EP3126292A1 - Mixed oxides and sulphides of bismuth and copper for photovoltaic use - Google Patents

Mixed oxides and sulphides of bismuth and copper for photovoltaic use

Info

Publication number
EP3126292A1
EP3126292A1 EP15713968.4A EP15713968A EP3126292A1 EP 3126292 A1 EP3126292 A1 EP 3126292A1 EP 15713968 A EP15713968 A EP 15713968A EP 3126292 A1 EP3126292 A1 EP 3126292A1
Authority
EP
European Patent Office
Prior art keywords
compound
formula
less
elements
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15713968.4A
Other languages
German (de)
French (fr)
Inventor
Thierry Le Mercier
Philippe Barboux
Tangui LE BAHERS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Rhodia Operations SAS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Rhodia Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Rhodia Operations SAS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3126292A1 publication Critical patent/EP3126292A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to the field of inorganic semiconductor compounds, in particular intended to provide a photocurrent, in particular by photovoltaic effect.
  • photovoltaic technologies using inorganic compounds are mainly based on silicon technologies (over 80% of the market) and on thin film technologies (mainly CdTe and CIGS (Copper Indium Gallium Selenium), representing 20% of the market).
  • CdTe and CIGS Copper Indium Gallium Selenium
  • CZTS Cu 2 ZnSnSe 4
  • the present invention proposes to use a new family of inorganic materials, whose inventors have now shown that, unexpectedly, they prove to have good efficiency, and that they have the advantage of not having to use, or at a very low level, rare or toxic metals of the type In, Te, Cd mentioned above, and furthermore offer the possibility of using anions, such as Se or Te, in a reduced content, even not to use this type of anions.
  • One of the objects of the present invention is a new material comprising at least one compound of formula (I):
  • M is a member or a mixture of elements selected from the group (A) consisting of Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, rare earths,
  • M ' is a member or a mixture of elements selected from the group (B) consisting of Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd,
  • x, y and z are numbers less than 1, in particular less than 0.6, especially less than 0.5, for example less than 0.2,
  • the elements M, M 'and M are generally substitution elements occupying respectively the place of the element Bi, of the element Cu and S element.
  • material comprising at least one compound of formula (I) is meant a solid, generally in divided form (powder, dispersion) or in the form of a coating or a continuous or discontinuous layer on a support, and which comprises, or even consists of, a compound of formula (I).
  • Ring earth means the elements of the group constituted by yttrium and scandium and the elements of the periodic classification of atomic number inclusive between 57 and 71.
  • the element M may preferably be chosen from Sb, Pb, Ba and rare earth elements.
  • the element M may for example be lutetium.
  • the element M ' may preferably be chosen from the elements Ag, Zn, Mn.
  • the element M ' may for example be the element Ag.
  • the element M can in particular be the element I.
  • the compound of formula (I) according to the invention corresponds to the following formula: Bi 1-x M x Cui - £ OS (l a), where x ⁇ 0, ⁇ is a number null or non-zero and M is an element or a mixture of elements selected from the group (A) consisting of Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, rare earths.
  • M is an element or a mixture of elements chosen from rare earths.
  • the compound of formula (I) according to the invention corresponds to the following formula: -Y- BiCui £ M 'y OS (l b), where y ⁇ 0, ⁇ is a number zero or non-zero and M 'is a member or a mixture of elements selected from the group (B) consisting of Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd.
  • M ' is an element or a mixture of elements chosen from the Ag and Zn elements.
  • the compound of formula (I) according to the invention corresponds to the following formula: M z BiCuOS "1-z (l c), where z ⁇ 0, ⁇ is a number zero or non-zero and M" is a halogen.
  • the invention also relates to different access routes to the material according to the invention.
  • the subject of the invention is a first process for preparing the material according to the invention comprising a step of solid grinding of a mixture comprising at least inorganic compounds of bismuth and copper, and optionally at least one oxide, sulfide, oxysulfide, halide or oxyhalide of at least one element selected from Bi and the elements of group (A) consisting of Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, the earths rare, and
  • group (B) consisting of Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd.
  • a solid form mixture comprising at least inorganic compounds of bismuth and copper is ground.
  • the inorganic compounds of bismuth and copper present in the mixture are at least the compounds Bi 2 O 3 , Bi 2 S 3 and Cu 2 S.
  • This grinding can be done according to any known means.
  • This mixture can in particular be placed in an agate mortar.
  • the grinding may for example be carried out with a planetary mill.
  • grinding balls which consist for example of stainless steel balls, special chromium steel balls, agate balls, tungsten carbide balls , balls made of zirconium oxide.
  • the grinding time can be adjusted according to the desired product. It may especially be between 20 minutes and 96 hours, in particular between 1 hour and 72 hours.
  • the particle sizes referred to here can typically be measured by scanning electron microscopy (SEM).
  • the subject of the invention is a second method for preparing the material according to the invention by carrying out a precipitation reaction comprising the following steps:
  • step (e) filtration, and washing if necessary, of the compound of formula (I) obtained at the end of step (d).
  • This method consists in carrying out a precipitation reaction by using soluble metal precursors in order to obtain a homogeneous mixture of the substitution elements in the material comprising the compound of formula (I).
  • the different precursor solutions are prepared separately and then mixed together, whereby a homogeneous mixture and submicron particle sizes are obtained.
  • the precipitation can be carried out by raising the temperature in particular to obtain a better crystallization.
  • a precipitation can be carried out as follows: (a) - (b) providing a solution of the soluble metal precursors.
  • a basic pH solution can be prepared in which:
  • the elements Bi and of the group (A) are stabilized by complexation with a highly complexing polycarboxylate anion such as citrate, lactate, tartrate ...
  • the copper is stabilized in the form of copper (I) by adding an excess of reducing agent (such as, for example, sodium thiosulfate, hydrazine, etc.),
  • reducing agent such as, for example, sodium thiosulfate, hydrazine, etc.
  • the copper and the elements of the group (B) can be kept soluble in basic medium either by the action of the basic pH (Al, Zn) or stabilized in basic medium by addition of ligands complexing the ion such as amine ligands (ammonia ethylene diamine, organic amine ).
  • the subject of the invention is a third method for preparing the material according to the invention, comprising the following steps:
  • a deagglomeration step can be carried out, for example, by means of an ultrasound probe.
  • the inorganic bismuth and copper compounds provided in the mixture of step (a ') are at least Bi 2 O 3 and Cu 2 O.
  • step (b') is advantageously carried out in the presence of a source of oxygen, such as water, nitrates or even carbonates.
  • the source of sulfur employed in step (a ') may be chosen from sulfur, hydrogen sulphide H 2 S and its salts, an organic sulfur compound (thiol, thioether, thioamide, etc.), preferably a anhydrous or hydrated sodium sulphide.
  • the oxides in the dispersed state are employed in step (a ') in the form of particles, typically in the form of powders, having a particle size of less than 10 ⁇ , in particular lower than at 5 ⁇ , preferably less than 1 ⁇ .
  • This particle size can for example be obtained by prior grinding of the oxides (separately, or more advantageously in the case of oxide mixtures, this grinding can be carried out on the oxide mixture), for example, using a Micronizer type device or wet ball mill.
  • step (b ') the dissolution is carried out in "hydrothermal conditions".
  • hydrothermal conditions in the sense of the present description is meant that the step is conducted at a temperature above 180 ° C under the saturated vapor pressure of water.
  • the temperature of step (b ') may be less than 240 ° C, or even less than 210 ° C, for example between 180 ° C and 200 ° C.
  • step (b ') can be carried out without preliminary grinding, in which case it is however preferable to carry out the step at a temperature greater than 240 ° C., preferably greater than 250 ° C.
  • step (b ') the mixture is placed in water at a temperature below the hydrothermal conditions (typically at a temperature at room temperature and under atmospheric pressure), then the temperature is slowly raised, advantageously at a rate of less than 10 ° C./min, for example between 0.5 and 5 ° C./min, typically 2.5 ° C./min, in typically operating in a closed environment (using a device such as a hydrothermal bomb, in particular a Parr bomb) until the operating temperature is reached.
  • a temperature below the hydrothermal conditions typically at a temperature at room temperature and under atmospheric pressure
  • the temperature is slowly raised, advantageously at a rate of less than 10 ° C./min, for example between 0.5 and 5 ° C./min, typically 2.5 ° C./min, in typically operating in a closed environment (using a device such as a hydrothermal bomb, in particular a Parr bomb) until the operating temperature is reached.
  • step (b ') the dissolution is specifically carried out with stirring.
  • This agitation can be carried out in particular by magnetic stirring, for example by placing the hydrothermal bomb, on a magnetic stirrer, the assembly being placed in a heating chamber (such as an oven).
  • the temperature is maintained at at least 190 ° C for at least 12 hours, for example for 48 hours, or even 7 days.
  • the solution obtained is, in step (c), typically reduced to an ambient temperature or more generally to a temperature of between 10 and 30 ° C. cooling, for example by decreasing the temperature by at least 1 ° C / min, preferably by a faster cooling, with a reduction typically of at least 3 ° C / min, for example from 3 to 5 ° C / min.
  • This type of cooling typically leads to particles having a length of between 50 nm and 5 ⁇ , typically between 100 nm and 1 ⁇ , and a thickness of 50 nm.
  • the material according to the invention is obtained by the first solid grinding process described above.
  • the present invention further relates to the use of a material comprising at least one compound of formula (I):
  • M is a member or a mixture of elements selected from the group (A) consisting of Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, rare earths,
  • M ' is an element or a mixture of elements selected from group (B) consisting of by Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd,
  • x, y and z are numbers less than 1, in particular less than 0.6, especially less than 0.5, for example less than 0.2,
  • the compound that is present in the semiconductor material is a substituted inorganic material, in particular of the p type.
  • substitutions such as the substitution of the element Bi by rare earths or by the element Sb or alternatively the substitution of the element Cu by the element Ag
  • these substitutions can, in particular by modifying the parameters and / or by changing the extension of the orbitals and their energy position, thus causing changes in the gap (valence band - conduction band).
  • the aliovalent substitutions modify the degree of oxidation of the element Cu.
  • the introduction of substituents in the structure of the semiconductor may, as the case may be, cause a reduction or an increase in the number of charge carriers.
  • the substituted materials may in particular have a higher conductivity, which induces an improved conduction capacity, compared to its unsubstituted form, or conversely a lower conductivity.
  • the inventors have now demonstrated that the materials corresponding to the above formula (I), in particular, when they are p-type, are capable of providing a photocurrent when they are irradiated under a wavelength greater than their gap (namely the generation of an electron-hole pair within the material under the effect of an incident photon of sufficient energy, the charged species formed (the electron and the "hole” (Ie the electron gap) being free to move to generate a current).
  • the inventors have now demonstrated that the materials of the invention prove to be suitable for ensuring a photovoltaic effect.
  • These compounds are placed close to each other in a manner known per se (ie in direct contact or at least at a sufficiently small distance to ensure the photovoltaic effect) to form a p-n type junction.
  • the electron-hole pairs created by light absorption are dissociated at the pn junction and the excited electrons can be conveyed by the n-type semiconductor towards the anode, the holes being led towards the cathode via the p-type semiconductor.
  • the photovoltaic effect is typically obtained by placing a material based on a semiconductor of formula (I) above, which is also specifically of the p type, in contact with a semiconductor n-type between two electrodes, in direct contact or optionally connected to at least one of the electrodes via an additional coating, for example a charge collection coating; and irradiating the photovoltaic device thus produced with adequate electromagnetic radiation, typically by the light of the solar spectrum.
  • a material based on a semiconductor of formula (I) above which is also specifically of the p type, in contact with a semiconductor n-type between two electrodes, in direct contact or optionally connected to at least one of the electrodes via an additional coating, for example a charge collection coating; and irradiating the photovoltaic device thus produced with adequate electromagnetic radiation, typically by the light of the solar spectrum.
  • an additional coating for example a charge collection coating
  • the present invention relates to photovoltaic devices comprising, between a hole-conducting material and an electron-conducting material, a layer based on a compound of formula (I) of type p and a layer based on an n-type semiconductor, where:
  • the layer based on the compound of formula (I) is in contact with the layer based on the n-type semiconductor; the layer based on the compound of formula (I) is close to the hole-conducting material;
  • the n-type semiconductor layer is in proximity to the electron conducting material.
  • the term "hole-conducting material” means a material which is capable of ensuring a flow of current between the p-type semiconductor and the electrical circuit.
  • the n-type semiconductor employed in the photovoltaic devices according to the invention may be chosen from any semiconductor which exhibits an electron acceptor character which is more marked than the compound of formula (I) or a compound promoting the evacuation of electrons.
  • the n-type semiconductor may be an oxide, for example ZnO, or TiO 2 , or a sulphide, for example ZnS.
  • the hole-conducting material used in the photovoltaic devices according to the invention may be, for example, a suitable metal, such as gold, tungsten, or molybdenum; or a metal deposited on a support, or in contact with an electrolyte, such as Pt / FTO (platinum deposited on fluorine-doped tin dioxide); or a conductive oxide such as ⁇ (tin-doped indium oxide), for example, deposited on glass; or a p-type conductive polymer.
  • a suitable metal such as gold, tungsten, or molybdenum
  • Pt / FTO platinum deposited
  • the hole-conducting material may comprise a hole-conducting material of the aforementioned type and a redox mediator, for example an electrolyte containing the ⁇ 2 / pair, in which case the hole-conducting material is typically Pt. / OTF.
  • the electron-conducting material may be, for example, FTO, or AZO (aluminum-doped zinc oxide), or an n-type semiconductor.
  • the holes generated at the p-n junction are extracted via the hole-conducting material and the electrons are extracted via the electron-conducting material of the aforementioned type.
  • the hole-conducting material and / or the electron-conducting material is at least one material. partially transparent that allows to pass the electromagnetic radiation used.
  • the at least partially transparent material is advantageously placed between the source of the incident electromagnetic radiation and the p-type semiconductor.
  • the hole-conducting material may for example be a material chosen from a metal or a conductive glass.
  • the electron-conducting material may be at least partially transparent, and is then chosen, for example, from FTO (fluorine-doped tin dioxide), or AZO (aluminum-doped zinc oxide), or a semiconductor.
  • FTO fluorine-doped tin dioxide
  • AZO aluminum-doped zinc oxide
  • n-type conductor n-type conductor.
  • the layer based on an n-type semiconductor which is in contact with the layer based on a compound of formula (I) of type p may also be at least partially transparent.
  • partially transparent material is meant here a material that passes at least part of the incident electromagnetic radiation, useful for providing the photocurrent, and which can be:
  • the compound of formula (I) employed according to the present invention is advantageously used in the form of isotropic or anisotropic objects having at least one dimension less than 50 ⁇ , preferably less than 20 ⁇ , typically less than 10 ⁇ , preferentially less than 5 ⁇ , generally less than 1 ⁇ , more preferably less than 500 nm, for example less than 200 nm, or even 100 nm.
  • the dimension less than 50 ⁇ can be:
  • the objects based on a compound of formula (I) are particles, typically having dimensions less than 10 ⁇ .
  • These particles are preferably obtained according to one of the preparation methods of the invention.
  • particles is meant here isotropic or anisotropic objects, which may be individual particles, or aggregates.
  • the particle sizes referred to herein can typically be measured by scanning electron microscopy (SEM).
  • the compound of formula (I) is in the form of platelet-type anisotropic particles, or agglomerates of a few tens to a few hundreds of particles of this type, these platelet-type particles typically having dimensions remaining less than 5 ⁇ . , (preferably less than 1 ⁇ , more preferably less than 500 nm), with a thickness which typically remains less than 500 nm, for example less than 100 nm.
  • Particles of the type described according to the first variant can typically be employed in the state deposited on an n-type conductive or semiconductor support.
  • a plate of ITO or metal covered with particles of formula (I) p type according to the invention can thus, for example play the role of a photoactive electrode for a photoelectrochemical device that can be used in particular as a photodetector.
  • a photoelectrochemical type device implementing a photoactive electrode of the aforementioned type comprises an electrolyte which is generally a salt solution, for example a KCl solution, typically having a concentration of the order of 1 M, in which are immersed:
  • the electrochemical device can comprise:
  • a reference electrode for example, an Ag / AgCl electrode
  • a counter-electrode for example, a platinum wire
  • these three electrodes being interconnected, typically by a potentiostat.
  • the electrolyte is an aqueous solution, which is most often the case, the water in the electrolyte is reduced to close to the photoactive electrode by the generated electrons, producing hydrogen and OH-ions ".
  • OH "ions so produced will migrate to the against-electrode via the electrolyte; and the holes of the compound of formula (I) will be extracted via the ITO conductor and will enter the external electrical circuit.
  • the oxidation of the OH " is carried out by means of the holes near the counter-electrode producing oxygen .
  • the setting in movement of these charges (holes and electrons), induced by the absorption of the light of the compound of formula (I) generates a photocurrent.
  • the device can in particular be used as a photodetector, the photocurrent being generated only when the device is illuminated.
  • a photoactive electrode as described above can in particular be carried out by employing a suspension comprising the particles of a compound of formula (I) of the aforementioned type dispersed in a solvent, and by depositing this suspension on a support, for example a glass plate covered with ITO or a metal plate, by the wet method or any coating method, for example, by drop-casting, centrifugation ("spin-coating” in English) ), dipping ("dip-coating” in English), inkjet or serigraphy.
  • a support for example a glass plate covered with ITO or a metal plate
  • the wet method or any coating method for example, by drop-casting, centrifugation ("spin-coating" in English) ), dipping ("dip-coating” in English), inkjet or serigraphy.
  • the particles based on a compound of formula (I) which are present in the suspension have an average diameter such as as measured by laser granulometry (for example, by means of a Malvern type laser particle size)
  • the particles of compound of formula (I) may be previously dispersed in a solvent, for example, terpineol or ethanol.
  • the suspension containing the particles of compound of formula (I) may be deposited on a support, for example a conductive oxide coated plate.
  • the compound of formula (I) is in the form of a continuous layer based on the compound of formula (I), the thickness of which is less than 50 ⁇ , preferably less than 20 ⁇ , more preferably less than 10 ⁇ , for example less than 5 ⁇ and typically greater than 500 nm.
  • continuous layer is meant here a homogeneous deposit made on a support and covering said support, not obtained by simply depositing a dispersion of particles on the support.
  • the continuous layer based on a p-type compound of formula (I) according to this particular variant of the invention is typically placed in the vicinity of a n-type semiconductor layer between a hole conductive material. and an electron conducting material for forming a photovoltaic device for providing a photovoltaic effect.
  • An n-type semiconductor in the use according to the invention may be a conductive oxide, for example ZnO, or TiO 2 , or a sulphide, for example ZnS.
  • layer based on the compound of formula (I) means a layer comprising the compound of formula (I), preferably at least 50% by weight, or even at least 75% by weight. % by mass.
  • the continuous layer according to the second variant consists essentially of the compound of formula (I), and typically comprises at least 95% by weight, or even at least 98% by weight, more preferably at least 99% by weight. by mass of the compound of formula (I).
  • the continuous layer based on a compound of formula (I) employed according to this embodiment can take several forms.
  • the continuous layer may in particular comprise a polymer matrix and, dispersed within this matrix, particles based on a compound of formula (I), typically of dimensions less than 10 ⁇ , or even less than 5 ⁇ , especially of the type of those used in the first embodiment of the invention.
  • a compound of formula (I) typically of dimensions less than 10 ⁇ , or even less than 5 ⁇ , especially of the type of those used in the first embodiment of the invention.
  • the polymer matrix comprises a p-type conductive polymer, which may especially be chosen from polythiophene derivatives, more particularly from poly (3,4-ethylenedioxythiophene) derivatives: poly (styrenesulfonate) (PEDOT: PSS).
  • polythiophene derivatives more particularly from poly (3,4-ethylenedioxythiophene) derivatives: poly (styrenesulfonate) (PEDOT: PSS).
  • the particles based on the compound of formula (I) present in the polymer matrix preferably have dimensions of less than 5 ⁇ , which can in particular be determined by SEM.
  • Figure 1 is a schematic sectional representation of a photoelectrochemical cell used in Example 4 described below;
  • FIG. 2 is a diagrammatic representation in section of a photodetector device
  • Figure 3 is a schematic sectional representation of a photovoltaic device
  • FIG. 4 is a schematic sectional representation of a photovoltaic device according to the invention, not exemplified.
  • a photoelectrochemical cell 10 which comprises:
  • a photoactive electrode 11 consisting of a support 12 based on a glass covered with a 2 cm ⁇ 1 cm ITO conductive layer on which a layer 13 of thickness of the entire surface has been deposited over the entire surface; 1 ⁇ m particle-based order 14 of a compound of formula (I) according to the invention, the particles 14 were previously dispersed in terpineol and then deposited by coating ("Doctor Blade Coating" in English) on the conductive glass plate 1 1.
  • the three electrodes 11, 15 and 16 are immersed in an electrolyte 17 of KCI at 1 M.
  • the three electrodes are connected by a potentiostat 18.
  • FIG. 2 a photodetector device 20 which comprises particles 21 of a compound of formula (I) according to the invention.
  • This device comprises a layer 22 FTO of thickness of the order of 500 nm on which is electrodeposited a layer 23 of thickness of order 1 ⁇ ZnO based.
  • the layer 24 with a thickness of the order of 1 ⁇ based on the particles 21 of a compound of formula (I) according to the invention is deposited on the surface of the layer 23 by depositing drops from a suspension of particles of a compound of formula (I) according to the invention at 25-30% by weight in ethanol.
  • FIG. 3 is shown the photovoltaic device 30 which comprises particles 31 of a compound of formula (I) according to the invention.
  • This device comprises a layer 32 FTO of thickness of the order of 500 nm on which is electrodeposited a layer 33 of thickness of order 1 ⁇ ZnO based.
  • the layer 34 of thickness of about 1 m based on the particles 31 of a compound of formula (I) according to the invention is deposited on the surface of the layer 33 by depositing the drops from a suspension of particles of formula (I) according to the invention at 25-30% by weight in ethanol.
  • FIG. 4 shows photovoltaic device 40 which comprises a layer 41 based on particles of a compound of formula (I) according to the invention deposited on a layer 42 based on ZnO by coating, layer 42 based on ZnO being prepared by the sol-gel deposition, the layer 41 being in contact with a layer 43 of gold and the layer 42 based on the ZnO being in contact with an FTO layer 44.
  • a compound of formula (I) according to the invention Contacting a compound of formula (I) according to the invention with a n-type ZnO semiconductor forms a pn junction.
  • the electrons generated go into the ZnO and the holes generated remain in the compound of formula (I) according to the invention.
  • ZnO is in contact with FTO (electron conductor) to extract the electrons and the compound of formula (I) according to the invention is in contact with gold (conductor holes) to extract the holes.
  • FTO electron conductor
  • gold conductor holes
  • a powder of BiCuo.sAgo.sOS was prepared by reactive grinding at room temperature, according to the following protocol:
  • the mortar is then covered and placed in a Fritsch No. 6 planetary mill with a rotation speed of the order of 500 rpm. The grinding is continued for 120 min until a pure phase is obtained.
  • a powder of BiCuOSo.slo.s was prepared by reactive grinding at room temperature, according to the following protocol:
  • a powder of BiCu 0.7 Zn 0.3 OS was prepared by reactive grinding at room temperature, according to the following protocol:
  • the mortar is then covered and placed in a Fritsch type planetary mill
  • the mixture is heated moderately (50 ° C) for four hours. A colorless solution is obtained. It is preferable to use closed containers to avoid the oxidation of copper (I).
  • the cation solution (Bi, Cu, Zn) is added to the Na 2 S solution. A black precipitate forms immediately. The solution is stirred at 90 ° C for four hours. It is then filtered, washed with distilled water and dried at 80 ° C. in an oven.
  • the device described in FIG. 1 was used, polarizing the working electrode at a potential of -0.8 V vs. Ag / AgCl.
  • the system is irradiated under an incandescent lamp (whose color temperature is 2700 K) alternating periods of darkness and periods of light.
  • the intensity of the current increased when the system was placed in the light. It is a photocurrent confirming the ability of each of the compounds Ci to C 3 to generate a photocurrent.
  • This photocurrent is cathodic (i.e., negative) which is consistent with the fact that each of these compounds C 1 to C 3 is a p-type semiconductor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Light Receiving Elements (AREA)

Abstract

The invention relates to a material comprising at least one compound having formula Bi1-xMxCu1-y-ɛM'yOS1-zM"z, the methods for producing said material and the use thereof as a semiconductor, such as for photovoltaic or photochemical use and, in particular, for supplying a photocurrent. The invention further relates to photovoltaic devices using said compounds.

Description

Oxydes et sulfures mixtes de bismuth et cuivre pour application  Oxides and mixed sulphides of bismuth and copper for application
photovoltaïque  photovoltaic
La présente invention a trait au domaine des composés inorganiques semiconducteurs, en particulier destinés à fournir un photocourant, notamment par effet photovoltaïque. The present invention relates to the field of inorganic semiconductor compounds, in particular intended to provide a photocurrent, in particular by photovoltaic effect.
De nos jours, les technologies photovoltaïques employant des composés inorganiques sont principalement fondées sur les technologies du silicium (plus de 80% du marché) et sur les technologies dites « couche mince » (principalement le CdTe et le CIGS (Cuivre Indium Gallium Sélénium), représentant 20% du marché). La croissance du marché du photovoltaïque semble exponentielle (40 GW cumulés en 2010, 67 GW cumulés en 201 1 ). Nowadays, photovoltaic technologies using inorganic compounds are mainly based on silicon technologies (over 80% of the market) and on thin film technologies (mainly CdTe and CIGS (Copper Indium Gallium Selenium), representing 20% of the market). The growth of the photovoltaic market seems exponential (40 GW cumulated in 2010, 67 GW cumulated in 201 1).
Malheureusement, ces technologies souffrent d'inconvénients limitant leur capacité à satisfaire ce marché grandissant. Ces inconvénients incluent une mauvaise flexibilité pour ce qui est du silicium d'un point de vue mécanique et d'installation, et la toxicité et la rareté des éléments pour les technologies « couche mince ». En particulier, le cadmium, le tellure et le sélénium sont toxiques. Par ailleurs, l'indium et le tellure sont rares, ce qui se répercute notamment sur leur coût. Unfortunately, these technologies suffer from disadvantages limiting their ability to satisfy this growing market. These disadvantages include poor flexibility in silicon from a mechanical and installation point of view, and toxicity and scarcity of elements for thin-film technologies. In particular, cadmium, tellurium and selenium are toxic. In addition, indium and tellurium are rare, which has a particular impact on their cost.
Pour ces raisons, on cherche à s'affranchir de la mise en œuvre de l'indium, du cadmium, du tellure et du sélénium ou à diminuer leur proportion. For these reasons, it seeks to overcome the implementation of indium, cadmium, tellurium and selenium or to reduce their proportion.
Une voie qui a été préconisée pour remplacer l'indium dans le CIGS est de le remplacer par le couple (Zn2+, Sn4+). Dans ce cadre, il a été notamment proposé le composé Cu2ZnSnSe4 (dit CZTS). Ce matériau est aujourd'hui considéré comme le plus sérieux successeur du CIGS en termes d'efficacité, mais qui présente l'inconvénient de toxicité du sélénium. One way that has been recommended to replace indium in the CIGS is to replace it with the couple (Zn 2+ , Sn 4+ ). In this context, the compound Cu 2 ZnSnSe 4 (referred to as CZTS) has been proposed in particular. This material is today considered the most serious successor of CIGS in terms of efficiency, but which has the disadvantage of toxicity of selenium.
Pour ce qui est du sélénium et du tellure, peu de solutions de substitution ont été proposées et elles s'avèrent généralement peu intéressantes. Les composés comme le SnS, le FeS2 et le Cu2S ont bien été testés mais, bien qu'ils aient des propriétés intrinsèques intéressantes (gap, conductivité...), ils ne s'avèrent pas assez stables chimiquement (ex : le Cu2S se transforme très facilement en Cu20 au contact de l'air et de l'humidité). With regard to selenium and tellurium, few alternatives have been proposed and they are generally not very interesting. Compounds such as SnS, FeS 2 and Cu 2 S have been well tested but, although they have intrinsic interesting (gap, conductivity ...), they do not prove sufficiently stable chemically (ex: Cu 2 S is very easily transformed into Cu 2 0 in contact with air and moisture).
A ce jour, à la connaissance des inventeurs, il n'a pas été publié de solution satisfaisante permettant d'obtenir une bonne efficacité photovoltaïque sans problèmes liés à la toxicité et/ou la rareté des éléments employés dans un système photovoltaïque.  To date, to the knowledge of the inventors, it has not been published satisfactory solution for obtaining good photovoltaic efficiency without problems related to the toxicity and / or scarcity of the elements used in a photovoltaic system.
Un but de la présente invention est justement de fournir des composés inorganiques alternatifs à ceux utilisés dans les technologies photovoltaïques actuelles, qui permettent d'éviter les problèmes précités. An object of the present invention is precisely to provide inorganic compounds alternative to those used in current photovoltaic technologies, which make it possible to avoid the aforementioned problems.
A cet effet, la présente invention propose d'utiliser une nouvelle famille de matériaux inorganiques, dont les inventeurs ont maintenant mis en évidence que, de façon inattendue, ils s'avèrent présenter une bonne efficacité, et qu'ils présentent l'avantage de ne pas avoir à utiliser, ou à une très faible teneur, des métaux rares ou toxiques du type In, Te, Cd précités, et offrent en outre la possibilité d'employer des anions, tels que Se ou Te, en une teneur réduite, voire de ne pas utiliser ce type d'anions. For this purpose, the present invention proposes to use a new family of inorganic materials, whose inventors have now shown that, unexpectedly, they prove to have good efficiency, and that they have the advantage of not having to use, or at a very low level, rare or toxic metals of the type In, Te, Cd mentioned above, and furthermore offer the possibility of using anions, such as Se or Te, in a reduced content, even not to use this type of anions.
L'un des objets de la présente invention est un nouveau matériau comprenant au moins un composé de formule (I) : One of the objects of the present invention is a new material comprising at least one compound of formula (I):
Bi1-xMxCui-y-£M'yOSi-zM"z (I) Bi 1-x M x Cui- y- £ M ' y OSi -z M " z (I)
dans lequel  in which
M est un élément ou un mélange d'éléments choisis dans le groupe (A) constitué par Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, les terres rares,  M is a member or a mixture of elements selected from the group (A) consisting of Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, rare earths,
M' est un élément ou un mélange d'éléments choisis dans le groupe (B) constitué par Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd,  M 'is a member or a mixture of elements selected from the group (B) consisting of Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd,
M" est un halogène,  M "is a halogen,
x, y et z sont des nombres inférieurs à 1 , en particulier inférieurs à 0,6, notamment inférieurs à 0,5, par exemple inférieurs à 0,2,  x, y and z are numbers less than 1, in particular less than 0.6, especially less than 0.5, for example less than 0.2,
avec au moins un des nombres x, y ou z non nul, et  with at least one of the numbers x, y or z not zero, and
0 < ε < 0,2.  0 <ε <0.2.
Lorsqu'ils sont présents, les éléments M, M' et M" sont généralement des éléments de substitution occupant respectivement la place de l'élément Bi, de l'élément Cu et de l'élément S. When they are present, the elements M, M 'and M "are generally substitution elements occupying respectively the place of the element Bi, of the element Cu and S element.
Par « matériau comprenant au moins un composé de formule (I) », on entend un solide, généralement sous forme divisée (poudre, dispersion) ou sous forme d'un revêtement ou d'une couche continue ou discontinue sur un support, et qui comprend, voire consiste en, un composé répondant à la formule (I). By "material comprising at least one compound of formula (I)" is meant a solid, generally in divided form (powder, dispersion) or in the form of a coating or a continuous or discontinuous layer on a support, and which comprises, or even consists of, a compound of formula (I).
Par « terre rare », on entend les éléments du groupe constitué par l'yttrium et le scandium et les éléments de la classification périodique de numéro atomique compris inclusivement entre 57 et 71 . "Rare earth" means the elements of the group constituted by yttrium and scandium and the elements of the periodic classification of atomic number inclusive between 57 and 71.
Selon l'invention, l'élément M peut de préférence être choisi parmi les éléments Sb, Pb, Ba et les terres rares. L'élément M peut par exemple être du lutécium. According to the invention, the element M may preferably be chosen from Sb, Pb, Ba and rare earth elements. The element M may for example be lutetium.
Selon l'invention, l'élément M' peut de préférence être choisi parmi les éléments Ag, Zn, Mn. L'élément M' peut par exemple être l'élément Ag.  According to the invention, the element M 'may preferably be chosen from the elements Ag, Zn, Mn. The element M 'may for example be the element Ag.
Selon l'invention, l'élément M" peut notamment être l'élément I.  According to the invention, the element M "can in particular be the element I.
Dans une première variante de l'invention, le composé de formule (I) selon l'invention répond à la formule suivante : Bi1-xMxCuiOS (la), où x≠ 0, ε est un nombre nul ou non nul et M est un élément ou un mélange d'éléments choisis dans le groupe (A) constitué par Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, les terres rares. In a first variant of the invention, the compound of formula (I) according to the invention corresponds to the following formula: Bi 1-x M x Cui - £ OS (l a), where x ≠ 0, ε is a number null or non-zero and M is an element or a mixture of elements selected from the group (A) consisting of Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, rare earths.
Selon un mode de réalisation de cette variante de l'invention, M est un élément ou un mélange d'éléments choisis parmi les terres rares.  According to one embodiment of this variant of the invention, M is an element or a mixture of elements chosen from rare earths.
Le composé peut alors par exemple répondre à la formule Bi1-xLuxCuOS où x≠ 0 et ε = 0. The compound may then for example satisfy the formula Bi 1 -x Lu x CuOS where x ≠ 0 and ε = 0.
Dans une deuxième variante de l'invention, le composé de formule (I) selon l'invention répond à la formule suivante : BiCui-y-£M'yOS (lb), où y≠ 0, ε est un nombre nul ou non nul et M' est un élément ou un mélange d'éléments choisis dans le groupe (B) constitué par Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd. In a second variant of the invention, the compound of formula (I) according to the invention corresponds to the following formula: -Y- BiCui £ M 'y OS (l b), where y ≠ 0, ε is a number zero or non-zero and M 'is a member or a mixture of elements selected from the group (B) consisting of Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd.
Selon un mode de réalisation de cette variante de l'invention, M' est un élément ou un mélange d'éléments choisis parmi les éléments Ag et Zn.  According to one embodiment of this variant of the invention, M 'is an element or a mixture of elements chosen from the Ag and Zn elements.
Le composé peut alors par exemple répondre à la formule BiCui-yAgyOS ou à la formule BiCui-yZnyOS où y≠ 0 et ε = 0. The compound may then for example have the formula BiCui- y Ag OS or formula BiCui- Zn y y OS y where y ≠ 0 and ε = 0.
Dans une troisième variante de l'invention, le composé de formule (I) selon l'invention répond à la formule suivante : BiCuOSzM"1-z (lc), où z≠ 0, ε est un nombre nul ou non nul et M" est un halogène. In a third variant of the invention, the compound of formula (I) according to the invention corresponds to the following formula: M z BiCuOS "1-z (l c), where z ≠ 0, ε is a number zero or non-zero and M" is a halogen.
Selon un mode de réalisation de cette variante de l'invention, M" est l'élément I, et le composé répond alors à la formule BiCuOSzli-z où z≠ 0 et ε = 0. According to one embodiment of this variant of the invention, M "is the element I, and the compound then responds to the formula BiCuOS z 1 -z where z ≠ 0 and ε = 0.
L'invention a également pour objet différentes voies d'accès au matériau selon l'invention. The invention also relates to different access routes to the material according to the invention.
Ainsi dans une première variante, l'invention a pour objet un premier procédé de préparation du matériau selon l'invention comprenant une étape de broyage solide d'un mélange comprenant au moins des composés inorganiques de bismuth et de cuivre, et éventuellement au moins un oxyde, sulfure, oxysulfure, halogénure ou oxyhalogénure d'au moins un élément choisi parmi Bi et les éléments du groupe (A) constitué par Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, les terres rares, et  Thus, in a first variant, the subject of the invention is a first process for preparing the material according to the invention comprising a step of solid grinding of a mixture comprising at least inorganic compounds of bismuth and copper, and optionally at least one oxide, sulfide, oxysulfide, halide or oxyhalide of at least one element selected from Bi and the elements of group (A) consisting of Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, the earths rare, and
éventuellement au moins un oxyde, sulfure, oxysulfure, halogénure ou oxyhalogénure d'au moins un élément choisi parmi Cu et les éléments du groupe (B) constitué par Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd.  optionally at least one oxide, sulfide, oxysulfide, halide or oxyhalide of at least one element selected from Cu and the elements of group (B) consisting of Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd.
Selon cette variante, on broie un mélange sous forme solide comprenant au moins des composés inorganiques de bismuth et de cuivre. De préférence, les composés inorganiques de bismuth et de cuivre présents dans le mélange sont au moins les composés Bi203, Bi2S3 et Cu2S. According to this variant, a solid form mixture comprising at least inorganic compounds of bismuth and copper is ground. Preferably, the inorganic compounds of bismuth and copper present in the mixture are at least the compounds Bi 2 O 3 , Bi 2 S 3 and Cu 2 S.
Ce broyage peut se faire selon tout moyen connu en soi. Ce mélange peut notamment être placé dans un mortier en agate. Le broyage peut par exemple être réalisé avec un broyeur planétaire.  This grinding can be done according to any known means. This mixture can in particular be placed in an agate mortar. The grinding may for example be carried out with a planetary mill.
Pour faciliter le broyage, il est possible d'ajouter au mélange sous forme solide des billes de broyage qui consistent par exemple en des billes en acier inoxydable, des billes en acier spécial au chrome, des billes en agate, des billes en carbure de tungstène, des billes en oxyde de zirconium.  To facilitate the grinding, it is possible to add to the mixture in solid form grinding balls which consist for example of stainless steel balls, special chromium steel balls, agate balls, tungsten carbide balls , balls made of zirconium oxide.
Le temps de broyage peut être ajusté selon le produit recherché. Il peut notamment être compris entre 20 minutes et 96 heures, notamment entre 1 heure et 72 heures.  The grinding time can be adjusted according to the desired product. It may especially be between 20 minutes and 96 hours, in particular between 1 hour and 72 hours.
Les composés inorganiques de bismuth et de cuivre dans le mélange peuvent se présenter sous la forme de particules présentant une granulométrie inférieure à 50 μηη, en particulier inférieure à 10 μηη, par exemple inférieure à 1 μηη.  The inorganic compounds of bismuth and copper in the mixture may be in the form of particles having a particle size less than 50 μηη, in particular less than 10 μηη, for example less than 1 μηη.
Les dimensions de particules auxquelles il est fait référence ici peuvent typiquement être mesurées par microscopie électronique à balayage (MEB). The particle sizes referred to here can typically be measured by scanning electron microscopy (SEM).
Dans une deuxième variante, l'invention a pour objet un deuxième procédé de préparation du matériau selon l'invention en réalisant une réaction de précipitation comprenant les étapes suivantes : In a second variant, the subject of the invention is a second method for preparing the material according to the invention by carrying out a precipitation reaction comprising the following steps:
(a) préparation d'au moins une solution comprenant des précurseurs métalliques sous forme d'au moins un sel des composés inorganiques de bismuth, et éventuellement d'au moins un oxyde, sulfure, oxysulfure, halogénure ou oxyhalogénure d'au moins un élément choisi parmi Bi et les éléments du groupe (A) constitué par Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, les terres rares, et  (a) preparing at least one solution comprising metal precursors in the form of at least one salt of the inorganic bismuth compounds, and optionally at least one oxide, sulfide, oxysulfide, halide or oxyhalide of at least one element selected from Bi and the elements of group (A) consisting of Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, rare earths, and
(b) préparation d'au moins une solution comprenant des précurseurs métalliques sous forme d'au moins un sel des composés inorganiques de cuivre, et  (b) preparing at least one solution comprising metal precursors in the form of at least one salt of the inorganic copper compounds, and
éventuellement d'au moins un oxyde, sulfure, oxysulfure, halogénure ou oxyhalogénure d'au moins un élément choisi parmi Cu et les éléments du groupe (B) constitué par Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd, et,  optionally at least one oxide, sulfide, oxysulfide, halide or oxyhalide of at least one element selected from Cu and the elements of group (B) consisting of Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd, and
(c) éventuellement préparation d'au moins une solution comprenant une source de soufre,  (c) optionally preparing at least one solution comprising a source of sulfur,
(d) précipitation par mélanges des solutions obtenues à l'issue des étapes (a), (b) et éventuellement (c),  (d) mixing precipitation of the solutions obtained at the end of steps (a), (b) and optionally (c),
(e) filtration, et lavage si nécessaire, du composé de formule (I) obtenu à l'issue de l'étape (d).  (e) filtration, and washing if necessary, of the compound of formula (I) obtained at the end of step (d).
Ce procédé consiste à réaliser une réaction de précipitation en mettant en œuvre des précurseurs métalliques solubles afin d'obtenir un mélange homogène des éléments de substitution dans le matériau comprenant le composé de formule (I). This method consists in carrying out a precipitation reaction by using soluble metal precursors in order to obtain a homogeneous mixture of the substitution elements in the material comprising the compound of formula (I).
Les différentes solutions de précurseurs sont préparées séparément, puis mélangées entre elles, ce par quoi l'on obtient un mélange homogène et des tailles de particules submicroniques.  The different precursor solutions are prepared separately and then mixed together, whereby a homogeneous mixture and submicron particle sizes are obtained.
Dans certain cas, la précipitation peut être effectuée en élevant la température notamment pour obtenir une meilleure cristallisation.  In certain cases, the precipitation can be carried out by raising the temperature in particular to obtain a better crystallization.
A titre illustratif, une telle précipitation peut être réalisée de la façon suivante : (a)-(b) fourniture d'une solution des précurseurs métalliques solubles. On peut par exemple préparer une solution à pH basique dans laquelle :  As an illustration, such a precipitation can be carried out as follows: (a) - (b) providing a solution of the soluble metal precursors. For example, a basic pH solution can be prepared in which:
les éléments Bi et du groupe (A) sont stabilisés par complexation avec un anion polycarboxylate fortement complexant comme un citrate, lactate, tartrate... the elements Bi and of the group (A) are stabilized by complexation with a highly complexing polycarboxylate anion such as citrate, lactate, tartrate ...
le cuivre est stabilisé sous forme de cuivre (I) par addition d'un excès d'agent réducteur (tel que par exemple du thiosulfate de sodium, de l'hydrazine ...),  the copper is stabilized in the form of copper (I) by adding an excess of reducing agent (such as, for example, sodium thiosulfate, hydrazine, etc.),
le cuivre et les éléments du groupe (B) peuvent être maintenus solubles en milieu basique soit par l'action du pH basique (Al, Zn) soit stabilisés en milieu basique par addition de ligands complexant l'ion tels que des ligands aminés (ammoniaque, ethylène diamine, aminé organique ...).  the copper and the elements of the group (B) can be kept soluble in basic medium either by the action of the basic pH (Al, Zn) or stabilized in basic medium by addition of ligands complexing the ion such as amine ligands (ammonia ethylene diamine, organic amine ...).
(c) fourniture d'une solution comprenant une source de soufre, par exemple des ions sulfures  (c) providing a solution comprising a source of sulfur, for example sulphide ions
(d) mélange des solutions obtenues à l'issue des étapes (a) et (b) avec la solution obtenue à l'issue de l'étape (c). La vitesse de mélange et la température du mélange peuvent être ajustées pour contrôler la morphologie ou la taille des particules solides obtenues.  (d) mixing the solutions obtained at the end of steps (a) and (b) with the solution obtained at the end of step (c). The mixing speed and the temperature of the mixture can be adjusted to control the morphology or size of the solid particles obtained.
(e) chauffage et agitation pendant un temps suffisant pour obtenir la cristallisation du composé souhaité. Le composé est ensuite filtré et lavé pour éliminer les ions non retenus dans la composition solide, puis il est séché à l'étuve.  (e) heating and stirring for a time sufficient to obtain crystallization of the desired compound. The compound is then filtered and washed to remove non-retained ions in the solid composition and is then oven-dried.
Dans une troisième variante, l'invention a pour objet un troisième procédé de préparation du matériau selon l'invention comprenant les étapes suivantes : In a third variant, the subject of the invention is a third method for preparing the material according to the invention, comprising the following steps:
(a') fourniture d'un mélange comprenant au moins, à l'état dispersé, des composés inorganiques de bismuth et de cuivre et,  (a ') providing a mixture comprising at least, in the dispersed state, inorganic compounds of bismuth and copper and,
éventuellement au moins un oxyde, sulfure, oxysulfure, halogénure ou oxyhalogénure d'au moins un élément choisi parmi Bi et les éléments du groupe (A) constitué par Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, les terres rares, et  optionally at least one oxide, sulfide, oxysulfide, halide or oxyhalide of at least one element selected from Bi and the elements of group (A) consisting of Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, rare earths, and
éventuellement au moins un oxyde, sulfure, oxysulfure, halogénure ou oxyhalogénure d'au moins un élément choisi parmi Cu et les éléments du groupe (B) constitué par Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd, et,  optionally at least one oxide, sulfide, oxysulfide, halide or oxyhalide of at least one element selected from Cu and the elements of group (B) consisting of Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd, and,
éventuellement une source de soufre,  possibly a source of sulfur,
(b') dissolution du mélange dans l'eau ou un milieu aqueux dans des conditions hydrothermales et de préférence sous agitation, et  (b ') dissolving the mixture in water or an aqueous medium under hydrothermal conditions and preferably with stirring, and
(c') refroidissement de la solution obtenue, ce par quoi l'on obtient des particules du composé de formule (I) Bi1-xMxCui-y-£M'yOSi-zM"z, où x, y, z, ε ont les définitions précitées. Le milieu aqueux employé dans l'étape (b') peut notamment être un solvant, par exemple, un mélange d'éthylène glycol ou un liquide ionique à reflux. (c ') cooling the solution obtained, whereby the particles are obtained of the compound of formula (I) Bi 1-x M x-y- Cui £ M' y M z OSi "z, wherein x, y, z, ε are as defined above. The aqueous medium used in step (b ') can in particular be a solvent, for example a mixture of ethylene glycol or a refluxing ionic liquid.
Il peut être réalisé, à l'issue de l'étape (c'), une étape de désagglomération, par exemple, au moyen d'une sonde à ultra-sons.  At the end of step (c '), a deagglomeration step can be carried out, for example, by means of an ultrasound probe.
De préférence, les composés inorganiques de bismuth et de cuivre fournis dans le mélange de l'étape (a') sont au moins Bi203 et Cu20. Selon un autre mode de réalisation possible, on peut employer des sels solubles de bismuth et de cuivre. Notamment, en cas d'absence d'oxyde des composés inorganiques dans l'étape (a'), l'étape (b') est avantageusement conduite en présence d'une source d'oxygène, telle que l'eau, des nitrates ou encore des carbonates. Preferably, the inorganic bismuth and copper compounds provided in the mixture of step (a ') are at least Bi 2 O 3 and Cu 2 O. According to another possible embodiment, it is possible to use soluble salts of bismuth and copper. In particular, in the absence of oxide of the inorganic compounds in step (a '), step (b') is advantageously carried out in the presence of a source of oxygen, such as water, nitrates or even carbonates.
La source de soufre employée dans l'étape (a') peut être choisie parmi le soufre, le sulfure d'hydrogène H2S et ses sels, un composé organique soufré (thiol, thioéther, thioamide...), de préférence un sulfure de sodium anhydre ou hydraté. The source of sulfur employed in step (a ') may be chosen from sulfur, hydrogen sulphide H 2 S and its salts, an organic sulfur compound (thiol, thioether, thioamide, etc.), preferably a anhydrous or hydrated sodium sulphide.
Préférentiellement, quelle que soit leur nature exacte, les oxydes à l'état dispersé sont employé dans l'étape (a') sous la forme de particules, typiquement sous la forme de poudres, ayant une granulométrie inférieure à 10 μηη, en particulier inférieure à 5 μηη, préférentiellement inférieure à 1 μηη. Cette granulométrie peut par exemple être obtenue par broyage préalable des oxydes (séparément, ou plus avantageusement dans le cas de mélanges d'oxydes, ce broyage peut être effectué sur le mélange d'oxydes), par exemple, à l'aide d'un dispositif de type microniseur ou broyeur humide à billes. Preferably, irrespective of their exact nature, the oxides in the dispersed state are employed in step (a ') in the form of particles, typically in the form of powders, having a particle size of less than 10 μηη, in particular lower than at 5 μηη, preferably less than 1 μηη. This particle size can for example be obtained by prior grinding of the oxides (separately, or more advantageously in the case of oxide mixtures, this grinding can be carried out on the oxide mixture), for example, using a Micronizer type device or wet ball mill.
Dans l'étape (b'), la dissolution est opérée dans des « conditions hydrothermales ». On entend par conditions hydrothermales au sens de la présente description que l'étape est conduite à une température supérieure à 180 °C sous la pression de vapeur saturante de l'eau. In step (b '), the dissolution is carried out in "hydrothermal conditions". By hydrothermal conditions in the sense of the present description is meant that the step is conducted at a temperature above 180 ° C under the saturated vapor pressure of water.
Lorsqu'on effectue un broyage, la température de l'étape (b') peut être inférieure à 240 °C, voire inférieure à 210 °C, par exemple entre 180 °C et 200 °C.  When grinding is carried out, the temperature of step (b ') may be less than 240 ° C, or even less than 210 ° C, for example between 180 ° C and 200 ° C.
Alternativement, on peut effectuer l'étape (b') sans broyage préalable, auquel cas il est cependant préférable de conduire l'étape à une température supérieure à 240 °C, de préférence supérieure à 250 °C.  Alternatively, step (b ') can be carried out without preliminary grinding, in which case it is however preferable to carry out the step at a temperature greater than 240 ° C., preferably greater than 250 ° C.
De préférence, dans l'étape (b'), on place le mélange dans l'eau à une température inférieure aux conditions hydrothermales (typiquement à une température ambiante et sous pression atmosphérique), puis on monte lentement la température, avantageusement à raison de moins de 10 °C/min, par exemple entre 0,5 et 5 °C/min, typiquement de 2,5 °C/min, en opérant typiquement en milieu fermé (en employant un dispositif de type bombe hydrothermale, notamment bombe Parr) jusqu'à atteindre la température d'opération. Preferably, in step (b '), the mixture is placed in water at a temperature below the hydrothermal conditions (typically at a temperature at room temperature and under atmospheric pressure), then the temperature is slowly raised, advantageously at a rate of less than 10 ° C./min, for example between 0.5 and 5 ° C./min, typically 2.5 ° C./min, in typically operating in a closed environment (using a device such as a hydrothermal bomb, in particular a Parr bomb) until the operating temperature is reached.
Dans l'étape (b'), la dissolution est spécifiquement effectuée sous agitation. Cette agitation peut être notamment réalisée par une agitation magnétique, par exemple en plaçant la bombe hydrothermale, sur un agitateur magnétique, l'ensemble étant placé dans une enceinte chauffante (telle une étuve).  In step (b '), the dissolution is specifically carried out with stirring. This agitation can be carried out in particular by magnetic stirring, for example by placing the hydrothermal bomb, on a magnetic stirrer, the assembly being placed in a heating chamber (such as an oven).
L'étape (b') est conduite pendant une durée suffisante pour obtenir la dissolution. Step (b ') is conducted for a time sufficient to obtain dissolution.
Typiquement, la température est maintenue à au moins 190 °C pendant au moins 12 heures, par exemple pendant 48 heures, voire 7 jours. Typically, the temperature is maintained at at least 190 ° C for at least 12 hours, for example for 48 hours, or even 7 days.
A l'issue de la dissolution opérée dans l'étape (b'), la solution obtenue est, dans l'étape (c), typiquement ramenée à une température ambiante ou plus généralement à une température comprise entre 10 et 30 °C par un refroidissement, par exemple en diminuant la température à raison d'au moins 1 °C/min, de préférence par un refroidissement plus rapide, avec une diminution typiquement d'au moins 3 °C/min, par exemple de 3 à 5 °C/min. Ce type de refroidissement conduit typiquement à des particules ayant une longueur comprise entre 50 nm et 5 μηη, typiquement entre 100 nm et 1 μηη, et une épaisseur de 50 nm. Par ailleurs, sans vouloir être lié à une théorie particulière, les vitesses de refroidissement élevées précitées conduisent en général à de très faibles taux d'impuretés (Cu2S, Bi203 et Cu2BiS3 notamment). De manière avantageuse, le matériau selon l'invention est obtenu par le premier procédé par broyage solide exposé ci-dessus. At the end of the dissolution carried out in step (b '), the solution obtained is, in step (c), typically reduced to an ambient temperature or more generally to a temperature of between 10 and 30 ° C. cooling, for example by decreasing the temperature by at least 1 ° C / min, preferably by a faster cooling, with a reduction typically of at least 3 ° C / min, for example from 3 to 5 ° C / min. This type of cooling typically leads to particles having a length of between 50 nm and 5 μηη, typically between 100 nm and 1 μηη, and a thickness of 50 nm. Moreover, without wishing to be bound to a particular theory, the aforementioned high cooling rates generally lead to very low levels of impurities (Cu 2 S, Bi 2 O 3 and Cu 2 BiS 3 in particular). Advantageously, the material according to the invention is obtained by the first solid grinding process described above.
La présente invention a en outre pour objet l'utilisation d'un matériau comprenant au moins d'un composé de formule (I) : The present invention further relates to the use of a material comprising at least one compound of formula (I):
Bi1-xMxCui-y-£M'yOSi-zM"z (I) Bi 1-x M x Cui- y- £ M ' y OSi -z M " z (I)
dans lequel  in which
M est un élément ou un mélange d'éléments choisis dans le groupe (A) constitué par Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, les terres rares,  M is a member or a mixture of elements selected from the group (A) consisting of Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, rare earths,
M' est un élément ou un mélange d'éléments choisis dans le groupe (B) constitué par Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd, M 'is an element or a mixture of elements selected from group (B) consisting of by Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd,
M" est un halogène,  M "is a halogen,
x, y et z sont des nombres inférieurs à 1 , en particulier inférieurs à 0,6, notamment inférieurs à 0,5, par exemple inférieurs à 0,2,  x, y and z are numbers less than 1, in particular less than 0.6, especially less than 0.5, for example less than 0.2,
avec au moins un des nombres x, y et z non nul, et  with at least one of the numbers x, y and z not zero, and
0 < ε <0,2  0 <ε <0.2
à titre de semi-conducteur, notamment pour application photoélectrochimique ou photochimique, en particulier pour fournir un photocourant. Ce qui est indiqué dans l'exposé ci-dessus, notamment au sujet des éléments M, as a semiconductor, in particular for photoelectrochemical or photochemical application, in particular to provide a photocurrent. What is stated in the above discussion, especially concerning the M elements,
M' et M" s'applique à la présente utilisation selon l'invention. M 'and M "apply to the present use according to the invention.
Le composé qui est présent dans le matériau semi-conducteur est un matériau inorganique substitué, notamment du type p. The compound that is present in the semiconductor material is a substituted inorganic material, in particular of the p type.
Les substitutions chimiques du bismuth, du cuivre et/ou du soufre peuvent avoir plusieurs rôles. Chemical substitutions of bismuth, copper and / or sulfur may have several roles.
Dans le cas de substitutions isoélectroniques telles que la substitution de l'élément Bi par des terres rares ou par l'élément Sb ou bien encore la substitution de l'élément Cu par l'élément Ag, ces substitutions peuvent, notamment en modifiant les paramètres de maille et/ou en modifiant l'extension des orbitales et leur position énergétique, ainsi entraîner des modifications du gap (bande de valence - bande de conduction).  In the case of isoelectronic substitutions such as the substitution of the element Bi by rare earths or by the element Sb or alternatively the substitution of the element Cu by the element Ag, these substitutions can, in particular by modifying the parameters and / or by changing the extension of the orbitals and their energy position, thus causing changes in the gap (valence band - conduction band).
Les substitutions aliovalentes modifient quant à elles le degré d'oxydation de l'élément Cu.  The aliovalent substitutions modify the degree of oxidation of the element Cu.
L'introduction de substituants dans la structure du semi-conducteur peut, selon le cas, entraîner une réduction ou une augmentation du nombre de porteurs de charges. Les matériaux substitués peuvent notamment présenter une conductivité plus élevée, qui induit une capacité de conduction améliorée, par rapport à sa forme non substituée, ou au contraire une conductivité plus faible. The introduction of substituents in the structure of the semiconductor may, as the case may be, cause a reduction or an increase in the number of charge carriers. The substituted materials may in particular have a higher conductivity, which induces an improved conduction capacity, compared to its unsubstituted form, or conversely a lower conductivity.
Dans le cadre de la présente invention, les inventeurs ont maintenant mis en évidence que les matériaux répondant à la formule (I) précitée, en particulier, lorsqu'ils sont de type p, sont capables de fournir un photocourant lorsqu'ils sont irradiés sous une longueur d'onde supérieure à leur gap (à savoir la génération d'une paire électron-trou au sein du matériau sous l'effet d'un photon incident d'énergie suffisante, les espèces chargées formées (l'électron et le « trou », à savoir la lacune d'électron) étant libres de se déplacer pour engendrer un courant). In the context of the present invention, the inventors have now demonstrated that the materials corresponding to the above formula (I), in particular, when they are p-type, are capable of providing a photocurrent when they are irradiated under a wavelength greater than their gap (namely the generation of an electron-hole pair within the material under the effect of an incident photon of sufficient energy, the charged species formed (the electron and the "hole" (Ie the electron gap) being free to move to generate a current).
En particulier, les inventeurs ont maintenant mis en évidence que les matériaux de l'invention s'avèrent propres à assurer un effet photovoltaïque. In particular, the inventors have now demonstrated that the materials of the invention prove to be suitable for ensuring a photovoltaic effect.
De façon générale, un effet photovoltaïque est obtenu par mise en œuvre conjointe de deux composés semi-conducteurs de type distincts, à savoir :  In general, a photovoltaic effect is obtained by the joint implementation of two different type of semiconductor compounds, namely:
- un premier composé présentant un caractère semi-conducteur de type p ; et  a first compound having a p-type semiconductor character; and
un deuxième composé présentant un caractère semi-conducteur de type n.  a second compound having an n-type semiconductor character.
Ces composés sont placés à proximité l'un de l'autre de façon connue en soi (à savoir en contact direct ou tout au moins à une distance suffisamment faible pour assurer l'effet photovoltaïque) pour former une jonction de type p-n. Les paires électron-trou créées par absorption de lumière sont dissociées au niveau de la jonction p-n et les électrons excités peuvent être véhiculés par le semi-conducteur de type n vers l'anode, les trous étant quant à eux conduits vers la cathode via le semi-conducteur de type p. These compounds are placed close to each other in a manner known per se (ie in direct contact or at least at a sufficiently small distance to ensure the photovoltaic effect) to form a p-n type junction. The electron-hole pairs created by light absorption are dissociated at the pn junction and the excited electrons can be conveyed by the n-type semiconductor towards the anode, the holes being led towards the cathode via the p-type semiconductor.
Dans le cadre de l'invention, l'effet photovoltaïque est typiquement obtenu en plaçant un matériau à base d'un semi-conducteur de formule (I) précitée, qui est en outre spécifiquement de type p, en contact avec un semi-conducteur de type n entre deux électrodes, en contact direct ou éventuellement connectés au moins à une des électrodes par l'intermédiaire d'un revêtement supplémentaire, par exemple un revêtement collecteur de charge ; et en irradiant le dispositif photovoltaïque ainsi réalisée par un rayonnement électromagnétique adéquat, typiquement par la lumière du spectre solaire. Pour ce faire, il est préférable qu'une des électrodes laisse passer le rayonnement électromagnétique employé. In the context of the invention, the photovoltaic effect is typically obtained by placing a material based on a semiconductor of formula (I) above, which is also specifically of the p type, in contact with a semiconductor n-type between two electrodes, in direct contact or optionally connected to at least one of the electrodes via an additional coating, for example a charge collection coating; and irradiating the photovoltaic device thus produced with adequate electromagnetic radiation, typically by the light of the solar spectrum. To do this, it is preferable that one of the electrodes passes the electromagnetic radiation used.
Selon un autre aspect particulier, la présente invention a pour objet les dispositifs photovoltaïques comprenant, entre un matériau conducteur de trous et un matériau conducteur d'électrons, une couche à base d'un composé de formule (I) de type p et une couche à base d'un semi-conducteur de type n, où : According to another particular aspect, the present invention relates to photovoltaic devices comprising, between a hole-conducting material and an electron-conducting material, a layer based on a compound of formula (I) of type p and a layer based on an n-type semiconductor, where:
la couche à base du composé de formule (I) est en contact avec la couche à base du semi-conducteur de type n ; la couche à base du composé de formule (I) est à proximité du matériau conducteur de trous ; et the layer based on the compound of formula (I) is in contact with the layer based on the n-type semiconductor; the layer based on the compound of formula (I) is close to the hole-conducting material; and
la couche à base du semi-conducteur de type n est à proximité du matériau conducteur d'électrons.  the n-type semiconductor layer is in proximity to the electron conducting material.
Par « matériau conducteur de trous » au sens de la présente description, on entend un matériau qui est capable d'assurer une circulation du courant entre le semiconducteur de type p et le circuit électrique. Le semi-conducteur de type n employé dans les dispositifs photovoltaïques selon l'invention peut être choisi parmi tout semi-conducteur qui présente un caractère accepteur d'électrons plus marqué que le composé de formule (I) ou un composé favorisant l'évacuation des électrons. De préférence, le semi-conducteur de type n peut être un oxyde, par exemple ZnO, ou Ti02, ou un sulfure, par exemple ZnS. For the purposes of the present description, the term "hole-conducting material" means a material which is capable of ensuring a flow of current between the p-type semiconductor and the electrical circuit. The n-type semiconductor employed in the photovoltaic devices according to the invention may be chosen from any semiconductor which exhibits an electron acceptor character which is more marked than the compound of formula (I) or a compound promoting the evacuation of electrons. Preferably, the n-type semiconductor may be an oxide, for example ZnO, or TiO 2 , or a sulphide, for example ZnS.
Le matériau conducteur de trous employé dans les dispositifs photovoltaïques selon l'invention peut être par exemple un métal adapté, comme l'or, le tungstène, ou le molybdène ; ou un métal déposé sur un support, ou en contact avec un électrolyte, tel que Pt/FTO (platine déposé sur du dioxyde d'étain dopé au fluor) ; ou un oxyde conducteur comme de ΓΙΤΟ (oxyde d'indium dopé étain), par exemple, déposé sur du verre ; ou un polymère conducteur de type p. The hole-conducting material used in the photovoltaic devices according to the invention may be, for example, a suitable metal, such as gold, tungsten, or molybdenum; or a metal deposited on a support, or in contact with an electrolyte, such as Pt / FTO (platinum deposited on fluorine-doped tin dioxide); or a conductive oxide such as ΓΙΤΟ (tin-doped indium oxide), for example, deposited on glass; or a p-type conductive polymer.
Selon un mode de réalisation particulier, le matériau conducteur de trous peut comprendre un matériau conducteur de trous du type précité et un médiateur rédox, par exemple un électrolyte contenant le couple Ι2/ , dans quel cas, le matériau conducteur de trous est typiquement Pt/FTO. According to a particular embodiment, the hole-conducting material may comprise a hole-conducting material of the aforementioned type and a redox mediator, for example an electrolyte containing the Ι 2 / pair, in which case the hole-conducting material is typically Pt. / OTF.
Le matériau conducteur d'électrons peut être, par exemple FTO, ou AZO (oxyde de zinc dopé aluminium), ou un semi-conducteur de type n.  The electron-conducting material may be, for example, FTO, or AZO (aluminum-doped zinc oxide), or an n-type semiconductor.
Dans un dispositif photovoltaïque selon l'invention, les trous générés à la jonction p-n sont extraits via le matériau conducteur de trous et les électrons sont extraits via le matériau conducteur d'électrons du type précités. In a photovoltaic device according to the invention, the holes generated at the p-n junction are extracted via the hole-conducting material and the electrons are extracted via the electron-conducting material of the aforementioned type.
Dans un dispositif photovoltaïque selon l'invention, il est préférable que le matériau conducteur de trous et/ou le matériau conducteur d'électrons soit un matériau au moins partiellement transparent qui permet de laisser passer le rayonnement électromagnétique employé. Dans ce cas, le matériau au moins partiellement transparent est avantageusement placé entre la source du rayonnement électromagnétique incident et le semi-conducteur de type p. In a photovoltaic device according to the invention, it is preferable that the hole-conducting material and / or the electron-conducting material is at least one material. partially transparent that allows to pass the electromagnetic radiation used. In this case, the at least partially transparent material is advantageously placed between the source of the incident electromagnetic radiation and the p-type semiconductor.
A cet effet, le matériau conducteur de trous peut par exemple être un matériau choisi parmi un métal ou un verre conducteur.  For this purpose, the hole-conducting material may for example be a material chosen from a metal or a conductive glass.
Alternativement ou conjointement, le matériau conducteur d'électrons peut être au moins partiellement transparent, et on le choisit alors par exemple parmi FTO (dioxyde d'étain dopé au fluor), ou AZO (oxyde de zinc dopé aluminium), ou un semi-conducteur de type n.  Alternatively or jointly, the electron-conducting material may be at least partially transparent, and is then chosen, for example, from FTO (fluorine-doped tin dioxide), or AZO (aluminum-doped zinc oxide), or a semiconductor. n-type conductor.
Selon un autre mode de réalisation intéressant, la couche à base d'un semiconducteur de type n qui est en contact avec la couche à base d'un composé de formule (I) de type p peut en outre être au moins partiellement transparente. Par « matériau partiellement transparent », on entend ici un matériau qui laisse passer une partie au moins du rayonnement électromagnétique incident, utile pour fournir le photocourant, et qui peut être :  According to another advantageous embodiment, the layer based on an n-type semiconductor which is in contact with the layer based on a compound of formula (I) of type p may also be at least partially transparent. By "partially transparent material" is meant here a material that passes at least part of the incident electromagnetic radiation, useful for providing the photocurrent, and which can be:
un matériau qui n'absorbe pas totalement le champ électromagnétique incident ; et/ou  a material that does not completely absorb the incident electromagnetic field; and or
- un matériau qui est sous une forme ajourée (comportant typiquement des trous, des fentes ou des interstices) propre à laisser passer une partie du rayonnement électromagnétique sans que celui-ci rencontre le matériau.  - A material that is in a perforated form (typically having holes, slots or interstices) able to pass part of the electromagnetic radiation without it meets the material.
Le composé de formule (I) employé selon la présente invention est avantageusement utilisé sous la forme d'objets isotropes ou anisotropes ayant au moins une dimension inférieure à 50 μηη, de préférence inférieure à 20 μηη, typiquement inférieure à 10 μηη, préférentiellement inférieure à 5 μηη, généralement inférieure à 1 μηη, plus avantageusement inférieure à 500 nm, par exemple inférieure à 200 nm, voire à 100 nm. The compound of formula (I) employed according to the present invention is advantageously used in the form of isotropic or anisotropic objects having at least one dimension less than 50 μηη, preferably less than 20 μηη, typically less than 10 μηη, preferentially less than 5 μηη, generally less than 1 μηη, more preferably less than 500 nm, for example less than 200 nm, or even 100 nm.
Typiquement, la dimension inférieure à 50 μηη peut être :  Typically, the dimension less than 50 μηη can be:
le diamètre moyen dans le cas d'objets isotropes ;  the average diameter in the case of isotropic objects;
l'épaisseur ou le diamètre transversal dans le cas d'objets anisotropes.  thickness or transverse diameter in the case of anisotropic objects.
Selon une première variante, les objets à base d'un composé de formule (I) sont des particules, ayant typiquement des dimensions inférieures à 10 μηη. According to a first variant, the objects based on a compound of formula (I) are particles, typically having dimensions less than 10 μηη.
Ces particules sont de préférence obtenues selon l'un des procédés de préparation de l'invention. These particles are preferably obtained according to one of the preparation methods of the invention.
Par « particules », on entend ici des objets isotropes ou anisotropes, qui peuvent être des particules individuelles, ou bien des agrégats.  By "particles" is meant here isotropic or anisotropic objects, which may be individual particles, or aggregates.
Les dimensions des particules auxquelles il est fait référence ici peuvent typiquement être mesurées par microscopie électronique à balayage (MEB). Avantageusement, le composé de formule (I) est sous la forme de particules anisotropes de type plaquette, ou d'agglomérats de quelques dizaines à quelques centaines de particules de ce type, ces particules de type plaquette ayant typiquement des dimensions restant inférieures à 5 μηη, (préférentiellement inférieures à 1 μηη, plus avantageusement inférieures à 500 nm), avec une épaisseur qui reste typiquement inférieure à 500 nm, par exemple inférieure à 100 nm.  The particle sizes referred to herein can typically be measured by scanning electron microscopy (SEM). Advantageously, the compound of formula (I) is in the form of platelet-type anisotropic particles, or agglomerates of a few tens to a few hundreds of particles of this type, these platelet-type particles typically having dimensions remaining less than 5 μηη. , (preferably less than 1 μηη, more preferably less than 500 nm), with a thickness which typically remains less than 500 nm, for example less than 100 nm.
Les particules du type décrit selon la première variante peuvent typiquement être employées à l'état déposé sur un support conducteur ou semi-conducteur de type n. Particles of the type described according to the first variant can typically be employed in the state deposited on an n-type conductive or semiconductor support.
Une plaque d'ITO ou de métal recouverte de particules de formule (I) de type p selon l'invention peut ainsi, par exemple jouer le rôle d'une électrode photoactive pour un dispositif de type photoélectrochimique qui peut être utilisé notamment comme photodétecteur.  A plate of ITO or metal covered with particles of formula (I) p type according to the invention can thus, for example play the role of a photoactive electrode for a photoelectrochemical device that can be used in particular as a photodetector.
Typiquement, un dispositif de type photoélectrochimique mettant en œuvre une électrode photoactive du type précité, comprend un électrolyte qui est généralement une solution de sel, par exemple, une solution de KCI, ayant typiquement une concentration de l'ordre de 1 M, dans lequel sont plongées : Typically, a photoelectrochemical type device implementing a photoactive electrode of the aforementioned type comprises an electrolyte which is generally a salt solution, for example a KCl solution, typically having a concentration of the order of 1 M, in which are immersed:
une électrode photoactive du type précité (plaque d'ITO ou métal recouverts de particules de composé de formule (I) selon l'invention) ;  a photoactive electrode of the aforementioned type (ITO plate or metal covered with particles of compound of formula (I) according to the invention);
- une électrode de référence ; et  a reference electrode; and
une contre-électrode ;  a counter-electrode;
ces trois électrodes étant liées entre elles, typiquement par un potentiostat. Selon un mode de réalisation possible, le dispositif électrochimique peut comprendre : these three electrodes being interconnected, typically by a potentiostat. According to a possible embodiment, the electrochemical device can comprise:
à titre d'électrode photoactive : un support (tel qu'une plaque d'ITO) recouvert des particules de composé de formule (I);  as the photoactive electrode: a support (such as an ITO plate) coated with particles of compound of formula (I);
- à titre d'électrode de référence : par exemple, une électrode Ag/AgCI ; et  as a reference electrode: for example, an Ag / AgCl electrode; and
à titre de contre-électrode : par exemple, un fil de platine ;  as a counter-electrode: for example, a platinum wire;
ces trois électrodes étant liées entre elles, typiquement par un potentiostat. these three electrodes being interconnected, typically by a potentiostat.
Lorsqu'un dispositif électrochimique de ce type est placé sous une source lumineuse, sous l'effet d'irradiation, des paires électrons-trous se forment et sont dissociées. When an electrochemical device of this type is placed under a light source, under the effect of irradiation, electron-hole pairs are formed and are dissociated.
Lorsque l'électrolyte est une solution aqueuse, ce qui est le plus souvent le cas, l'eau dans l'électrolyte est réduite à proximité de l'électrode photoactive par les électrons générés, produisant de l'hydrogène et des ions OH". Les ions OH" ainsi produits vont migrer vers la contre-électrode via l'électrolyte ; et les trous du composé de formule (I) vont être extraits via le conducteur du type ITO et vont entrer dans le circuit électrique externe. Finalement, l'oxydation des OH" se réalise à l'aide des trous à proximité de la contre-électrode en produisant de l'oxygène. La mise en mouvement de ces charges (trous et électrons), induite par l'absorption de la lumière du composé de formule (I), génère un photocourant. When the electrolyte is an aqueous solution, which is most often the case, the water in the electrolyte is reduced to close to the photoactive electrode by the generated electrons, producing hydrogen and OH-ions ". OH "ions so produced will migrate to the against-electrode via the electrolyte; and the holes of the compound of formula (I) will be extracted via the ITO conductor and will enter the external electrical circuit. Finally, the oxidation of the OH " is carried out by means of the holes near the counter-electrode producing oxygen .The setting in movement of these charges (holes and electrons), induced by the absorption of the light of the compound of formula (I), generates a photocurrent.
Le dispositif peut notamment être utilisé comme photodétecteur, le photocourant n'étant généré que lorsque le dispositif est éclairé.  The device can in particular be used as a photodetector, the photocurrent being generated only when the device is illuminated.
Une électrode photoactive telle que décrite ci-dessus peut notamment être réalisée en employant une suspension, comprenant les particules d'un composé de formule (I) du type précité dispersés dans un solvant, et en déposant cette suspension sur un support, par exemple une plaque de verre recouvert d'ITO ou une plaque de métal, par la voie humide ou toute méthode d'enduction, par exemple, par dépôt de gouttes (« drop- casting » en anglais), centrifugation (« spin-coating » en anglais), trempage (« dip- coating » en anglais), jet d'encre ou encore par sérigraphie. Pour plus de détail à ce sujet, on pourra se reporter à l'article : R. M. Pasquarelli, D. S. Ginley, R. O'Hayre, dans Chem. Soc. Rev., vol 40, pp. 5406-5441 , 201 1. De préférence, les particules à base d'un composé de formule (I) qui sont présentes dans la suspension ont un diamètre moyen tel que mesuré par granulométrie laser (par exemple, au moyen d'une granulométrie laser de type Malvern) qui est inférieur à 5 μηη. A photoactive electrode as described above can in particular be carried out by employing a suspension comprising the particles of a compound of formula (I) of the aforementioned type dispersed in a solvent, and by depositing this suspension on a support, for example a glass plate covered with ITO or a metal plate, by the wet method or any coating method, for example, by drop-casting, centrifugation ("spin-coating" in English) ), dipping ("dip-coating" in English), inkjet or serigraphy. For more details on this subject, we can refer to the article: RM Pasquarelli, DS Ginley, R. O'Hayre, in Chem. Soc. Rev., Vol 40, pp. 5406-5441, 201 1. Preferably, the particles based on a compound of formula (I) which are present in the suspension have an average diameter such as as measured by laser granulometry (for example, by means of a Malvern type laser particle size) which is less than 5 μηη.
Selon un mode de réalisation préférentiel, les particules de composé de formule (I) peuvent être préalablement dispersées dans un solvant, par exemple, le terpineol ou l'éthanol. According to a preferred embodiment, the particles of compound of formula (I) may be previously dispersed in a solvent, for example, terpineol or ethanol.
La suspension contenant les particules de composé de formule (I) peut être déposée sur un support, par exemple une plaque recouverte d'oxyde conducteur. Selon une deuxième variante de l'invention qui se révèle bien adaptée à la réalisation de dispositifs photovoltaïques, le composé de formule (I) est sous la forme d'une couche continue à base du composé de formule (I) dont l'épaisseur est inférieure à 50 μηη, de préférence inférieure à 20 μηη, plus avantageusement inférieure à 10 μηη, par exemple inférieure à 5 μηη et typiquement supérieure à 500 nm.  The suspension containing the particles of compound of formula (I) may be deposited on a support, for example a conductive oxide coated plate. According to a second variant of the invention which proves to be well suited to the production of photovoltaic devices, the compound of formula (I) is in the form of a continuous layer based on the compound of formula (I), the thickness of which is less than 50 μηη, preferably less than 20 μηη, more preferably less than 10 μηη, for example less than 5 μηη and typically greater than 500 nm.
Par « couche continue », on entend ici un dépôt homogène réalisé sur un support et recouvrant ledit support, non obtenu par un simple dépôt d'une dispersion de particules sur le support. La couche continue à base d'un composé de formule (I) de type p selon cette variante particulière de l'invention est typiquement placée à proximité d'une couche d'un semi-conducteur de type n, entre un matériau conducteur de trous et un matériau conducteur d'électrons, pour former un dispositif photovoltaïque destiné à fournir un effet photovoltaïque. By "continuous layer" is meant here a homogeneous deposit made on a support and covering said support, not obtained by simply depositing a dispersion of particles on the support. The continuous layer based on a p-type compound of formula (I) according to this particular variant of the invention is typically placed in the vicinity of a n-type semiconductor layer between a hole conductive material. and an electron conducting material for forming a photovoltaic device for providing a photovoltaic effect.
Un semi-conducteur de type n dans l'utilisation selon l'invention peut être un oxyde conducteur, par exemple ZnO, ou Ti02, ou un sulfure, par exemple ZnS. An n-type semiconductor in the use according to the invention may be a conductive oxide, for example ZnO, or TiO 2 , or a sulphide, for example ZnS.
Par ailleurs, on entend par couche « à base du composé de formule (I) » une couche comprenant du composé de formule (I), de préférence à raison d'au moins 50% en masse, voire à raison d'au moins 75% en masse. Furthermore, the term "layer based on the compound of formula (I)" means a layer comprising the compound of formula (I), preferably at least 50% by weight, or even at least 75% by weight. % by mass.
Selon un mode de réalisation, la couche continue selon la deuxième variante est essentiellement constituée par du composé de formule (I), et elle comprend typiquement au moins 95% en masse, voire au moins 98% en masse, plus préférentiellement au moins 99% en masse du composé de formule (I). La couche continue à base d'un composé de formule (I) employé selon ce mode de réalisation peut prendre plusieurs formes. According to one embodiment, the continuous layer according to the second variant consists essentially of the compound of formula (I), and typically comprises at least 95% by weight, or even at least 98% by weight, more preferably at least 99% by weight. by mass of the compound of formula (I). The continuous layer based on a compound of formula (I) employed according to this embodiment can take several forms.
La couche continue peut notamment comprendre une matrice polymère et, dispersées au sein de cette matrice, des particules à base d'un composé de formule (I), typiquement de dimensions inférieures à 10 μηη, voire inférieure à 5 μηη, notamment du type de celles employées dans le premier mode de l'invention.  The continuous layer may in particular comprise a polymer matrix and, dispersed within this matrix, particles based on a compound of formula (I), typically of dimensions less than 10 μηη, or even less than 5 μηη, especially of the type of those used in the first embodiment of the invention.
Typiquement, la matrice polymère comprend un polymère conducteur de type p, qui peut notamment être choisi parmi les dérivés du polythiophène, plus particulièrement parmi les dérivés du poly(3,4-ethylènedioxythiophène):poly(styrènesulfonate) (PEDOT:PSS). Typically, the polymer matrix comprises a p-type conductive polymer, which may especially be chosen from polythiophene derivatives, more particularly from poly (3,4-ethylenedioxythiophene) derivatives: poly (styrenesulfonate) (PEDOT: PSS).
Les particules à base du composé de formule (I) présentes dans la matrice polymère ont de préférence, des dimensions inférieures à 5 μηη, qui peuvent notamment être déterminées par MEB. The particles based on the compound of formula (I) present in the polymer matrix preferably have dimensions of less than 5 μηη, which can in particular be determined by SEM.
L'invention va maintenant être illustrée plus en détails, en référence aux exemples illustratifs donnés ci-après et aux Figures ci-annexées, sur lesquelles : The invention will now be illustrated in greater detail with reference to the illustrative examples given below and the appended figures, in which:
• la Figure 1 est une représentation schématique en coupe d'une cellule photoélectrochimique utilisée dans l'exemple 4 décrit ci-après ;Figure 1 is a schematic sectional representation of a photoelectrochemical cell used in Example 4 described below;
• la Figure 2 est une représentation schématique en coupe d'un dispositif photodétecteur ; FIG. 2 is a diagrammatic representation in section of a photodetector device;
· la Figure 3 est une représentation schématique en coupe d'un dispositif photovoltaïque ;  Figure 3 is a schematic sectional representation of a photovoltaic device;
• la Figure 4 est une représentation schématique en coupe d'un dispositif photovoltaïque selon l'invention, non exemplifié. Sur la Figure 1 est représentée une cellule photoélectrochimique 10 qui comprend :  • Figure 4 is a schematic sectional representation of a photovoltaic device according to the invention, not exemplified. In Figure 1 there is shown a photoelectrochemical cell 10 which comprises:
- une électrode photoactive 1 1 constituée par un support 12 à base d'un verre recouvert d'une couche conductrice d'ITO de 2 cm x 1 cm sur lequel a été déposé sur toute la surface une couche 13 d'épaisseur de l'ordre de 1 pm à base de particules 14 d'un composé de formule (I) selon l'invention, les particules 14 ont été préalablement dispersées dans du terpinéol puis déposées par enduction (« Doctor Blade Coating » en anglais) sur la plaque de verre conducteur 1 1. a photoactive electrode 11 consisting of a support 12 based on a glass covered with a 2 cm × 1 cm ITO conductive layer on which a layer 13 of thickness of the entire surface has been deposited over the entire surface; 1 μm particle-based order 14 of a compound of formula (I) according to the invention, the particles 14 were previously dispersed in terpineol and then deposited by coating ("Doctor Blade Coating" in English) on the conductive glass plate 1 1.
- une électrode de référence (Ag/AgCI) 15 ; et  a reference electrode (Ag / AgCl) 15; and
- une contre-électrode (fil de platine) 16 ;  a counter-electrode (platinum wire) 16;
Les trois électrodes 1 1 , 15 et 16 sont plongées dans un électrolyte 17 de KCI à 1 M. Les trois électrodes sont reliées par un potentiostat 18.  The three electrodes 11, 15 and 16 are immersed in an electrolyte 17 of KCI at 1 M. The three electrodes are connected by a potentiostat 18.
Sur la Figure 2 est représenté un dispositif photodétecteur 20 qui comprend des particules 21 d'un composé de formule (I) selon l'invention. Ce dispositif comprend une couche 22 FTO d'épaisseur de l'ordre de 500 nm sur laquelle est électrodéposée une couche 23 d'épaisseur de l'ordre 1 μηη à base de ZnO. La couche 24 d'épaisseur de l'ordre de 1 μηη à base des particules 21 d'un composé de formule (I) selon l'invention est déposée à la surface de la couche 23 par dépôt des gouttes à partir d'une suspension de particules d'un composé de formule (I) selon l'invention à 25-30% en masse dans l'éthanol. Une couche d'or 25 d'épaisseur de l'ordre de 1 μηη déposée sur la couche 24 par évaporation. In Figure 2 is shown a photodetector device 20 which comprises particles 21 of a compound of formula (I) according to the invention. This device comprises a layer 22 FTO of thickness of the order of 500 nm on which is electrodeposited a layer 23 of thickness of order 1 μηη ZnO based. The layer 24 with a thickness of the order of 1 μηη based on the particles 21 of a compound of formula (I) according to the invention is deposited on the surface of the layer 23 by depositing drops from a suspension of particles of a compound of formula (I) according to the invention at 25-30% by weight in ethanol. A gold layer 25 of thickness of the order of 1 μηη deposited on the layer 24 by evaporation.
Sur la Figure 3 est représenté le dispositif photovoltaïque 30 qui comprend des particules 31 d'un composé de formule (I) selon l'invention. Ce dispositif comprend une couche 32 FTO d'épaisseur de l'ordre de 500 nm sur laquelle est électrodéposée une couche 33 d'épaisseur de l'ordre 1 μηη à base de ZnO. La couche 34 d'épaisseur de l'ordre de 1 m à base des particules 31 d'un composé de formule (I) selon l'invention est déposée à la surface de la couche 33 par dépôt des gouttes à partir d'une suspension de particules de formule (I) selon l'invention à 25-30% en masse dans l'éthanol. Un électrolyte contenant le couple de Ι2/ 35 servant de médiateur redox est déposé par dépôt des gouttes sur la surface de la couche 34, et sur lequel une couche d'or 36 d'épaisseur de l'ordre de 1 μηη étant déposée par évaporation. Sur la Figure 4 est représenté le dispositif photovoltaïque 40 qui comprend une couche 41 à base de particules d'un composé de formule (i) selon l'invention déposées sur une couche 42 à base de ZnO par enduction, la couche 42 à base de ZnO étant préparée par la dépôt sol-gel, la couche 41 étant en contact avec d'une couche 43 d'or et la couche 42 à base du ZnO étant en contact avec une couche FTO 44. La mise en contact d'un composé de formule (I) selon l'invention avec un semiconducteur de type n ZnO forme une jonction p-n. Lorsque le dispositif est placé sous une source lumineuse, les électrons générés vont dans le ZnO et les trous générés restent dans le composé de formule (I) selon l'invention. Le ZnO est en contact avec du FTO (conducteur des électrons) pour en extraire les électrons et le composé de formule (I) selon l'invention est en contact avec de l'or (conducteur des trous) pour en extraire les trous. Les exemples suivants illustrent l'invention sans toutefois en limiter la portée. In Figure 3 is shown the photovoltaic device 30 which comprises particles 31 of a compound of formula (I) according to the invention. This device comprises a layer 32 FTO of thickness of the order of 500 nm on which is electrodeposited a layer 33 of thickness of order 1 μηη ZnO based. The layer 34 of thickness of about 1 m based on the particles 31 of a compound of formula (I) according to the invention is deposited on the surface of the layer 33 by depositing the drops from a suspension of particles of formula (I) according to the invention at 25-30% by weight in ethanol. An electrolyte containing the torque Ι 2/35 serving as redox mediator is deposited by deposition of drops on the surface of the layer 34, and on which a gold layer 36 having a thickness of about 1 μηη being deposited by evaporation. FIG. 4 shows photovoltaic device 40 which comprises a layer 41 based on particles of a compound of formula (I) according to the invention deposited on a layer 42 based on ZnO by coating, layer 42 based on ZnO being prepared by the sol-gel deposition, the layer 41 being in contact with a layer 43 of gold and the layer 42 based on the ZnO being in contact with an FTO layer 44. Contacting a compound of formula (I) according to the invention with a n-type ZnO semiconductor forms a pn junction. When the device is placed under a light source, the electrons generated go into the ZnO and the holes generated remain in the compound of formula (I) according to the invention. ZnO is in contact with FTO (electron conductor) to extract the electrons and the compound of formula (I) according to the invention is in contact with gold (conductor holes) to extract the holes. The following examples illustrate the invention without, however, limiting its scope.
EXEMPLES EXEMPLE 1 EXAMPLES EXAMPLE 1
Procédé de préparation des particules BiCun 5Agn 5OS par broyage solide Process for preparing BiCu n 5 Ag n 5 OS particles by solid grinding
On a préparé une poudre de BiCuo.sAgo.sOS par broyage réactif à température ambiante, selon le protocole suivant : A powder of BiCuo.sAgo.sOS was prepared by reactive grinding at room temperature, according to the following protocol:
1 ,028 g de Bi2S3, 1 ,864 g de Bi203, 0,477 g de Cu2S et 0,744 g de Ag2S sont placés dans un mortier en agate en présence de billes de broyage en agate. 1.028 g of Bi 2 S 3 , 1.864 g of Bi 2 O 3 , 0.477 g of Cu 2 S and 0.744 g of Ag 2 S are placed in an agate mortar in the presence of agar grinding beads.
Le mortier est alors couvert et placé dans un broyeur planétaire de type Fritsch N° 6 avec une vitesse de rotation de l'ordre de 500 tr/min. Le broyage se poursuit pendant 120 min jusqu'à l'obtention d'une phase pure. Le composé obtenu Ci caractérisé par diffraction des rayons X présente les paramètres de maille tétragonale suivants : a = 3,866 Â, c = 8,5805 Â, V = 128,27 Â3. The mortar is then covered and placed in a Fritsch No. 6 planetary mill with a rotation speed of the order of 500 rpm. The grinding is continued for 120 min until a pure phase is obtained. The resulting compound Ci characterized by X-ray diffraction has the following lattice parameters tetragonal: a = 3.866 Å, c = 8.5805 Å, V = 128.27 Å 3.
EXEMPLE 2 EXAMPLE 2
Procédé de préparation des particules BiCuOSn ssIn ns par broyage solide  Process for preparing BiCuOSn particles in ns by solid grinding
On a préparé une poudre de BiCuOSo.slo.s par broyage réactif à température ambiante, selon le protocole suivant : A powder of BiCuOSo.slo.s was prepared by reactive grinding at room temperature, according to the following protocol:
1 ,028 g de Bi2S3, 1 ,864 g de Bi203, 0,906 g de Cu2S et 0,1 14 g de Cul sont placés dans un mortier en agate en présence de billes de broyage en agate. Le mortier est alors couvert et placé dans un broyeur planétaire de type Fritsch N° 6 avec une vitesse de rotation de l'ordre de 500 tr/min. Le broyage se poursuit pendant 120 min jusqu'à l'obtention d'une phase pure. Le composé obtenu C2 caractérisé par diffraction des rayons X présente les paramètres de maille tétragonale suivants : a = 3,88 Â, c = 9,595 Â, V = 129,47 Â3. 1.028 g of Bi 2 S 3 , 1.864 g of Bi 2 O 3 , 0.906 g of Cu 2 S and 0.1 14 g of Cul are placed in an agate mortar in the presence of agar grinding beads. The mortar is then covered and placed in a Fritsch No. 6 planetary mill with a rotation speed of the order of 500 rpm. The grinding is continued for 120 min until a pure phase is obtained. The compound obtained C 2 characterized by X-ray diffraction has the following lattice parameters tetragonal: a = 3.88 Å, c = 9.595 Å, V = 129.47 Å 3.
EXEMPLE 3 EXAMPLE 3
Procédé de préparation des particules BiCun yZnn sOS par broyage solide  Process for preparing BiCun yZnn sOS particles by solid grinding
On a préparé une poudre de BiCu0,7Zn0,3OS par broyage réactif à température ambiante, selon le protocole suivant : A powder of BiCu 0.7 Zn 0.3 OS was prepared by reactive grinding at room temperature, according to the following protocol:
0,720 g de Bi2S3, 1 ,584 g de Bi203, 0,668 g de Cu2S et 0,349 g de ZnS sont placés dans un mortier en agate en présence de billes de broyage en agate. 0.720 g of Bi 2 S 3 , 1. 584 g of Bi 2 O 3 , 0.668 g of Cu 2 S and 0.349 g of ZnS are placed in an agate mortar in the presence of agar grinding beads.
Le mortier est alors couvert et placé dans un broyeur planétaire de type Fritsch The mortar is then covered and placed in a Fritsch type planetary mill
N° 6 avec une vitesse de rotation de l'ordre de 500 tr/min. Le broyage se poursuit pendant 120 min jusqu'à l'obtention d'une phase pure. No. 6 with a rotation speed of the order of 500 rpm. The grinding is continued for 120 min until a pure phase is obtained.
Le composé obtenu C3 caractérisé par diffraction des rayons X présente les paramètres de maille tétragonale suivants : a = 3,870 Â, c = 8,571 Â, V = 128,36 Â3. The compound obtained C 3 characterized by X-ray diffraction has the following lattice parameters tetragonal: a = 3.870 Å, c = 8.571 Å, V = 128.36 Å 3.
EXEMPLE 4 EXAMPLE 4
Procédé de préparation des particules BiCun 7Znn 20S à partir de précurseurs solubles Process for preparing BiCu n 7 Znn 20S particles from soluble precursors
1 ) Solution du précurseur Bismuth (50mL à 0,1 M) : 1) Bismuth precursor solution (50mL at 0.1M):
Dans un récipient, on ajoute 4 mL de HN03 concentré (commercial 52,5%) à 2,425 g de BiN03.5H20 puis l'on dilue avec 10mL d'eau. Dans un autre bêcher, on mélange 3 g d'hydroxyde de sodium avec 3 g de tartrate de sodium dibasique (C4H4Na206 · 2H20). 4 ml of concentrated HNO 3 (commercial 52.5%) are added to 2.4 ml of BiNO 3 .5H 2 O in a vessel and then diluted with 10 ml of water. In another beaker, 3 g of sodium hydroxide are mixed with 3 g of dibasic sodium tartrate (C 4 H 4 Na 2 O 6 · 2H 2 O).
Les deux solutions obtenues sont mélangées rapidement. Un précipité blanc se forme et disparaît aussitôt. La solution obtenue est de couleur transparente. Elle est ensuite diluée jusqu'à un volume de 50 mL avec de l'eau. 2) Solution du précurseur de Cuivre I et de Zinc (II) (50ml_ à 0, 1 M de concentration cation (Cu+Zn) The two solutions obtained are mixed rapidly. A white precipitate forms and disappears immediately. The resulting solution is transparent in color. It is then diluted to a volume of 50 mL with water. 2) Solution of the Precursor of Copper I and Zinc (II) (50 ml at 0, 1 M concentration of cation (Cu + Zn)
0,992 g de sulfate de cuivre pentahydrate (CuS04. 5H20) et 0,285 g de sulfate de zinc heptahydrate sont dissous dans 30 ml_ d'eau distillée. On ajoute 1 ,5 ml_ d'ammoniaque concentrée (28%) et l'on obtient une solution de couleur bleu sombre. On ajoute alors 15 g de thiosulfate de sodium pentahydrate. 0.992 g of copper sulfate pentahydrate (CuSO 4 .5H 2 O) and 0.285 g of zinc sulfate heptahydrate are dissolved in 30 ml of distilled water. 1.5 ml of concentrated ammonia (28%) are added and a dark blue solution is obtained. 15 g of sodium thiosulfate pentahydrate are then added.
Le mélange est chauffé modérément (50°C) pendant quatre heures. On obtient une solution incolore. Il est préférable d'utiliser des récipients fermés pour éviter l'oxydation du Cuivre (I).  The mixture is heated moderately (50 ° C) for four hours. A colorless solution is obtained. It is preferable to use closed containers to avoid the oxidation of copper (I).
3) Solution de Na2S 3) Na 2 S solution
12,25g de Na2S.9 H20 sont dissous dans 100mL d'eau distillée.  12.25 g of Na2S.9 H20 are dissolved in 100 ml of distilled water.
4) Formation du composé 4) Formation of the compound
Les solutions préparées précédemment contenant le Bi et (Cu(+ Zn) sont mélangées rapidement. Un précipité blanc se forme et disparait aussitôt. Le mélange est chauffé à la température de 90°C. La solution de Na2S est chauffée à 90°C. The previously prepared solutions containing Bi and (Cu (+ Zn) are mixed rapidly, a white precipitate forms and disappears, the mixture is heated to a temperature of 90 ° C. The Na 2 S solution is heated to 90 ° C. vs.
Lorsque les deux solutions sont à la température désirée, la solution des cations (Bi,Cu,Zn) est ajoutée dans la solution de Na2S. Un précipité noir se forme immédiatement. La solution est agitée à 90°C pendant quatre heures. Elle est ensuite filtrée, lavée avec de l'eau distillée et séchée à 80°C dans une étuve. When both solutions are at the desired temperature, the cation solution (Bi, Cu, Zn) is added to the Na 2 S solution. A black precipitate forms immediately. The solution is stirred at 90 ° C for four hours. It is then filtered, washed with distilled water and dried at 80 ° C. in an oven.
Le produit obtenu présente une phase unique quand il est observé en diffraction des rayons X. EXEMPLE 5  The product obtained has a single phase when it is observed in X-ray diffraction. EXAMPLE 5
Utilisation des composés Ci à C3 dans un dispositif photoélectrochimique Use of compounds Ci to C 3 in a photoelectrochemical device
On a utilisé le dispositif décrit sur la Figure 1 , en polarisant l'électrode de travail à un potentiel de -0,8 V vs Ag/AgCI. Le système est irradié sous une lampe à incandescence (dont la température de couleur est à 2700 K) alternant des périodes d'obscurité et des périodes lumineuses. L'intensité du courant a augmenté lorsque le système a été placé à la lumière. Il s'agit d'un photocourant ce qui confirme l'aptitude de chacun des composés Ci à C3 à générer un photocourant. Ce photocourant est cathodique (c'est-à-dire négatif) ce qui est en accord avec le fait que chacun de ces composés Ci à C3 est un semi-conducteur de type p. The device described in FIG. 1 was used, polarizing the working electrode at a potential of -0.8 V vs. Ag / AgCl. The system is irradiated under an incandescent lamp (whose color temperature is 2700 K) alternating periods of darkness and periods of light. The intensity of the current increased when the system was placed in the light. It is a photocurrent confirming the ability of each of the compounds Ci to C 3 to generate a photocurrent. This photocurrent is cathodic (i.e., negative) which is consistent with the fact that each of these compounds C 1 to C 3 is a p-type semiconductor.
Pour chacun des composés Ci à C5 les mesures du photocourant obtenu sont les suivantes : For each of the compounds Ci to C 5, the photocurrent measurements obtained are as follows:
Composé Photocourant (μΑ.οηι"2) Photocurrent compound (μΑ.οηι "2 )
Composé Ci 75  Compound Ci 75
Composé C2 150 Compound C 2 150
Composé C3 100 Compound C 3 100

Claims

REVENDICATIONS
1. Matériau comprenant au moins un composé de formule (I) : 1. Material comprising at least one compound of formula (I):
Bi1-xMxCui-y-£M'yOSi-zM"z (I) dans lequel Bi 1-x M x Cui- y- £ M ' y Osi -z M " z (I) in which
M est un élément ou un mélange d'éléments choisis dans le groupe (A) constitué par Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, les terres rares,  M is a member or a mixture of elements selected from the group (A) consisting of Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, rare earths,
M' est un élément ou un mélange d'éléments choisis dans le groupe (B) constitué par Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd,  M 'is a member or a mixture of elements selected from the group (B) consisting of Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd,
M" est un halogène,  M "is a halogen,
x, y et z sont des nombres inférieurs à 1 , en particulier inférieurs à 0,6, notamment inférieurs à 0,5, x, y and z are numbers less than 1, in particular less than 0.6, especially less than 0.5,
avec au moins un des nombres x, y ou z non nul, et with at least one of the numbers x, y or z not zero, and
0 < ε < 0,2. 0 <ε <0.2.
2. Procédé de préparation d'un matériau selon la revendication 1 , comprenant une étape de broyage solide d'un mélange comprenant au moins des composés inorganiques de bismuth et de cuivre, et A process for preparing a material according to claim 1, comprising a step of solid grinding a mixture comprising at least inorganic compounds of bismuth and copper, and
éventuellement au moins un oxyde, sulfure, oxysulfure, halogénure ou oxyhalogènure d'au moins un élément choisi parmi Bi et les éléments du groupe (A), et,  optionally at least one oxide, sulphide, oxysulphide, halide or oxyhalogenide of at least one element selected from Bi and the elements of group (A), and
éventuellement au moins un oxyde, sulfure, oxysulfure, halogénure ou oxyhalogènure d'au moins un élément choisi parmi Cu et les éléments du groupe (B).  optionally at least one oxide, sulfide, oxysulfide, halide or oxyhalogenide of at least one element selected from Cu and the group (B) elements.
3. Procédé de préparation d'un matériau selon la revendication 1 , comprenant une réaction de précipitation, caractérisé en ce qu'il comprend les étapes suivantes : 3. Process for the preparation of a material according to claim 1, comprising a precipitation reaction, characterized in that it comprises the following steps:
(a) préparation d'au moins une solution comprenant des précurseurs métalliques sous forme d'au moins un sel des composés inorganiques de bismuth, et  (a) preparing at least one solution comprising metal precursors in the form of at least one salt of the inorganic bismuth compounds, and
éventuellement d'au moins un oxyde, sulfure, oxysulfure, halogénure ou oxyhalogènure d'au moins un élément choisi parmi Bi et les éléments du groupe (A) constitué par Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, les terres rares, et (b) préparation d'au moins une solution comprenant des précurseurs métalliques sous forme d'au moins un sel des composés inorganiques de cuivre, et optionally at least one oxide, sulfide, oxysulphide, halide or oxyhalogenide of at least one element selected from Bi and the elements of group (A) consisting of Pb, Sn, Hg, Ca, Sr, Ba, Sb, In, Tl, Mg, rare earths, and (b) preparing at least one solution comprising metal precursors in the form of at least one salt of the inorganic copper compounds, and
éventuellement d'au moins un oxyde, sulfure, oxysulfure, halogénure ou oxyhalogénure d'au moins un élément choisi parmi Cu et les éléments du groupe optionally at least one oxide, sulphide, oxysulphide, halide or oxyhalide of at least one element selected from Cu and the elements of the group
(B) constitué par Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd, et, (B) consisting of Ag, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Mg, Al, Cd, and
(c) éventuellement préparation d'au moins une solution comprenant une source de soufre,  (c) optionally preparing at least one solution comprising a source of sulfur,
(d) précipitation par mélanges des solutions obtenues à l'issue des étapes (a), (b) et éventuellement (c),  (d) mixing precipitation of the solutions obtained at the end of steps (a), (b) and optionally (c),
(e) filtration, et lavage si nécessaire, du composé de formule (I) obtenu à l'issue de l'étape (d).  (e) filtration, and washing if necessary, of the compound of formula (I) obtained at the end of step (d).
4. Procédé de préparation d'un matériau selon la revendication 1 , comprenant les étapes suivantes : Process for the preparation of a material according to claim 1, comprising the following steps:
(a') fourniture d'un mélange comprenant au moins, à l'état dispersé, des composés inorganiques de bismuth et de cuivre et,  (a ') providing a mixture comprising at least, in the dispersed state, inorganic compounds of bismuth and copper and,
éventuellement au moins un oxyde, sulfure, oxysulfure, halogénure ou oxyhalogénure d'au moins un élément choisi parmi Bi et les éléments du groupe (A), et  optionally at least one oxide, sulfide, oxysulfide, halide or oxyhalide of at least one element selected from Bi and the elements of group (A), and
éventuellement au moins un oxyde, sulfure, oxysulfure, halogénure ou oxyhalogénure d'au moins un élément choisi parmi Cu et les éléments du groupe (B), et,  optionally at least one oxide, sulfide, oxysulfide, halide or oxyhalide of at least one element selected from Cu and the elements of group (B), and
éventuellement une source de soufre,  possibly a source of sulfur,
(b') dissolution du mélange dans l'eau ou un milieu aqueux dans des conditions hydrothermales et de préférence sous agitation, et  (b ') dissolving the mixture in water or an aqueous medium under hydrothermal conditions and preferably with stirring, and
(c') refroidissement de la solution obtenue, ce par quoi l'on obtient des particules du composé de formule (I) Bi1-xMxCui-y-£M'yOSi-zM"z. (c ') cooling the solution obtained, whereby the particles are obtained of the compound of formula (I) Bi 1-x M x-y- Cui £ M' y M z OSi "z.
5. Utilisation d'un matériau selon la revendication 1 à titre de semi-conducteur, notamment pour application photoélectrochimique ou photochimique, en particulier pour fournir un photocourant. 5. Use of a material according to claim 1 as a semiconductor, in particular for photoelectrochemical or photochemical application, in particular to provide a photocurrent.
6. Utilisation selon la revendication 5, où le composé de formule (I) est employé sous la forme d'objets isotropes ou anisotropes ayant au moins une dimension inférieure à 50 μηη, de préférence inférieure à 20 μηη. Use according to claim 5, wherein the compound of formula (I) is used in the form of isotropic or anisotropic objects having at least one dimension less than 50 μηη, preferably less than 20 μηη.
7. Utilisation selon la revendication 6, où le composé de formule (I) est employé sous la forme de particules de dimensions inférieures à 10 μηη. 7. Use according to claim 6, wherein the compound of formula (I) is employed in the form of particles of dimensions less than 10 μηη.
8. Utilisation selon la revendication 7 où le composé de formule (I) est sous la forme de particules anisotropes de type plaquette, ou d'agglomérats de quelques dizaines à quelques centaines de particules de ce type. 8. Use according to claim 7 wherein the compound of formula (I) is in the form of platelet-type anisotropic particles, or agglomerates of a few tens to hundreds of such particles.
9. Utilisation selon la revendication 6, où le composé de formule (I) est sous la forme d'une couche continue à base d'un composé de formule (I) dont l'épaisseur est inférieure à 50 μηι, de préférence inférieure à 20 μηι, où la couche à base d'un composé de formule (I) est une couche comprenant du composé de formule (I) à raison d'au moins du 95% en masse. 9. Use according to claim 6, wherein the compound of formula (I) is in the form of a continuous layer based on a compound of formula (I) whose thickness is less than 50 μηι, preferably less than 20 μηι, wherein the layer based on a compound of formula (I) is a layer comprising the compound of formula (I) in an amount of at least 95% by weight.
10. Utilisation selon la revendication 6, où le composé de formule (I) est sous la forme d'une couche continue à base d'un composé de formule (I) dont l'épaisseur est inférieure à 50 μηι, de préférence inférieure à 20 μηι, où la couche à base d'un composé de formule (I) comprend une matrice polymère et, dispersées au sein de cette matrice, des particules à base d'un composé de formule (I) de dimensions inférieures à 5 μηη. 10. Use according to claim 6, wherein the compound of formula (I) is in the form of a continuous layer based on a compound of formula (I) whose thickness is less than 50 μηι, preferably less than 20 μηι, wherein the layer based on a compound of formula (I) comprises a polymer matrix and, dispersed within this matrix, particles based on a compound of formula (I) of dimensions less than 5 μηη.
11. Dispositif photovoltaïque comprenant, entre un matériau conducteur de trous et un matériau conducteur d'électrons, une couche à base d'un composé de formule (I) selon la revendication 1 , de type p, et une couche à base d'un semiconducteur de type n, où : 11. A photovoltaic device comprising, between a hole-conducting material and an electron-conducting material, a layer based on a compound of formula (I) according to claim 1, of the p type, and a layer based on a n-type semiconductor, where:
la couche à base du composé de formule (I) de type p est en contact avec la couche à base du semi-conducteur de type n ;  the p-type compound (I) compound layer is in contact with the n-type semiconductor layer;
- la couche à base du composé de formule (I) de type p est à proximité du matériau conducteur de trous ; et  the layer based on the compound of formula (I) of type p is close to the hole-conducting material; and
la couche à base du semi-conducteur de type n est à proximité du matériau conducteur d'électrons.  the n-type semiconductor layer is in proximity to the electron conducting material.
EP15713968.4A 2014-04-04 2015-04-03 Mixed oxides and sulphides of bismuth and copper for photovoltaic use Withdrawn EP3126292A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1400832A FR3019539B1 (en) 2014-04-04 2014-04-04 MIXED OXIDES AND SULFIDES OF BISMUTH AND COPPER FOR PHOTOVOLTAIC APPLICATION
PCT/EP2015/097023 WO2015150591A1 (en) 2014-04-04 2015-04-03 Mixed oxides and sulphides of bismuth and copper for photovoltaic use

Publications (1)

Publication Number Publication Date
EP3126292A1 true EP3126292A1 (en) 2017-02-08

Family

ID=51483460

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15713968.4A Withdrawn EP3126292A1 (en) 2014-04-04 2015-04-03 Mixed oxides and sulphides of bismuth and copper for photovoltaic use

Country Status (7)

Country Link
US (1) US20170022072A1 (en)
EP (1) EP3126292A1 (en)
JP (1) JP6563478B2 (en)
KR (1) KR20160142320A (en)
CN (1) CN106660821B (en)
FR (1) FR3019539B1 (en)
WO (1) WO2015150591A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7065443B2 (en) 2016-06-30 2022-05-12 株式会社Flosfia P-type oxide semiconductor and its manufacturing method
CN108465473B (en) * 2018-03-13 2021-01-26 清华大学 Bismuth-copper-sulfur oxide and/or composite material thereof, preparation method and application thereof, and equipment and method for photocatalytic degradation of formaldehyde under influence of temperature
CN112108156B (en) * 2019-06-20 2023-05-02 天津城建大学 Ag nanoparticle modified MgFe 2 O 4 Preparation method of nanorod composite film
CN115161685A (en) * 2022-06-29 2022-10-11 安徽师范大学 Bi-doped cuprous sulfide mesoporous nanoribbon array structure material, preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100657949B1 (en) * 2005-02-05 2006-12-14 삼성전자주식회사 Flexible solar cells and process for preparing the same
CN103400932B (en) * 2008-08-29 2016-08-10 Lg化学株式会社 Novel thermo-electric converting material and preparation method thereof, and use the thermoelectric conversion element of this novel thermo-electric converting material
US20120045368A1 (en) * 2010-08-18 2012-02-23 Life Technologies Corporation Chemical Coating of Microwell for Electrochemical Detection Device
FR2996355B1 (en) * 2012-09-28 2016-04-29 Rhodia Operations MIXED OXIDES AND SULFIDES OF BISMUTH AND COPPER FOR PHOTOVOLTAIC APPLICATION
FR3019540A1 (en) * 2014-04-04 2015-10-09 Rhodia Operations MIXED OXIDES AND SULFIDES OF BISMUTH AND SILVER FOR PHOTOVOLTAIC APPLICATION

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015150591A1 *

Also Published As

Publication number Publication date
JP2017517473A (en) 2017-06-29
JP6563478B2 (en) 2019-08-21
KR20160142320A (en) 2016-12-12
US20170022072A1 (en) 2017-01-26
CN106660821A (en) 2017-05-10
CN106660821B (en) 2018-09-18
FR3019539B1 (en) 2016-04-29
FR3019539A1 (en) 2015-10-09
WO2015150591A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
Wang et al. Synthesis of shape-controlled monodisperse wurtzite CuIn x Ga1–x S2 semiconductor nanocrystals with tunable band gap
EP2877277B1 (en) Process to prepare colloidal solutions of amorphous particles
Ramasamy et al. Routes to copper zinc tin sulfide Cu 2 ZnSnS 4 a potential material for solar cells
WO2014049172A2 (en) Mixed bismuth and copper oxides and sulphides for photovoltaic use
WO2015150591A1 (en) Mixed oxides and sulphides of bismuth and copper for photovoltaic use
Lee et al. Induced growth of CsPbBr3 perovskite films by incorporating metal chalcogenide quantum dots in PbBr2 films for performance enhancement of inorganic perovskite solar cells
EP3114704B1 (en) Method for preparing a thin absorber layer made from sulfide(s) and selenide(s) of copper, zinc and tin, annealed thin layer and photovoltaic device obtained
Jawad et al. An alternative method to grow Ge thin films on Si by electrochemical deposition for photonic applications
EP3126293B1 (en) Mixed oxides and sulphides of bismuth and silver for photovoltaic use
Sharma et al. Visible-light induced photosplitting of water using solution-processed Cu2BaSnS4 photoelectrodes and a tandem approach for development of Pt-free photoelectrochemical cell
Chavhan et al. Study on photoelectrochemical solar cells of nanocrystalline Cd0. 7Zn0. 3Se-water soluble conjugated polymer
Liang et al. Potentiostatic deposition of copper indium disulfide thin films: Effect of cathodic potentials on the optical and photoelectrochemical properties
Joshi et al. Morphological engineering of novel nanocrystalline Cu2Sn (S, Se) 3 thin film through annealing temperature variation: assessment of photoelectrochemical cell performance
Resende et al. An investigation of photovoltaic devices based on p‐type Cu2O and n‐type γ‐WO3 junction through an electrolyte solution containing a redox pair
Supérieure-Kouba Fabrication and characterization of CuInSe2 thin film solar cells with fluorine doped ZnO as new buffer layer
BABU FINAL PROGRESS REPORT OF THE WORK DONE ON THE MAJOR RESEARCH PROJECT (1-04-2013 to 31-03-2017)
Kafashan et al. Investigation the effect of In-doping on the structural and optical properties of electrodeposited SnS thin film
Çetinkaya The effects of additive on photovoltaic performance of Cu2ZnSnS4 promising solar absorbers
EP3080332B1 (en) Persulfate bath and method for chemically depositing a layer
Kassim et al. Influence of triethanolamine on the properties of chemical bath deposited nickel sulphide thin films
Wang Solution processed kesterite light absorber on titania electron conductor for photovoltaic application
Oekermann Electrodeposition of Nanostructured ZnO Films and Their Photoelectrochemical Properties
Kirsanova Engineering of Semiconductor Nanocomposites for Harvesting and Routing of Optical Energy
Wu et al. Study on Electrodeposition of Gallium-Selenium Binary Alloy Films from Deep Eutectic Solvent

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171220

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHODIA OPERATIONS

Owner name: LE CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20200708