EP3129612B1 - District heating power plant - Google Patents

District heating power plant Download PDF

Info

Publication number
EP3129612B1
EP3129612B1 EP15757461.7A EP15757461A EP3129612B1 EP 3129612 B1 EP3129612 B1 EP 3129612B1 EP 15757461 A EP15757461 A EP 15757461A EP 3129612 B1 EP3129612 B1 EP 3129612B1
Authority
EP
European Patent Office
Prior art keywords
district heating
power plant
heating power
heat exchanger
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15757461.7A
Other languages
German (de)
French (fr)
Other versions
EP3129612A1 (en
Inventor
Uwe Juretzek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL15757461T priority Critical patent/PL3129612T3/en
Publication of EP3129612A1 publication Critical patent/EP3129612A1/en
Application granted granted Critical
Publication of EP3129612B1 publication Critical patent/EP3129612B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • F01K17/025Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic in combination with at least one gas turbine, e.g. a combustion gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/08Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with working fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/025Devices and methods for diminishing corrosion, e.g. by preventing cooling beneath the dew point
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the invention relates to a district heating power plant.
  • the overall efficiency (ratio of usable energy to fuel energy used) of a gas turbine-based district heating power plant is limited in particular by the exhaust gas losses at the outlet of the waste heat boiler. In order to minimize these losses and to increase the overall efficiency accordingly, this energy has to be utilized as far as possible for the district heating supply.
  • the overall efficiency can be increased in particular by the so-called condensing (water dew point is below). This was done because of the associated corrosion and emission problems so far usually not and if so, then only very limited.
  • the prevention of falling below the exhaust dew point (water and sulfuric acid) on the heating surface was an important criterion.
  • the temperature of the incoming district heating water was increased by appropriate recirculation from the outlet to the entrance of the district heating economizer so far that corrosion problems on the heating surfaces of the district heating and subsequent boiler components (eg fireplace) could be avoided.
  • the exhaust gas itself was not cooled below the dew point to the emission of "acid droplets" and related To avoid corrosion problems in the waste heat boiler itself and in the environment of the power plant.
  • the exhaust gas must still have a sufficient temperature to ensure by the associated buoyancy that it spreads over a large area and does not accumulate in the vicinity of the power plant; As a guideline, a minimum exhaust gas temperature of 70 ° C was used for these reasons in the past.
  • the object of the invention is to provide a district heating power plant with improved overall efficiency.
  • the invention solves the problem of a district heating power plant by providing that in such a district heating power plant, comprising a gas turbine and a gas turbine in the flow direction of an exhaust gas downstream waste heat boiler with a gas turbine facing the hot end and an opposite cold end, in the area the cold end, an evaporator is arranged with an outlet, and the outlet is connected to a suction medium inlet of a jet pump whose Kochmedium input is connected to a water-steam cycle of the district heating power plant and the outlet ends primary side in a heating condenser, the secondary side is connected in a district heating water pipe, wherein downstream of the evaporator, a device for heating an exhaust gas is arranged with a heat exchanger surface, the primary side of the heat exchanger surface connected to a driving medium inlet of the jet pump leading motive steam line is.
  • the invention thus provides that in the exhaust gas flow downstream of the previous last heating surface (district heating economizer) another evaporator as part of the water-steam cycle of the district heating power plant is introduced into the waste heat boiler. So that at this per se low exhaust gas temperature level (usually between 70 ° C to 90 ° C) still an evaporation of the circulating water and in particular the evaporation takes place at a temperature level below the dew point of the exhaust gas (for condensing), the pressure in the evaporator must be correspondingly far be reduced below the atmospheric level. This is done via one or more steam jet pumps which draw their motive steam from a sufficiently high pressure level from the water-steam cycle of the district heating power plant.
  • This sub-atmospheric vapor (e.g., 30 mbar) from the evaporator is aspirated by motive steam from the steam jet pump, mixes with the motive steam, and is compressed to an average back pressure (e.g., 120 mbar).
  • This mixed steam is then added to a heating condenser cooled by district heating water, whereby it heats up.
  • the invention further provides that downstream of the evaporator, before entering the chimney, a device for heating an exhaust gas is arranged in order to heat it again to a temperature above the dew point.
  • the reheating should prevent the discharge of small droplets (they evaporate by the heat input accordingly) and additionally ensure the necessary buoyancy of the exhaust gas outside of the waste heat boiler.
  • the part of the waste heat boiler located behind the re-heating of the exhaust gas is correspondingly protected against corrosion and does not have to be made in particularly corrosion-resistant material.
  • the minimum exhaust gas temperature to be reached when leaving the environment can be reduced accordingly; Instead of the usual 70 ° C, depending on the ambient conditions, it is also possible to set only 40 ° C in order to ensure sufficient buoyancy for the exhaust gas and a sufficient emission propagation associated therewith.
  • the primary side of the heat exchanger surface is connected in a leading to the drive medium inlet of the jet pump motive steam line, i. Driving steam is de-energized before entering the steam jet pump.
  • the device for heating an exhaust gas comprises a heat exchanger surface arranged in the waste heat boiler.
  • the device for heating an exhaust gas comprises a supply of ambient air arranged outside the waste heat boiler heat exchanger surface for the heating of the ambient air.
  • the heated ambient air is then added to the exhaust gas stream.
  • the primary side of a heat exchanger surface is connected in a water line, which branches off from the outlet of a Fernebeneconomizers, in the flow direction of an exhaust gas upstream of the evaporator in Waste heat boiler is arranged, and opens into the entrance of the district heating economizer.
  • this can be advantageously used for reheating at a correspondingly high return temperature of the district heating system by the primary side of the heat exchanger surface is connected in a district heating water pipe.
  • Another simple option is the heating by means of district heating water already heated within the power plant.
  • the waste heat from the secondary cooling stations of the district heating power plant may also be used. The latter leads to a further increase in overall efficiency.
  • the heating condenser to which the mixing steam is added, should be cooled with as much "cold” and correspondingly large amount of district heating water as possible in order to keep the counterpressure and the related motive steam requirement associated therewith low. It is therefore advantageous if the district heating water line in operation carries water, which is returned from a district heating network in the district heating power plant, i. In particular, the supply of district heating water, which has not yet been heated within the district heating power station, is particularly suitable.
  • the motive medium inlet of the jet pump is connected to a high-pressure steam line, a medium-pressure steam line or a low-pressure steam line of the water-steam circuit.
  • the calorific value utilization described above by establishing a correspondingly low evaporator pressure not only leads to the dew point on the heat exchanger surface falling below the dew point on the heat exchanger surface, but also to a cooling of the exhaust gas itself below the dew point, due to the "acid droplets" contained therein and also possibly because of the then limited buoyancy and the associated concentration of exhaust components in the plant environment can not be discharged into the environment.
  • the evaporator comprises heat exchanger tubes and at least a part of the last in the flow direction of an exhaust heat exchanger tubes has droplet catcher profiles, which force a corresponding deflection of the exhaust gas mass flow and thus deposit droplets of a certain size inertia-based to this with the remaining exhaust gas condensate from the To conduct heat recovery boiler out.
  • the heat exchanger tubes and adjacent boiler walls are at least partially made of corrosion-resistant material, if the dew point is undershot in these areas. Due to the significant drop below the water dew point, the requirements for corrosion resistance, however, are moderate, as is diluted by the proportion of water, the acid content accordingly.
  • the motive steam for the steam jet pump then although the steam turbine is no longer available and correspondingly decreases the electrical efficiency, the overall efficiency than usually the most important characteristic of a district heating power plant but is significantly better. But there are also operating cases (eg to cover the peak heat demand), where previously high-pressure steam must be used on the heating condensers directly to heat the district heating water, in these cases results in addition to the improvement of the overall efficiency and an improvement in the electrical efficiency. If the gas turbine-based district heating plant is a pure cogeneration plant without a steam turbine, there is almost no effect on the electrical efficiency of the plant (this is determined by the gas turbine used and only the possibly increasing exhaust pressure loss due to the additional boiler heating surfaces has this a negative influence).
  • this overall efficiency gain is significant and can exceed "100%"("over100%" are of course only when using the lower heating value, which does not take into account the heat of condensation of the water content in the exhaust, due to the relatively high proportion of water Reference size possible). If additionally water has been introduced into the gas turbine (eg for cooling the compressor intake air, in order increase the power of the gas turbine), the benefit of using condensing technology increases even further.
  • the resulting in the utilization of condensing significant water content can be used after appropriate treatment (neutralization, etc.) as make-up water for the water-steam cycle and / or for the district heating system and thus has the advantage that the need for external water supply, if necessary, to zero sinks.
  • the advantage lies in the simplicity of the steam jet-based chiller.
  • the steam jet chiller is therefore much less expensive (since, for example, the compressor including motor with corresponding electrical supply is eliminated) and also reliable because of the smaller number of active components.
  • the higher efficiency of the compressor-based chiller has a positive effect only on the electrical efficiency of the district heating system, the much more interesting overall efficiency moves to a comparable level with the steam jet refrigerator.
  • FIG. 1 shows schematically and by way of example a district heating power plant 1 comprising a gas turbine 2, a steam turbine 33 and a waste heat boiler 4 downstream of the gas turbine 2 in the flow direction of an exhaust gas 3 with a hot end 5 facing the gas turbine 2 and an opposite cold end 6 facing a chimney 34.
  • a district heating power plant 1 comprising a gas turbine 2, a steam turbine 33 and a waste heat boiler 4 downstream of the gas turbine 2 in the flow direction of an exhaust gas 3 with a hot end 5 facing the gas turbine 2 and an opposite cold end 6 facing a chimney 34.
  • an evaporator 7 in the region of the cold end 6 is arranged downstream of the usually last heating surface (Fern surveillanceeconomizer 31)
  • the outlet 8 of the evaporator 7 is connected to a suction medium inlet 9 at least one jet pump 10 (in the embodiment of the FIG. 1 they are two of them) connected.
  • the drive medium input 11 of the jet pump 10 is connected to a in the FIG. 1 very simplified illustrated water-steam cycle 12
  • the heating condenser 14 should be cooled with a possible "cold” and correspondingly large amount of district heating water in order to keep low the counterpressure and the related motive steam requirement associated therewith.
  • the district heating water line 15th is directly connected to a district heating network 16, so that the heating capacitor 14 is flowed through by the district heating power plant recycled, relatively cold water.
  • the pump 17 returns the condensate accumulating in the heating condenser 14 into the water-steam circuit 12.
  • the blowing medium inlet 11 is connected to a high pressure steam line 18, a medium pressure steam line 19 or a low pressure steam line 35 of the water-steam circuit 12 (in the FIG. 1 the water-steam cycle 12 is greatly simplified and the pressure levels are not shown separately).
  • the heat exchanger tubes 20 and adjacent boiler walls 22 are at least partially made of corrosion-resistant material.
  • a device 23 for heating an exhaust gas 3 is arranged, which comprises a arranged in the waste heat boiler 4 heat exchanger surface 24 whose primary side is connected to a drive medium inlet 11 of the jet pump 10 leading motive steam line 28.
  • FIG. 2 shows a slightly modified embodiment of the inventive district heating power plant 1, wherein the device 23 for heating the exhaust gas 3, a supply 25 of ambient air 26 with arranged outside of the waste heat boiler 4 heat exchanger surface 27 for the heating of the ambient air 26 includes.
  • the heated ambient air 26 is simply added to the exhaust stream 3.
  • FIG. 3 shows an alternative to reheating the exhaust gases 3, wherein the primary side of the heat exchanger surface 24 is connected in a water line 29, which branches off from the outlet 30 of the district heating 31 and flows into the inlet 32 of the district heating 31.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

Die Erfindung betrifft ein Fernwärmekraftwerk.The invention relates to a district heating power plant.

Der Gesamtwirkungsgrad (Verhältnis von nutzbarer Energie zu eingesetzter Brennstoffenergie) eines gasturbinenbasierten Fernwärmekraftwerks ist insbesondere durch die Abgasverluste am Austritt des Abhitzekessels begrenzt. Zur Minimierung dieser Verluste und zur entsprechenden Steigerung des Gesamtwirkungsgrades muss diese Energie für die Fernwärmeversorgung weitestgehend nutzbar gemacht werden. Der Gesamtwirkungsgrad kann dabei insbesondere durch die sogenannte Brennwertnutzung (Wassertaupunkt wird dabei unterschritten) erhöht werden. Dies erfolgte wegen der damit einhergehenden Korrosions- und Emissionsprobleme bisher in der Regel nicht und wenn doch, dann nur sehr eingeschränkt.The overall efficiency (ratio of usable energy to fuel energy used) of a gas turbine-based district heating power plant is limited in particular by the exhaust gas losses at the outlet of the waste heat boiler. In order to minimize these losses and to increase the overall efficiency accordingly, this energy has to be utilized as far as possible for the district heating supply. The overall efficiency can be increased in particular by the so-called condensing (water dew point is below). This was done because of the associated corrosion and emission problems so far usually not and if so, then only very limited.

Um das Abgas weitestgehend abzukühlen und diese Wärme im Fernwärmesystem nutzbar zu machen, wurden bisher sogenannte Fernwärmeeconomizer als letzte Heizfläche in den Abhitzekessel eingebracht, bevor das Abgas über den Kamin in die Umwelt abgegeben wurde. Wie weit das Abgas dabei abgekühlt und damit die darin enthaltene Wärme genutzt werden kann, hängt dabei maßgeblich von der Rücklauftemperatur des Fernwärmesystems ab.In order to cool the exhaust as much as possible and to make use of this heat in the district heating system so far so-called district heating as the last heating surface were introduced into the waste heat boiler before the exhaust gas was discharged through the fireplace in the environment. The extent to which the exhaust gas cools and thus the heat contained therein can be used depends decisively on the return temperature of the district heating system.

Außerdem war die Vermeidung der Unterschreitung des Abgastaupunktes (Wasser und Schwefelsäure) an der Heizfläche ein wichtiges Kriterium. Dazu wurde ggf. die Temperatur des eintretenden Fernwärmewassers durch entsprechende Rezirkulation vom Austritt zum Eintritt des Fernwärmeeconomizers soweit erhöht, dass Korrosionsprobleme an den Heizflächen des Fernwärmeeconomizers und nachfolgenden Kesselbauteilen (z.B. Kamin) vermieden werden konnten.
Bisher wurde das Abgas selbst nicht unter den Taupunkt abgekühlt, um die Emission von "Säuretröpfchen" und damit zusammenhängende Korrosionsprobleme im Abhitzekessel selbst und in der Umgebung des Kraftwerkes zu vermeiden. Darüber hinaus muss das Abgas noch eine ausreichende Temperatur aufweisen, um durch den damit verbundenen Auftrieb sicherzustellen, dass es sich ausreichend großflächig verteilt und sich nicht in der Umgebung des Kraftwerkes anreichert; als Richtwert wurde aus diesen Gründen in der Vergangenheit eine Abgasmindesttemperatur von 70°C angesetzt.
In addition, the prevention of falling below the exhaust dew point (water and sulfuric acid) on the heating surface was an important criterion. For this purpose, if necessary, the temperature of the incoming district heating water was increased by appropriate recirculation from the outlet to the entrance of the district heating economizer so far that corrosion problems on the heating surfaces of the district heating and subsequent boiler components (eg fireplace) could be avoided.
So far, the exhaust gas itself was not cooled below the dew point to the emission of "acid droplets" and related To avoid corrosion problems in the waste heat boiler itself and in the environment of the power plant. In addition, the exhaust gas must still have a sufficient temperature to ensure by the associated buoyancy that it spreads over a large area and does not accumulate in the vicinity of the power plant; As a guideline, a minimum exhaust gas temperature of 70 ° C was used for these reasons in the past.

Aus den zuvor genannten Gründen waren damit dem Gesamtwirkungsgrad bei ca. 91-92% (bezogen auf den unteren Heizwert) Grenzen gesetzt und eine entsprechende relativ große Wärmemenge wurde ungenutzt an die Umgebung abgegeben.For the reasons mentioned above, the total efficiency at about 91-92% (based on the lower calorific value) was limited and a corresponding relatively large amount of heat was released unused to the environment.

Aufgabe der Erfindung ist es, ein Fernwärmekraftwerk mit verbessertem Gesamtwirkungsgrad anzugeben.The object of the invention is to provide a district heating power plant with improved overall efficiency.

Die Erfindung löst die auf ein Fernwärmekraftwerk gerichtete Aufgabe, indem sie vorsieht, dass bei einem derartigen Fernwärmekraftwerk, umfassend eine Gasturbine und einen der Gasturbine in Strömungsrichtung eines Abgases nachgeschalteten Abhitzekessel mit einem der Gasturbine zugewandten heißen Ende und einem gegenüberliegenden kalten Ende, bei dem im Bereich des kalten Endes ein Verdampfer mit einem Auslass angeordnet ist, und der Auslass mit einem Saugmedium-Eingang einer Strahlpumpe verbunden ist, deren Treibmedium-Eingang mit einem Wasser-Dampf-Kreislauf des Fernwärmekraftwerks verbunden ist und deren Austritt primärseitig in einen Heizkondensator mündet, der sekundärseitig in eine Fernwärmewasserleitung geschaltet ist, wobei stromab des Verdampfers eine Vorrichtung zur Erwärmung eines Abgases mit einer Wärmetauscherfläche angeordnet ist, die Primärseite der Wärmetauscherfläche in eine zum Treibmedium-Eingang der Strahlpumpe führende Treibdampfleitung geschaltet ist.The invention solves the problem of a district heating power plant by providing that in such a district heating power plant, comprising a gas turbine and a gas turbine in the flow direction of an exhaust gas downstream waste heat boiler with a gas turbine facing the hot end and an opposite cold end, in the area the cold end, an evaporator is arranged with an outlet, and the outlet is connected to a suction medium inlet of a jet pump whose Treibmedium input is connected to a water-steam cycle of the district heating power plant and the outlet ends primary side in a heating condenser, the secondary side is connected in a district heating water pipe, wherein downstream of the evaporator, a device for heating an exhaust gas is arranged with a heat exchanger surface, the primary side of the heat exchanger surface connected to a driving medium inlet of the jet pump leading motive steam line is.

Die Erfindung sieht also vor, dass in Abgasströmungsrichtung stromab der bisherigen letzten Heizfläche (Fernwärmeeconomizer) ein weiterer Verdampfer als Teil des Wasser-Dampf-Kreislaufes des Fernwärmekraftwerkes in den Abhitzekessel eingebracht wird. Damit bei diesem an sich niedrigen Abgastemperaturniveau (in der Regel zwischen 70°C bis 90°C) noch eine Verdampfung des Kreislaufwassers und insbesondere die Verdampfung auf einem Temperaturniveau unterhalb des Wassertaupunktes des Abgases stattfindet (zur Brennwertnutzung), muss der Druck im Verdampfer entsprechend weit unter das Atmosphärenniveau verringert werden. Dies erfolgt über eine oder mehrere Dampfstrahlpumpen welche ihren Treibdampf von einem ausreichend hohen Druckniveau aus dem Wasser-Dampf-Kreislauf des Fernwärmekraftwerkes beziehen. Mit der Absenkung des Druckes sinkt die notwendige Verdampfungstemperatur und der Dampf wird mittels der Restwärme aus dem Abgas auf sub-atmosphärischem Niveau erzeugt. Je nach Auslegung der Strahlpumpen, Restwärmemenge im Abgas, der verwendeten Treibdampfmenge, etc. stellt sich dann ein Gleichgewichtsdruck ein.The invention thus provides that in the exhaust gas flow downstream of the previous last heating surface (district heating economizer) another evaporator as part of the water-steam cycle of the district heating power plant is introduced into the waste heat boiler. So that at this per se low exhaust gas temperature level (usually between 70 ° C to 90 ° C) still an evaporation of the circulating water and in particular the evaporation takes place at a temperature level below the dew point of the exhaust gas (for condensing), the pressure in the evaporator must be correspondingly far be reduced below the atmospheric level. This is done via one or more steam jet pumps which draw their motive steam from a sufficiently high pressure level from the water-steam cycle of the district heating power plant. With the lowering of the pressure, the necessary evaporation temperature decreases and the steam is generated by means of the residual heat from the exhaust gas to sub-atmospheric level. Depending on the design of the jet pumps, residual heat in the exhaust gas, the amount of motive steam used, etc., then sets an equilibrium pressure.

Dieser sub-atmosphärische Dampf (z.B. 30 mbar) aus dem Verdampfer wird mittels Treibdampf von der Dampfstrahlpumpe angesaugt, mischt sich mit dem Treibdampf und wird auf einen mittleren Gegendruck (z.B. 120 mbar) verdichtet. Dieser Mischdampf wird dann auf einen durch Fernwärmewasser gekühlten Heizkondensator gegeben, wodurch sich dieses erwärmt.This sub-atmospheric vapor (e.g., 30 mbar) from the evaporator is aspirated by motive steam from the steam jet pump, mixes with the motive steam, and is compressed to an average back pressure (e.g., 120 mbar). This mixed steam is then added to a heating condenser cooled by district heating water, whereby it heats up.

Die Erfindung sieht weiter vor, dass stromab des Verdampfers, vor Eintritt in den Kamin, eine Vorrichtung zur Erwärmung eines Abgases angeordnet ist, um dieses wieder auf eine Temperatur oberhalb des Taupunktes zu erwärmen. Die Wiedererwärmung soll dabei den Austrag von Kleinsttröpfchen verhindern (diese verdunsten durch den Wärmeeintrag entsprechend) und zusätzlich den notwendigen Auftrieb des Abgases außerhalb des Abhitzekessels sicherstellen. Darüber hinaus wird der hinter der Wiedererwärmung des Abgases liegende Teil des Abhitzekessels entsprechend vor Korrosion geschützt und muss nicht in besonders korrosionsfestem Material ausgeführt werden.The invention further provides that downstream of the evaporator, before entering the chimney, a device for heating an exhaust gas is arranged in order to heat it again to a temperature above the dew point. The reheating should prevent the discharge of small droplets (they evaporate by the heat input accordingly) and additionally ensure the necessary buoyancy of the exhaust gas outside of the waste heat boiler. In addition, the part of the waste heat boiler located behind the re-heating of the exhaust gas is correspondingly protected against corrosion and does not have to be made in particularly corrosion-resistant material.

Für die Wiedererwärmung des Abgases muss dabei vergleichsweise wenig Energie aufgewandt werden, da durch Auskondensation und nachfolgende Abführung des Wasseranteiles und sonstiger in die Flüssigkeit übergehender Rauchgasbestandteile der Abgasmassenstrom verringert und ein vergleichsweise trockenes Abgas wiedererwärmt wird. Außerdem kann deshalb auch die zu erreichende Minimalabgastemperatur bei Austritt in die Umgebung entsprechend verringert werden; statt der üblichen 70°C kann je nach Umgebungsbedingungen durchaus auch nur 40°C eingestellt werden, um einen ausreichenden Auftrieb für das Abgas und eine damit verbundene hinreichende Emissionsausbreitung sicherzustellen.For the reheating of the exhaust gas while comparatively little energy must be expended, since reduced by condensation and subsequent removal of the water content and other liquid in the flue components of the exhaust gas mass flow and a relatively dry exhaust gas is reheated. In addition, therefore, the minimum exhaust gas temperature to be reached when leaving the environment can be reduced accordingly; Instead of the usual 70 ° C, depending on the ambient conditions, it is also possible to set only 40 ° C in order to ensure sufficient buoyancy for the exhaust gas and a sufficient emission propagation associated therewith.

Für die Wiedererwärmung des Abgases ist die Primärseite der Wärmetauscherfläche in eine zum Treibmedium-Eingang der Strahlpumpe führende Treibdampfleitung geschaltet, d.h. Treibdampf wird enthitzt, bevor er in die Dampfstrahlpumpe eintritt.For the reheating of the exhaust gas, the primary side of the heat exchanger surface is connected in a leading to the drive medium inlet of the jet pump motive steam line, i. Driving steam is de-energized before entering the steam jet pump.

Die Wiedererwärmung kann dabei auf verschiedene Weise erfolgen. In einer ersten vorteilhaften Ausführungsform umfasst die Vorrichtung zur Erwärmung eines Abgases eine im Abhitzekessel angeordnete Wärmetauscherfläche.The reheating can be done in different ways. In a first advantageous embodiment, the device for heating an exhaust gas comprises a heat exchanger surface arranged in the waste heat boiler.

In einer weiteren vorteilhaften Ausführungsform umfasst die Vorrichtung zur Erwärmung eines Abgases eine Zufuhr von Umgebungsluft mit außerhalb des Abhitzekessels angeordneter Wärmetauscherfläche für die Erwärmung der Umgebungsluft. Die erwärmte Umgebungsluft wird dann dem Abgasstrom beigemischt. Dies hat den Vorteil, dass der Wärmetauscher für die Erwärmung der Umgebungsluft (welche nachfolgend das Abgas erwärmt) nicht besonders korrosionsgeschützt ausgeführt werden muss.In a further advantageous embodiment, the device for heating an exhaust gas comprises a supply of ambient air arranged outside the waste heat boiler heat exchanger surface for the heating of the ambient air. The heated ambient air is then added to the exhaust gas stream. This has the advantage that the heat exchanger for heating the ambient air (which subsequently heats the exhaust gas) does not need to be particularly protected against corrosion.

Vorteilhafter Weise ist zusätzlich die Primärseite einer Wärmetauscherfläche in eine Wasserleitung geschaltet, die vom Austritt eines Fernwärmeeconomizers abzweigt, der in Strömungsrichtung eines Abgases stromauf des Verdampfers im Abhitzekessel angeordnet ist, und in den Eintritt des Fernwärmeeconomizers mündet.Advantageously, in addition, the primary side of a heat exchanger surface is connected in a water line, which branches off from the outlet of a Fernwärmeeconomizers, in the flow direction of an exhaust gas upstream of the evaporator in Waste heat boiler is arranged, and opens into the entrance of the district heating economizer.

Ferner kann bei entsprechend hoher Rücklauftemperatur des Fernwärmesystems dieses vorteilhaft für die Wiedererwärmung genutzt werden, indem die Primärseite der Wärmetauscherfläche in eine Fernwärme-Wasserleitung geschaltet ist.Furthermore, this can be advantageously used for reheating at a correspondingly high return temperature of the district heating system by the primary side of the heat exchanger surface is connected in a district heating water pipe.

Eine weitere einfache Möglichkeit ist die Beheizung mittels bereits innerhalb des Kraftwerkes erwärmten Fernwärmewassers.Another simple option is the heating by means of district heating water already heated within the power plant.

Falls die Abgastemperatur sehr weit abgesenkt wurde, kann ggf. auch die Abwärme aus den Nebenkühlstellen des Fernwärmekraftwerkes (Generatorkühler, Schmierölkühler, etc.) genutzt werden. Letzteres führt zu einer weiteren Steigerung des Gesamtwirkungsgrades.If the exhaust gas temperature has been lowered very far, the waste heat from the secondary cooling stations of the district heating power plant (generator cooler, lubricating oil cooler, etc.) may also be used. The latter leads to a further increase in overall efficiency.

Der Heizkondensator, auf den der Mischdampf gegeben wird, sollte mit einer möglichst "kalten" und entsprechend großen Menge an Fernwärmewasser gekühlt werden, um den sich damit einstellenden Gegendruck und den damit im Zusammenhang stehenden Treibdampfbedarf niedrig zu halten. Es ist daher vorteilhaft, wenn die Fernwärmewasserleitung im Betrieb Wasser führt, welches aus einem Fernwärmenetz in das Fernwärmekraftwerk zurückgeführt wird, d.h. es bietet sich insbesondere die Versorgung mit noch nicht innerhalb des Fernwärmekraftwerkes erwärmtem Fernwärmewasser an.The heating condenser, to which the mixing steam is added, should be cooled with as much "cold" and correspondingly large amount of district heating water as possible in order to keep the counterpressure and the related motive steam requirement associated therewith low. It is therefore advantageous if the district heating water line in operation carries water, which is returned from a district heating network in the district heating power plant, i. In particular, the supply of district heating water, which has not yet been heated within the district heating power station, is particularly suitable.

Dabei ist es zweckmäßig, wenn eine Pumpe für die Rückführung eines im Heizkondensator anfallenden Kondensats in den Wasser-Dampf-Kreislauf vorgesehen ist.It is expedient if a pump is provided for the return of accumulating in the heating condenser condensate in the water-steam cycle.

Um ein ausreichend hohes Druckniveau für den Treibdampf bereitstellen zu können, ist es vorteilhaft, wenn der Treibmedium-Eingang der Strahlpumpe mit einer Hochdruckdampfleitung, einer Mitteldruckdampfleitung oder einer Niederdruckdampfleitung des Wasser-Dampf-Kreislaufs verbunden ist.In order to be able to provide a sufficiently high pressure level for the motive steam, it is advantageous if the motive medium inlet of the jet pump is connected to a high-pressure steam line, a medium-pressure steam line or a low-pressure steam line of the water-steam circuit.

Die zuvor beschriebene Brennwertnutzung durch Festlegung eines entsprechend niedrigen Verdampferdruckes führt durch entsprechende Auslegung des Verdampfers nicht nur zur Unterschreitung des Taupunktes an der Wärmetauscherfläche sondern auch zu einer Abkühlung des Abgases selbst unter den Taupunkt, welches wegen der dann darin enthaltenen "Säuretröpfchen" und auch ggf. wegen des dann eingeschränkten Auftriebes und der damit verbundenen Konzentration von Abgasbestandteilen im Anlagenumfeld nicht mehr in die Umwelt eingeleitet werden kann.The calorific value utilization described above by establishing a correspondingly low evaporator pressure not only leads to the dew point on the heat exchanger surface falling below the dew point on the heat exchanger surface, but also to a cooling of the exhaust gas itself below the dew point, due to the "acid droplets" contained therein and also possibly because of the then limited buoyancy and the associated concentration of exhaust components in the plant environment can not be discharged into the environment.

In einer vorteilhaften Ausführungsform der Erfindung umfasst der Verdampfer Wärmetauscherrohre und zumindest ein Teil der in Strömungsrichtung eines Abgases letzten Wärmetauscherrohre weist Tröpfchenfängerprofile auf, welche eine entsprechende Umlenkung des Abgasmassenstromes erzwingen und damit Tröpfchen ab einer bestimmten Größe trägheitsbasiert abscheiden, um diese mit dem restlichen Abgaskondensat aus dem Abhitzekessel heraus zu leiten.In an advantageous embodiment of the invention, the evaporator comprises heat exchanger tubes and at least a part of the last in the flow direction of an exhaust heat exchanger tubes has droplet catcher profiles, which force a corresponding deflection of the exhaust gas mass flow and thus deposit droplets of a certain size inertia-based to this with the remaining exhaust gas condensate from the To conduct heat recovery boiler out.

In einer weiteren vorteilhaften Ausführungsform sind die Wärmetauscherrohre und benachbarte Kesselwandungen zumindest teilweise aus korrosionsfestem Material gefertigt, wenn in diesen Bereichen der Taupunkt unterschritten wird. Durch die deutliche Unterschreitung des Wassertaupunktes sind die Anforderungen an die Korrosionsfestigkeit allerdings moderat, da durch den Wasseranteil der Säureanteil entsprechend verdünnt wird.In a further advantageous embodiment, the heat exchanger tubes and adjacent boiler walls are at least partially made of corrosion-resistant material, if the dew point is undershot in these areas. Due to the significant drop below the water dew point, the requirements for corrosion resistance, however, are moderate, as is diluted by the proportion of water, the acid content accordingly.

Bei einem Fernwärmekraftwerk nach der Erfindung steht der Treibdampf für die Dampfstrahlpumpe dann zwar der Dampfturbine nicht mehr zur Verfügung und entsprechend sinkt der elektrische Wirkungsgrad, der Gesamtwirkungsgrad als in der Regel wichtigste Kenngröße eines Fernwärmekraftwerkes wird aber signifikant besser. Es gibt aber auch Betriebsfälle (z.B. zur Deckung des Spitzenwärmebedarfes), bei denen bisher Hochdruckdampf über die Heizkondensatoren direkt zur Erwärmung des Fernwärmewassers eingesetzt werden muss, in diesen Fällen ergibt sich neben der Verbesserung des Gesamtwirkungsgrades auch eine Verbesserung des elektrischen Wirkungsgrades. Falls es sich bei der gasturbinenbasierten Fernwärmeanlage, um eine reine Cogen-Anlage ohne Dampfturbine handelt, gibt es fast keinen Einfluss auf den elektrischen Wirkungsgrad der Anlage (dieser wird durch die verwendete Gasturbine bestimmt und nur der ggf. steigende Abgasdruckverlust wegen der zusätzlichen Kesselheizflächen hat hierauf einen negativen Einfluss).In a district heating power plant according to the invention, the motive steam for the steam jet pump then although the steam turbine is no longer available and correspondingly decreases the electrical efficiency, the overall efficiency than usually the most important characteristic of a district heating power plant but is significantly better. But there are also operating cases (eg to cover the peak heat demand), where previously high-pressure steam must be used on the heating condensers directly to heat the district heating water, in these cases results in addition to the improvement of the overall efficiency and an improvement in the electrical efficiency. If the gas turbine-based district heating plant is a pure cogeneration plant without a steam turbine, there is almost no effect on the electrical efficiency of the plant (this is determined by the gas turbine used and only the possibly increasing exhaust pressure loss due to the additional boiler heating surfaces has this a negative influence).

Darüber hinaus besteht die Möglichkeit, diese Kältemaschine nur bei Bedarf zu nutzen, also wenn der Fernwärmebedarf entsprechend hoch, der Preis für den Strom entsprechend niedrig, etc. ist. Bei Nichtbetrieb der Kältemaschine, steigt der Druck im Verdampfer entsprechend an und verharrt auf einem vergleichsweise niedrigen Niveau (z.B. falls das Abgas mit ∼100°C auf den im Betrieb sub-atmosphärischen Verdampfer trifft, stellt sich mit der Zeit ein Druck von ∼1 bar ein). Damit ist ein zyklischer Betrieb ohne Probleme machbar. Gegenüber der ausschließlichen Nutzung von Fernwärmeeconomizern, kann mittels dieser Kältemaschine die niedrigste Heizflächentemperatur im Abhitzekessel theoretisch bis nahe an die "0°-Grenze" gebracht und damit der Brennwert genutzt werden, wobei auch eine Heizflächentemperatur um 25°C bereits eine signifikante Brennwertnutzung ermöglicht. Normalerweise liegen die Rücklauftemperaturen in Fernwärmenetzen zwischen 45 und 55°C und lassen damit keine oder nur eine sehr eingeschränkte Nutzung des Brennwertes zu. Durch die bisher grundsätzlich vorgesehene Rezirkulation zur Vermeidung der Unterschreitung des Taupunktes an den Fernwärmeeconomizern war die niedrigste Heizflächentemperatur bei um die 55°C festgelegt. Gerade bei erdgasbefeuerten Kraftwerken ist durch den bei der Verbrennung anfallenden relativ großen Wasseranteil dieser Gesamtwirkungsgradgewinn signifikant und kann "100% überschreiten" ("über 100%" sind natürlich nur bei Nutzung des unteren Heizwertes, welcher die Kondensationswärme des Wasseranteils im Abgas nicht berücksichtigt, als Bezugsgröße möglich). Falls zusätzlich noch Wasser in die Gasturbine eingebracht wurde (z.B. zur Kühlung der Verdichteransaugluft, um eine Leistungssteigerung der Gasturbine zu erreichen) steigt der Nutzen der Brennwertnutzung noch weiter an.In addition, there is the possibility to use this chiller only when needed, so if the district heating demand is correspondingly high, the price of electricity is correspondingly low, etc. When the chiller is not operating, the pressure in the evaporator rises accordingly and remains at a comparatively low level (eg, if the exhaust gas encounters the sub-atmospheric evaporator at ~100 ° C, the pressure is ~1 bar over time one). This makes cyclical operation feasible without problems. Compared to the exclusive use of Fernwärmeeconomizern, can be brought by means of this chiller, the lowest heating surface temperature in the waste heat boiler theoretically close to the "0 ° boundary" and thus the calorific value, with a Heizflächentemperatur around 25 ° C already allows a significant calorific value. Normally, the return temperatures in district heating networks are between 45 and 55 ° C and thus allow no or only a very limited use of the calorific value. Due to the previously intended recirculation to avoid falling below the dew point at the Fernwärmeeconomizern the lowest heating surface temperature was set at around 55 ° C. Especially with natural gas-fired power plants, this overall efficiency gain is significant and can exceed "100%"("over100%" are of course only when using the lower heating value, which does not take into account the heat of condensation of the water content in the exhaust, due to the relatively high proportion of water Reference size possible). If additionally water has been introduced into the gas turbine (eg for cooling the compressor intake air, in order increase the power of the gas turbine), the benefit of using condensing technology increases even further.

Der bei der Brennwertnutzung anfallende signifikante Wasseranteil kann nach entsprechender Aufbereitung (Neutralisierung, etc.) als Zusatzwasser für den Wasser-Dampf-Kreislauf und/oder für das Fernwärmesystem verwendet werden und hat damit den Vorteil, dass der Bedarf an externer Wasserversorgung ggf. auf null sinkt.The resulting in the utilization of condensing significant water content can be used after appropriate treatment (neutralization, etc.) as make-up water for the water-steam cycle and / or for the district heating system and thus has the advantage that the need for external water supply, if necessary, to zero sinks.

Gegenüber einer kompressorbasierten Kältemaschine, mit der im Prinzip genauso die Wärme dem Abgas entnommen und dem Fernwärmesystem zugeführt werden könnte, liegt der Vorteil in der Einfachheit der Dampfstrahler-basierten Kältemaschine. Die Dampfstrahlkältemaschine ist deshalb wesentlich kostengünstiger (da z.B. der Kompressor inkl. Motor mit entsprechender elektrischer Versorgung entfällt) und auch wegen der geringeren Anzahl von aktiven Komponenten zuverlässiger. Der höhere Wirkungsgrad der kompressorbasierten Kältemaschine wirkt sich dabei nur auf den elektrischen Wirkungsgrad der Fernwärmeanlage positiv aus, der viel interessantere Gesamtwirkungsgrad bewegt sich auf einem mit der Dampfstrahlkältemaschine vergleichbaren Niveau.Compared to a compressor-based chiller, with the same principle, the heat could be removed from the exhaust gas and supplied to the district heating system, the advantage lies in the simplicity of the steam jet-based chiller. The steam jet chiller is therefore much less expensive (since, for example, the compressor including motor with corresponding electrical supply is eliminated) and also reliable because of the smaller number of active components. The higher efficiency of the compressor-based chiller has a positive effect only on the electrical efficiency of the district heating system, the much more interesting overall efficiency moves to a comparable level with the steam jet refrigerator.

Da das Kältemittel einer kompressorbasierten Kältemaschine in der Regel brennbar und auch umweltgefährdend ist (und nicht einfach nur Wasser wie bei der Dampfstrahlkältemaschine ist), ist die Integration dieser Kältemaschine in ein gasturbinenbasiertes Fernwärmekraftwerk grundsätzlich viel aufwendiger. In diesem Zusammenhang stellt die sehr große Wärmeübertragerfläche im Abhitzekessel (wegen des vergleichsweise schlechten Wärmeüberganges vom Abgas auf das Kältemittel) ein besonderes Problem dar, da die Kältemittelmenge entsprechend auch sehr groß wird. Oft wird es daher notwendig werden, noch Zwischenkreisläufe vorzusehen, was Kosten und Wirkungsgrad dieser Lösung signifikant verschlechtert.Since the refrigerant of a compressor-based chiller is usually flammable and environmentally hazardous (and not just water as in the steam jet chiller), the integration of this chiller in a gas turbine-based district heating plant is basically much more expensive. In this context, the very large heat exchanger surface in the waste heat boiler (because of the relatively poor heat transfer from the exhaust gas to the refrigerant) is a particular problem, since the amount of refrigerant is also very large accordingly. Often it will therefore be necessary to provide intermediate circuits, which significantly reduces the cost and efficiency of this solution.

Die Erfindung wird beispielhaft anhand der Zeichnungen näher erläutert. Es zeigen schematisch und nicht maßstäblich:

  • Figur 1 ein Fernwärmekraftwerk nach der Erfindung mit dampfbeheizter Wärmetauscherfläche,
  • Figur 2 ein Fernwärmekraftwerk nach der Erfindung mit Lufteinströmung zur Wiedererwärmung des Abgases,
  • Figur 3 ein Fernwärmekraftwerk mit Wärmetauscherfläche, die mittels Fernwärmeeconomizer geheizt wird und
  • Figur 4 ein Fernwärmekraftwerk mit Wärmetauscherfläche, die mittels rücklaufendem Fernwärmewasser geheizt wird.
The invention will be explained in more detail by way of example with reference to the drawings. Shown schematically and not to scale:
  • FIG. 1 a district heating power plant according to the invention with steam-heated heat exchanger surface,
  • FIG. 2 a district heating power plant according to the invention with air inflow for reheating the exhaust gas,
  • FIG. 3 a district heating plant with heat exchanger surface which is heated by means of district heating economizer and
  • FIG. 4 a district heating power plant with heat exchanger surface, which is heated by returning district heating water.

Die Figur 1 zeigt schematisch und beispielhaft ein Fernwärmekraftwerk 1 umfassend eine Gasturbine 2, eine Dampfturbine 33 und einen der Gasturbine 2 in Strömungsrichtung eines Abgases 3 nachgeschalteten Abhitzekessel 4 mit einem der Gasturbine 2 zugewandten heißen Ende 5 und einem gegenüberliegenden, einem Kamin 34 zugewandten, kalten Ende 6. Gemäß der Erfindung ist im Ausführungsbeispiel der Figur 1 stromab der üblicherweise letzten Heizfläche (Fernwärmeeconomizer 31) ein Verdampfer 7 im Bereich des kalten Endes 6 angeordnet. Der Auslass 8 des Verdampfers 7 ist mit einem Saugmedium-Eingang 9 mindestens einer Strahlpumpe 10 (im Ausführungsbeispiel der Figur 1 sind es deren zwei) verbunden. Der Treibmedium-Eingang 11 der Strahlpumpe 10 ist mit einem in der Figur 1 sehr vereinfacht dargestellten Wasser-Dampf-Kreislauf 12 des Fernwärmekraftwerks 1 verbunden. Der Austritt 13 der Strahlpumpe 10 mündet primärseitig in einen Heizkondensator 14, der sekundärseitig in eine Fernwärmewasserleitung 15 geschaltet ist.The FIG. 1 shows schematically and by way of example a district heating power plant 1 comprising a gas turbine 2, a steam turbine 33 and a waste heat boiler 4 downstream of the gas turbine 2 in the flow direction of an exhaust gas 3 with a hot end 5 facing the gas turbine 2 and an opposite cold end 6 facing a chimney 34. According to the invention is in the embodiment of the FIG. 1 downstream of the usually last heating surface (Fernwärmeeconomizer 31), an evaporator 7 in the region of the cold end 6 is arranged. The outlet 8 of the evaporator 7 is connected to a suction medium inlet 9 at least one jet pump 10 (in the embodiment of the FIG. 1 they are two of them) connected. The drive medium input 11 of the jet pump 10 is connected to a in the FIG. 1 very simplified illustrated water-steam cycle 12 of the district heating power plant 1 connected. The outlet 13 of the jet pump 10 opens on the primary side into a heating condenser 14, which is connected on the secondary side in a district heating water line 15.

Der Heizkondensator 14 sollte mit einer möglichst "kalten" und entsprechend großen Menge an Fernwärmewasser gekühlt werden, um den sich damit einstellenden Gegendruck und den damit im Zusammenhang stehenden Treibdampfbedarf niedrig zu halten. Zu diesem Zweck ist im Ausführungsbeispiel der Figur 1 nicht vorgesehen, dass das Fernwärmewasser bereits innerhalb des Fernwärmekraftwerks 1 erwärmt wurde, bevor es den Heizkondensator 14 durchströmt, sondern die Fernwärmewasserleitung 15 ist direkt mit einem Fernwärmenetz 16 verbunden, so dass der Heizkondensator 14 von in das Fernwärmekraftwerk zurückgeführtem, vergleichsweise kaltem Wasser durchströmt wird.The heating condenser 14 should be cooled with a possible "cold" and correspondingly large amount of district heating water in order to keep low the counterpressure and the related motive steam requirement associated therewith. For this purpose, in the embodiment of FIG. 1 not provided that the district heating water was already heated within the district heating power plant 1, before it flows through the heating capacitor 14, but the district heating water line 15th is directly connected to a district heating network 16, so that the heating capacitor 14 is flowed through by the district heating power plant recycled, relatively cold water.

Die Pumpe 17 führt das im Heizkondensator 14 anfallende Kondensat in den Wasser-Dampf-Kreislauf 12 zurück.The pump 17 returns the condensate accumulating in the heating condenser 14 into the water-steam circuit 12.

Zur Gewährleistung eines ausreichend hohen Druckniveaus für die Strahlpumpen 10 ist der Treibmedium-Eingang 11 mit einer Hochdruckdampfleitung 18, einer Mitteldruckdampfleitung 19 oder einer Niederdruckdampfleitung 35 des Wasser-Dampf-Kreislaufs 12 verbunden (in der Figur 1 ist der Wasser-Dampf-Kreislauf 12 stark vereinfacht und die Druckstufen sind nicht einzeln dargestellt).To ensure a sufficiently high pressure level for the jet pumps 10, the blowing medium inlet 11 is connected to a high pressure steam line 18, a medium pressure steam line 19 or a low pressure steam line 35 of the water-steam circuit 12 (in the FIG. 1 the water-steam cycle 12 is greatly simplified and the pressure levels are not shown separately).

Da mit den zuvor beschriebenen Einbauten die Temperatur des Abgases 3 unter den Taupunkt sinkt, ist im Ausführungsbeispiel der Figur 1 vorgesehen, dass Wärmetauscherrohre 20 des Verdampfers 7 zumindest im stromabwärtigen Teil des Verdampfers 7 Tröpfchenfängerprofile 21 aufweisen.Since with the previously described internals the temperature of the exhaust gas 3 drops below the dew point, in the embodiment of the FIG. 1 provided that heat exchanger tubes 20 of the evaporator 7 at least in the downstream part of the evaporator 7 Droplet catcher profiles 21 have.

Zum Schutz vor Korrosion sind die Wärmetauscherrohre 20 sowie benachbarte Kesselwandungen 22 zumindest teilweise aus korrosionsfestem Material gefertigt.To protect against corrosion, the heat exchanger tubes 20 and adjacent boiler walls 22 are at least partially made of corrosion-resistant material.

Infolge der Brennwertnutzung ist die Temperatur des Abgases 3 soweit abgesunken, dass der Auftrieb eingeschränkt ist. Um dem abzuhelfen, sieht das Ausführungsbeispiel in Figur 1 vor, dass stromab des Verdampfers 7 eine Vorrichtung 23 zur Erwärmung eines Abgases 3 angeordnet ist, die eine im Abhitzekessel 4 angeordnete Wärmetauscherfläche 24 umfasst, deren Primärseite in eine zum Treibmedium-Eingang 11 der Strahlpumpe 10 führende Treibdampfleitung 28 geschaltet ist.As a result of the utilization of calorific value, the temperature of the exhaust gas 3 has dropped so far that the buoyancy is limited. To remedy this, the embodiment sees in FIG. 1 that downstream of the evaporator 7, a device 23 for heating an exhaust gas 3 is arranged, which comprises a arranged in the waste heat boiler 4 heat exchanger surface 24 whose primary side is connected to a drive medium inlet 11 of the jet pump 10 leading motive steam line 28.

Figur 2 zeigt eine leicht modifizierte Ausführungsform des erfinderischen Fernwärmekraftwerks 1, bei dem die Vorrichtung 23 zur Erwärmung des Abgases 3 eine Zufuhr 25 von Umgebungsluft 26 mit außerhalb des Abhitzekessels 4 angeordneter Wärmetauscherfläche 27 für die Erwärmung der Umgebungsluft 26 umfasst. Die erwärmte Umgebungsluft 26 wird einfach dem Abgasstrom 3 beigemischt. FIG. 2 shows a slightly modified embodiment of the inventive district heating power plant 1, wherein the device 23 for heating the exhaust gas 3, a supply 25 of ambient air 26 with arranged outside of the waste heat boiler 4 heat exchanger surface 27 for the heating of the ambient air 26 includes. The heated ambient air 26 is simply added to the exhaust stream 3.

Figur 3 zeigt eine Alternative zur Wiedererwärmung der Abgase 3, wobei die Primärseite der Wärmetauscherfläche 24 in eine Wasserleitung 29 geschaltet ist, die vom Austritt 30 des Fernwärmeeconomizers 31 abzweigt und in den Eintritt 32 des Fernwärmeeconomizers 31 mündet. FIG. 3 shows an alternative to reheating the exhaust gases 3, wherein the primary side of the heat exchanger surface 24 is connected in a water line 29, which branches off from the outlet 30 of the district heating 31 and flows into the inlet 32 of the district heating 31.

Schließlich ist in der Figur 4 eine Möglichkeit zur Wiedererwärmung der Abgase gezeigt, bei der die Primärseite der Wärmetauscherfläche 24 in eine Fernwärme-Wasserleitung 15 geschaltet ist.Finally, in the FIG. 4 shown a possibility for reheating the exhaust gases, in which the primary side of the heat exchanger surface 24 is connected in a district heating water pipe 15.

Die in den Ausführungsbeispielen der Figuren 3 und 4 gezeigten Maßnahmen sind mit der aus der Figur 2 bekannten Lösung mit einer Wärmetauscherfläche 27 für Umgebungsluft 26 kombinierbar. In the embodiments of the Figures 3 and 4 shown measures are with the from the FIG. 2 known solution with a heat exchanger surface 27 for ambient air 26 can be combined.

Claims (10)

  1. District heating power plant (1) comprising a gas turbine (2) and a waste heat boiler (4) which is connected downstream of the gas turbine (2) in the flow direction of a waste gas (3) and which has a hot end (5) facing the gas turbine (2) and an opposite cold end (6), wherein an evaporator (7) with an outlet (8) is arranged in the region of the cold end (6), and the outlet (8) is connected to a suction medium inlet (9) of a jet pump (10) whose driving medium inlet (11) is connected to a water-steam circuit (12) of the district heating power plant (1) and whose outlet (13) opens at the primary side into a heating condenser (14) which is connected at the secondary side into a district heating water line (15), wherein a device (23) for heating a waste gas (3) with a heat exchanger surface (24, 27) is arranged downstream of the evaporator (7), characterized in that the primary side of the heat exchanger surface (24, 27) is connected into a driving steam line (28) leading to the driving medium inlet (11) of the jet pump (10).
  2. District heating power plant (1) according to Claim 1, wherein the device (23) for heating a waste gas (3) comprises a heat exchanger surface (24) arranged in the waste heat boiler (4).
  3. District heating power plant (1) according to Claim 1, wherein the device (23) for heating a waste gas (3) comprises a supply (25) of ambient air (26) with a heat exchanger surface (27), arranged outside the waste heat boiler (4), for the heating of the ambient air (26).
  4. District heating power plant (1) according to Claim 3, wherein the primary side of the heat exchanger surface (24) is connected into a water line (29) which branches off from the outlet (30) of a district heating economizer (31), which is arranged in the waste heat boiler (4) upstream of the evaporator (7) in the flow direction of a waste gas (3), and opens into the inlet (32) of the district heating economizer (31) .
  5. District heating power plant (1) according to Claim 3, wherein the primary side of the heat exchanger surface (24) is connected into a district heating water line (15).
  6. District heating power plant (1) according to one of the preceding claims, wherein the district heating water line (15) conducts water during operation, which water is conducted from a district heating network (16) back into the district heating power plant (1).
  7. District heating power plant (1) according to one of the preceding claims, wherein a pump (17) is provided for conducting a condensate, which accumulates in the heating condenser (14), back into the water-steam circuit (12).
  8. District heating power plant (1) according to one of the preceding claims, wherein the driving medium inlet (11) is connected to a high-pressure steam line (18), a medium-pressure steam line (19) or a low-pressure steam line (35) of the water-steam circuit (12).
  9. District heating power plant (1) according to one of the preceding claims, wherein the evaporator (7) comprises heat exchanger tubes (20), and at least some of the last heat exchanger tubes (20) in the flow direction of a waste gas (3) have droplet catcher profiles (21).
  10. District heating power plant (1) according to one of the preceding claims, wherein the evaporator (7) comprises heat exchanger tubes (20) and adjacent boiler walls (22), which are produced, at least in part, from corrosion-resistant material.
EP15757461.7A 2014-08-27 2015-08-24 District heating power plant Active EP3129612B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15757461T PL3129612T3 (en) 2014-08-27 2015-08-24 District heating power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014217071 2014-08-27
PCT/EP2015/069320 WO2016030313A1 (en) 2014-08-27 2015-08-24 District heating power plant

Publications (2)

Publication Number Publication Date
EP3129612A1 EP3129612A1 (en) 2017-02-15
EP3129612B1 true EP3129612B1 (en) 2018-06-13

Family

ID=54056175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15757461.7A Active EP3129612B1 (en) 2014-08-27 2015-08-24 District heating power plant

Country Status (4)

Country Link
EP (1) EP3129612B1 (en)
KR (1) KR101902088B1 (en)
PL (1) PL3129612T3 (en)
WO (1) WO2016030313A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532957A1 (en) 1995-01-17 1996-07-18 Alice Schlattl Table for use in or on a bed, a couch or similar couch furniture
DE19702830C1 (en) * 1997-01-27 1998-05-14 Siemens Ag Combined gas and steam turbine plant
AU761481B2 (en) * 1998-10-23 2003-06-05 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine power generation equipment and air humidifying apparatus
EP2333256B1 (en) * 2009-12-08 2013-10-16 Alstom Technology Ltd Power plant with CO2 capture and method to operate such power plant
SE534557C2 (en) * 2010-01-19 2011-10-04 Euroturbine Ab Method of operation of a heating and power plant and heating and power plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3129612A1 (en) 2017-02-15
KR101902088B1 (en) 2018-09-27
PL3129612T3 (en) 2018-11-30
KR20160107315A (en) 2016-09-13
WO2016030313A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
DE202018103280U1 (en) Flue gas desulfurization system Heating
DE2204723A1 (en) Arrangement of cooling devices
DE2227435A1 (en) Process for vaporizing a flowing cryogenic medium
DE202013010117U1 (en) Heating systems with waste heat recovery
CH702602A2 (en) Gas turbine power augmentation system with inlet air cooling.
DE2648855A1 (en) Heat loss reduction unit for oil-fired boilers - uses absorption refrigerator with condenser and generator in flue gas flow
DE102010003676A1 (en) Separator for CO2 and power plant
DE10033052A1 (en) Procedure for operating a gas turbine system and gas turbine system for carrying out the method
AT510279B1 (en) METHOD FOR CONVERTING ENERGY
EP2907187B1 (en) Fuel cell system based on solid oxide fuel cells
DE755525C (en) Steam power plant with the release of steam for heating and cooking purposes
EP3129612B1 (en) District heating power plant
DE102012211862A1 (en) Process for the production of water from the exhaust gas stream of a gas turbine plant
DE102010013083A1 (en) Biomass power plant e.g. biomass steam power plant, for producing electrical power, has rear cooling circuit whose cooler is arranged at side wall and roof area of storage such that airflow arrives into interior part of storage
DE102012108992A1 (en) Method for operating air-cooled condensing system of steam turbine plant, involves determining that majority of steam pipe system of air-cooled condensing system contains external gas
AT512522B1 (en) humidifier
EP2559867A1 (en) Method for generating electrical energy with a combination power plant and combination power plant and device for carrying out the method
DE202017104879U1 (en) Heating system with jet lines
DE102013001652A1 (en) Processing device for combustion material in power plant, has heating element which is provided with heat exchange surface whose temperature is lower than temperature of return branch, and that is provided with thermal capacitor
CH526717A (en) Combined gas / steam power plant
EP2645461A1 (en) Cooling circuit for cooling an electrochemical cell and method for operating such a cooling circuit
EP3251514B1 (en) Multi-stage process for energy generation in systems and installation for carrying out the process
WO2014026832A1 (en) Gas and steam turbine system comprising a cooling tower
DE4301107C2 (en) Steam-heated heat exchanger for air preheating
DE102022210397A1 (en) Combined plant and method for operating a combined plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20161111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1008720

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015004700

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180613

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180913

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180914

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015004700

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180824

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

26N No opposition filed

Effective date: 20190314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180824

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150824

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200916

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20200819

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015004700

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201019

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1008720

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015004700

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210824

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301