EP3113867B1 - Procédé et dispositif de dispersion de gaz dans un liquide - Google Patents

Procédé et dispositif de dispersion de gaz dans un liquide Download PDF

Info

Publication number
EP3113867B1
EP3113867B1 EP15714025.2A EP15714025A EP3113867B1 EP 3113867 B1 EP3113867 B1 EP 3113867B1 EP 15714025 A EP15714025 A EP 15714025A EP 3113867 B1 EP3113867 B1 EP 3113867B1
Authority
EP
European Patent Office
Prior art keywords
liquid
gas
tube
plate
mixing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15714025.2A
Other languages
German (de)
English (en)
Other versions
EP3113867A1 (fr
Inventor
Sylvie Baig
Pedro Fonseca
François LE QUESNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suez International SAS
Original Assignee
Suez International SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suez International SAS filed Critical Suez International SAS
Publication of EP3113867A1 publication Critical patent/EP3113867A1/fr
Application granted granted Critical
Publication of EP3113867B1 publication Critical patent/EP3113867B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/236Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids specially adapted for aerating or carbonating beverages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/2319Methods of introducing gases into liquid media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2341Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere
    • B01F23/23412Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere using liquid falling from orifices in a gaseous atmosphere, the orifices being exits from perforations, tubes or chimneys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23762Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31423Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction with a plurality of perforations in the circumferential direction only and covering the whole circumference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4334Mixers with a converging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237611Air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237612Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237613Ozone

Definitions

  • the invention relates to a method and a device for dispersing gas in a downward flow of liquid.
  • the invention more particularly relates to a method and a dispersing device with hybrid liquid gas jet mixer and jet injector.
  • the method is intended to homogeneously disperse the gas in the form of fine bubbles in a liquid engine for contacting liquid gas or for subsequent contact with the mass of liquid in a surrounding contactor in which the device is implanted.
  • the device is composed of an injection head comprising a liquid-jet mixing chamber at the top and a vertical coaxial tube with diphasic jet at the bottom, forming a nozzle.
  • Said homogeneous liquid gas dispersion is produced for a gas retention of between 5 and 70%, preferably between 30 and 50%.
  • the invention relates more particularly to a method and a device for injecting ozone or a mixture of ozone and oxygen and / or air into a stream of water, to purify it.
  • the performance of the gas dispersion can be expressed on the one hand as a function of the size of the gas bubbles produced and on the other hand as a function of a gas / liquid volume ratio of the two-phase gas-liquid mixture resulting from the dispersion.
  • ratio related to the gas retention defined as the ratio of the volume of the gas phase relative to the total volume of the contactor equal to the sum of the volumes of gas and liquid that it contains or as the ratio of the volumetric flow rate of the gaseous phase reported the sum of the volume flow rates of gas and liquid.
  • the two-phase liquid gas contactors correspond to many industrial applications, such as liquid phase oxidation and hydrogenation or gas absorption by a liquid with or without a chemical reaction.
  • the gaseous and liquid phase contacting devices are designed to respond as efficiently as possible to the requirement to ensure the transfer of the quantities of material required, at the best cost, including furthermore notions related to the operation such as flexibility with regard to the quantities of material to be used, safety and stability of operation, speed of execution of the start-up and start-up steps, potential duration of operation (corrosion, maintenance, .... ).
  • the quantity of material exchanged within a two-phase apparatus denoted N
  • N the quantity of material exchanged within a two-phase apparatus
  • the liquid gas contactors are designed to offer the largest exchange surface compatible with hydrodynamic conditions relating to the circulating flow rates of the fluids and the physicochemical properties of the latter. It is also essential that the pressure drop on the gas side is as moderate as possible in order to avoid unacceptable energy expenditure or pressure conditions that are incompatible with the application conditions.
  • the contactors in which the gas is dispersed in the form of bubbles in a liquid cover the bubble column, mechanically stirred tank, perforated plate column, co-current tubular contactor such as static mixer, submerged jet ejector and venturi ejector. engine liquid ( M. Roustan, Gas-liquid transfers in water and waste gas treatment processes, Editions Lavoisier 2003 ; Pierre Trambouze, Chemical Reactors - Technology, J4020, Editions Techniques de l'Ingur, 1993 ). These different contactors are characterized by variable levels of fluid retention and interfacial area.
  • tubular contactors operating at co-current of gas and liquid offer the advantages of admitting a wider operating range both in gaseous dispersed phase retention (defined as the ratio of gaseous phase volume reported to the total volume of the contactor equal to the sum of the volumes of gas and liquid contained therein or as the ratio of the volume flow rate of the gaseous phase to the sum of the volume flow rates of gas and liquid) and to generate a very important interfacial area.
  • WO 2012025214 discloses a device and method for absorbing ozone in a tubular contactor for treating liquids in which the ozonated gas injection takes place in the circulating liquid stream by means of at least two static mixers spaced from contact zones .
  • WO 2013082132 relates to a method and apparatus for injecting a gas into a liquid, wherein a rotating helical helix located inside a suction tube immersed in the liquid creates a downward flow of liquid inside the tube suction nozzle fed by gas through nozzles arranged either above or below or along the helical helix.
  • the liquid is sucked into the suction tube at a superficial velocity greater than a terminal rate of rise of the gas bubbles, so as to allow undissolved gas bubbles to be entrained in the bulk of the liquid within the liquid that is sucked into the suction tube.
  • a transfer efficiency of 90% is obtained in the contactor for a gas retention of 5% in the tube of less than one meter in length.
  • EP 0 086 019 relates to a two-stage hybrid contactor combining a rain column and a bubble column for dissolving a gas in a liquid, preferably for the ozonation of water, in which the gas injection is carried out by means of a submerged tube.
  • a fraction of the liquid flow is used to inject the gas in the form of bubbles by means of a submerged tube which introduces the two-phase mixture into a downward flow of the main flow of liquid fed by runoff into the annular portion upper outer of the contactor.
  • This device thus involves a free space of significant volume runoff that promotes degassing so that the yield of dissolution of the gas is reduced. Gaseous retention in the injection tube is indicated as 13% maximum.
  • FR 2,762,232 also describes a method and a device for contacting ozone in liquids, in particular water, according to which a two-phase mixture of the partial flow of the liquid to be treated and a gas charged with ozone under pressure is formed in a downwardly co-current tube of gas and liquid optionally containing bubble shearing devices, all of which constitute part of an ozone absorption contactor in the U-shaped tube-shaped liquid as described in FR 2 545 732 .
  • the dispersion of the gas in the form of bubbles is obtained in the descending tube under the effect of the liquid velocity of about 1.5 m / s.
  • the height of the contactor is between 20 and 35 m. This type of contactor involves operating with a gas retention of less than 20% to control the two-phase water and gas mixture ( Degrémont, Memento Technique of water, Editions Lavoisier, 2005 ).
  • US6001247 still exposes a contactor composed of a diffusion compartment equipped with a submerged vertical tube cocurrent descending ozonated gas and water to uniformly introduce the gas.
  • the inside of the tube contains coaxial porous elements to distribute the ozonated gas in the form of bubbles in the water flowing through it.
  • the device comprises a radial inlet of the gas in the annular distributing chamber, from a gas pipe extending beyond the radial inlet for possible venting to the atmosphere.
  • venting is particularly advantageous, in particular because it improves the safety during the operation of such a device, in particular during a stop sequence of the device.
  • a sequence stopping it typically begins by evacuating the gas contained in the device by replacing it with outside air, through the extension, or vent pipe, of said gas pipe.
  • a vent valve is gradually opened so as to introduce outside air into the mixing chamber through this vent pipe, and then a gas inlet valve is closed so as to interrupt the arrival. of gas in the mixing chamber through said gas conduit.
  • the venting thus makes it possible to avoid any phenomenon of implosion of the device.
  • venting makes it possible to comply with such safety constraints, particularly when the device performs an injection of gas into a water level situated at a relatively low altitude relative to the altitude of the injection head. , that is to say when said downward vertical tube has a relatively long length before submersion, for example 10 meters.
  • venting also makes it possible to improve the flexibility of the device during a start-up sequence during which a liquid is injected into the mixing chamber via said inlet duct for the liquid to be treated.
  • the vent valve is opened, allowing at least a portion of the gas present in the mixing chamber to be evacuated. Venting also allows the gas supply to be closed until the desired hydraulic speed is achieved. The gas inlet is then opened and the vent valve is closed.
  • the cross section of the vertical tube is at least equal to the total surface of the holes of the plate, and at most equal to twice the same surface, and is preferably between 1.2 and 1.5 times the total surface of the orifices. of the plate.
  • the length of the descending tube may be between 1 and 30 meters, and is preferably between 1 and 15 meters.
  • the convergent of the mixing chamber may be frustoconical, the angle of inclination of the generatrices of the truncated cone relative to the axis being between 15 ° and 45 °.
  • the injection system which is the subject of the invention is a dispersion system with a hybrid liquid gas jet mixer and a jet injector.
  • Said system is composed of an injection head comprising a liquid-jet mixing chamber at the top and a vertical coaxial tube with diphasic jet at the bottom, forming a nozzle. Its function is to homogeneously disperse the gas in the form of fine bubbles in the engine liquid as a liquid gas contactor or for subsequent contact with the mass of liquid in a surrounding contactor.
  • Said liquid gas dispersion is produced for a gas retention of between 5 and 70%, preferably between 30 and 50%.
  • the injection head is designed to pre-mix the liquid and the gas upstream of the nozzle, the mixture being made homogeneous along the descent into the nozzle.
  • the gas and the liquid may be those involved in any operation requiring the formation of a liquid gas dispersion.
  • the injected gas will be selected from air, oxygen, ozone, carbon dioxide, these gases being injected alone or in mixtures.
  • the liquid will be aqueous including natural fresh or saline water, wastewater and more generally aqueous effluents, industrial process water in the industry including the drinking water production sector.
  • the injection head is fed by the liquid discharged by a pumping system and the gas from the distribution system is at a pressure equal to or greater than atmospheric pressure.
  • the injection head performs a premixing of the liquid and the gas under the effect of one to several turbulent streams of liquid emitted into the radially admitted gas stream.
  • the jets of liquid are produced by means of a liquid distribution member in the form of jets at high speed, typically between 4 and 10 m / s, preferably between 6 and 8 m / s.
  • the dispensing member is preferably an orifice distribution plate.
  • a mixing chamber located below the dispenser member has the shape of the section of the dispensing plate as an upper section.
  • the mixing chamber is tulip-shaped or frustoconical convergent or cylindrical or parallelepipedal.
  • the turbulence of the jets is demonstrated by Reynolds numbers greater than 10 5 .
  • the emission of the liquid jets produces an interfacial friction rate in the gas, which can thus reach more than 0.3 m / s, ie a speed greater than the terminal gas bubble speed of the order of 3 mm.
  • a liquid flow diagram shows the liquid flow lines and highlights the areas of liquid recirculation within the mixing chamber also filled with gas.
  • the high speed liquid jets thus shear the gas and suck up the produced gas pockets towards the down tube.
  • the liquid jets initiate the transfer of liquid gas material. Considering an average contact time of the liquid jets of 0.15 s, the transfer coefficient is of the order of 1.10 -4 m / s according to the nature of the gas.
  • the exchange potential is equal to the equilibrium concentration between the gas and the liquid.
  • the quantity The amount of carbon dioxide transferred is 0.3 kg / s.
  • the mixing chamber is followed downstream of a preferably cylindrical coaxial tube.
  • the section of the tube is at least equal to the total emission surface of the liquid jets in the mixing chamber and at most equal to twice the same surface.
  • the ratio of these surfaces is preferably between 1.2 and 1.5.
  • the dispersion device according to the invention makes the two-phase mixture homogeneous during the downward co-flow flow in the coaxial tube to the liquid distributor, as has been observed for a 40% gas retention. %.
  • the length of the down tube can reach 30 meters to promote the transfer of material inside the tube and possibly in the surrounding contactor whose height corresponds to the useful height of the dispersion system.
  • the height is preferably between 1 and 25 m.
  • a gas retention in the two-phase volume equal to 50% corresponds to the compact stack of the gas inclusions in the liquid. Therefore, the attainment of a homogeneous bubble size in the descending tube requires shearing again the volume of gas sucked under the effect of the turbulence of the mixture while the frequency of coalescence of the bubbles is all the more important than the gas retention is high.
  • the turbulence of the mixture is demonstrated by Reynolds number levels of the diphasic mixture greater than 10 4 .
  • This turbulence is maintained by applying a relative liquid velocity equal to the liquid velocity of the distribution jets in the mixing chamber for the best continuity of flow, ie typically between 4 and 10 m / s.
  • This velocity tends to decrease slightly during the descent under the effect of the compression of the gas under the effect of the column of liquid and under the effect of the transfer of material which takes place.
  • the regime is established in the area of bubble flow from the top of the tube. The quality of the mixture at the beginning of the descending tube determines the pressure required for the injected gas.
  • the pressure of the liquid gas mixture is a function of the outlet pressure of the nozzle (mainly a function of the immersion height), the pressure drops and the weight of the liquid column in the injection system (which can be considered as the static component). It turns out that an annular liquid film type flow regime such as that observed in the first meters of a tube equipped with a nozzle and without premixing of the gas and liquid operating with gaseous retention of 40% prevents the transmission of static pressure downwards.
  • the loss of liquid height is reflected directly by the need to increase the pressure of the gas injection.
  • the device of the invention allows on the contrary a regular transmission of the pressure because it provides a good quality of dispersion from the beginning of the descent into the tube.
  • the size of the bubbles produced is correlated with the dissipated energy itself, which is dependent on the local retention rates and on the physicochemical properties of the fluids composing the dispersion.
  • a dispersion of oxygen in water at 40% gas is characterized by bubbles of average diameter equal to 2.5 mm at the end of the tube 10 m in length.
  • the highly concentrated two-phase jet of dissolved gas produced at the outlet of the tube can then be dispersed in a surrounding contactor or relaxed towards the outlet of the reactor according to the contact time necessary for the absorption and possibly the reaction involved in the application.
  • the surrounding contactor may be any contactor known from the state of the art with a gas updraft.
  • the dispersing device D comprises two sets: an injection head H and a jet dispersion tube P, forming a nozzle.
  • the injection head H is the structure that connects the liquid and gas inlets, mixes these fluids and directs the resulting mixture into the down tube P.
  • the injection head H is connected to the inlet pipe 1 of liquid and comprises a compartment B with, in the lower part, a liquid distribution member, preferably a horizontal distribution plate 2 for the liquid, pierced with orifices. 2a.
  • the liquid flows vertically below the plate, following jets schematized by arrows A on Fig.2 .
  • An inlet pipe 4 of the gas to be injected is connected, by a radial box 4a, to an annular chamber 5 located under the plate 2, the lower periphery of which it surrounds.
  • a wall E limiting radially inwards the chamber 5 comprises nozzles or openings O of gas distribution in centripetal radial directions represented by arrows F on Fig.2 .
  • a mixing chamber 3 is located under the plate 2.
  • the mixing chamber 3 is preferably convergent tulip or frustoconical shape, but could be of cylindrical or parallelepipedal shape.
  • the inclination of the generatrices of the convergent with respect to the geometric axis is preferably between 15 ° and 45 °.
  • the chamber 3 provides the connection to the downward vertical tube P, preferably coaxial and cylindrical.
  • a venting system 6 for the start-up phase is provided at the end of the pipe 4 beyond the connection with the annular chamber 5.
  • a vent valve, not shown, is provided in the system 6, and a gas inlet valve not shown.
  • the jet dispersion tube P is hydraulically described as a straight vertical pipe length.
  • the operation of the device is as follows.
  • the device is capable of responding correctly to abrupt changes in conditions. , resulting, for example, from a power failure or any other event that could lead to an unscheduled shutdown.
  • This device makes it possible to ensure an eminently variable gaseous engagement of between 0.01 and 2 (if expressed in relation to gas and liquid flow rates), at the best cost under the effect of the necessary pressure reduction, to produce a homogeneous dispersion of gas in the liquid suitable for transferring the quantities of material required.
  • This device solves the disadvantages of the systems described in the state of the prior art and is also capable of replacing all or part of the gas injection and diffusion systems of the bubble column contactors, injection systems of gas and agitation of the agitated contactors.
  • the resulting contactors are much more efficient both technically and economically.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Accessories For Mixers (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

  • L'invention est relative à un procédé et à un dispositif de dispersion de gaz dans un courant descendant de liquide.
  • L'invention concerne plus particulièrement un procédé et un dispositif de dispersion à jet gaz liquide hydride mélangeur et injecteur à jet. Le procédé a pour objectif de disperser de façon homogène le gaz sous forme de fines bulles dans un liquide moteur pour la mise en contact gaz liquide ou en vue de mise en contact ultérieur avec la masse de liquide dans un contacteur environnant dans lequel le dispositif est implanté. Le dispositif est composé d'une tête d'injection comportant une chambre de mélange à jet liquide en partie haute et d'un tube coaxial vertical à jet diphasique en partie inférieure, formant tuyère. Ladite dispersion homogène gaz liquide est produite pour une rétention gazeuse comprise entre 5 et 70 %, de préférence entre 30 et 50 %.
  • L'invention concerne plus particulièrement un procédé et un dispositif d'injection d'ozone ou d'un mélange d'ozone et d'oxygène et/ou d'air dans un courant d'eau, pour le purifier.
  • La performance de la dispersion de gaz peut s'exprimer d'une part en fonction de la taille des bulles de gaz produites et d'autre part en fonction d'un rapport volumique gaz/liquide du mélange diphasique gaz-liquide résultant de la dispersion, rapport relié à la rétention gazeuse définie comme le rapport du volume de la phase gazeuse rapportée au volume total du contacteur égal à la somme des volumes de gaz et de liquide qu'il contient ou comme le rapport du débit volumique de la phase gazeuse rapporté à la somme des débits volumiques de gaz et de liquide. Les procédés et dispositifs d'injection de l'état de la technique permettent d'obtenir une dispersion homogène de gaz sous forme, de bulles sous une consommation d'énergie acceptable pour un rapport volumique gaz/liquide relativement faible, ne dépassant pas 0,5 en général.
  • Les contacteurs diphasiques gaz liquide correspondent à de nombreuses applications industrielles, telles que des oxydations et hydrogénations en phase liquide ou des absorptions d'un gaz par un liquide avec ou non réaction chimique.
  • Les appareils de mise en contact des phases gazeuse et liquide sont conçus pour répondre de la façon la plus efficace possible à l'exigence d'assurer le transfert des quantités de matière requises, au meilleur coût, en incluant en outre des notions liées au fonctionnement telles que flexibilité vis-à-vis des quantités de matière à mettre en jeu, sécurité et stabilité de fonctionnement, rapidité d'exécution des étapes de démarrage et de mise en régime, durée potentielle de fonctionnement (corrosion, maintenance,....).
  • Dans tous les cas, la quantité de matière échangée au sein d'un appareillage diphasique, notée N, peut être évaluée par : N = Coefficient de transfert de matière × Aire interfaciale d'échange × Potentiel d'échange
    Figure imgb0001
    Ainsi les contacteurs gaz liquide sont conçus pour offrir la surface d'échange la plus importante compatible avec des conditions hydrodynamiques relatives aux débits circulants des fluides et des propriétés physico-chimiques de ces derniers. Il est de plus primordial que la perte de charge côté gaz soit aussi modérée que possible afin d'éviter des dépenses énergétiques rédhibitoires ou des conditions de pression incompatibles avec les conditions d'application.
  • Les contacteurs dans lesquels le gaz est dispersé sous forme de bulles dans un liquide couvrent les technologies colonne à bulles, cuve agitée mécaniquement, colonne à plateaux perforés, contacteur tubulaire à co-courant tel que mélangeur statique, éjecteur à jet immergé et éjecteur venturi à liquide moteur (M. Roustan, Transferts gaz-liquide dans les procédés de traitement des eaux et des effluents gazeux, Editions Lavoisier 2003 ; Pierre Trambouze, Réacteurs chimiques - Technologie, J4020, Editions Techniques de l'Ingénieur, 1993). Ces différents contacteurs sont caractérisés par des niveaux de rétention liquide et d'aire interfaciale variables. Parmi ceux-ci les contacteurs tubulaires fonctionnant à co-courant de gaz et de liquide offrent les avantages d'admettre une gamme de fonctionnement plus large à la fois en rétention de phase dispersée gazeuse (définie comme le rapport du volume de la phase gazeuse rapportée au volume total du contacteur égal à la somme des volumes de gaz et de liquide qu'il contient ou comme le rapport du débit volumique de la phase gazeuse rapporté à la somme des débits volumiques de gaz et de liquide) et de générer une très importante aire interfaciale. Leur principal inconvénient réside dans la perte de charge occasionnée pour produire la dispersion du gaz, laquelle limite alors soit la rétention de la phase gazeuse dispersée à 30 % au mieux dans le cas des systèmes à mélangeur statique, éjecteur à jet immergé et éjecteur venturi à liquide moteur, soit la hauteur d'immersion à moins de quelques mètres au maximum pour les éjecteurs à jet immergé fonctionnant avec des rétentions gazeuses supérieures à 50 % car une installation d'injection de gaz à plus forte profondeur peut présenter l'inconvénient majeur de nécessiter une source de gaz sous pression, par exemple un compresseur et ses tuyauteries associées.
  • WO 2012025214 présente un dispositif et un procédé d'absorption d'ozone en contacteur tubulaire pour le traitement de liquides selon lequel l'injection de gaz ozoné a lieu dans le flux de liquide circulant au moyen d'au moins deux mélangeurs statiques espacés de zones de contact.
  • WO 2013082132 porte sur un procédé et sur un appareil pour injecter un gaz dans un liquide, dans lequel une hélice hélicoïdale rotative située à l'intérieur d'un tube d'aspiration immergé dans le liquide crée un écoulement descendant de liquide à l'intérieur du tube d'aspiration alimenté par du gaz au travers de buselures disposées soit au-dessus soit au-dessous soit le long de l'hélice hélicoïdale. Le liquide est aspiré dans le tube d'aspiration à une vitesse superficielle supérieure à une vitesse d'ascension terminale des bulles de gaz, de façon à permettre l'entraînement des bulles de gaz non dissoutes dans la masse du liquide à l'intérieur du liquide qui est aspiré dans le tube d'aspiration. Un rendement de transfert de 90 % est obtenu dans le contacteur pour une rétention gazeuse de 5 % dans le tube de moins d'un mètre de longueur.
  • EP 0 086 019 concerne un contacteur hybride en deux étages combinant colonne à pluie et colonne à bulles pour la dissolution d'un gaz dans un liquide de préférence pour l'ozonation de l'eau selon lequel l'injection de gaz est réalisée grâce à un tube immergé. Selon ce procédé, une fraction du flux de liquide sert à injecter le gaz sous forme de bulles à l'aide d'un tube immergé qui introduit le mélange diphasique dans un courant vertical descendant du flux principal de liquide alimenté par ruissellement dans la partie annulaire extérieure supérieure du contacteur. Ce dispositif met ainsi en jeu un espace libre de ruissellement de volume significatif qui favorise le dégazage de sorte que le rendement de dissolution du gaz s'en trouve diminué. La rétention gazeuse dans le tube d'injection est indiquée égale à 13 % au maximum.
  • FR 2 762 232 décrit également un procédé et un dispositif pour la mise en contact de l'ozone dans des liquides, notamment de l'eau, selon lequel un mélange diphasique du flux partiel du liquide à traiter et d'un gaz chargé d'ozone sous pression est réalisé dans un tube vertical à co-courant descendant de gaz et de liquide contenant éventuellement des dispositifs de cisaillement des bulles, le tout constituant une partie d'un contacteur d'absorption de l'ozone dans le liquide en forme de tube en U tel que décrit dans FR 2 545 732 . La dispersion du gaz sous forme de bulles est obtenue dans le tube descendant sous l'effet de la vitesse liquide d'environ 1,5 m/s. La hauteur du contacteur est comprise entre 20 et 35 m. Ce type de contacteur implique de fonctionner avec une rétention gazeuse inférieure à 20 % pour maîtriser le mélange diphasique eau et gaz (Degrémont, Mémento Technique de l'eau, Editions Lavoisier, 2005).
  • US6001247 expose encore un contacteur composé d'un compartiment de diffusion équipé d'un tube vertical immergé à co-courant descendant de gaz ozoné et d'eau pour introduire uniformément le gaz. L'intérieur du tube contient des éléments poreux coaxiaux pour distribuer le gaz ozoné sous forme de bulles dans l'eau qui y circule.
  • FR 2 776 942 détaille aussi un dispositif de dispersion d'un gaz dans un liquide par jet immergé. Le dispositif de dispersion, est constitué d'une buse émettrice unique d'un jet de liquide vertical dirigé vers le bas, d'un tube coaxial au jet, et d'une plaque d'impact localisé près de l'extrémité inférieure du tube. Le niveau de la dispersion est maintenu au plus près de la sortie de la buse grâce au maintien du niveau dans le contacteur environnant. Le jet produit par la buse aspire le gaz admis latéralement à la buse et le véhicule dans le tube simultanément avec de la dispersion qui pénètre de l'extérieur vers l'intérieur du tube grâce à des trous immergés. L'ensemble est dispersé dans la masse du contacteur environnant par impact sur la plaque. Aucune bulle n'atteint le volume situe en dessous de la plaque d'où est prélevé le liquide qui alimente la buse grâce à une pompe. Comme on le comprend aisément ce dispositif à buse émettrice unique est approprié à la dispersion du gaz dans un contacteur de volume réduit, typiquement moins d'un mètre cube comme présenté. Ce dispositif est de plus difficile à construire à grande échelle de par la fragilité apportée à la structure par les orifices de recirculation à réaliser dans le tube descendant. Enfin la limite haute de vitesse à l'éjection donnée à 12 m/s est inacceptable vis-à-vis de l'abrasion des matériaux pour la construction du tube descendant. DE 20 2006002983 décrit un procédé et un dispositif selon les préambules des revendications 1 et 9. Le procédé selon l'invention a pour but, surtout, d'éviter les nombreux inconvénients des contacteurs tubulaires fonctionnant à co-courant de gaz et de liquide capables de produire une aire interfaciale importante et décrits dans l'état de l'art antérieur. Les principaux inconvénients sont rappelés ci-après :
    • La perte de charge importante occasionnée pour produire la dispersion du gaz,
    • La limitation de fonctionnement de ces contacteurs à des rétentions de la phase gazeuse dispersée à 30 % ou à des rapports volumiques gaz/liquide de 0,5 au mieux dans le cas des systèmes à mélangeur statique, éjecteur à jet immergé et éjecteur venturi à liquide moteur en application à taille industrielle,
    • La limitation de la hauteur d'immersion à moins de quelques mètres au maximum pour les éjecteurs à jet immergé fonctionnant avec des rétentions gazeuses supérieures à 50 % correspondant à des rapports volumiques gaz/liquide supérieurs à 1 alors que la pression statique est bénéfique au transfert de matière gaz liquide,
    • La limitation de conception des jets immergés à des volumes et des hauteurs de contacteur réduits sous l'effet de probables difficultés d'ingénierie pour l'extrapolation des systèmes à plus grande échelle,
    • L'utilisation d'éléments de construction tels qu'éléments de mélangeurs statiques, éléments hélicoïdaux, buses d'éjection de liquide sensibles au colmatage par des dépôts et nécessitant une maintenance accrue,
    • Des conditions de fonctionnement en vitesse liquide supérieure à 10 m/s inacceptables vis-à-vis de la durée de vie des équipements,
    • La faible flexibilité des systèmes vis-à-vis de la variation des conditions de fonctionnement.
    L'invention a aussi pour but de permettre d'obtenir un mélange diphasique avec un rapport volumique gaz/liquide supérieur à 0,3, sans toutefois consommer trop d'énergie et sans mettre en jeu des pressions de liquide élevées, de l'ordre de 4 bars. Il est souhaitable en outre que le procédé et le dispositif de dispersion soient simples à mettre en oeuvre, et que leur maintenance ne soit pas rendue difficile par la présence de particules dans le liquide. L'invention est définie par les caractéristiques des revendications 1 et 9. Selon l'invention, le procédé de dispersion de gaz dans un courant descendant de liquide, est caractérisé en ce que :
    • le liquide est distribué selon au moins un jet dirigé vers le bas, de préférence selon une pluralité de jets,
    • le gaz est distribué radialement vers le ou les jets de liquide pour être entraîné par le liquide,
    • et le mélange liquide gaz est canalisé dans un tube vertical d'écoulement descendant.
    Avantageusement, le gaz est distribué sous une pression inférieure à 2 bars, de préférence inférieure à 1,5 bar.
    La vitesse des jets de liquide peut être comprise entre 4 et 10 m/s, de préférence entre 6 et 8 m/s.
    La section transversale du tube vertical est au moins égale à la surface totale d'émission des jets de liquide, et au plus égale à 2 fois cette même surface, ladite section transversale étant de préférence comprise entre 1,2 et 1,5 fois la surface totale d'émission des jets.
    Avantageusement, le liquide est dirigé au-dessus d'une plaque horizontale comportant une pluralité d'orifices à l'intérieur d'une zone, pour s'écouler vers le bas selon une pluralité de jets,
    • le gaz est distribué radialement vers l'intérieur de ladite zone d'orifices pour le liquide,
    • le mélange liquide gaz est canalisé selon une section décroissante jusqu'à rejoindre le tube vertical d'écoulement descendant.
    De préférence, le mélange liquide gaz est canalisé dans le tube vertical descendant pendant au moins 0,2 seconde.
  • Le gaz injecté peut être choisi parmi l'air, l'oxygène, l'ozone, le dioxyde de carbone, ces gaz étant injectés seuls ou en mélanges.
    De préférence, le liquide est aqueux incluant les eaux naturelles douces ou salines, les eaux usées et plus généralement les effluents aqueux, les eaux de procédé dans l'industrie y compris dans le secteur de production d'eau de consommation.
    L'invention est également relative à un dispositif de dispersion de gaz dans un liquide selon la revendication 9, en particulier pour la mise en oeuvre d'un procédé tel que défini précédemment, comportant un conduit d'arrivée du liquide à traiter. Le dispositif comporte:
    • en partie haute, une tête d'injection reliée au conduit d'arrivée et comportant une chambre de mélange à jet liquide,
    • et en partie inférieure un tube vertical, de préférence coaxial, à écoulement diphasique.
    La tête d'injection comprend un compartiment avec, en partie inférieure, une plaque horizontale de distribution pour le liquide percée d'au moins un orifice, et une chambre annulaire prévue sous la plaque à sa périphérie et comportant au moins une ouverture de distribution du gaz suivant une direction radiale centripète,
    • la chambre de mélange, située au-dessous de la plaque, étant sous forme d'un convergent de raccordement au tube vertical descendant.
    Avantageusement, le diamètre des orifices de la plaque est suffisant, en particulier au moins égal à 10 mm, pour éviter un colmatage dû à des particules contenues dans le liquide, en particulier des eaux usées.
  • Le dispositif comporte une entrée radiale du gaz dans la chambre annulaire distributrice, à partir d'une conduite de gaz se prolongeant au-delà de l'entrée radiale pour une mise possible à l'atmosphère.
    Une telle mise à l'atmosphère est particulièrement avantageuse, notamment car elle améliore la sécurité au cours du fonctionnement d'un tel dispositif, en particulier lors d'une séquence d'arrêt du dispositif. Lors d'une telle séquence d'arrêt, on commence typiquement par évacuer le gaz contenu dans le dispositif en le remplaçant par de l'air extérieur, par l'intermédiaire du prolongement, ou tuyau d'évent, de ladite conduite de gaz. Typiquement, on ouvre progressivement une vanne d'évent de manière à introduire de l'air extérieur au sein de la chambre de mélange par ce tuyau d'évent, puis on ferme une vanne d'entrée de gaz de manière à interrompre l'arrivée de gaz dans la chambre de mélange par ladite conduite de gaz. La mise à l'atmosphère permet ainsi d'éviter tout phénomène d'implosion du dispositif. Cela est notamment très avantageux dans les cas où le gaz introduit dans la chambre de mélange par la conduite de gaz est dangereux, typiquement de l'ozone.
    En outre, une telle mise à l'atmosphère permet de respecter de telles contraintes sécuritaires notamment lorsque le dispositif réalise une injection de gaz dans un niveau d'eau situé à une altitude relativement basse par rapport à l'altitude de la tête d'injection, c'est-à-dire lorsque ledit tube vertical descendant a une longueur relativement importante avant sa submersion, par exemple 10 mètres.
  • La mise à l'atmosphère permet aussi d'améliorer la souplesse du dispositif lors d'une séquence de démarrage au cours de laquelle un liquide est injecté dans la chambre de mélange par ledit conduit d'arrivée du liquide à traiter. Typiquement, lors d'une telle séquence de démarrage, on ouvre la vanne d'évent, permettant à une partie au moins du gaz présent dans la chambre de mélange d'être évacuée. La mise à l'atmosphère permet aussi à l'arrivée de gaz d'être fermée jusqu'à ce que le régime hydraulique souhaité soit obtenu. On ouvre alors l'arrivée de gaz et on ferme la vanne d'évent.
  • La section transversale du tube vertical est au moins égale à la surface totale des orifices de la plaque, et au plus égale à 2 fois cette même surface, et est de préférence comprise entre 1,2 et 1,5 fois la surface totale des orifices de la plaque.
  • La longueur du tube descendant peut être comprise entre 1 et 30 mètres, et est de préférence comprise entre 1 et 15 mètres.
  • Le convergent de la chambre de mélange peut être tronconique, l'angle d'inclinaison des génératrices du tronc de cône relativement à l'axe étant compris entre 15° et 45°.
  • Le système d'injection objet de l'invention est un système de dispersion à jet gaz liquide hydride mélangeur et injecteur à jet. Ledit système est composé d'une tête d'injection comportant une chambre de mélange à jet liquide en partie haute et d'un tube coaxial vertical à jet diphasique en partie inférieure, formant tuyère. Il a pour fonction de disperser de façon homogène le gaz sous forme de fines bulles dans le liquide moteur en tant que contacteur gaz liquide ou en vue du contact ultérieur avec la masse de liquide dans un contacteur environnant. Ladite dispersion gaz liquide est produite pour une rétention gazeuse comprise entre 5 et 70 %, de préférence entre 30 et 50 %.
  • La tête d'injection est conçue de manière à opérer un pré-mélange du liquide et du gaz en amont de la tuyère, le mélange étant rendu homogène le long de la descente dans la tuyère.
  • Le gaz et le liquide peuvent être ceux impliqués dans toute opération nécessitant la formation d'une dispersion gaz liquide.
  • De préférence, le gaz injecté sera choisi parmi l'air, l'oxygène, l'ozone, le dioxyde de carbone, ces gaz étant injectés seuls ou en mélanges.
  • De préférence, le liquide sera aqueux incluant les eaux naturelles douces ou salines, les eaux usées et plus généralement les effluents aqueux, les eaux de procédé industriel dans l'industrie y compris dans le secteur de production d'eau de consommation.
  • Selon un mode préférentiel de réalisation, la tête d'injection est alimentée par le liquide refoulé par un système de pompage et le gaz issu du système de distribution est à une pression égale ou supérieure à la pression atmosphérique. La tête d'injection réalise un pré-mélange du liquide et du gaz sous l'effet de un à plusieurs jets turbulents de liquide émis dans le courant de gaz admis radialement. Les jets de liquide sont produits grâce à un organe de distribution du liquide sous forme de jets à forte vitesse, typiquement entre 4 et 10 m/s, de préférence entre 6 et 8 m/s.
  • L'organe de distribution est de préférence une plaque de distribution à orifices. Une chambre de mélange située au-dessous de l'organe de distribution a pour forme de section supérieure la forme de la section de la plaque de distribution. La chambre de mélange est de forme tulipe ou tronconique convergente ou cylindrique ou parallélépipédique.
  • La turbulence des jets est démontrée par des nombres de Reynolds supérieurs à 105. L'émission des jets liquides produit une vitesse de frottement interfaciale dans le gaz qui peut ainsi atteindre plus de 0,3 m/s soit une vitesse supérieure à la vitesse terminale de bulles de gaz de l'ordre de 3 mm. Un diagramme d'écoulement liquide montre les lignes de débit liquide et met en évidence les zones de recirculation de liquide à l'intérieur de la chambre de mélange également remplie de gaz. Les jets liquides à forte vitesse cisaillent ainsi le gaz et aspirent les poches de gaz produites vers le tube descendant. De plus, les jets liquides initient le transfert de matière gaz liquide. Considérant un temps de contact moyen des jets liquides de 0,15 s, le coefficient de transfert est de l'ordre de 1.10-4 m/s selon la nature du gaz. Le potentiel d'échange est égal à la concentration d'équilibre entre le gaz et le liquide. Par exemple, dans le cas du dioxyde de carbone comme gaz à disperser dans l'eau et des jets de distribution liquide à la vitesse de 10 m/s sur une surface totale 0,3 m2 et de 1 m de hauteur, la quantité de dioxyde de carbone transférée s'élève à 0,3 kg/s.
  • La chambre de mélange est suivie en partie aval d'un tube coaxial de préférence cylindrique. La section du tube est au minimum égale à la surface totale d'émission des jets liquides dans la chambre de mélange et au maximum égale à 2 fois cette même surface. Le rapport de ces surfaces est de préférence compris entre 1,2 et 1,5.
  • Il est connu de l'état de l'art antérieur que l'écoulement en conduite verticale peut prendre plusieurs formes selon les conditions de fonctionnement et les dimensions de la conduite. La transition entre les différents régimes opère selon le rapport des débits gaz et liquide :
    • L'écoulement à bulles apparaît pour de faibles valeurs du rapport des débits gaz et liquide. Il est caractérisé par une phase liquide continue fortement turbulente avec une dispersion homogène de bulles de gaz de taille relativement uniforme,
    • Pour des rapports des débits gaz et liquide plus élevés, les régimes intermittents à bulles et à poches et agités se mettent en place en place,
    • Les régimes à film et annulaire apparaissent pour des rapports volumiques de gaz et de liquide très élevés.
    La carte d'écoulement en conduite verticale dépend, par ordre d'importance : des vitesses superficielles de gaz et de liquide, du diamètre de la conduite et des propriétés des fluides.
  • Dans le cas présent, le dispositif de dispersion selon l'invention rend le mélange diphasique homogène au cours de l'écoulement à co-courant descendant dans le tube coaxial au distributeur de liquide, comme il a été constaté pour une rétention de gaz de 40 %.
  • La longueur du tube descendant peut atteindre 30 mètres afin de promouvoir le transfert de matière à l'intérieur du tube et éventuellement dans le contacteur environnant dont la hauteur correspond à la hauteur utile du système de dispersion. La hauteur est de préférence comprise entre 1 et 25 m. Une rétention gazeuse dans le volume diphasique égale à 50 % correspond à l'empilement compact des inclusions de gaz dans le liquide. Dès lors, l'atteinte d'une taille de bulles homogène dans le tube descendant nécessite de cisailler encore le volume de gaz aspiré sous l'effet de la turbulence du mélange alors que la fréquence de coalescence des bulles est d'autant plus importante que la rétention gazeuse y est élevée. La turbulence du mélange est démontrée par des niveaux de nombre de Reynolds du mélange diphasique supérieurs à 104. Cette turbulence est maintenue en appliquant une vitesse relative de liquide égale à la vitesse de liquide des jets de distribution dans la chambre de mélange pour la meilleure continuité d'écoulement, soit typiquement entre 4 et 10 m/s. Cette vitesse a tendance à diminuer légèrement au cours de la descente sous l'effet de la compression du gaz sous l'effet de la colonne de liquide et sous l'effet du transfert de matière qui s'opère. Le régime s'établit dans le domaine d'écoulement à bulles dès la partie supérieure du tube. La qualité du mélange au début du tube descendant détermine la pression nécessaire pour le gaz injecté.
  • En effet, la pression du mélange gaz liquide est fonction de la pression de sortie de la tuyère (principalement fonction de la hauteur d'immersion), des pertes de charge et du poids de la colonne de liquide dans le système d'injection (qui peut être considérée comme la composante statique). Il s'avère qu'un régime d'écoulement de type à film de liquide annulaire tel que celui observé dans les premiers mètres d'un tube équipé d'une buse et sans pré-mélange du gaz et du liquide fonctionnant à rétention gazeuse de 40 % empêche la transmission de pression statique vers le bas.
  • La perte de hauteur de liquide se traduit directement par la nécessité d'augmenter la pression du gaz à l'injection. Le dispositif selon l'invention permet au contraire une transmission régulière de la pression car il procure une bonne qualité de dispersion dès le début de la descente dans le tube. La taille de bulles produites est corrélée à l'énergie dissipée elle-même dépendante des taux de rétention locaux et des propriétés physico-chimiques des fluides composant la dispersion. Une dispersion d'oxygène dans l'eau à 40 % de gaz est caractérisée par des bulles de diamètre moyen égal à 2,5 mm à l'issue du tube de 10 m de longueur.
  • Le jet diphasique hautement concentré en gaz dissous produit en sortie de tube peut alors être dispersé dans un contacteur environnant ou relaxé vers la sortie du réacteur selon le temps de contact nécessaire à l'absorption et éventuellement à la réaction impliquée dans l'application. Le contacteur environnant peut être tout contacteur connu de l'état de l'art antérieur à courant ascendant de gaz.
  • L'invention consiste, mises à part les dispositions exposées ci-dessus, en un certain nombre d'autres dispositions dont il sera plus explicitement question ci-après à propos d'un exemple de réalisation décrit avec référence au dessin annexé, mais qui n'est nullement limitatif. Sur ce dessin :
    • Fig.1 est une vue schématique de dessus en perspective du dispositif de dispersion selon l'invention.
    • Fig.2 est une vue schématique en perspective selon un autre angle de vue et avec parties coupées du dispositif de Fig.1, et
    • Fig.3 est une vue en perspective du dessous du dispositif de Fig.1.
  • En se reportant au dessin, on peut voir que le dispositif de dispersion D comprend deux ensembles : une tête d'injection H et un tube P de dispersion à jet, formant tuyère. La tête d'injection H est la structure qui relie les arrivées de liquide et de gaz, mélange ces fluides et dirige le mélange résultant dans le tube descendant P.
  • La tête d'injection H est reliée au conduit d'arrivée 1 de liquide et comprend un compartiment B avec, en partie inférieure, un organe de distribution du liquide, de préférence une plaque 2 horizontale de distribution pour le liquide, percée d'orifices 2a. Le liquide s'écoule verticalement au-dessous de la plaque, suivant des jets schématisés par des flèches A sur Fig.2.
  • Une canalisation d'arrivée 4 du gaz à injecter est reliée, par une boîte radiale 4a, à une chambre annulaire 5 située sous la plaque 2 dont elle entoure la périphérie inférieure. Une paroi E limitant radialement vers l'intérieur la chambre 5 comporte des buses ou des ouvertures O de distribution du gaz suivant des directions radiales centripètes représentées par des flèches F sur Fig.2.
  • Une chambre de mélange 3 est située sous la plaque 2. La chambre de mélange 3 est de préférence en forme de tulipe ou tronconique convergente, mais pourrait être de forme cylindrique ou parallélépipédique.
  • Dans le cas où la chambre 3 est sous forme d'un convergent tronconique vers le bas, l'inclinaison des génératrices du convergent par rapport à l'axe géométrique est de préférence comprise entre 15° et 45°. La chambre 3 assure le raccordement au tube vertical descendant P, de préférence coaxial et cylindrique.
  • Un système 6 de mise à l'atmosphère pour la phase de démarrage est prévu en extrémité de la conduite 4 au-delà du raccordement avec la chambre annulaire 5. Une vanne d'évent, non représentée, est prévue dans le système 6, ainsi qu'une vanne d'entrée de gaz non représentée.
  • Le tube P de dispersion à jet est décrit hydrauliquement comme une longueur droite de conduite verticale.
  • Le fonctionnement du dispositif est le suivant.
  • La séquence de démarrage du dispositif, intégré à un contacteur environnant non représenté, permet de mieux comprendre la conception générale du dispositif dans son intégralité.
    • Quand le dispositif ou système est arrêté, le niveau d'eau à l'intérieur du tube immergé P est égal au niveau d'eau à l'extérieur. Au-dessus de ce niveau, la chambre de mélange 3 et le tube P sont remplis de gaz.
    • L'alimentation en liquide est démarrée selon un débit égal au tiers du débit de fonctionnement souhaité. Le liquide remplit la canalisation 1 d'alimentation du système.
    • La plaque de distribution 2 produit des jets de liquide à faible vitesse.
    • Le système de mise à l'atmosphère 6 permet de ourqer le gaz initialement contenu dans la tête d'injection et les poches de gaz entraînées au démarrage en amont dans le haut du tube P.
    • Lorsque le débit de purge devient nul, la vanne du tuyau d'évent du système de mise à l'atmosphère 6 commute progressivement vers l'alimentation en gaz par la conduite 4 et le système peut entrer en production.
    • Le débit de liquide est porté à sa valeur de fonctionnement.
    • En régime stationnaire, le mélange de gaz et d'eau formé dans la chambre 3 circule vers le bas du tube.
  • La séquence d'arrêt du dispositif de dispersion s'articule comme suit :
    • La première étape consiste à évacuer le gaz contenu dans le dispositif en le remplaçant par de l'air extérieur ou un gaz inerte. Pour cela, la vanne d'évent du système 6 est ouverte progressivement sur de l'air extérieur ou un gaz inerte, après quoi la vanne d'entrée de gaz du système 6 se ferme.
    • Le dispositif continue de fonctionner, la totalité du gaz présent est remplacée.
    • Après une courte période correspondant au renouvellement par 5 fois du volume total du dispositif, le dispositif peut être arrêté dans des conditions entièrement sécuritaires, en diminuant progressivement le débit d'eau.
  • Bien que les descriptions qui précèdent concernant le démarrage et l'arrêt du dispositif mentionnent plusieurs fois la variation progressive des conditions de fonctionnement en débit de gaz et de liquide, il faut noter que le dispositif est capable de réagir correctement à des changements brusques de conditions, résultant par exemple d'une panne de courant ou de tout autre événement capable d'entraîner un arrêt non programmé.
  • Ce dispositif permet d'assurer un engagement gazeux éminemment variable compris entre 0,01 et 2 (si exprimé en rapport des débits de gaz et de liquide volumique), au meilleur coût sous l'effet de la réduction de pression nécessaire, de produire une dispersion homogène de gaz dans le liquide propre à assurer le transfert des quantités de matière requises.
  • Simultanément, il offre comme avantages :
    • La sécurité et stabilité de fonctionnement ;
    • La rapidité d'exécution des étapes de démarrage et mise en régime ;
    • La durée potentielle de fonctionnement (corrosion, maintenance,....).
  • Ce dispositif résout les inconvénients des systèmes décrits dans l'état de l'art antérieur et est de plus capable de remplacer tout ou partie des systèmes d'injection et de diffusion de gaz des contacteurs de type colonnes à bulles, des systèmes d'injection de gaz et d'agitation des contacteurs agités. Les contacteurs qui en résultent sont beaucoup plus performants tant du point de vue technique qu'économique.

Claims (13)

  1. Procédé de dispersion de gaz dans un courant descendant de liquide, dans lequel :
    - le liquide est distribué selon au moins un jet dirigé (A) vers le bas, de préférence selon une pluralité de jets,
    - le gaz est distribué radialement (F) vers le ou les jets de liquide pour être entraîné par le liquide,
    - et le mélange liquide gaz est canalisé dans un tube vertical (P) d'écoulement descendant, le procédé étant mis en oeuvre par un dispositif comportant :
    - un conduit d'arrivée (1) du liquide à traiter,
    - en partie haute, une tête d'injection (H) reliée au conduit d'arrivée et comportant une chambre de mélange (3) à jet liquide,
    - et en partie inférieure un tube vertical (P), de préférence coaxial, à écoulement diphasique,
    - la tête d'injection (H) comprenant un compartiment (B) avec, en partie inférieure, une plaque (2) horizontale de distribution pour le liquide percée d'au moins un orifice (2a), et une chambre annulaire distributrice (5) prévue sous la plaque (2) sur sa périphérie, et comportant au moins une ouverture de distribution du gaz suivant une direction radiale (F) centripète,
    - une chambre de mélange (3), située au-dessous de la plaque, caractérisé en ce que la chambre de mélange est sous forme d'un convergent de raccordement au tube vertical (P) descendant, et en ce que le dispositif comporte une entrée radiale (4a) du gaz dans la chambre annulaire (5) distributrice, à partir d'une conduite de gaz (4) se prolongeant (6) au-delà de l'entrée radiale pour une mise possible à l'atmosphère.
  2. Procédé selon la revendication 1, caractérisé en ce que le gaz est distribué sous une pression inférieure à 2 bars, de préférence inférieure à 1.5 bar.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la vitesse du ou des jets de liquide (A) est comprise entre 4 et 10 m/s, de préférence entre 6 et 8 m/s.
  4. Procédé selon la revendication 1, caractérisé en ce que la section transversale du tube vertical (P) est au moins égale à la surface totale d'émission des jets de liquide (A), et au plus égal à 2 fois cette même surface, ladite section transversale étant de préférence comprise entre 1,2 et 1,5 fois la surface totale d'émission des jets .
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que :
    - le liquide est dirigé au-dessus de la plaque (2) horizontale comportant une pluralité d'orifices (2a) à l'intérieur d'une zone, pour s'écouler vers le bas selon une pluralité de jets de liquide,
    - le gaz est distribué radialement en dessous et vers l'intérieur de ladite zone d'orifices pour le liquide,
    - le mélange liquide gaz est canalisé selon une section décroissante jusqu'à rejoindre le tube vertical (P) d'écoulement descendant.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le mélange liquide gaz est canalisé dans le tube vertical (P) descendant pendant au moins 0.2 seconde.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le gaz injecté est choisi parmi l'air, l'oxygène, l'ozone, le dioxyde de carbone, ces gaz étant injectés seuls ou en mélanges.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le liquide est aqueux incluant les eaux naturelles douces ou salines, les eaux usées et plus généralement les effluents aqueux, les eaux de procédé dans l'industrie y compris dans le secteur de production d'eau de consommation.
  9. Dispositif d'injection de gaz dans un liquide, en particulier pour la mise en oeuvre d'un procédé selon l'une quelconque des revendications précédentes, comportant un conduit d'arrivée (1) du liquide à traiter, comportant :
    - en partie haute, une tête d'injection (H) reliée au conduit d'arrivée et comportant une chambre de mélange (3) à jet liquide,
    - en partie inférieure un tube vertical (P), de préférence coaxial, à écoulement diphasique,
    - la tête d'injection (H) comprenant un compartiment (B) avec, en partie inférieure, une plaque (2) horizontale de distribution pour le liquide percée d'au moins un orifice (2a), et une chambre annulaire distributrice (5) prévue sous la plaque (2) sur sa périphérie, et comportant au moins une ouverture de distribution du gaz suivant une direction radiale (F) centripète,
    - la chambre de mélange (3), située au-dessous de la plaque, caractérisé en ce que la chambre de mélange est sous forme d'un convergent de raccordement au tube vertical (P) descendant, et en ce que le dispositif comporte une entrée radiale (4a) du gaz dans la chambre annulaire (5) distributrice, à partir d'une conduite de gaz (4) se prolongeant (6) au-delà de l'entrée radiale pour une mise possible à l'atmosphère.
  10. Dispositif selon la revendication 9, caractérisé en ce que le diamètre des orifices de la plaque est suffisant, en particulier au moins égal à 10 mm , pour éviter un colmatage dû à des particules contenues dans le liquide, en particulier dans les eaux usées.
  11. Dispositif selon la revendication 9 ou 10, caractérisé en ce que la section transversale du tube vertical est au moins égale à la surface totale des orifices (2a) de la plaque, et au plus égale à 2 fois cette même surface, et est de préférence comprise entre 1,2 et 1,5 fois la surface totale des orifices (2a) de la plaque.
  12. Dispositif selon l'une quelconque des revendications 9 à 11, caractérisé en ce que la longueur du tube descendant (P) est comprise entre 1 et 25 mètres
  13. Dispositif selon l'une quelconque des revendications 9 à 12, caractérisé en ce que le convergent de la chambre de mélange (3) est tronconique, l'angle d'inclinaison des génératrices du tronc de cône relativement à l'axe étant compris entre 15° et 45°.
EP15714025.2A 2014-03-07 2015-03-09 Procédé et dispositif de dispersion de gaz dans un liquide Active EP3113867B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1451870A FR3018206A1 (fr) 2014-03-07 2014-03-07 Procede et dispositif de dispersion de gaz dans un liquide
PCT/IB2015/051705 WO2015132773A1 (fr) 2014-03-07 2015-03-09 Procede et dispositif de dispersion de gaz dans un liquide

Publications (2)

Publication Number Publication Date
EP3113867A1 EP3113867A1 (fr) 2017-01-11
EP3113867B1 true EP3113867B1 (fr) 2018-01-03

Family

ID=51168034

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15714025.2A Active EP3113867B1 (fr) 2014-03-07 2015-03-09 Procédé et dispositif de dispersion de gaz dans un liquide

Country Status (6)

Country Link
US (1) US10603643B2 (fr)
EP (1) EP3113867B1 (fr)
CA (1) CA2939691C (fr)
ES (1) ES2663342T3 (fr)
FR (1) FR3018206A1 (fr)
WO (1) WO2015132773A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018206A1 (fr) * 2014-03-07 2015-09-11 Degremont Procede et dispositif de dispersion de gaz dans un liquide
US11219871B2 (en) * 2017-03-10 2022-01-11 Pronto Concepts Inc. Liquid diffusing filter

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US805653A (en) * 1902-03-10 1905-11-28 Leon P Lowe Apparatus for cleaning manufactured gases.
US2767127A (en) * 1950-10-30 1956-10-16 Gulf Oil Corp Particle transporting method and apparatus for use in the catalytic conversion of hydrocarbons
US3440018A (en) * 1966-03-11 1969-04-22 Us Stoneware Inc Chemical treating tower
JPS53116562A (en) * 1977-03-22 1978-10-12 Akoo Kk Powdery material mixing method and apparatus therefor
EP0086019B2 (fr) 1982-02-09 1989-11-29 BBC Brown Boveri AG Procédé et dispositif pour la gazéification d'un liquide
US4498819A (en) * 1982-11-08 1985-02-12 Conoco Inc. Multipoint slurry injection junction
FR2545732B1 (fr) 1983-05-10 1989-10-27 Lyonnaise Eaux Eclairage Appareil pour la dissolution d'ozone dans un fluide
EP0546033A1 (fr) * 1990-08-27 1993-06-16 The University Of Newcastle Research Associates Limited Aeration de liquides
US5462351A (en) * 1994-06-20 1995-10-31 Jenike & Johanson, Inc. Conditioning vessel for bulk solids
US6001247A (en) 1996-05-01 1999-12-14 Schulz; Christopher R. Removable, in-line diffuser apparatus for ozone disinfection of water
AUPO129096A0 (en) * 1996-07-26 1996-08-22 Boc Gases Australia Limited Oxygen dissolver for pipelines or pipe outlets
FR2762232B1 (fr) 1997-04-17 1999-05-28 Degremont Procede et dispositif pour la mise en contact de l'ozone dans des fluides a traiter, notamment de l'eau
US6007055A (en) * 1997-12-29 1999-12-28 Schifftner; Kenneth C. Gas and liquid contact apparatus
FR2776942B1 (fr) 1998-04-07 2000-05-05 Roger Botton Dispositif pour disperser un gaz dans un liquide en vue d'effectuer des reactions chimiques, biochimiques ou de simples echanges physiques avec ou sans particules en suspension
DE10250707B4 (de) * 2002-10-31 2010-08-12 Roland Damann Vorrichtung zur Lösung von Gas in Flüssigkeit
DE202006002983U1 (de) * 2006-02-24 2006-04-27 Damann, Roland Vorrichtung zum Durchführen von Wellness-Bädern oder therapeutischen Bädern
DE102010035519B3 (de) 2010-08-25 2011-12-08 Itt Mfg. Enterprises, Inc. Vorrichtung und Verfahren zur Behandlung von Flüssigkeiten mittels Ozon
US9486750B2 (en) 2011-12-01 2016-11-08 Praxair Technology, Inc. Gas injection method and apparatus
FR3018206A1 (fr) * 2014-03-07 2015-09-11 Degremont Procede et dispositif de dispersion de gaz dans un liquide
DE102017011074B3 (de) * 2017-11-30 2019-01-17 Palas Gmbh Partikel- Und Lasermesstechnik Verfahren und Vorrichtung zum Verdünnen eines Aerosols

Also Published As

Publication number Publication date
US20160361692A1 (en) 2016-12-15
CA2939691A1 (fr) 2015-09-11
FR3018206A1 (fr) 2015-09-11
WO2015132773A1 (fr) 2015-09-11
ES2663342T3 (es) 2018-04-12
US10603643B2 (en) 2020-03-31
CA2939691C (fr) 2020-08-04
EP3113867A1 (fr) 2017-01-11

Similar Documents

Publication Publication Date Title
EP0242280B1 (fr) Procédé et dispositif de traitement d'un liquide alimentaire avec un gaz
JP4725707B2 (ja) 旋回式微細気泡発生装置及び同気泡発生方法
JP3397154B2 (ja) 旋回式微細気泡発生装置
EP1866068B1 (fr) Dispositif pour le melange et la repartition d'un gaz et d'un liquide en amont d'un lit granulaire
FR2467013A1 (fr) Procede, appareil et helice pour repartir une matiere gazeuse, en poudre ou liquide dans un liquide
CA2231338A1 (fr) Dispositif de generation de mousse
WO1999033553A1 (fr) Generateur de fines bulles a turbulence
EP0459928B1 (fr) Installation pour le traitement de flux de liquides à contacteur monophasique, et dispositifrecirculateur-dégazeur pour une telle installation
EP3113867B1 (fr) Procédé et dispositif de dispersion de gaz dans un liquide
FR2905608A1 (fr) Procede et installation pour la mise en contact de l'ozone dans un flux de liquide,en particulier d'eau potable ou d'eau residuaire.
KR101125851B1 (ko) 나노버블 발생장치
JP2010155243A (ja) 旋回式微細気泡発生装置
FR2511031A1 (fr) Dispositif pour l'elaboration de milieux fluides de faible viscosite et de milieux tres visqueux, en particulier pour une fermentation de micro-organismes
WO2003084652A2 (fr) Procede et reacteur de mise en contact gaz/liquide par dispersion, et applications
EP3894060B1 (fr) Dispositif d'injection de fluide dans un liquide, procédé de nettoyage dudit dispositif et installation de traitement d'effluent
EP1467810A1 (fr) DISPOSITIF ET PROCEDE D AGITATION EN PARTICULIER POUR u /u LA DISPERSION OU L EMULSIFICATION DE DEUX LIQUIDES NON MISC IBLES
KR20110108412A (ko) 가스 주입 장치 및/또는 배플을 갖는 하강류 혼합 장치
JP7105446B2 (ja) 反応装置
EP2188215B1 (fr) Procede de separation solide/liquide d'effluent et separateur pour sa mise en oeuvre
EP0122846B1 (fr) Produit fluide à vocation énergétique et son application à l'alimentation d'une chambre de réaction en matière combustible
FR2484862A1 (fr) Procede et dispositif pour le transfert de gaz dans un liquide applicable en particulier au traitement des eaux, en biotechnologie et dans l'industrie chimique
FR2825996A1 (fr) Systeme d'oxygenation d'un liquide a traiter transitant dans un bassin
FR2779660A1 (fr) Procede et installation pour le traitement d'un milieu reactionnel susceptible de provoquer un moussage expansif
AU770174B2 (en) Swirling type micro-bubble generating system
CH396786A (fr) Procédé pour le traitement d'un milieu liquide par un mélange gazeux et appareil pour la mise en oeuvre de ce procédé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160810

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170721

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 959714

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015007217

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2663342

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180412

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180103

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 959714

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180503

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015007217

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

26N No opposition filed

Effective date: 20181005

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150309

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015007217

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0003040000

Ipc: B01F0023200000

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 10

Ref country code: GB

Payment date: 20240327

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240321

Year of fee payment: 10

Ref country code: FR

Payment date: 20240325

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240402

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240401

Year of fee payment: 10