EP3135988B1 - Illumination device for a vehicle - Google Patents

Illumination device for a vehicle Download PDF

Info

Publication number
EP3135988B1
EP3135988B1 EP16001457.7A EP16001457A EP3135988B1 EP 3135988 B1 EP3135988 B1 EP 3135988B1 EP 16001457 A EP16001457 A EP 16001457A EP 3135988 B1 EP3135988 B1 EP 3135988B1
Authority
EP
European Patent Office
Prior art keywords
light
wavelength
conversion
laser diode
wavelength range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16001457.7A
Other languages
German (de)
French (fr)
Other versions
EP3135988A1 (en
Inventor
Nathan Brüchner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus SE
Original Assignee
MAN Truck and Bus SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Truck and Bus SE filed Critical MAN Truck and Bus SE
Publication of EP3135988A1 publication Critical patent/EP3135988A1/en
Application granted granted Critical
Publication of EP3135988B1 publication Critical patent/EP3135988B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/12Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of emitted light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present invention relates to a lighting device for a vehicle comprising a laser diode array comprising a plurality of substantially monochromatic laser diodes; an optical device; and a wavelength conversion light wavelength conversion element, wherein the optical device is configured to direct the light generated by the laser diode array onto the light wavelength conversion element, and wherein the light wavelength conversion element is formed, the laser diode array light directed to the light wavelength conversion element via the optical device at least partially into light of other wavelength to convert.
  • the DE 10 2010 034 054 A1 discloses a laser-based white light source which proportionally emits light from a first wavelength range, in particular in the blue and / or ultraviolet spectral range, and converts the light by means of a conversion medium into a second wavelength range, in particular into a yellowish range, and from the mixture of the two spectral colors as produces white perceived light.
  • the converted yellow portion of the generated light has a wider polychromatic spectrum due to the characteristic of the conversion element; while the bluish portion of the light, the unconverted portion, has a quasi-monochromatic spectrum.
  • This device has two disadvantages.
  • the proportionate conversion of light from a bluish to a yellowish region the so-called Stokes shift
  • the second major disadvantage is the inhomogeneous spectral distribution, which is obtained by the mixture of converted, polychromatic light in the yellowish region and unconverted, quasi-monochromatic light. This leads to falsified color perceptions which can be detrimental to the driver on the road.
  • a lighting device for a vehicle light comprising a semiconductor laser generating oscillating excitation light of blue-violet or blue wavelength, a semiconductor laser generating oscillating laser radiation at red wavelength, and a light-emitting unit having a phosphor excited by the excitation radiation of the lasers will, and a diffuser.
  • a lighting device for a vehicle comprising a laser diode array comprising a plurality of laser diodes, an optical device, and a wavelength conversion light wavelength conversion element.
  • the optical device is in this case formed by the laser diode array to direct generated light to the light wavelength conversion element.
  • the light wavelength conversion element is designed to at least partially convert the light of the laser diode arrangement directed to the light wavelength conversion element via the optical device into light of other wavelengths.
  • the illumination device is characterized in that the laser diode arrangement is designed to generate laser radiation of at least two different wavelengths ( ⁇ 1, ⁇ 2).
  • the laser diode array has at least two types of quasi-monochromatic laser diodes, which differ in that they emit quasi-monochromatic laser light of different wavelengths, so that laser light of at least two different wavelengths simultaneously impinges on the light wavelength conversion element during operation of the illumination device.
  • the essential advantage of the invention lies in the fact that due to the use of at least two different wavelengths as the input variable, a significantly more energy-efficient conversion into an overall spectrum can take place.
  • the light wavelength conversion element may be configured to convert the irradiated light of the laser diode array into a predetermined wavelength range and / or into a desired non-coherent polychromatic light spectrum.
  • the lighting device may be configured to produce a light perceived as white.
  • Light wavelength conversion elements are known per se from the prior art.
  • these light wavelength conversion elements for. B. in the form of so-called.
  • Conversion layers or a conversion medium the incident light is converted into radiation of greater wavelength.
  • laser light is absorbed, in particular coherent laser light having a strongly limited wavelength spectrum. Due to the energy input from the laser light, electrons in the converter material are excited by the laser light into higher energy levels. When the electrons fall back to their original energy level, the converter material emits light of the wavelength corresponding to the energy level.
  • the light emitted by the light wavelength conversion element is not monochromatic, but undergoes a spectral broadening into a polychromatic light spectrum during the conversion process.
  • suitable phosphorus converters can be used as the converter material of the light wavelength conversion element, which respond to different wavelengths, in particular to different colored radiation.
  • Phoshortech Phoshor Corporation 3645 Kennesaw North Industrial Parkway, Kennesaw, Ga 30144, USA, with the product name HTR650 is sold.
  • Other converter materials For example, yttrium aluminum garnet (YAG) or alkaline earth ortho silicate (BO-SE).
  • the light wavelength conversion element is configured to convert the irradiated light of a first wavelength ⁇ 1 of the laser diode array at least proportionally into a first predetermined conversion wavelength range and at least partially convert the irradiated light of a second wavelength ⁇ 2 of the laser diode array into a second predetermined conversion wavelength range, wherein ⁇ 1 ⁇ 2, the first conversion wavelength range is shifted toward smaller wavelengths as compared with the second conversion wavelength range.
  • the first conversion wavelength range lies on a wavelength axis in the direction of increasing wavelength to the left of the second conversion wavelength range.
  • the converter material thus responds both to the first wavelength ⁇ 1 and to the wavelength ⁇ 2, for example, two corresponding conversion layers may be provided in the light wavelength conversion element.
  • the laser diode array is designed to generate laser radiation of three different wavelengths ( ⁇ 1, ⁇ 2, ⁇ 3).
  • the laser diode array is designed to generate laser beams with emission wavelengths in the primary colors red ( ⁇ 1), green ( ⁇ 2) and blue ( ⁇ 3).
  • the converter material thus responds both to the first wavelength ⁇ 1, the second wavelength ⁇ 2 and to the third wavelength ⁇ 3, for example, three corresponding conversion layers can be provided in the light wavelength conversion element.
  • the light wavelength conversion element is designed to expand laser beams of a primary color, that is to say a quasi-monochrome spectral range, in each case into a wider spectral range.
  • the expansion according to the invention always refers to an increase in wavelength.
  • Basic color red at least partially converted into light from a first conversion wavelength range.
  • Laser beams having emission wavelengths ⁇ 2 in the primary color green are at least partially converted into light from a second conversion wavelength range
  • laser beams having emission wavelengths ⁇ 3 in the primary color blue are at least partially converted into light from a third conversion wavelength range
  • the first conversion wavelength range in the Compared to the second conversion wavelength range is shifted toward longer wavelengths and the second conversion wavelength range is also shifted towards larger wavelengths compared to the third conversion wavelength range.
  • the first conversion wavelength region is positioned on a wavelength axis in the direction of increasing wavelength to the right of the second conversion wavelength region and positioned to the right of the third conversion wavelength region.
  • the laser diode arrangement can be designed to generate the laser radiation in each of the three wavelengths, in particular red, green and blue, in three different polarization directions.
  • the light wavelength conversion element is designed to at least partially convert the light of the laser diode arrangement directed onto the light wavelength conversion element into light of a different wavelength as a function of the wavelength of the light and depending on the polarization direction.
  • the laser diode array may be configured to generate the laser radiation in each of the three wavelengths in only one or two different polarization directions.
  • the optical device should be understood to mean all optical devices or arrangements which are designed to direct the light generated by the laser diode arrangement onto the light wavelength conversion element.
  • the optical device is a combining element, which is designed to merge the light generated by the laser diode array into a beam path.
  • the combining element may be a dichroic element, in particular a dichroic cube or a dichroic mirror.
  • a mirror is understood to be a beam combiner, by means of which a plurality of laser light beams having different wavelengths are combined into a common beam path.
  • FIG. 1 is a schematic schematic diagram of a lighting device 1 shown, as it can be used in particular in a (not shown) vehicle headlight.
  • the diode arrangement 7 has three laser diodes 2, 3 and 4.
  • the first laser diode 2 generates laser light having a first wavelength ⁇ 1, the second laser diode 3 laser light having a second wavelength ⁇ 2 and the third laser diode 4 laser light having a third wavelength ⁇ 3.
  • the emission wavelength ⁇ 1 corresponds to red laser light, the emission wavelength ⁇ 2 to green laser light, and the emission wavelength A3 to blue laser light.
  • the light beam of the laser diode 1 with the wavelength ⁇ 1 is also identified by the reference symbol ⁇ 1. Accordingly, the light beam of the laser diode 2 is denoted by the reference character ⁇ 2 and the light beam of the laser diode 3 by the reference symbol ⁇ 3.
  • the light beams ⁇ 1, ⁇ 2 and ⁇ 3 emitted by the laser diode array 7 strike a combining element 5, which is designed as a dichroic cube and brings together the three beam paths of the light beams ⁇ 1, ⁇ 2 and ⁇ 3 into a beam path 8, which is directed to a light wavelength conversion element 6.
  • the light wavelength conversion element 6 is a phosphorus-based converter which responds to several colors.
  • the element 6 contains a converter material that responds to both the first wavelength ⁇ 1, the second wavelength ⁇ 2, and the third wavelength A3, ie, converts at least partially light of these wavelengths to light of greater wavelength, such that the three quasi-monochromatic Light rays of the laser diodes 2, 3 and 4, the merged light beam 8 on the Meet light wavelength conversion element 6, be converted into a polychromatic light cone 9.
  • the converter material, ie the phosphor of the light wavelength conversion element 6, can for example be based on yttrium-aluminum-garnet (YAG) or alkaline-earth-ortho-silicate (BOSE).
  • FIG. 2 schematically illustrates how from the emitted laser beams of the laser diode array 7 by the light wavelength conversion element 6, a polychromatic light wave spectrum 9 is formed.
  • FIG. 2 shows a schematic representation of the wavelength distribution of the laser light after exiting the wavelength conversion element. 6
  • the incident radiation is usually only proportionately converted, so that a proportion unconverted, d. H. without wavelength conversion, is transmitted.
  • the peak 30 denotes the proportion of the transmitted radiation of the wavelength ⁇ 1, the peak 20 corresponding to the proportion of the transmitted radiation of the wavelength ⁇ 2 and the peak 30 corresponding to the proportion of the transmitted radiation A3.
  • the light wavelength conversion element 6 is responsive to all three wavelengths ⁇ 1, ⁇ 2 and ⁇ 3, a portion of the incident light rays are converted respectively.
  • the converter material of the wavelength conversion element 6 converts incident light of wavelength ⁇ 1 in the primary color red at least proportionally into light from a first conversion wavelength range 10 ', light of wavelength ⁇ 2 in the primary color green at least proportionally into light from a second conversion wavelength range 20' and Light of wavelength ⁇ 3 in the primary color blue at least partially in light from a third conversion wavelength range 30 '.
  • the first conversion wavelength range 10 ' is shifted toward larger wavelengths as compared to the second conversion wavelength range 20'
  • the second conversion wavelength range 20 ' is again shifted towards longer wavelengths as compared to the third conversion wavelength range 30'.
  • the polychromatic light spectrum 9 thus generated by the illumination device 1 results from the superimposition, in FIG. 2 represented by the "plus” characters, the unconverted portions 14 and the converted spectrally expanded portions 13, so that a spectrum of light 9 perceived as white is produced in the mixture.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)

Description

Die vorliegende Erfindung betrifft eine Beleuchtungsvorrichtung für ein Fahrzeug, umfassend eine Laserdiodenanordnung, aufweisend eine Anzahl im Wesentlichen monochromatischer Laserdioden; eine optische Einrichtung; und ein Lichtwellenlängenkonversionselement zur Wellenlängenkonversion, wobei die optische Einrichtung ausgebildet ist, das von der Laserdiodenanordnung erzeugte Licht auf das Lichtwellenlängenkonversionselement zu lenken, und wobei das Lichtwellenlängenkonversionselement ausgebildet ist, das über die optische Einrichtung auf das Lichtwellenlängenkonversionselement gelenkte Licht der Laserdiodenanordnung zumindest anteilig in Licht anderer Wellenlänge zu konvertieren.The present invention relates to a lighting device for a vehicle comprising a laser diode array comprising a plurality of substantially monochromatic laser diodes; an optical device; and a wavelength conversion light wavelength conversion element, wherein the optical device is configured to direct the light generated by the laser diode array onto the light wavelength conversion element, and wherein the light wavelength conversion element is formed, the laser diode array light directed to the light wavelength conversion element via the optical device at least partially into light of other wavelength to convert.

Insbesondere im Automobilbau ist seit Jahren ein Trend hin zu kleineren, hocheffizienten Scheinwerfermodulen erkennbar, mit Hilfe derer auf kleinstem Bauraum leistungsstarke Lichtquellen realisiert werden sollen. Es ist abzusehen, dass die bereits etablierten LED-Scheinwerfermodule in naher Zukunft von Laserlichtquellen ersetzt werden, da Laserlichtquellen verbesserte Leuchtdichten, eine höhere Effizienz sowie erweiterte Anwendungen ermöglichen können. Ein derartiges Anwendungsbeispiel sind projizierende, hochauflösende Matrixscheinwerfer, die dynamisch an die gegebene Fahrbahnsituation angepasst werden können.Especially in the automotive industry, a trend towards smaller, highly efficient headlight modules has been recognizable for years, with the help of which high-performance light sources are to be realized in the smallest possible space. It is foreseeable that the already established LED headlamp modules will be replaced by laser light sources in the near future as laser light sources can provide improved luminance, efficiency and advanced applications. Such an example of application are projecting, high-resolution matrix headlights, which can be adapted dynamically to the given roadway situation.

Die DE 10 2010 034 054 A1 offenbart eine laserbasierte Weißlichtquelle, die anteilig Licht aus einem ersten Wellenlängenbereich, insbesondere im blauen und/oder ultravioletten Spektralbereich, emittiert und das Licht mittels eines Konvertierungsmediums in einen zweiten Wellenlängenbereich konvertiert, insbesondere in einen gelblichen Bereich, und aus der Mischung der beiden Spektralfarben ein als weiß wahrgenommenes Licht erzeugt. Der konvertierte, gelbliche Anteil des erzeugten Lichts weist aufgrund der Charakteristik des Konvertierungselements ein breiteres, polychromatisches Spektrum auf; während der bläuliche Anteil des Lichts, der nicht-konvertierte Anteil, ein quasi-monochromatisches Spektrum aufweist.The DE 10 2010 034 054 A1 discloses a laser-based white light source which proportionally emits light from a first wavelength range, in particular in the blue and / or ultraviolet spectral range, and converts the light by means of a conversion medium into a second wavelength range, in particular into a yellowish range, and from the mixture of the two spectral colors as produces white perceived light. The converted yellow portion of the generated light has a wider polychromatic spectrum due to the characteristic of the conversion element; while the bluish portion of the light, the unconverted portion, has a quasi-monochromatic spectrum.

Diese Vorrichtung hat zweierlei Nachteile. Zum einen entstehen bei der anteiligen Umwandlung des Lichts aus einem bläulichen in einen gelblichen Bereich, dem sogenannten Stokes-Shift, hohe Energieverluste, die als Wärmestrahlung emittiert werden und aufwändig abgeführt werden müssen. Der zweite, wesentliche Nachteil ist die inhomogene Spektralverteilung, die durch die Mischung aus konvertiertem, polychromatischem Licht im gelblichen Bereich und aus nicht konvertiertem, quasi-monochromatischem Licht erhalten wird. Dies führt zu verfälschten Farbwahrnehmungen, welche im Straßenverkehr zum Nachteil des Fahrers gereichen können.This device has two disadvantages. On the one hand, the proportionate conversion of light from a bluish to a yellowish region, the so-called Stokes shift, results in high energy losses, which are emitted as heat radiation and have to be dissipated in a complex manner. The second major disadvantage is the inhomogeneous spectral distribution, which is obtained by the mixture of converted, polychromatic light in the yellowish region and unconverted, quasi-monochromatic light. This leads to falsified color perceptions which can be detrimental to the driver on the road.

In der DE 10 2012 002 232 A1 hingegen wird eine Beleuchtungsvorrichtung für ein Fahrzeug vorgeschlagen, welches ohne die aus der DE 10 2010 034 054 A1 bekannten Konvertierungsverluste auskommt. Hier wird mit Hilfe von drei einzelnen Laserlichtquellen, die Licht unterschiedlicher Wellenlänge erzeugen, nämlich Rot, Grün und Blau, sowie mit Hilfe eines Spiegelsystems eine Farbmischung erzeugt, die ebenfalls ein als weiß wahrgenommenes Licht hervorbringt. Nachteilig hieran ist, dass das erzeugte Licht aus drei diskreten Wellenlängenbereichen besteht und keine homogene Spektralverteilung aufweist. Aus der Beleuchtungstechnik ist bekannt, dass derartig erzeugtes Weißlicht aufgrund des stark eingeschränkten Spektrums zu verfälschten Farbwahrnehmungen führt.In the DE 10 2012 002 232 A1 In contrast, a lighting device for a vehicle is proposed, which without the from the DE 10 2010 034 054 A1 manages known conversion losses. Here, with the help of three individual laser light sources, which generate light of different wavelengths, namely red, green and blue, as well as with the aid of a mirror system produces a color mixture, which also produces a perceived as white light. The disadvantage of this is that the light generated consists of three discrete wavelength ranges and has no homogeneous spectral distribution. It is known from lighting technology that white light generated in this way leads to falsified color perceptions due to the very limited spectrum.

Aus der Offenlegungsschrift WO 2013/051623 A1 ist eine Leuchtvorrichtung für ein Fahrzeuglicht bekannt, aufweisend einen Halbleiterlaser, der oszillierendes Anregungslicht mit blau-violetter oder blauer Wellenlänge erzeugt, einen Halbleiterlaser, der oszillierende Laserstrahlung bei roter Wellenlänge erzeugt, sowie eine lichtimitierende Einheit mit einem Phosphor, der durch die Anregungsstrahlung der Laser angeregt wird, und einen Diffusor.From the publication WO 2013/051623 A1 For example, a lighting device for a vehicle light is known, comprising a semiconductor laser generating oscillating excitation light of blue-violet or blue wavelength, a semiconductor laser generating oscillating laser radiation at red wavelength, and a light-emitting unit having a phosphor excited by the excitation radiation of the lasers will, and a diffuser.

Es ist somit Aufgabe der Erfindung, eine verbesserte Beleuchtungsvorrichtung für ein Fahrzeug bereitzustellen, mit der Nachteile herkömmlicher Beleuchtungsvorrichtungen vermieden werden können. Es ist insbesondere eine Aufgabe der Erfindung, eine Beleuchtungsvorrichtung für ein Fahrzeug bereitzustellen, die eine verbesserte Energie- sowie Spektralbilanz aufweist.It is therefore an object of the invention to provide an improved lighting device for a vehicle, with the disadvantages of conventional lighting devices can be avoided. It is a particular object of the invention to provide a lighting device for a vehicle having an improved energy and spectral balance.

Die Erfindung löst die Aufgaben durch eine Beleuchtungsvorrichtung für ein Fahrzeug mit den Merkmalen des Patentanspruchs 1. Vorteilhafte Ausführungsformen der Erfindung ergeben sich aus den abhängigen Ansprüchen und werden in der folgenden Beschreibung unter teilweiser Bezugnahme auf die Figuren näher erläutert.The invention achieves the objects by a lighting device for a vehicle with the features of claim 1. Advantageous embodiments of the invention will become apparent from the dependent claims and are explained in more detail in the following description with partial reference to the figures.

Gemäß allgemeinen Gesichtspunkten der Erfindung wird eine Beleuchtungsvorrichtung für ein Fahrzeug bereitgestellt, umfassend eine Laserdiodenanordnung, aufweisend eine Anzahl Laserdioden, eine optische Einrichtung und ein Lichtwellenlängenkonversionselement zur Wellenlängenkonversion. Die optische Einrichtung ist hierbei ausgebildet, das von der Laserdiodenanordnung erzeugte Licht auf das Lichtwellenlängenkonversionselement zu lenken. Das Lichtwellenlängenkonversionselement ist ausgebildet, das über die optische Einrichtung auf das Lichtwellenlängenkonversionselement gelenkte Licht der Laserdiodenanordnung zumindest anteilig in Licht anderer Wellenlängen zu konvertieren.According to general aspects of the invention, there is provided a lighting device for a vehicle comprising a laser diode array comprising a plurality of laser diodes, an optical device, and a wavelength conversion light wavelength conversion element. The optical device is in this case formed by the laser diode array to direct generated light to the light wavelength conversion element. The light wavelength conversion element is designed to at least partially convert the light of the laser diode arrangement directed to the light wavelength conversion element via the optical device into light of other wavelengths.

Die Beleuchtungsvorrichtung zeichnet sich dadurch aus, dass die Laserdiodenanordnung ausgebildet ist, Laserstrahlung mindestens zweier unterschiedlicher Wellenlängen (λ1, λ2) zu erzeugen. Mit anderen Worten weist die Laserdiodenanordnung mindestens zwei Arten quasi-monochromatischer Laserdioden auf, die sich dadurch unterscheiden, dass sie quasi-monochromatisches Laserlicht unterschiedlicher Wellenlänge emittieren, so dass im Betrieb der Beleuchtungsvorrichtung Laserlicht mindestens zweier unterschiedlicher Wellenlängen gleichzeitig auf das Lichtwellenlängenkonversionselement trifft. Der wesentliche Vorteil der Erfindung ist darin begründet, dass aufgrund der Verwendung zumindest zweier unterschiedlicher Wellenlängen als Eingangsgröße eine deutlich energieeffizientere Konversion in ein Gesamtspektrum erfolgen kann.The illumination device is characterized in that the laser diode arrangement is designed to generate laser radiation of at least two different wavelengths (λ1, λ2). In other words, the laser diode array has at least two types of quasi-monochromatic laser diodes, which differ in that they emit quasi-monochromatic laser light of different wavelengths, so that laser light of at least two different wavelengths simultaneously impinges on the light wavelength conversion element during operation of the illumination device. The essential advantage of the invention lies in the fact that due to the use of at least two different wavelengths as the input variable, a significantly more energy-efficient conversion into an overall spectrum can take place.

Gemäß einem weiteren Aspekt der Erfindung kann das Lichtwellenlängenkonversionselement ausgebildet sein, das eingestrahlte Licht der Laserdiodenanordnung in einen vorbestimmten Wellenlängenbereich und/oder in ein gewünschtes nicht-kohärentes, polychromatisches Lichtspektrum zu konvertieren. Beispielsweise kann die Beleuchtungsvorrichtung so ausgebildet sein, dass sie ein als weiß wahrgenommenes Licht erzeugt.According to another aspect of the invention, the light wavelength conversion element may be configured to convert the irradiated light of the laser diode array into a predetermined wavelength range and / or into a desired non-coherent polychromatic light spectrum. For example, the lighting device may be configured to produce a light perceived as white.

Lichtwellenlängenkonversionselemente sind an sich aus dem Stand der Technik bekannt. Bei diesen Lichtwellenlängenkonversionselementen, z. B. in Form von sog. Konversionsschichten bzw. einem Konversionsmedium wird das eingestrahlte Licht in Strahlung größerer Wellenlänge umgewandelt. Hierbei wird beispielsweise mittels eines Konvertermaterials, auch als Konversionsstoff bezeichnet, Laserlicht absorbiert, insbesondere kohärentes Laserlicht mit einem stark eingeschränkten Wellenlängenspektrum. Durch den Energieeintrag aus dem Laserlicht werden im Konvertermaterial befindliche Elektronen durch das Laserlicht in höhere Energieniveaus angeregt. Beim Zurückfallen der Elektronen auf ihr ursprüngliches Energieniveau emittiert das Konvertermaterial Licht der dem Energieniveau entsprechenden Wellenlänge. Üblicherweise ist das von dem Lichtwellenlängenkonversionselement emittierte Licht nicht monochromatisch, sondern erfährt während des Konversionsvorgangs eine spektrale Aufweitung in ein in Grenzen polychromatisches Lichtspektrum. Je nach Lichtwellenlänge der Eingangsgröße kommen unterschiedliche Konvertermaterialien zum Einsatz. Beispielsweise können geeignete Phoshor-Konverter als Konvertermaterial des Lichtwellenlängenkonversionselementes verwendet werden, die auf unterschiedliche Wellenlängen, insbesondere auf verschiedenfarbige Strahlung, ansprechen, Ein Beispiel ist der Phoshor der Firma Phoshortech Corporation, 3645 Kennesaw North Industrial Parkway, Kennesaw, Ga 30144, USA, der mit dem Produktnamen HTR650 vertrieben wird. Weitere Konvertermaterialien sind beispielsweise Yttrium-Aluminium-Granat (YAG) oder Erdalkali-Ortho-Silikat (BO-SE).Light wavelength conversion elements are known per se from the prior art. In these light wavelength conversion elements, for. B. in the form of so-called. Conversion layers or a conversion medium, the incident light is converted into radiation of greater wavelength. In this case, for example by means of a converter material, also referred to as conversion substance, laser light is absorbed, in particular coherent laser light having a strongly limited wavelength spectrum. Due to the energy input from the laser light, electrons in the converter material are excited by the laser light into higher energy levels. When the electrons fall back to their original energy level, the converter material emits light of the wavelength corresponding to the energy level. Usually, the light emitted by the light wavelength conversion element is not monochromatic, but undergoes a spectral broadening into a polychromatic light spectrum during the conversion process. Depending on the light wavelength of the input variable different converter materials are used. For example, suitable phosphorus converters can be used as the converter material of the light wavelength conversion element, which respond to different wavelengths, in particular to different colored radiation, An example is the Phoshortech Phoshor Corporation, 3645 Kennesaw North Industrial Parkway, Kennesaw, Ga 30144, USA, with the product name HTR650 is sold. Other converter materials For example, yttrium aluminum garnet (YAG) or alkaline earth ortho silicate (BO-SE).

Erfindungsgemäß ist das Lichtwellenlängenkonversionselement ausgebildet das eingestrahlte Licht einer ersten Wellenlänge λ1 der Laserdiodenanordnung zumindest anteilig in einen ersten vorbestimmten Konversions-Wellenlängenbereich zu konvertieren und das eingestrahlte Licht einer zweiten Wellenlänge λ2 der Laserdiodenanordnung zumindest anteilig in einen zweiten vorbestimmten Konversions-Wellenlängenbereich zu konvertieren, wobei für λ1< λ2 gilt, dass der erste Konversions-Wellenlängenbereich im Vergleich zum zweiten Konversions-Wellenlängenbereich hin zu kleineren Wellenlängen verschoben ist. Dies bedeutet, dass der erste Konversions-Wellenlängenbereich auf einer Wellenlängenachse in Richtung zunehmender Wellenlänge links vom zweiten Konversions-Wellenlängenbereich liegt. Dies bietet den besonderen Vorzug, dass das erzeugte polychromatische Lichtspektrum der Beleuchtungsvorrichtung nicht ausschließlich durch Konvertierung aus einer einzigen Ausgangswellenlänge λ1, z. B. der Grundfarbe Blau, erzeugt werden muss, sondern größere Wellenlängen aus der größeren Ausgangswellenlänge λ2 erzeugt werden können, wodurch der durch den Stokes-Shift resultierende Energieverlust bei der Konvertierung wesentlich reduziert werden kann. Gemäß dieser Ausführungsform spricht das Konvertermaterial somit sowohl auf die erste Wellenlänge λ1 als auch auf die Wellenlänge λ2 an, beispielsweise können zwei entsprechende Konversionsschichten im Lichtwellenlängenkonversionselement vorgesehen sein.According to the invention, the light wavelength conversion element is configured to convert the irradiated light of a first wavelength λ1 of the laser diode array at least proportionally into a first predetermined conversion wavelength range and at least partially convert the irradiated light of a second wavelength λ2 of the laser diode array into a second predetermined conversion wavelength range, wherein λ1 <λ2, the first conversion wavelength range is shifted toward smaller wavelengths as compared with the second conversion wavelength range. This means that the first conversion wavelength range lies on a wavelength axis in the direction of increasing wavelength to the left of the second conversion wavelength range. This offers the particular advantage that the generated polychromatic light spectrum of the illumination device is not limited solely by conversion from a single output wavelength λ1, e.g. As the primary color blue, must be generated, but larger wavelengths can be generated from the larger output wavelength λ2, whereby the resulting by the Stokes shift energy loss during the conversion can be significantly reduced. According to this embodiment, the converter material thus responds both to the first wavelength λ1 and to the wavelength λ2, for example, two corresponding conversion layers may be provided in the light wavelength conversion element.

Um eine besonders energieeffiziente Konversion zu ermöglichen, ist die Laserdiodenanordnung ausgebildet, Laserstrahlung dreier unterschiedlicher Wellenlängen (λ1, λ2, λ3) zu erzeugen. Die Laserdiodenanordnung ist ausgebildet, Laserstrahlen mit Emissionswellenlängen in den Grundfarben Rot (λ1), Grün (λ2) und Blau (λ3) zu erzeugen. Hierbei spricht das Konvertermaterial somit sowohl auf die erste Wellenlänge λ1, die zweite Wellenlänge λ2 als auch auf die dritte Wellenlänge λ3 an, beispielsweise können drei entsprechende Konversionsschichten im Lichtwellenlängenkonversionselement vorgesehen sein. Erfindungsgemäß ist vorgesehen, dass das Lichtwellenlängenkonversionselement ausgebildet ist, Laserstrahlen einer Grundfarbe, also einen quasi-monochromen Spektralbereich, jeweils in einen breiteren Spektralbereich aufzuweiten. Die Aufweitung bezieht sich erfindungsgemäß stets auf eine Wellenlängenvergrößerung. So werden Laserstrahlen mit Emissionswellenlängen λ1 in derIn order to enable a particularly energy-efficient conversion, the laser diode array is designed to generate laser radiation of three different wavelengths (λ1, λ2, λ3). The laser diode array is designed to generate laser beams with emission wavelengths in the primary colors red (λ1), green (λ2) and blue (λ3). In this case, the converter material thus responds both to the first wavelength λ1, the second wavelength λ2 and to the third wavelength λ3, for example, three corresponding conversion layers can be provided in the light wavelength conversion element. According to the invention, it is provided that the light wavelength conversion element is designed to expand laser beams of a primary color, that is to say a quasi-monochrome spectral range, in each case into a wider spectral range. The expansion according to the invention always refers to an increase in wavelength. Thus, laser beams with emission wavelengths λ1 in the

Grundfarbe Rot zumindest anteilig in Licht aus einem ersten Konversions-Wellenlängenbereich konvertiert. Laserstrahlen mit Emissionswellenlängen λ2 in der Grundfarbe Grün werden zumindest anteilig in Licht aus einem zweiten Konversions-Wellenlängenbereich konvertiert, und Laserstrahlen mit Emissionswellenlängen λ3 in der Grundfarbe Blau werden zumindest anteilig in Licht aus einem dritten Konversions-Wellenlängenbereich konvertiert, wobei der erste Konversions-Wellenlängenbereich im Vergleich zum zweiten Konversions-Wellenlängenbereich hin zu größeren Wellenlängen verschoben ist und der zweite Konversions-Wellenlängenbereich im Vergleich zum dritten Konversions-Wellenlängenbereich ebenfalls hin zu größeren Wellenlängen verschoben ist. Demnach ist der erste Konversions-Wellenlängenbereich auf einer Wellenlängenachse in Richtung zunehmender Wellenlänge rechts vom zweiten Konversions-Wellenlängenbereich positioniert und dieser rechts vom dritten Konversions-Wellenlängenbereich positioniert.Basic color red at least partially converted into light from a first conversion wavelength range. Laser beams having emission wavelengths λ2 in the primary color green are at least partially converted into light from a second conversion wavelength range, and laser beams having emission wavelengths λ3 in the primary color blue are at least partially converted into light from a third conversion wavelength range, the first conversion wavelength range in the Compared to the second conversion wavelength range is shifted toward longer wavelengths and the second conversion wavelength range is also shifted towards larger wavelengths compared to the third conversion wavelength range. Thus, the first conversion wavelength region is positioned on a wavelength axis in the direction of increasing wavelength to the right of the second conversion wavelength region and positioned to the right of the third conversion wavelength region.

Auf diese Weise kann eine besonders energieeffiziente Wellenlängenkonversion zur Erzeugung eines gewünschten polychromatischen Lichtspektrums realisiert werden, insbesondere, falls ein als weiß wahrgenommenes polychromatisches Lichtspektrum erzeugt werden soll.In this way, a particularly energy-efficient wavelength conversion for generating a desired polychromatic light spectrum can be realized, in particular if a perceived as white polychromatic light spectrum is to be generated.

Gemäß einer Variante der Erfindung kann die Laserdiodenanordnung ausgebildet sein, die Laserstrahlung in jeder der drei Wellenlängen, insbesondere Rot, Grün und Blau, in jeweils drei unterschiedlichen Polarisationsrichtungen zu erzeugen. Bei dieser Variante ist das Lichtwellenlängenkonversionselement ausgebildet, das über die optische Einrichtung auf das Lichtwellenlängenkonversionselement gelenkte Licht der Laserdiodenanordnung in Abhängigkeit von der Lichtwellenlänge und in Abhängigkeit von der Polarisationsrichtung zumindest anteilig in Licht anderer Wellenlänge zu konvertieren. Diese Variante kann insbesondere in Verbindung mit Technologien zu Vermeidung von Blendung durch Fahrzeugscheinwerfer vorteilhaft sein. Alternativ kann die Laserdiodenanordnung ausgebildet sein, die Laserstrahlung in jeder der drei Wellenlängen in nur einer oder zwei unterschiedlichen Polarisationsrichtungen zu erzeugen.According to a variant of the invention, the laser diode arrangement can be designed to generate the laser radiation in each of the three wavelengths, in particular red, green and blue, in three different polarization directions. In this variant, the light wavelength conversion element is designed to at least partially convert the light of the laser diode arrangement directed onto the light wavelength conversion element into light of a different wavelength as a function of the wavelength of the light and depending on the polarization direction. This variant can be particularly advantageous in connection with technologies for avoiding glare from vehicle headlights. Alternatively, the laser diode array may be configured to generate the laser radiation in each of the three wavelengths in only one or two different polarization directions.

Unter der vorgenannten optischen Einrichtung sollen alle optischen Einrichtungen bzw. Anordnungen verstanden werden, die ausgebildet sind, das von der Laserdiodenanordnung erzeugte Licht auf das Lichtwellenlängenkonversionselement zu lenken. Gemäß einem vorteilhaften Ausführungsbeispiel ist die optische Einrichtung ein Kombinierungselement, das ausgebildet ist, das von der Laserdiodenanordnung erzeugte Licht in einen Strahlengang zusammenzuführen. Das Kombinierungselement kann ein dichroitisches Element, insbesondere ein dichroitischer Würfel oder ein dichroitischer Spiegel sein. Unter einem dichroitischen Spiegel wird insbesondere ein Strahlvereiniger verstanden, mit Hilfe dessen mehrere Laserlichtstrahlen mit verschiedenen Wellenlängen in einen gemeinsamen Strahlengang zusammengeführt werden.The aforementioned optical device should be understood to mean all optical devices or arrangements which are designed to direct the light generated by the laser diode arrangement onto the light wavelength conversion element. According to an advantageous embodiment, the optical device is a combining element, which is designed to merge the light generated by the laser diode array into a beam path. The combining element may be a dichroic element, in particular a dichroic cube or a dichroic mirror. Under a dichroic In particular, a mirror is understood to be a beam combiner, by means of which a plurality of laser light beams having different wavelengths are combined into a common beam path.

Die zuvor beschriebenen bevorzugten Ausführungsformen und Merkmale der Erfindung sind beliebig miteinander kombinierbar. Weitere Einzelheiten und Vorteile der Erfindung werden im Folgenden unter Bezug auf die beigefügten Zeichnungen beschrieben. Es zeigen:

Figur 1
eine stark vereinfachte, schematische Darstellung einer erfindungsgemäßen Beleuchtungsvorrichtung; und
Figur 2
schematisch, wie aus den emittierten Laserstrahlen durch teilweise Konversion ein polychromatisches Lichtwellenspektrum entsteht.
The preferred embodiments and features of the invention described above can be combined with one another as desired. Further details and advantages of the invention will be described below with reference to the accompanying drawings. Show it:
FIG. 1
a highly simplified, schematic representation of a lighting device according to the invention; and
FIG. 2
schematically, how from the emitted laser beams by partial conversion a polychromatic light wave spectrum is formed.

In Figur 1 ist eine schematische Prinzipskizze einer Beleuchtungsvorrichtung 1 dargestellt, wie sie insbesondere in einem (nicht dargestellten) Fahrzeugscheinwerfer verwendet werden kann. In der gezeigten Ausführungsform weist die Diodenanordnung 7 drei Laserdioden 2, 3 und 4 auf. Die erste Laserdiode 2 erzeugt Laserlicht mit einer ersten Wellenlänge λ1, die zweite Laserdiode 3 Laserlicht mit einer zweiten Wellenlänge λ2 und die dritte Laserdiode 4 Laserlicht mit einer dritten Wellenlänge λ3. Die Emissionswellenlänge λ1 entspricht rotem Laserlicht, die Emissionswellenlänge λ2 grünem Laserlicht und die Emissionswellenlänge A3 blauem Laserlicht. Der Einfachheit halber ist der Lichtstrahl der Laserdiode 1 mit der Wellenlänge λ1 ebenfalls mit dem Bezugszeichen λ1 gekennzeichnet. Entsprechend ist der Lichtstrahl der Laserdiode 2 mit dem Bezugszeichen λ2 und der Lichtstrahl der Laserdiode 3 mit dem Bezugszeichen λ3 bezeichnet.In FIG. 1 is a schematic schematic diagram of a lighting device 1 shown, as it can be used in particular in a (not shown) vehicle headlight. In the embodiment shown, the diode arrangement 7 has three laser diodes 2, 3 and 4. The first laser diode 2 generates laser light having a first wavelength λ1, the second laser diode 3 laser light having a second wavelength λ2 and the third laser diode 4 laser light having a third wavelength λ3. The emission wavelength λ1 corresponds to red laser light, the emission wavelength λ2 to green laser light, and the emission wavelength A3 to blue laser light. For the sake of simplicity, the light beam of the laser diode 1 with the wavelength λ1 is also identified by the reference symbol λ1. Accordingly, the light beam of the laser diode 2 is denoted by the reference character λ2 and the light beam of the laser diode 3 by the reference symbol λ3.

Die von der Laserdiodenanordnung 7 emittierten Lichtstrahlen λ1, λ2 und λ3 treffen auf ein Kombinierungselement 5, das als dichroitischer Würfel ausgeführt ist und die drei Strahlengänge der Lichtstrahlen λ1, λ2 und λ3 in einen Strahlengang 8 zusammenführt, der auf ein Lichtwellenlängenkonversionselement 6 gelenkt wird.The light beams λ1, λ2 and λ3 emitted by the laser diode array 7 strike a combining element 5, which is designed as a dichroic cube and brings together the three beam paths of the light beams λ1, λ2 and λ3 into a beam path 8, which is directed to a light wavelength conversion element 6.

Das Lichtwellenlängenkonversionselement 6 ist ein nach dem Phosphor-Prinzip arbeitender Konverter, der auf mehrere Farben reagiert. Mit anderen Worten enthält das Element 6 ein Konvertermaterial, das sowohl auf die erste Wellenlänge λ1, die zweite Wellenlänge λ2 als auch auf die dritte Wellenlänge A3 anspricht, d. h. Licht dieser Wellenlängen zumindest anteilig in Licht größerer Wellenlänge konvertiert, so dass die drei quasi-monochromatischen Lichtstrahlen der Laserdioden 2, 3 und 4, die als zusammengeführter Lichtstrahl 8 auf das Lichtwellenlängenkonversionselement 6 treffen, in einen polychromatischen Lichtkegel 9 konvertiert werden. Das Konvertermaterial, d. h. der Leuchtstoff des Lichtwellenlängenkonversionselements 6, kann beispielsweise auf Yttrium-Aluminium-Granat (YAG) oder Erdalkali-Ortho-Silikat (BOSE) basieren.The light wavelength conversion element 6 is a phosphorus-based converter which responds to several colors. In other words, the element 6 contains a converter material that responds to both the first wavelength λ1, the second wavelength λ2, and the third wavelength A3, ie, converts at least partially light of these wavelengths to light of greater wavelength, such that the three quasi-monochromatic Light rays of the laser diodes 2, 3 and 4, the merged light beam 8 on the Meet light wavelength conversion element 6, be converted into a polychromatic light cone 9. The converter material, ie the phosphor of the light wavelength conversion element 6, can for example be based on yttrium-aluminum-garnet (YAG) or alkaline-earth-ortho-silicate (BOSE).

Figur 2 illustriert schematisch, wie aus den emittierten Laserstrahlen der Laserdiodenanordnung 7 durch das Lichtwellenlängenkonversionselement 6 ein polychromatisches Lichtwellenspektrum 9 entsteht. Figur 2 zeigt hierzu eine schematische Darstellung der Wellenlängenverteilung des Laserlichts nach Austreten aus dem Wellenlängenkonversionselement 6. FIG. 2 schematically illustrates how from the emitted laser beams of the laser diode array 7 by the light wavelength conversion element 6, a polychromatic light wave spectrum 9 is formed. FIG. 2 shows a schematic representation of the wavelength distribution of the laser light after exiting the wavelength conversion element. 6

Die auftreffende Strahlung wird in der Regel nur anteilig konvertiert, so dass ein Anteil unkonvertiert, d. h. ohne Wellenlängenkonversion, durchgelassen wird. Der Peak 30 bezeichnet den Anteil der durchgelassenen Strahlung der Wellenlänge λ1, der Peak 20 entsprechend den Anteil der durchgelassenen Strahlung der Wellenlänge λ2 und der Peak 30 entsprechend den Anteil der durchgelassenen Strahlung A3.The incident radiation is usually only proportionately converted, so that a proportion unconverted, d. H. without wavelength conversion, is transmitted. The peak 30 denotes the proportion of the transmitted radiation of the wavelength λ1, the peak 20 corresponding to the proportion of the transmitted radiation of the wavelength λ2 and the peak 30 corresponding to the proportion of the transmitted radiation A3.

Da das Lichtwellenlängenkonversionselement 6 jedoch auf alle drei Wellenlängen λ1, λ2 und λ3 anspricht, wird jeweils ein Anteil der auftreffenden Lichtstrahlen konvertiert.However, since the light wavelength conversion element 6 is responsive to all three wavelengths λ1, λ2 and λ3, a portion of the incident light rays are converted respectively.

So konvertiert das Konvertermaterial des Wellenlängenkonversionselements 6 auftreffendes Licht der Wellenlänge λ1 in der Grundfarbe Rot zumindest anteilig in Licht aus einem ersten Konversions-Wellenlängenbereich 10', Licht der Wellenlänge λ2 in der Grundfarbe Grün zumindest anteilig in Licht aus einem zweiten Konversions-Wellenlängenbereich 20' und Licht der Wellenlänge λ3 in der Grundfarbe Blau zumindest anteilig in Licht aus einem dritten Konversions-Wellenlängenbereich 30'. Hierbei ist der erste Konversions-Wellenlängenbereich 10' im Vergleich zum zweiten Konversions-Wellenlängenbereich 20' hin zu größeren Wellenlängen verschoben, und der zweite Konversions-Wellenlängenbereich 20' ist wiederum im Vergleich zum dritten Konversions-Wellenlängenbereich 30' ebenfalls hin zu größeren Wellenlängen verschoben.Thus, the converter material of the wavelength conversion element 6 converts incident light of wavelength λ1 in the primary color red at least proportionally into light from a first conversion wavelength range 10 ', light of wavelength λ2 in the primary color green at least proportionally into light from a second conversion wavelength range 20' and Light of wavelength λ3 in the primary color blue at least partially in light from a third conversion wavelength range 30 '. Here, the first conversion wavelength range 10 'is shifted toward larger wavelengths as compared to the second conversion wavelength range 20', and the second conversion wavelength range 20 'is again shifted towards longer wavelengths as compared to the third conversion wavelength range 30'.

Das von der Beleuchtungsvorrichtung 1 somit erzeugte polychromatische Lichtspektrum 9 ergibt sich aus der Überlagerung, in Figur 2 dargestellt durch die "Plus"-Zeichen, der nicht-konvertierten Anteile 14 und der konvertierten spektral aufgeweiteten Anteile 13, so dass in der Mischung ein als weiß wahrgenommenes Lichtspektrum 9 erzeugt wird.The polychromatic light spectrum 9 thus generated by the illumination device 1 results from the superimposition, in FIG. 2 represented by the "plus" characters, the unconverted portions 14 and the converted spectrally expanded portions 13, so that a spectrum of light 9 perceived as white is produced in the mixture.

Die Erzeugung des zu erzeugenden Lichtspektrums 9 aus drei, statt wie üblich aus nur einer Ausgangswellenlänge im blauen Bereich, bietet den Vorteil, dass der durch den Stokes-Shift bedingte Energieverlust aufgrund der Konvertierung wesentlich kleiner ist, da der Energieverlust umso kleiner ist, je geringer die Differenz zwischen Ausgangswellen und der Wellenlänge des konvertierten Lichts ist.The generation of the light spectrum 9 to be generated from three instead of, as usual, only one output wavelength in the blue range, offers the advantage that the signal generated by the Stokes shift conditional energy loss due to the conversion is much smaller, since the smaller the difference between output waves and the wavelength of the converted light, the smaller the energy loss.

Obwohl die Erfindung unter Bezugnahme auf bestimmte Ausführungsbeispiele beschrieben worden ist, ist es für einen Fachmann ersichtlich, dass verschiedene Änderungen ausgeführt werden können und Äquivalente als Ersatz verwendet werden können, ohne den Bereich der Erfindung zu verlassen. Zusätzlich können viele Modifikationen ausgeführt werden, ohne den zugehörigen Bereich zu verlassen. Folglich soll die Erfindung nicht auf die offenbarten Ausführungsbeispiele begrenzt sein, sondern soll alle Ausführungsbeispiele umfassen, die in den Bereich der beigefügten Patentansprüche fallen. Insbesondere beansprucht die Erfindung auch Schutz für den Gegenstand und die Merkmale der Unteransprüche unabhängig von den in Bezug genommenen Ansprüchen.Although the invention has been described with reference to particular embodiments, it will be apparent to those skilled in the art that various changes may be made and equivalents may be substituted for without departing from the scope of the invention. In addition, many modifications can be made without leaving the associated area. Accordingly, the invention should not be limited to the disclosed embodiments, but should include all embodiments which fall within the scope of the appended claims. In particular, the invention also claims protection of the subject matter and the features of the subclaims independently of the claims referred to.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Beleuchtungsvorrichtunglighting device
2, 3, 42, 3, 4
Laserdiodenlaser diodes
55
Optische EinrichtungOptical device
66
LichtwellenlängenkonversionselementLight wavelength conversion element
77
LaserdiodenanordnungThe laser diode
88th
Kombinierter LichtstrahlCombined light beam
99
Polychromatischer LichtkegelPolychromatic light cone
1010
Nicht-konvertierte Energiefunktion der Farbe RotUnconverted energy function of the color red
10'10 '
Konvertierte Energiefunktion der Farbe RotConverted energy function of the color red
2020
Nicht-konvertierte Energiefunktion der Farbe GrünUnconverted energy function of the color green
20'20 '
Konvertierte Energiefunktion der Farbe GrünConverted energy function of the color green
3030
Nicht-konvertierte Energiefunktion der Farbe BlauUnconverted energy function of the color blue
30'30 '
Konvertierte Energiefunktion der Farbe BlauConverted energy function of the color blue
1212
Leistungpower
1313
Summe des nicht-konvertierten LichtsSum of unconverted light
1414
Summe des konvertierten LichtsSum of the converted light
λ1, λ2, λ3λ1, λ2, λ3
Emissionswellenlänge der LaserdiodeEmission wavelength of the laser diode

Claims (8)

  1. An illumination apparatus (1) for a vehicle, comprising
    a laser diode arrangement (7), having a number of laser diodes (2, 3, 4) ;
    an optical device (5); and
    a wavelength conversion element (6) for converting wavelengths of light, wherein the optical device (5) is configured to direct the light generated by the laser diode arrangement (7) at the wavelength conversion element (6); and
    wherein the wavelength conversion element (6) is configured to at least partially convert the light of the laser diode arrangement (7), which has been directed at the wavelength conversion element (6) by the optical device (5), into light of a different wavelength, characterized in that the laser diode arrangement (7) is configured to generate laser radiation having emission wavelengths in the primary colours red (λ1), green (λ2) and blue (λ3), wherein the wavelength conversion element (6) is configured to
    a) at least partially convert laser beams having emission wavelengths (λ1) in the primary colour red into light from a first conversion wavelength range,
    b) at least partially convert laser beams having emission wavelengths (λ2) in the primary colour green into light from a second conversion wavelength range,
    c) at least partially convert laser beams having emission wavelengths (λ3) in the primary colour blue into light from a third conversion wavelength range,
    d) wherein the first conversion wavelength range is shifted towards greater wavelengths as compared to the second conversion wavelength range, and the second conversion wavelength range is likewise shifted towards greater wavelengths as compared to the third conversion wavelength range.
  2. The illumination apparatus (1) according to Claim 1, characterized in that the wavelength conversion element (6) is configured to convert the incoming light from the laser diode arrangement (7) into a predetermined wavelength range and/or into a desired non-coherent, polychromatic light spectrum.
  3. The illumination apparatus (1) according to Claim 1 or 2, characterized in that the wavelength conversion element (6) is configured to
    a) at least partially convert the incoming light having a first wavelength (λ1) of the laser diode arrangement (7) into a first predetermined conversion wavelength range, and
    b) at least partially convert the incoming light having a second wavelength (λ2) of the laser diode arrangement (7) into a second predetermined conversion wavelength range, wherein, for λ1<λ2, the first conversion wavelength range is shifted towards smaller wavelengths as compared to the second conversion wavelength range.
  4. The illumination apparatus (1) according to one of the preceding claims, characterized
    a) in that the laser diode arrangement is configured to generate laser radiation in each of the three wavelengths in each case in three different polarization directions, and
    b) in that the wavelength conversion element (6) is configured to at least partially convert the light of the laser diode arrangement (7), which has been directed at the wavelength conversion element (6) by the optical device (5), in dependence on the wavelength of the light and in dependence on the polarization direction, into light of a different wavelength.
  5. The illumination apparatus (1) according to one of the preceding claims, characterized in that the optical device is a combiner element that is configured to combine the light generated by the laser diode arrangement in one beam path.
  6. The illumination apparatus (1) according to Claim 5, characterized in that the combiner element is a dichroic element, in particular a dichroic cube or a dichroic mirror.
  7. The illumination apparatus (1) according to one of the preceding claims, characterized in that the wavelength conversion element (6)
    a) is a converter functioning in accordance with the phosphor principle, which reacts to a plurality of colours; and/or
    b) contains a phosphor based on yttrium aluminium garnet (YAG) or alkaline earth orthosilicate (BOSE).
  8. A motor vehicle, for example a commercial vehicle, having an illumination apparatus according to one of the preceding claims.
EP16001457.7A 2015-08-26 2016-06-29 Illumination device for a vehicle Active EP3135988B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015011126.4A DE102015011126A1 (en) 2015-08-26 2015-08-26 Lighting device for a vehicle

Publications (2)

Publication Number Publication Date
EP3135988A1 EP3135988A1 (en) 2017-03-01
EP3135988B1 true EP3135988B1 (en) 2019-03-13

Family

ID=56799168

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16001457.7A Active EP3135988B1 (en) 2015-08-26 2016-06-29 Illumination device for a vehicle

Country Status (2)

Country Link
EP (1) EP3135988B1 (en)
DE (1) DE102015011126A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11402080B2 (en) * 2019-05-23 2022-08-02 Korrus, Inc. Dynamic illumination using a coherent light source

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034054A1 (en) 2010-08-11 2012-02-16 Schott Ag Laser-based white light source
WO2013051623A1 (en) * 2011-10-03 2013-04-11 シャープ株式会社 Light-emitting body, illumination device, and headlight
JP2013109928A (en) * 2011-11-18 2013-06-06 Sharp Corp Lighting system, vehicle headlamp, and downlight
DE102012002232A1 (en) 2012-02-04 2012-09-20 Daimler Ag Illumination device i.e. headlight, for use in of vehicle for e.g. danger light function, has mirror system diverting laser light beams on other mirror system such that reflected laser light beams appear white
JP2016154062A (en) * 2013-06-21 2016-08-25 パナソニックIpマネジメント株式会社 Light source, and vehicle head lamp comprising light source
FR3009060A1 (en) * 2013-07-23 2015-01-30 Valeo Vision LIGHTING SYSTEM COMPRISING A WHITE LIGHT AND A LIGHT OF ANOTHER COLOR

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102015011126A1 (en) 2017-03-02
EP3135988A1 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
EP3545229B1 (en) Lighting device of a vehicle headlamp
EP2288843B1 (en) Reading light or spotlight
DE102013222431A1 (en) Light module for generating wavelength-converted light
DE102012005657B4 (en) White light lighting device
EP2912688B1 (en) Led module
DE102013215981A1 (en) Light module and method for generating wavelength-converted light in the red spectral range and method for providing a wavelength conversion element
DE102013222430A1 (en) An illumination apparatus and method for generating light by means of a wavelength conversion arrangement and a band stop filter and method for providing a band stop filter
DE102010062465A1 (en) lighting device
DE112016005024B4 (en) Semiconductor laser array and projector
EP1965244A2 (en) Optical device and optical method
DE102012112994A1 (en) headlamp device
DE102014226591A1 (en) Light module and method for providing wavelength-converted light in the red spectral range and projection device thereto
WO2013110495A2 (en) Lighting apparatus comprising phosphor wheel
DE102014200937A1 (en) Lighting device with primary light unit and phosphor element
DE102013217319A1 (en) lighting device
DE102015226633A1 (en) Lighting device with a semiconductor laser and a lens device
DE102015216784A1 (en) light module
EP3135988B1 (en) Illumination device for a vehicle
DE102016206950B4 (en) Light module for providing high luminance light and lighting device with this light module
EP3227930A1 (en) Optoelectronic element, and optoelectronic component
DE102012206970A1 (en) Optical device for illumination device used in e.g. motor vehicle headlamp, has light scattering medium is constructed and arranged, such that it acts on light scattering from the first wavelength region light
EP3315852B1 (en) Laser activated remote phosphor system and vehicle headlamp
DE102017212411A1 (en) LIGHT MODULE, HEADLAMP AND METHOD FOR PROVIDING POLYCHROMATIC LIGHT
DE102019106674A1 (en) Device and method for projecting a plurality of focal points onto a surface
WO2020157060A1 (en) Illumination apparatus for a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170829

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/16 20180101AFI20180816BHEP

Ipc: F21Y 115/30 20160101ALN20180816BHEP

Ipc: F21Y 113/13 20160101ALN20180816BHEP

Ipc: F21S 41/12 20180101ALI20180816BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016003663

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0041160000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/12 20180101ALI20180918BHEP

Ipc: F21S 41/16 20180101AFI20180918BHEP

Ipc: F21Y 113/13 20160101ALN20180918BHEP

Ipc: F21Y 115/30 20160101ALN20180918BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/12 20180101ALI20181002BHEP

Ipc: F21Y 113/13 20160101ALN20181002BHEP

Ipc: F21S 41/16 20180101AFI20181002BHEP

Ipc: F21Y 115/30 20160101ALN20181002BHEP

INTG Intention to grant announced

Effective date: 20181019

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21Y 113/13 20160101ALN20181002BHEP

Ipc: F21S 41/12 20180101ALI20181002BHEP

Ipc: F21S 41/16 20180101AFI20181002BHEP

Ipc: F21Y 115/30 20160101ALN20181002BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRUECHNER, NATHAN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1108194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016003663

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MAN TRUCK & BUS SE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190614

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016003663

Country of ref document: DE

Owner name: MAN TRUCK & BUS SE, DE

Free format text: FORMER OWNER: MAN TRUCK & BUS AG, 80995 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016003663

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190629

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160629

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1108194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230317

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230626

Year of fee payment: 8

Ref country code: FR

Payment date: 20230622

Year of fee payment: 8

Ref country code: DE

Payment date: 20230627

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 8