en)
DE10122427A1 (en) Method and device for limiting and / or controlling the surface temperature of a hob
DE102015201079A1 (en) Method for controlling the temperature of a hob
EP0806887B1 (en) Method and device for recognizing the stage of cooking of cooked food
EP2506673B1 (en) Induction cooktop
EP3307019B1 (en) Method for the operation of an induction hob and induction hob
DE19714701B4 (en) Regulated inductive heating system
DE102016222313B4 (en) Method of cooking at least one egg
EP3606284B1 (en) Method and device for inductive energy transfer
EP1492385A2 (en) Method and device of determination of heating processus
DE69108069T2 (en) Method and device for determining the weight of food in a microwave oven and for controlling its treatment.
DE102004016631A1 (en) A method for controlling the temperature of a cooking vessel on a cooker hob unit has a ring of four capacitive sensors around the perimeter of the heating unit
DE102004033115A1 (en) A method for controlling the temperature of a cooker heating system has an inductive temperature variable coil heating element and control system monitoring the specific resonant frequency

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170720

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 6/06 20060101AFI20191112BHEP

INTG Intention to grant announced

Effective date: 20191203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016009727

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1265285

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016009727

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2804108

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200818

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200818

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1265285

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230811

Year of fee payment: 8

Ref country code: IT

Payment date: 20230831

Year of fee payment: 8

Ref country code: GB

Payment date: 20230824

Year of fee payment: 8

Ref country code: ES

Payment date: 20230918

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230807

Year of fee payment: 8

Ref country code: FR

Payment date: 20230821

Year of fee payment: 8

Ref country code: DE

Payment date: 20230822

Year of fee payment: 8