EP3111454B1 - Arrangement comprising an electric switch and an electromagnetic actuator - Google Patents

Arrangement comprising an electric switch and an electromagnetic actuator Download PDF

Info

Publication number
EP3111454B1
EP3111454B1 EP15741894.8A EP15741894A EP3111454B1 EP 3111454 B1 EP3111454 B1 EP 3111454B1 EP 15741894 A EP15741894 A EP 15741894A EP 3111454 B1 EP3111454 B1 EP 3111454B1
Authority
EP
European Patent Office
Prior art keywords
armature
flux
excitation winding
value
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15741894.8A
Other languages
German (de)
French (fr)
Other versions
EP3111454A1 (en
Inventor
Andreas Hahn
Wolfgang KÜHN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3111454A1 publication Critical patent/EP3111454A1/en
Application granted granted Critical
Publication of EP3111454B1 publication Critical patent/EP3111454B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/28Power arrangements internal to the switch for operating the driving mechanism using electromagnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/64Driving arrangements between movable part of magnetic circuit and contact
    • H01H50/641Driving arrangements between movable part of magnetic circuit and contact intermediate part performing a rectilinear movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/64Driving arrangements between movable part of magnetic circuit and contact
    • H01H50/645Driving arrangements between movable part of magnetic circuit and contact intermediate part making a resilient or flexible connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/64Driving arrangements between movable part of magnetic circuit and contact
    • H01H50/66Driving arrangements between movable part of magnetic circuit and contact with lost motion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/185Monitoring or fail-safe circuits with armature position measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1866Monitoring or fail-safe circuits with regulation loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H2047/046Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current with measuring of the magnetic field, e.g. of the magnetic flux, for the control of coil current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2235/00Springs
    • H01H2235/01Spiral spring

Definitions

  • the invention relates to a method with the features according to the preamble of patent claim 1.
  • Such a method is from the German patent DE 10 2011 083 282 B3 known.
  • the patent describes a method for operating an electrical switch with at least one movable switch contact, which is moved by a movable armature of an electromagnetic actuator for switching the switch on and off, a spring device being arranged between the movable switch contact and the armature.
  • a magnetic flux is generated in an excitation winding of the actuator by moving into the excitation winding an excitation current is fed.
  • the German published application DE 195 44 207 A1 describes a control method for an actuator.
  • the movement variables that is to say the acceleration, the speed and the respective location of the armature, are determined, namely, inter alia by evaluating the magnetic flux that flows through an excitation winding of the actuator.
  • the current through the excitation winding is controlled with a view to maintaining a predetermined movement sequence for the actuator.
  • the DE 10 2008 040 668 A1 discloses a method for controlling a magnetic flux of an electromagnet.
  • the DE 10 2009 042 777 A1 discloses an electromagnetic actuator with a measuring device for determining an armature position, the measuring device having at least one current sensor and one magnetic field sensor.
  • the invention has for its object to provide a method for operating an electrical switch in which the least possible wear occurs.
  • the magnetic flux through the excitation winding or a flux variable correlating with the magnetic flux through the excitation winding is determined to form a flux value ⁇ act (t)
  • the magnetic flux in the excitation winding taking into account at least that flowing through the excitation winding Excitation current and the number of turns of the excitation winding is determined by forming a flooding value ⁇ (t) and taking into account a position data record which specifies the respective armature position as a function of flooding values and flow values, the armature position - hereinafter referred to as contact impact armature position - at which the switching contacts are determined meet during the closing process before the armature reaches its armature end position, the magnetic flux through the excitation winding being regulated to move the armature from the starting position into the end position, u nd in such a way that the course of the flow value ⁇ act (t) - in at least one time period before the armature reaches its contact impact anchor position - has a
  • a major advantage of the method according to the invention can be seen in the fact that it determines the contact impact anchor position; This makes it possible to modify a target flow course, which is predetermined before reaching the contact impact anchor position, when the contact impact anchor position is reached, and to design the further movement sequence from the contact impact anchor position until reaching the anchor end position differently than before reaching it the contact impact anchor position.
  • the movement sequence up to the anchor end position can thus be optimized.
  • the position data record is preferably determined in advance on the basis of calibration measurements which are carried out on the respective concrete switch and is stored in a memory of the control device.
  • the position data set can also be determined using computer simulation methods which take into account the mechanical and electromagnetic properties of the switch.
  • the magnetic flux through the excitation winding is regulated to a predetermined constant desired flux ⁇ const1 in the at least one time period before the armature reaches its contact opening armature position.
  • the target flow curve that is fixed in the at least one time segment before reaching the contact impact anchor position is a fixed, predetermined constant target flow ⁇ const1.
  • the constant flow control is ended or switched to another set flow ( ⁇ const2) as soon as the armature has reached its contact impact armature position.
  • the magnetic flux is reduced by reducing the excitation current flowing through the excitation winding.
  • the contact impact anchor position can be recognized particularly quickly and easily if a flow value anchor position curve is read from the position data record for the constant target flow ⁇ const1, which indicates the anchor position depending on the respective flow for the constant target flow ⁇ const1, and the contact impact anchor position ( at least also) is determined on the basis of the flow value anchor position curve.
  • the position data set or the flow value anchor position curve is preferably used for the constant one Target flow ⁇ const1 is read out a stop flooding value ⁇ a (Xc) for which the armature reaches its contact opening armature position.
  • the contact impact anchor position is preferably determined on the basis of the stop flooding value ⁇ a (Xc).
  • the respectively suitable or approximately suitable position value can be read out from the position data record for the respectively determined flooding value and for the respectively determined flow value and the contact impact anchor position can be recognized on the basis of the position values.
  • the movement course of the armature is determined from the position data record by determining a time-dependent position specification, the time-dependent position specification is used to determine a time-dependent acceleration specification and it is concluded that the contact impact anchor position has been reached when the Amount of the time-dependent acceleration specification reaches or exceeds a predetermined threshold value.
  • the invention also relates to an arrangement with an electrical switch according to claim 7.
  • the control device preferably has a microprocessor or microcontroller and the memory in which the position data record is stored.
  • the microprocessor or the microcontroller is preferably programmed in such a way that it can carry out the method described above for operating the switch.
  • the switch 20 can be an electrical circuit breaker, for example.
  • the electrical switch 20 comprises a movable switch contact 21 and a fixed switch contact 22.
  • the movable switch contact 21 is connected to a drive rod 30 of the electromagnetic drive 10, which cooperates with a spring device 40.
  • a further drive rod 50 is also coupled to the spring device 40 and is connected to a movable armature 60 of the electromagnetic drive 10.
  • the armature 60 can perform a lifting movement along a predetermined sliding direction P and can move in the direction of a yoke 70 of the drive 10.
  • the Figure 1 shows the armature 60 with solid lines in an open position (hereinafter also referred to as the starting position) in which it is separated from the yoke 70.
  • the movable switch contact 21 is in an open position, which in the Figure 1 is also shown with solid lines.
  • the closed lines are shown with dashed lines and with reference numerals 61 and 21a Position (hereinafter also called end position) of the armature 60, in which it rests on the magnetic yoke 70, and the closed position of the movable switching contact is shown.
  • the function of the spring device 40 is, inter alia, to provide a predetermined contact pressure force when the switch 20 is closed; in the embodiment according to Figure 1 the spring device 40, the further drive rod 50 in the Figure 1 Press upwards so that the armature 60 is always subjected to a spring force which wants to bring it into the open position and which in the closed state must be compensated for by a correspondingly large holding force.
  • the armature 60 will move to an intermediate position during its movement from the starting position into the armature end position - hereinafter referred to as the contact opening armature position - in which the switch contacts already meet during the closing process, but the armature has not yet reached its armature end position.
  • the starting position of the armature 60 is in the Figure 1 with the reference character Xa, the contact impact anchor position with the reference character Xc and the anchor end position with the reference character Xe.
  • a current I (t) is fed into the excitation winding 80 by means of a control device 100, which causes a magnetic flux within the excitation winding and the armature 60 against the spring force of the spring device 40 in brings its closed position.
  • the control device 100 preferably comprises a microprocessor or microcontroller 110, which regulates the current I (t), in such a way that the course of the flux value ⁇ act (t) of the magnetic flux corresponds to a predetermined target flow curve, but only up to that point in time the anchor 60 the contact impact anchor position Xc reached; this point in time is referred to below as the time of impact.
  • the magnetic flux through the excitation winding 80 is particularly preferably regulated to a constant desired flux ⁇ const1 in the time period which lies immediately before the time of the impact.
  • the control device 100 is connected to an auxiliary coil 200 which surrounds the magnetic yoke 70 and through which the same magnetic flux flows as the excitation winding 80.
  • the control device 100 or its microcontroller 110 measures that at the Auxiliary coil 200 falling electrical voltage Uh (t) with formation of a coil voltage measured value and determined with this, taking into account the law of induction:
  • Uh t N ⁇ d ⁇ is t / German the magnetic flux that passes through the excitation winding 80 and the auxiliary coil 200; in the formula, N denotes the number of windings of the auxiliary coil 200, Uh (t) the voltage drop across the auxiliary coil 200 and t the time.
  • the microcontroller 110 of the control device 100 controls the current I (t) through the excitation winding 80 such that the flow value ⁇ act (t) of the magnetic flux has a predetermined time course before the armature makes its contact Anchor position reached.
  • the control of the actuator movement or the control of the movement of the armature 60 initially takes place independently of its actual movement parameters, but exclusively on the basis of the flux value ⁇ act (t) of the magnetic flux that passes through the excitation winding 80 and the auxiliary coil 200, and for as long as until anchor 60 has reached its contact impact anchor position.
  • the flooding therefore corresponds to the magnetic voltage as the path integral of the magnetic field strength when the magnetic circuit is closed.
  • the microcontroller 110 can determine the contact impact armature position Xc, in which the switching contacts meet during the closing process before the armature 60 reaches its armature end position.
  • FIG Figure 4 An exemplary embodiment of a family of characteristic curves that can form the position data record POS in the memory 120 of the control device 100 is shown in FIG Figure 4 shown.
  • One recognizes a multitude of functional courses of the form ⁇ f ⁇ for different armature positions X, the starting position in which the switch contacts are open being identified by the designation Xa and the armature end position in which the switch contacts are closed and spring energy being stored in the spring device 40 with the reference symbol Xe is marked.
  • the curve X (t) shows an example of a possible anchor course over time through the characteristic curve field during the movement from the starting position Xa via the contact impact anchor position Xc to the anchor end position Xe.
  • the control device 80 or its microcontroller 110 can use the position data record POS for the constant setpoint flow ⁇ const1 to have a flow value -Read out or form the anchor position profile ⁇ a (X), which specifies the anchor position X as a function of the respective flow value ⁇ (t) for the constant set flow ⁇ const1. From this flow value anchor position curve ⁇ a (X), the control device 80 or its microcontroller 110 can in turn read the stop flow value ⁇ a (Xc) for which the armature 60 reaches its contact impact anchor position Xc.
  • the controller 80 determines that the flooding value ⁇ (t) is equal to the stroke flooding value ⁇ a (Xc), it concludes that the armature 60 has reached its contacting armature position Xc and enforces the magnetic flux ⁇ Is (t) by reducing the the excitation winding flowing excitation current I (t) down.
  • Such a reduction in the magnetic flux can take place, for example, by switching the constant flow control to another, and in fact lower, set flow ⁇ const2.
  • the Figure 2 shows an exemplary embodiment for a flow curve with flow values ⁇ (t) over the time t, which the microcontroller 110 can set to control the excitation winding 80. It can be seen that the flow curve according to Figure 2 has a rising ramp section 300, in which the flow values ⁇ (t) preferably increase linearly from 0 to a predetermined final ramp value.
  • a first constant flow section 310 is connected to the rise ramp section 300, in which the magnetic flux has a first constant desired flow ⁇ const1 by means of constant flow control.
  • the first constant flow section 310 serves to produce particularly large acceleration forces in the initial phase of the acceleration of the movable armature 60 in order to increase the speed of the armature 60 particularly quickly in the initial phase.
  • the target flow control is switched over to a constant second target flow ⁇ const2, which is suitable for holding the armature 60 in the armature end position.
  • a second constant flow section which in the Figure 2 is identified by reference number 320.
  • the Figure 3 shows a further exemplary embodiment for a flow curve with flow values ⁇ (t) over the time t, which the microcontroller 110 can set to control the excitation winding 80.
  • a rise ramp section 400 a first constant flow section 410 with a first constant set flow ⁇ const1, a second constant flow section 420 with a second constant set flow ⁇ const2 and a third constant flow section 430 with a third constant set flow ⁇ const3.
  • the second constant flow section 420 acts as a braking section and lies temporally between the first constant flow section 410, which acts as an acceleration section, and the third constant flow section 430, which is suitable for holding the armature 60 in the anchor end position.
  • the second constant flow section 420 serves to control the speed of the armature 60 before it hits the armature to allow the magnetic yoke 70 to drop to a value which ensures the lowest possible wear on the actuator parts of the actuator 10.
  • the constant set flow is in the second constant flow section 420 ⁇ const2 is preferably smaller than the third constant set flow ⁇ const3, with which the armature 60 can be held on the yoke 70 in its end position.
  • the switching of the constant flow control for the transition from the first constant flow section 410 into the second constant flow section 420 takes place as soon as the armature 60 has reached its contact impact armature position Xc at the time te.
  • the microcontroller 110 recognizes the contact impact anchor position Xc preferably on the basis of the position data record POS.
  • the switching of the constant flow control for the transition from the second constant flow section 420 to the third constant flow section 430 preferably takes place when the armature has reached its armature end position Xe at the time te.
  • the microcontroller 110 recognizes the armature end position Xe preferably on the basis of the position data record POS, which is stored in the memory 120 of the control device 100, as a function of the flooding values ⁇ (t) and the magnetic flux values ⁇ ist (t), for example in the same way as it is the contact impact anchor position Xc is determined as a function of the flow values ⁇ (t) and the magnetic flux values ⁇ (t).
  • the above explanations apply accordingly.
  • control device 100 or its microcontroller 110 can also determine the contact impact anchor position Xc and / or the anchor end position Xe as follows: First, the respectively appropriate or approximately suitable position value X (t) of the armature 60 is read out from the position data record POS for the respectively determined flow value wert (t) and for the respectively determined flow value ⁇ act (t).
  • the Figure 5 shows a second embodiment of an actuator 10 and an electrical switch 20, in which a control device 100 of the actuator 10 controls the flow value ⁇ act (t) of the magnetic flux through the yoke 70 and the associated movable armature 60.
  • the arrangement according to Figure 5 corresponds in structure essentially to the exemplary embodiment Figure 1 with the difference that there is no auxiliary coil for measuring the flow value ⁇ act (t), but a Hall sensor 500, which is connected to the control device 100 and the microcontroller 110.
  • the Hall sensor 500 generates a measurement signal S (t), which is transmitted from the Hall sensor 500 to the control device 100 and to the microcontroller 110.
  • the microcontroller 110 can determine the magnetic flux in the magnetic yoke 70 or the magnetic flux through the excitation winding 80 and set the current I (t) through the excitation winding 80 in such a way that the magnetic flux in the excitation winding 80 or in the magnetic yoke 70 corresponds over time to a predetermined target flow curve, as exemplified in connection with FIGS Figures 2 to 4 has been shown above.
  • the exemplary embodiment differs according to Figure 5 from the embodiment according to Figure 1 thus only in the detection of the flux value ⁇ act (t) of the magnetic flux that flows through the excitation winding 80, the magnetic yoke 70 and the armature 60.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)
  • Electromagnets (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Motor And Converter Starters (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren mit den Merkmalen gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method with the features according to the preamble of patent claim 1.

Ein derartiges Verfahren ist aus der deutschen Patentschrift DE 10 2011 083 282 B3 bekannt. Die Patentschrift beschreibt ein Verfahren zum Betreiben eines elektrischen Schalters mit zumindest einem beweglichen Schaltkontakt, der von einem beweglichen Anker eines elektromagnetischen Aktuators zum Ein- und Ausschalten des Schalters bewegt wird, wobei zwischen dem beweglichen Schaltkontakt und dem Anker eine Federeinrichtung angeordnet ist. Zum Bewegen des Ankers von einer vorgegebenen Ausgangsstellung, in der die Schaltkontakte geöffnet sind, in eine vorgegebene Ankerendstellung, in der die Schaltkontakte geschlossen sind und Federenergie in der Federeinrichtung gespeichert ist, wird ein magnetischer Fluss in einer Erregerwicklung des Aktuators erzeugt, indem in die Erregerwicklung ein Erregerstrom eingespeist wird.Such a method is from the German patent DE 10 2011 083 282 B3 known. The patent describes a method for operating an electrical switch with at least one movable switch contact, which is moved by a movable armature of an electromagnetic actuator for switching the switch on and off, a spring device being arranged between the movable switch contact and the armature. To move the armature from a predetermined starting position, in which the switching contacts are open, to a predetermined armature end position, in which the switching contacts are closed and spring energy is stored in the spring device, a magnetic flux is generated in an excitation winding of the actuator by moving into the excitation winding an excitation current is fed.

Die deutsche Offenlegungsschrift DE 195 44 207 A1 beschreibt ein Steuerverfahren für einen Aktuator. Bei diesem Verfahren werden zur Steuerung der Bewegung eines Ankers des Aktuators während der Ankerbewegung die Bewegungsgrößen, also die Beschleunigung, die Geschwindigkeit und der jeweiligen Ort des Ankers, ermittelt, nämlich unter anderem unter Auswertung des magnetischen Flusses, der durch eine Erregerwicklung des Aktuators fließt. Unter Heranziehung der errechneten Bewegungsgrößen erfolgt eine Steuerung des Stroms durch die Erregerwicklung mit Blick auf das Einhalten eines vorgegebenen Bewegungsablaufs für den Aktuator.The German published application DE 195 44 207 A1 describes a control method for an actuator. In this method, in order to control the movement of an armature of the actuator during the armature movement, the movement variables, that is to say the acceleration, the speed and the respective location of the armature, are determined, namely, inter alia by evaluating the magnetic flux that flows through an excitation winding of the actuator. Using the calculated movement variables, the current through the excitation winding is controlled with a view to maintaining a predetermined movement sequence for the actuator.

Die DE 10 2008 040 668 A1 offenbart ein Verfahren zum Regeln eines Magnetflusses eines Elektromagneten.The DE 10 2008 040 668 A1 discloses a method for controlling a magnetic flux of an electromagnet.

Die DE 10 2009 042 777 A1 offenbart einen elektromagnetischen Aktor mit einer Messvorrichtung zur Bestimmung einer Ankerposition, wobei die Messvorrichtung wenigstens einen Stromsensor und einen Magnetfeldsensor aufweist.The DE 10 2009 042 777 A1 discloses an electromagnetic actuator with a measuring device for determining an armature position, the measuring device having at least one current sensor and one magnetic field sensor.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben eines elektrischen Schalters anzugeben, bei dem möglichst wenig Verschleiß auftritt.The invention has for its object to provide a method for operating an electrical switch in which the least possible wear occurs.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind in Unteransprüchen angegeben.According to the invention, this object is achieved by a method having the features according to patent claim 1. Advantageous embodiments of the method according to the invention are specified in the subclaims.

Danach ist erfindungsgemäß - unter anderemvorgesehen, dass der magnetische Fluss durch die Erregerwicklung oder eine mit dem magnetischen Fluss durch die Erregerwicklung korrelierende Flussgröße unter Bildung eines Flusswertes Φist(t) ermittelt wird, die magnetische Durchflutung in der Erregerwicklung unter Berücksichtigung zumindest des durch die Erregerwicklung fließenden Erregerstromes und der Windungszahl der Erregerwicklung unter Bildung eines Durchflutungswertes Θ(t) ermittelt wird und unter Berücksichtigung eines Positionsdatensatzes, der die jeweilige Ankerposition in Abhängigkeit von Durchflutungswerten und Flusswerten angibt, diejenige Ankerposition - nachfolgend Kontaktaufschlag-Ankerposition genannt - bestimmt wird, bei der die Schaltkontakte während des Schließvorgangs aufeinander treffen, bevor der Anker seine Ankerendstellung erreicht, wobei zum Bewegen des Ankers von der Ausgangsstellung in die Endstellung der magnetische Fluss durch die Erregerwicklung geregelt wird, und zwar derart, dass der Verlauf des Flusswertes Φist(t) - in zumindest einem Zeitabschnitt, bevor der Anker seine Kontaktaufschlag-Ankerposition erreicht - einen fest vorgegebenen Sollflussverlauf aufweist.According to the invention, it is provided, among other things, that the magnetic flux through the excitation winding or a flux variable correlating with the magnetic flux through the excitation winding is determined to form a flux value Φact (t), the magnetic flux in the excitation winding taking into account at least that flowing through the excitation winding Excitation current and the number of turns of the excitation winding is determined by forming a flooding value Θ (t) and taking into account a position data record which specifies the respective armature position as a function of flooding values and flow values, the armature position - hereinafter referred to as contact impact armature position - at which the switching contacts are determined meet during the closing process before the armature reaches its armature end position, the magnetic flux through the excitation winding being regulated to move the armature from the starting position into the end position, u nd in such a way that the course of the flow value Φact (t) - in at least one time period before the armature reaches its contact impact anchor position - has a predetermined flow course.

Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens ist darin zu sehen, dass bei diesem die Kontaktaufschlag-Ankerposition ermittelt wird; dies ermöglicht es, einen vor Erreichen der Kontaktaufschlag-Ankerposition fest vorgegebenen Sollflussverlauf zum Zeitpunkt des Erreichens der Kontaktaufschlag-Ankerposition zu modifizieren und den weiteren Bewegungsablauf ab der Kontaktaufschlag-Ankerposition bis zum Erreichen der Ankerendstellung anders zu gestalten als vor Erreichen der Kontaktaufschlag-Ankerposition. Der Bewegungsablauf bis zur Ankerendstellung lässt sich somit optimieren.A major advantage of the method according to the invention can be seen in the fact that it determines the contact impact anchor position; This makes it possible to modify a target flow course, which is predetermined before reaching the contact impact anchor position, when the contact impact anchor position is reached, and to design the further movement sequence from the contact impact anchor position until reaching the anchor end position differently than before reaching it the contact impact anchor position. The movement sequence up to the anchor end position can thus be optimized.

Der Positionsdatensatz wird vorzugsweise anhand von Kalibrierungsmessungen, die an dem jeweils konkreten Schalter vorgenommen werden, vorab bestimmt und in einem Speicher der Steuereinrichtung hinterlegt. Alternativ kann die Bestimmung des Positionsdatensatzes auch über Computersimulationsverfahren erfolgen, die die mechanischen und elektromagnetischen Eigenschaften des Schalters berücksichtigen.The position data record is preferably determined in advance on the basis of calibration measurements which are carried out on the respective concrete switch and is stored in a memory of the control device. Alternatively, the position data set can also be determined using computer simulation methods which take into account the mechanical and electromagnetic properties of the switch.

Mit Blick auf die Durchführung der Flussregelung wird der magnetische Fluss durch die Erregerwicklung in dem zumindest einen Zeitabschnitt, bevor der Anker seine Kontaktaufschlag-Ankerposition erreicht, mittels einer Konstantflussregelung auf einen vorgegebenen konstanten Sollfluss Φconst1 geregelt. Mit anderen Worten ist der in dem zumindest einen Zeitabschnitt vor Erreichen der Kontaktaufschlag-Ankerposition fest vorgegebene Sollflussverlauf ein fest vorgegebener konstanter Sollfluss Φconst1.With a view to carrying out the flux control, the magnetic flux through the excitation winding is regulated to a predetermined constant desired flux Φconst1 in the at least one time period before the armature reaches its contact opening armature position. In other words, the target flow curve that is fixed in the at least one time segment before reaching the contact impact anchor position is a fixed, predetermined constant target flow Φconst1.

Weiter wird die Konstantflussregelung beendet oder auf einen anderen Sollfluss (Φconst2) umgeschaltet, sobald der Anker seine Kontaktaufschlag-Ankerposition erreicht hat. Der magnetische Fluss wird durch Reduktion des durch die Erregerwicklung fließenden Erregerstromes herabgesetzt. Besonders schnell und einfach lässt sich die Kontaktaufschlag-Ankerposition erkennen, wenn aus dem Positionsdatensatz für den konstanten Sollfluss Φconst1 ein Durchflutungswert-Ankerpositionsverlauf ausgelesen wird, der die Ankerposition in Abhängigkeit von der jeweiligen Durchflutung für den konstanten Sollfluss Φconst1 angibt, und die Kontaktaufschlag-Ankerposition (zumindest auch) anhand des Durchflutungswert-Ankerpositionsverlaufs bestimmt wird.Furthermore, the constant flow control is ended or switched to another set flow (Φconst2) as soon as the armature has reached its contact impact armature position. The magnetic flux is reduced by reducing the excitation current flowing through the excitation winding. The contact impact anchor position can be recognized particularly quickly and easily if a flow value anchor position curve is read from the position data record for the constant target flow Φconst1, which indicates the anchor position depending on the respective flow for the constant target flow Φconst1, and the contact impact anchor position ( at least also) is determined on the basis of the flow value anchor position curve.

Aus dem Positionsdatensatz oder aus dem Durchflutungswert-Ankerpositionsverlauf wird vorzugsweise für den konstanten Sollfluss Φconst1 ein Anschlagsdurchflutungswert Θa(Xc) ausgelesen, für den der Anker seine Kontaktaufschlag-Ankerposition erreicht. Bei dieser Ausgestaltung erfolgt die Bestimmung der Kontaktaufschlag-Ankerposition vorzugsweise anhand des Anschlagsdurchflutungswerts Θa(Xc).The position data set or the flow value anchor position curve is preferably used for the constant one Target flow Φconst1 is read out a stop flooding value Θa (Xc) for which the armature reaches its contact opening armature position. In this embodiment, the contact impact anchor position is preferably determined on the basis of the stop flooding value Θa (Xc).

Im Falle einer Berücksichtung des oben erwähnten Anschlagsdurchflutungswerts Θa(Xc) wird es als vorteilhaft angesehen, wenn die Konstantflussregelung beendet oder auf einen anderen Sollfluss (Φconst2) umgeschaltet wird, sobald der Durchflutungswert Θ(t) dem Anschlagsdurchflutungswert Θa(Xc) gleicht.If the above-mentioned stop flow value Θa (Xc) is taken into account, it is considered advantageous if the constant flow control is ended or switched to another set flow (Φconst2) as soon as the flow rate value Θ (t) equals the stop flow rate value Θa (Xc).

Alternativ oder zusätzlich kann für den jeweils ermittelten Durchflutungswert und für den jeweils ermittelten Flusswert aus dem Positionsdatensatz der jeweils passende oder annähernd passende Positionswert ausgelesen werden und die Kontaktaufschlag-Ankerposition anhand der Positionswerte erkannt werden.As an alternative or in addition, the respectively suitable or approximately suitable position value can be read out from the position data record for the respectively determined flooding value and for the respectively determined flow value and the contact impact anchor position can be recognized on the basis of the position values.

Mit Blick auf die letztgenannte Ausgestaltung wird es als vorteilhaft angesehen, wenn aus dem Positionsdatensatz der Bewegungsverlauf des Ankers unter Ermittlung einer zeitabhängigen Positionsangabe ermittelt wird, mit der zeitabhängigen Positionsangabe eine zeitabhängige Beschleunigungsangabe ermittelt wird und auf das Erreichen der Kontaktaufschlag-Ankerposition geschlossen wird, wenn der Betrag der zeitabhängigen Beschleunigungsangabe einen vorgegebenen Schwellenwert erreicht oder überschreitet.With regard to the last-mentioned embodiment, it is considered to be advantageous if the movement course of the armature is determined from the position data record by determining a time-dependent position specification, the time-dependent position specification is used to determine a time-dependent acceleration specification and it is concluded that the contact impact anchor position has been reached when the Amount of the time-dependent acceleration specification reaches or exceeds a predetermined threshold value.

Die Erfindung bezieht sich außerdem auf eine Anordnung mit einem elektrischen Schalter gemäß Anspruch 7.The invention also relates to an arrangement with an electrical switch according to claim 7.

Bezüglich der Vorteile der erfindungsgemäßen Anordnung sei auf die obigen Ausführungen im Zusammenhang mit dem erfindungsgemäßen Verfahren verwiesen, da die Vorteile des erfindungsgemäßen Verfahrens denen der erfindungsgemäßen Anordnung entsprechen.With regard to the advantages of the arrangement according to the invention, reference is made to the above statements in connection with the method according to the invention, since the advantages of the method according to the invention correspond to those of the arrangement according to the invention.

Die Steuereinrichtung weist vorzugsweise einen Mikroprozessor oder Mikrocontroller sowie den Speicher auf, in dem der Positionsdatensatz gespeichert ist. Der Mikroprozessor oder der Mikrocontroller ist vorzugsweise derart programmiert, dass er das oben beschriebene Verfahren zum Betreiben des Schalters durchführen kann.The control device preferably has a microprocessor or microcontroller and the memory in which the position data record is stored. The microprocessor or the microcontroller is preferably programmed in such a way that it can carry out the method described above for operating the switch.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert; dabei zeigen beispielhaft

Figur 1
ein Ausführungsbeispiel für eine Anordnung mit einem Aktuator und einem mit dem Aktuator in Verbindung stehenden elektrischen Schalter, wobei der Aktuator eine Erregerwicklung, eine Steuereinrichtung und eine mit der Steuereinrichtung verbundene Hilfsspule zum Messen des magnetischen Flusses aufweist,
Figur 2
ein erstes Ausführungsbeispiel für eine Sollflusskurve, auf die die Steuereinrichtung gemäß Figur 1 den magnetischen Fluss regeln kann,
Figur 3
ein zweites Ausführungsbeispiel für eine Sollflusskurve, auf die die Steuereinrichtung gemäß Figur 1 den magnetischen Fluss regeln kann,
Figur 4
ein Ausführungsbeispiel für einen Positionsdatensatz in Form einer Kennlinienschar und
Figur 5
ein Ausführungsbeispiel für eine Anordnung mit einem Aktuator und einem elektrischen Schalter, wobei der Aktuator eine Erregerwicklung, eine Steuereinrichtung und einen mit der Steuereinrichtung verbundenen Hallsensor zum Messen des magnetischen Flusses aufweist.
The invention is explained in more detail below on the basis of exemplary embodiments; show exemplary
Figure 1
1 shows an exemplary embodiment of an arrangement with an actuator and an electrical switch connected to the actuator, the actuator having an excitation winding, a control device and an auxiliary coil connected to the control device for measuring the magnetic flux,
Figure 2
a first embodiment for a target flow curve to which the control device according Figure 1 can regulate the magnetic flux,
Figure 3
a second embodiment for a target flow curve to which the control device according Figure 1 can regulate the magnetic flux,
Figure 4
an embodiment of a position data set in the form of a family of curves and
Figure 5
An embodiment of an arrangement with an actuator and an electrical switch, the actuator having an excitation winding, a control device and a Hall sensor connected to the control device for measuring the magnetic flux.

In den Figuren werden der Übersicht halber für identische oder vergleichbare Komponenten stets dieselben Bezugszeichen verwendet.For the sake of clarity, the same reference numbers are always used in the figures for identical or comparable components.

In der Figur 1 erkennt man einen Aktuator in Form eines elektromagnetischen Antriebs 10 für einen elektrischen Schalter 20; bei dem Schalter 20 kann es beispielsweise um einen elektrischen Leistungsschalter handeln. Der elektrische Schalter 20 umfasst einen beweglichen Schaltkontakt 21 sowie einen feststehenden Schaltkontakt 22.In the Figure 1 one recognizes an actuator in the form of an electromagnetic drive 10 for an electrical switch 20; the switch 20 can be an electrical circuit breaker, for example. The electrical switch 20 comprises a movable switch contact 21 and a fixed switch contact 22.

Der bewegliche Schaltkontakt 21 steht mit einer Antriebsstange 30 des elektromagnetischen Antriebs 10 in Verbindung, die mit einer Federeinrichtung 40 zusammenwirkt. An die Federeinrichtung 40 ist außerdem eine weitere Antriebsstange 50 angekoppelt, die mit einem beweglichen Anker 60 des elektromagnetischen Antriebs 10 verbunden ist.The movable switch contact 21 is connected to a drive rod 30 of the electromagnetic drive 10, which cooperates with a spring device 40. A further drive rod 50 is also coupled to the spring device 40 and is connected to a movable armature 60 of the electromagnetic drive 10.

Der Anker 60 kann entlang einer vorgegebenen Schieberichtung P eine Hubbewegung ausführen und sich dabei in Richtung eines Jochs 70 des Antriebs 10 bewegen. Die Figur 1 zeigt den Anker 60 mit durchgezogenen Linien in einer geöffneten Position (nachfolgend auch Ausgangsposition genannt), in der er von dem Joch 70 getrennt ist. In der geöffneten Position des Ankers 60 befindet sich der bewegliche Schaltkontakt 21 in einer geöffneten Position, die in der Figur 1 ebenfalls mit durchgezogenen Linien dargestellt ist. Mit gestrichelten Linien sowie mit den Bezugszeichen 61 und 21a sind die geschlossene Position (nachfolgend auch Endstellung genannt) des Ankers 60, in der dieser auf dem magnetischen Joch 70 aufliegt, und die geschlossene Position des beweglichen Schaltkontakts gezeigt.The armature 60 can perform a lifting movement along a predetermined sliding direction P and can move in the direction of a yoke 70 of the drive 10. The Figure 1 shows the armature 60 with solid lines in an open position (hereinafter also referred to as the starting position) in which it is separated from the yoke 70. In the open position of the armature 60, the movable switch contact 21 is in an open position, which in the Figure 1 is also shown with solid lines. The closed lines are shown with dashed lines and with reference numerals 61 and 21a Position (hereinafter also called end position) of the armature 60, in which it rests on the magnetic yoke 70, and the closed position of the movable switching contact is shown.

Die Funktion der Federeinrichtung 40 besteht unter anderem darin, im geschlossenen Zustand des Schalters 20 eine vorgegebene Kontaktandruckkraft bereitzustellen; bei dem Ausführungsbeispiel gemäß Figur 1 wird die Federeinrichtung 40 die weitere Antriebsstange 50 in der Figur 1 nach oben drücken, so dass der Anker 60 stets mit einer Federkraft beaufschlagt wird, die ihn in die geöffnete Position bringen will und die im geschlossenen Zustand durch eine entsprechend große Haltekraft kompensiert werden muss.The function of the spring device 40 is, inter alia, to provide a predetermined contact pressure force when the switch 20 is closed; in the embodiment according to Figure 1 the spring device 40, the further drive rod 50 in the Figure 1 Press upwards so that the armature 60 is always subjected to a spring force which wants to bring it into the open position and which in the closed state must be compensated for by a correspondingly large holding force.

Wegen der Federeinrichtung 40 wird der Anker 60 bei seiner Bewegung von der Ausgangsposition in die Ankerendstellung eine Zwischenposition - nachfolgend Kontaktaufschlag-Ankerposition genannt - erreichen, bei der die Schaltkontakte während des Schließvorgangs bereits aufeinander treffen, der Anker jedoch seine Ankerendstellung noch nicht erreicht hat. Die Ausgangsposition des Ankers 60 ist in der Figur 1 mit dem Bezugszeichen Xa, die Kontaktaufschlag-Ankerposition mit dem Bezugszeichen Xc und die Ankerendstellung mit dem Bezugszeichen Xe gekennzeichnet.Because of the spring device 40, the armature 60 will move to an intermediate position during its movement from the starting position into the armature end position - hereinafter referred to as the contact opening armature position - in which the switch contacts already meet during the closing process, but the armature has not yet reached its armature end position. The starting position of the armature 60 is in the Figure 1 with the reference character Xa, the contact impact anchor position with the reference character Xc and the anchor end position with the reference character Xe.

Soll der elektrische Schalter 20 mit dem elektromagnetischen Antrieb 10 geschlossen werden, so wird in die Erregerwicklung 80 mittels einer Steuereinrichtung 100 ein Strom I(t) eingespeist, der einen magnetischen Fluss innerhalb der Erregerwicklung hervorruft und den Anker 60 entgegen der Federkraft der Federeinrichtung 40 in seine geschlossene Position bringt. Die Steuereinrichtung 100 umfasst vorzugsweise einen Mikroprozessor oder Mikrocontroller 110, der den Strom I(t) regelt, und zwar derart, dass der Verlauf des Flusswerts Φist(t) des magnetischen Flusses einer fest vorgegebenen Sollflusskurve entspricht, aber nur bis zu demjenigen Zeitpunkt, an dem der Anker 60 die Kontaktaufschlag-Ankerposition Xc erreicht; dieser Zeitpunkt wird nachfolgend Aufschlagszeitpunkt genannt. Besonders bevorzugt wird der magnetische Fluss durch die Erregerwicklung 80 in dem Zeitabschnitt, der unmittelbar vor dem Aufschlagszeitpunkt liegt, mittels einer Konstantflussregelung auf einen konstanten Sollfluss Φconst1 geregelt.If the electrical switch 20 is to be closed with the electromagnetic drive 10, a current I (t) is fed into the excitation winding 80 by means of a control device 100, which causes a magnetic flux within the excitation winding and the armature 60 against the spring force of the spring device 40 in brings its closed position. The control device 100 preferably comprises a microprocessor or microcontroller 110, which regulates the current I (t), in such a way that the course of the flux value Φact (t) of the magnetic flux corresponds to a predetermined target flow curve, but only up to that point in time the anchor 60 the contact impact anchor position Xc reached; this point in time is referred to below as the time of impact. The magnetic flux through the excitation winding 80 is particularly preferably regulated to a constant desired flux Φconst1 in the time period which lies immediately before the time of the impact.

Um diese Regelung des magnetischen Flusses zu ermöglichen, steht die Steuereinrichtung 100 mit einer Hilfsspule 200 in Verbindung, die das magnetische Joch 70 umgibt und von demselben magnetischen Fluss durchflossen wird wie die Erregerwicklung 80. Die Steuereinrichtung 100 bzw. deren Mikrocontroller 110 misst die an der Hilfsspule 200 abfallende elektrische Spannung Uh(t) unter Bildung eines Spulenspannungsmesswerts und ermittelt mit diesem unter Berücksichtigung des Induktionsgesetzes: Uh t = N ist t / dt

Figure imgb0001
den magnetischen Fluss, der die Erregerwicklung 80 und die Hilfsspule 200 durchsetzt; in der Formel bezeichnet N die Wicklungsanzahl der Hilfsspule 200, Uh(t) die an der Hilfsspule 200 abfallende Spannung und t die Zeit.In order to make this regulation of the magnetic flux possible, the control device 100 is connected to an auxiliary coil 200 which surrounds the magnetic yoke 70 and through which the same magnetic flux flows as the excitation winding 80. The control device 100 or its microcontroller 110 measures that at the Auxiliary coil 200 falling electrical voltage Uh (t) with formation of a coil voltage measured value and determined with this, taking into account the law of induction: Uh t = N is t / German
Figure imgb0001
the magnetic flux that passes through the excitation winding 80 and the auxiliary coil 200; in the formula, N denotes the number of windings of the auxiliary coil 200, Uh (t) the voltage drop across the auxiliary coil 200 and t the time.

Unter Berücksichtigung des jeweiligen Flusswertes Φist(t) steuert der Mikrocontroller 110 der Steuereinrichtung 100 den Strom I(t) durch die Erregerwicklung 80 derart, dass der Flusswert Φist(t) des magnetischen Flusses einen vorgegebenen zeitlichen Verlauf aufweist, bevor der Anker seine Kontaktaufschlag-Ankerposition erreicht. Mit anderen Worten erfolgt die Regelung der Aktuatorbewegung bzw. die Regelung der Bewegung des Ankers 60 anfangs unabhängig von dessen tatsächlichen Bewegungsparametern, sondern ausschließlich anhand des Flusswertes Φist(t) des magnetischen Flusses, der die Erregerwicklung 80 und die Hilfsspule 200 durchsetzt, und zwar solange, bis der Anker 60 seine Kontaktaufschlag-Ankerposition erreicht hat.Taking into account the respective flow value Φact (t), the microcontroller 110 of the control device 100 controls the current I (t) through the excitation winding 80 such that the flow value Φact (t) of the magnetic flux has a predetermined time course before the armature makes its contact Anchor position reached. In other words, the control of the actuator movement or the control of the movement of the armature 60 initially takes place independently of its actual movement parameters, but exclusively on the basis of the flux value Φact (t) of the magnetic flux that passes through the excitation winding 80 and the auxiliary coil 200, and for as long as until anchor 60 has reached its contact impact anchor position.

Um ein Abschalten der Sollflussregelung oder ein Umschalten der Sollflussregelung auf einen anderen Sollfluss als den Sollfluss Φconst1 zu ermöglichen, sobald der Anker 60 die Kontaktaufschlag-Ankerposition Xc erreicht, ermittelt die Steuereinrichtung 100 während der Ankerbewegung zusätzlich die magnetische Durchflutung in der Erregerwicklung 80, beispielsweise unter Berücksichtigung des durch die Erregerwicklung fließenden Erregerstromes I(t) und der Windungszahl W der Erregerwicklung 80 unter Bildung eines Durchflutungswertes Θ(t), vorzugsweise gemäß Θ t = W I t

Figure imgb0002
In order to make it possible to switch off the set flow control or to switch the set flow control to a set flow other than the set flow Φconst1, as soon as the armature 60 reaches the contact opening armature position Xc, the control device 100 also determines the magnetic flux in the excitation winding 80, for example below, during the armature movement Taking into account the excitation current I (t) flowing through the excitation winding and the number of turns W of the excitation winding 80, forming a flooding value Θ (t), preferably according to Θ t = W I. t
Figure imgb0002

Die Durchflutung entspricht also der magnetischen Spannung als Wegintegral der magnetischen Feldstärke bei geschlossenem magnetischem Kreis.The flooding therefore corresponds to the magnetic voltage as the path integral of the magnetic field strength when the magnetic circuit is closed.

Unter Berücksichtigung eines Positionsdatensatzes POS, der in einem Speicher 120 der Steuereinrichtung 100 abgespeichert ist und die jeweilige Ankerposition X in Abhängigkeit von Durchflutungswerten Θ(t) und den magnetischen Flusswerten Φist(t) angibt, kann der Mikrocontroller 110 die Kontaktaufschlag-Ankerposition Xc bestimmen, bei der die Schaltkontakte während des Schließvorgangs aufeinander treffen, bevor der Anker 60 seine Ankerendstellung erreicht.Taking into account a position data record POS, which is stored in a memory 120 of the control device 100 and which specifies the respective armature position X as a function of the flow values Θ (t) and the magnetic flux values Φact (t), the microcontroller 110 can determine the contact impact armature position Xc, in which the switching contacts meet during the closing process before the armature 60 reaches its armature end position.

Ein Ausführungsbeispiel für eine Kennlinienschar, die den Positionsdatensatz POS im Speicher 120 der Steuereinrichtung 100 bilden kann, ist beispielhaft in der Figur 4 gezeigt. Man erkennt eine Vielzahl an Funktionsverläufen der Form Φ = f Θ

Figure imgb0003
für unterschiedliche Ankerpositionen X, wobei die Ausgangsstellung, in der die Schaltkontakte geöffnet sind, mit der Bezeichnung Xa kennzeichnet ist und die Ankerendstellung, in der die Schaltkontakte geschlossen sind und Federenergie in der Federeinrichtung 40 gespeichert ist, mit dem Bezugszeichen Xe gekennzeichnet ist. Die Kurve X(t) zeigt beispielhaft einen möglichen Ankerverlauf über der Zeit durch das Kennlinienfeld während der Bewegung von der Ausgangsstellung Xa über die Kontaktaufschlag-Ankerposition Xc in die Ankerendstellung Xe.An exemplary embodiment of a family of characteristic curves that can form the position data record POS in the memory 120 of the control device 100 is shown in FIG Figure 4 shown. One recognizes a multitude of functional courses of the form Φ = f Θ
Figure imgb0003
for different armature positions X, the starting position in which the switch contacts are open being identified by the designation Xa and the armature end position in which the switch contacts are closed and spring energy being stored in the spring device 40 with the reference symbol Xe is marked. The curve X (t) shows an example of a possible anchor course over time through the characteristic curve field during the movement from the starting position Xa via the contact impact anchor position Xc to the anchor end position Xe.

Bei der seitens der Steuereinrichtung 80 erfolgende Konstantflussregelung derart, dass der Flusswert Φist(t) vor Erreichen der Kontaktaufschlag-Ankerposition Xc den konstanten Sollfluss Φconst1 aufweist, kann die Steuereinrichtung 80 bzw. deren Mikrocontroller 110 aus dem Positionsdatensatz POS für den konstanten Sollfluss Φconst1 einen Durchflutungswert-Ankerpositionsverlauf Θa(X) auslesen bzw. bilden, der die Ankerposition X in Abhängigkeit von dem jeweiligen Durchflutungswert Θ(t) für den konstanten Sollfluss Φconst1 angibt. Aus diesem Durchflutungswert-Ankerpositionsverlauf Θa(X) kann die Steuereinrichtung 80 bzw. deren Mikrocontroller 110 wiederum den Anschlagsdurchflutungswert Θa(Xc) auslesen, für den der Anker 60 seine Kontaktaufschlag-Ankerposition Xc erreicht.In the case of constant flow control on the part of the control device 80 such that the flow value Φact (t) has the constant setpoint flow Φconst1 before reaching the contact opening anchor position Xc, the control device 80 or its microcontroller 110 can use the position data record POS for the constant setpoint flow Φconst1 to have a flow value -Read out or form the anchor position profile Θa (X), which specifies the anchor position X as a function of the respective flow value Θ (t) for the constant set flow Φconst1. From this flow value anchor position curve Θa (X), the control device 80 or its microcontroller 110 can in turn read the stop flow value Θa (Xc) for which the armature 60 reaches its contact impact anchor position Xc.

Sobald die Steuereinrichtung 80 feststellt, dass der Durchflutungswert Θ(t) dem Anschlagsdurchflutungswert Θa(Xc) gleicht, schließt sie darauf, dass der Anker 60 seine Kontaktaufschlag-Ankerposition Xc erreicht hat, und setzt den magnetischen Fluss ΦIst(t) durch Reduktion des durch die Erregerwicklung fließenden Erregerstromes I(t) herab. Ein solches Herabsetzen des magnetischen Flusses kann beispielsweise durch ein Umschalten der Konstantflussregelung auf einen anderen, und zwar geringeren, Sollfluss Φconst2 erfolgen.Once the controller 80 determines that the flooding value Θ (t) is equal to the stroke flooding value Θa (Xc), it concludes that the armature 60 has reached its contacting armature position Xc and enforces the magnetic flux ΦIs (t) by reducing the the excitation winding flowing excitation current I (t) down. Such a reduction in the magnetic flux can take place, for example, by switching the constant flow control to another, and in fact lower, set flow Φconst2.

Die Figur 2 zeigt ein Ausführungsbeispiel für eine Flusskurve mit Flusswerten Φ (t) über der Zeit t, die der Mikrocontroller 110 zur Ansteuerung der Erregerwicklung 80 einstellen kann. Man erkennt, dass die Flusskurve gemäß Figur 2 einen Anstiegsrampenabschnitt 300 aufweist, in dem die Flusswerte Φ(t) von 0 auf einen vorgegebenen Rampenendwert vorzugsweise linear ansteigen.The Figure 2 shows an exemplary embodiment for a flow curve with flow values Φ (t) over the time t, which the microcontroller 110 can set to control the excitation winding 80. It can be seen that the flow curve according to Figure 2 has a rising ramp section 300, in which the flow values Φ (t) preferably increase linearly from 0 to a predetermined final ramp value.

An den Anstiegsrampenabschnitt 300 schließt sich ein erster Konstantflussabschnitt 310 an, in dem mittels Konstantflussregelung der magnetische Fluss einen ersten konstanten Sollfluss Φconst1 aufweist. Der erste Konstantflussabschnitt 310 dient dazu, in der Anfangsphase der Beschleunigung des beweglichen Ankers 60 besonders große Beschleunigungskräfte hervorzurufen, um die Geschwindigkeit des Ankers 60 in der Anfangsphase besonders schnell zu erhöhen.A first constant flow section 310 is connected to the rise ramp section 300, in which the magnetic flux has a first constant desired flow Φconst1 by means of constant flow control. The first constant flow section 310 serves to produce particularly large acceleration forces in the initial phase of the acceleration of the movable armature 60 in order to increase the speed of the armature 60 particularly quickly in the initial phase.

Sobald der Anker 60 zum Zeitpunkt tc seine Kontaktaufschlag-Ankerposition Xc erreicht hat, wird die Sollflussregelung umgeschaltet, und zwar auf einen konstanten zweiten Sollfluss Φconst2, der zum Halten des Ankers 60 in der Ankerendstellung geeignet ist. Es ergibt sich ein zweiter Konstantflussabschnitt, der in der Figur 2 mit dem Bezugszeichen 320 gekennzeichnet ist.As soon as the armature 60 has reached its contact impact armature position Xc at the time tc, the target flow control is switched over to a constant second target flow Φconst2, which is suitable for holding the armature 60 in the armature end position. The result is a second constant flow section, which in the Figure 2 is identified by reference number 320.

Die Figur 3 zeigt ein weiteres Ausführungsbeispiel für eine Flusskurve mit Flusswerten Φ(t) über der Zeit t, die der Mikrocontroller 110 zur Ansteuerung der Erregerwicklung 80 einstellen kann. Man erkennt einen Anstiegsrampenabschnitt 400, einen ersten Konstantflussabschnitt 410 mit einem ersten konstanten Sollfluss Φconst1, einen zweiten Konstantflussabschnitt 420 mit einem zweiten konstanten Sollfluss Φconst2 und einen dritten Konstantflussabschnitt 430 mit einem dritten konstanten Sollfluss Φconst3.The Figure 3 shows a further exemplary embodiment for a flow curve with flow values Φ (t) over the time t, which the microcontroller 110 can set to control the excitation winding 80. One can see a rise ramp section 400, a first constant flow section 410 with a first constant set flow Φconst1, a second constant flow section 420 with a second constant set flow Φconst2 and a third constant flow section 430 with a third constant set flow Φconst3.

Der zweite Konstantflussabschnitt 420 wirkt als Bremsabschnitt und liegt zeitlich zwischen dem als Beschleunigungsabschnitt wirkenden ersten Konstantflussabschnitt 410 und dem zum Halten des Ankers 60 in der Ankerendstellung geeigneten dritten Konstantflussabschnitt 430. Der zweite Konstantflussabschnitt 420 dient dazu, die Geschwindigkeit des Ankers 60 vor dem Auftreffen auf dem magnetischen Joch 70 auf einen Wert abfallen zu lassen, der einen möglichst geringen Verschleiß der Aktuatorteile des Aktuators 10 sicherstellt. Im zweiten Konstantflussabschnitt 420 ist der konstante Sollfluss Φconst2 vorzugsweise kleiner als der dritte konstante Sollfluss Φconst3, mit dem sich der Anker 60 in seiner Endlage auf dem Joch 70 halten lässt.The second constant flow section 420 acts as a braking section and lies temporally between the first constant flow section 410, which acts as an acceleration section, and the third constant flow section 430, which is suitable for holding the armature 60 in the anchor end position. The second constant flow section 420 serves to control the speed of the armature 60 before it hits the armature to allow the magnetic yoke 70 to drop to a value which ensures the lowest possible wear on the actuator parts of the actuator 10. The constant set flow is in the second constant flow section 420 Φconst2 is preferably smaller than the third constant set flow Φconst3, with which the armature 60 can be held on the yoke 70 in its end position.

Das Umschalten der Konstantflussregelung für den Übergang von dem ersten Konstantflussabschnitt 410 in den zweiten Konstantflussabschnitt 420 erfolgt sobald der Anker 60 zum Zeitpunkt te seine Kontaktaufschlag-Ankerposition Xc erreicht hat. Die Kontaktaufschlag-Ankerposition Xc erkennt der Mikrocontroller 110 vorzugsweise anhand des Positionsdatensatzes POS.The switching of the constant flow control for the transition from the first constant flow section 410 into the second constant flow section 420 takes place as soon as the armature 60 has reached its contact impact armature position Xc at the time te. The microcontroller 110 recognizes the contact impact anchor position Xc preferably on the basis of the position data record POS.

Das Umschalten der Konstantflussregelung für den Übergang von dem zweiten Konstantflussabschnitt 420 in den dritten Konstantflussabschnitt 430 erfolgt vorzugsweise, wenn der Anker zum Zeitpunkt te seine Ankerendstellung Xe erreicht hat. Die Ankerendstellung Xe erkennt der Mikrocontroller 110 vorzugsweise anhand des Positionsdatensatzes POS, der in dem Speicher 120 der Steuereinrichtung 100 abgespeichert ist, in Abhängigkeit von den Durchflutungswerten Θ(t) und den magnetischen Flusswerten Φist(t), also beispielsweise in gleicher Weise, wie er in Abhängigkeit von den Durchflutungswerten Θ(t) und den magnetischen Flusswerten Φist(t) die Kontaktaufschlag-Ankerposition Xc bestimmt. Bezüglich der Erkennung der Ankerendstellung Xe gelten die obigen Erläuterungen also entsprechend.The switching of the constant flow control for the transition from the second constant flow section 420 to the third constant flow section 430 preferably takes place when the armature has reached its armature end position Xe at the time te. The microcontroller 110 recognizes the armature end position Xe preferably on the basis of the position data record POS, which is stored in the memory 120 of the control device 100, as a function of the flooding values Θ (t) and the magnetic flux values Φist (t), for example in the same way as it is the contact impact anchor position Xc is determined as a function of the flow values Θ (t) and the magnetic flux values Φ (t). With regard to the detection of the anchor end position Xe, the above explanations apply accordingly.

Alternativ kann die Steuereinrichtung 100 bzw. deren Mikrocontroller 110 die Kontaktaufschlag-Ankerposition Xc und/oder die Ankerendstellung Xe auch wie folgt bestimmen:
Zunächst wird für den jeweils ermittelten Durchflutungswert Θ(t) und für den jeweils ermittelten Flusswert ΦIst(t) aus dem Positionsdatensatz POS der jeweils passende oder annähernd passende Positionswert X(t) des Ankers 60 ausgelesen. Mit der zeitabhängigen Positionsangabe wird eine zeitabhängige Beschleunigungsangabe a(t) ermittelt gemäß a t = d 2 X t dt 2 ,

Figure imgb0004
und es wird jeweils auf das Erreichen der Kontaktaufschlag-Ankerposition Xc oder der Ankerendstellung Xe geschlossen, wenn der Betrag |a(t)| der zeitabhängigen Beschleunigungsangabe a(t) einen vorgegebenen Schwellenwert M erreicht oder überschreitet, also wenn gilt: a t M
Figure imgb0005
Alternatively, the control device 100 or its microcontroller 110 can also determine the contact impact anchor position Xc and / or the anchor end position Xe as follows:
First, the respectively appropriate or approximately suitable position value X (t) of the armature 60 is read out from the position data record POS for the respectively determined flow value wert (t) and for the respectively determined flow value Φact (t). With the time-dependent position specification, a time-dependent acceleration specification a (t) is determined in accordance with a t = d 2nd X t German 2nd ,
Figure imgb0004
and it is concluded that the contact impact anchor position Xc or the anchor end position Xe is reached if the amount | a (t) | the time-dependent acceleration specification a (t) reaches or exceeds a predetermined threshold value M, that is if: a t M
Figure imgb0005

Im Übrigen gelten die obigen Erläuterungen bezüglich der Arbeitsweise der Steuereinrichtung 100 und deren Mikrocontroller 110 entsprechend.Otherwise, the above explanations regarding the operation of the control device 100 and its microcontroller 110 apply accordingly.

Die Figur 5 zeigt ein zweites Ausführungsbeispiel für einen Aktuator 10 und einen elektrischen Schalter 20, bei der eine Steuereinrichtung 100 des Aktuators 10 eine Regelung des Flusswertes Φist(t) des magnetischen Flusses durch das Joch 70 und dem zugeordneten beweglichen Anker 60 hervorruft. Die Anordnung gemäß Figur 5 entspricht von dem Aufbau her im Wesentlichen dem Ausführungsbeispiel gemäß Figur 1 mit dem Unterschied, dass zum Messen des Flusswertes Φist(t) keine Hilfsspule vorgesehen ist, sondern ein Hall-Sensor 500, der mit der Steuereinrichtung 100 und dem Mikrocontroller 110 verbunden ist. Der Hall-Sensor 500 erzeugt ein Messsignal S(t), das vom Hall-Sensor 500 zur Steuereinrichtung 100 und zum Mikrocontroller 110 übermittelt wird. Anhand des Messsignals S(t) kann der Mikrocontroller 110 den magnetischen Fluss im magnetischen Joch 70 bzw. den magnetischen Fluss durch die Erregerwicklung 80 ermitteln und den Strom I(t) durch die Erregerwicklung 80 derart einstellen, dass der magnetische Fluss in der Erregerwicklung 80 bzw. im magnetischen Joch 70 im zeitlichen Verlauf einer vorgegebenen Sollflusskurve entspricht, wie dies beispielhaft im Zusammenhang mit den Figuren 2 bis 4 oben gezeigt worden ist.The Figure 5 shows a second embodiment of an actuator 10 and an electrical switch 20, in which a control device 100 of the actuator 10 controls the flow value Φact (t) of the magnetic flux through the yoke 70 and the associated movable armature 60. The arrangement according to Figure 5 corresponds in structure essentially to the exemplary embodiment Figure 1 with the difference that there is no auxiliary coil for measuring the flow value Φact (t), but a Hall sensor 500, which is connected to the control device 100 and the microcontroller 110. The Hall sensor 500 generates a measurement signal S (t), which is transmitted from the Hall sensor 500 to the control device 100 and to the microcontroller 110. Based on the measurement signal S (t), the microcontroller 110 can determine the magnetic flux in the magnetic yoke 70 or the magnetic flux through the excitation winding 80 and set the current I (t) through the excitation winding 80 in such a way that the magnetic flux in the excitation winding 80 or in the magnetic yoke 70 corresponds over time to a predetermined target flow curve, as exemplified in connection with FIGS Figures 2 to 4 has been shown above.

Zusammengefasst unterscheidet sich das Ausführungsbeispiel gemäß Figur 5 von dem Ausführungsbeispiel gemäß Figur 1 somit lediglich in der Erfassung des Flusswertes Φist(t) des magnetischen Flusses, der durch die Erregerwicklung 80, das magnetische Joch 70 und den Anker 60 fließt.In summary, the exemplary embodiment differs according to Figure 5 from the embodiment according to Figure 1 thus only in the detection of the flux value Φact (t) of the magnetic flux that flows through the excitation winding 80, the magnetic yoke 70 and the armature 60.

Obwohl die Erfindung im Detail durch bevorzugte Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, im Rahmen des durch die vorliegenden Ansprüche bestimmten Schutzumfangs.Although the invention has been illustrated and described in more detail by means of preferred exemplary embodiments, the invention is not restricted by the disclosed examples and other variations can be derived therefrom by a person skilled in the art within the scope of the protection determined by the present claims.

BezugszeichenlisteReference list

1010th
elektromagnetischer Antrieb / Aktuatorelectromagnetic drive / actuator
2020
Schaltercounter
2121
beweglicher Schaltkontaktmovable switch contact
21a21a
Schaltkontakt in geschlossener Position / EndstellungSwitch contact in closed position / end position
2222
feststehender Schaltkontaktfixed switch contact
3030th
AntriebsstangeDrive rod
4040
FedereinrichtungSpring device
5050
weitere Antriebsstangefurther drive rod
6060
Ankeranchor
6161
Anker in geschlossener Stellung / EndstellungAnchor in the closed position / end position
7070
Jochyoke
8080
ErregerwicklungExcitation winding
100100
SteuereinrichtungControl device
110110
MikrocontrollerMicrocontroller
120120
SpeicherStorage
200200
HilfsspuleAuxiliary coil
300300
AnstiegsrampenabschnittRise ramp section
310310
erster Konstantflussabschnittfirst constant flow section
320320
zweiter Konstantflussabschnittsecond constant flow section
400400
AnstiegsrampenabschnittRise ramp section
410410
erster Konstantflussabschnittfirst constant flow section
420420
zweiter Konstantflussabschnittsecond constant flow section
430430
dritter Konstantflussabschnittthird constant flow section
500500
Hall-SensorHall sensor
I(t)I (t)
SpulenstromCoil current
PP
SchieberichtungSliding direction
POSPOS
PositionsdatensatzLocation record
S(t)S (t)
MesssignalMeasurement signal
tt
Zeittime
tctc
Zeitpunkttime
tete
Zeitpunkttime
Uh(t)Uh (t)
Spannungtension
XX
AnkerpositionAnchor position
XaXa
AusgangsstellungStarting position
XcXc
Kontaktaufschlag-AnkerpositionContact impact anchor position
XeXe
AnkerendstellungAnchor end position
X(t)X (t)
zeitabhängige Positionsangabetime-dependent position information
Φist(t)Φact (t)
FlusswertFlow value
Φ(t)Φ (t)
FlusswertFlow value
Φconst1Φconst1
SollflussTarget flow
Φconst2Φconst2
SollflussTarget flow
Φconst3Φconst3
SollflussTarget flow
ΘΘ
DurchflutungFlooding

Claims (8)

  1. Method for operating an electric switch (20) having at least one movable switch contact which is moved by a movable armature (60) of an electromagnetic actuator (10) in order to switch the switch (20) on and off,
    - wherein a spring device (40) is disposed between the movable switch contact and the armature (60), and
    - wherein, in order to move the armature (60) from a predefined starting position (Xa), in which the switch contacts of the switch are open, into a predefined armature end position (Xe), in which the switch contacts are closed and spring energy is stored in the spring device (40), a magnetic flux is generated in an excitation winding (80) of the actuator (10) by way of an excitation current (I(t)) being fed into the excitation winding (80),
    characterized in that
    - the magnetic flux through the excitation winding (80) or a flux variable correlating to the magnetic flux through the excitation winding (80) is determined and a flux value (Φist(t)) is formed,
    - the magnetomotive force in the excitation winding (80) is determined with consideration for at least the excitation current (I(t)) flowing through the excitation winding (80) and the number of turns of the excitation winding (80), and a magnetomotive value (Θ(t)) is formed, and
    - with consideration for a position data set (POS) which indicates the particular armature position as a function of magnetomotive values and flux values, an armature position - referred to in the following as the contact strike armature position (Xc) - is determined at which the switch contacts meet each other during the closing operation, before the armature (60) reaches the armature end position (Xe),
    - wherein, in order to move the armature (60) from the starting position (Xa) into the end position, the magnetic flux through the excitation winding (80) is regulated, specifically in such a way that the progression of the flux value (Φist(t)) - in at least one time interval before the armature (60) reaches the contact strike armature position (Xc) - has a fixedly predefined setpoint flux progression,
    - wherein the magnetic flux through the excitation winding (80) is regulated to a predefined constant setpoint flux (Φconst1), by means of a constant flux regulation, in the at least one time interval before the armature (60) reaches the contact strike armature position (Xc),
    - wherein the constant flux regulation is terminated or is switched to another setpoint flux (Φconst2) as soon as the armature (60) reaches the contact strike armature position (Xc),
    - by way of the magnetic flux being reduced by reducing the excitation current (I(t)) flowing through the excitation winding (80) .
  2. Method according to Claim 1,
    characterized in that
    - a magnetomotive value-armature position progression (Θa(X)) is read out of the position data set (POS) for the constant setpoint flux (Φconst1), which progression indicates the armature position as a function of the particular magnetomotive force for the constant setpoint flux (Φconst1), and
    - the contact strike armature position (Xc) is determined at least also on the basis of the magnetomotive value-armature position progression (Θa(X)).
  3. Method according to one of the preceding Claims 1-2, characterized in that
    - a strike magnetomotive value (Θa(Xc)), at which the armature (60) reaches the contact strike armature position (Xc), is read out of the position data set (POS) or the magnetomotive value-armature position progression (Θa(X)) for the constant setpoint flux (Φconst1), and
    - the determination of the contact strike armature position (Xc) also takes place at least on the basis of the strike magnetomotive value (Θa(Xc)).
  4. Method according to Claim 3,
    characterized in that
    the constant flux regulation is terminated or is switched to another setpoint flux (Φconst2) as soon as the magnetomotive value (Θ(t)) is equal to the strike magnetomotive value (Θa(Xc)).
  5. Method according to one of the preceding claims, characterized in that
    - the particular suitable or approximately suitable position value is read out of the position data set (POS) for the particular determined magnetomotive value (Θ(t)) and for the particular determined flux value (Φist(t)), and
    - the contact strike armature position (Xc) is detected on the basis of the position values.
  6. Method according to one of the preceding claims, characterized in that
    - the progression of the movement of the armature (60) is determined from the position data set (POS), and time-dependent position information (X(t)) is determined,
    - the time-dependent position information (X(t)) is used for determining time-dependent acceleration information (a(t)), and
    - it is inferred that the contact strike armature position (Xc) has been reached when the absolute value (|a(t)|) of the time-dependent acceleration information (a(t)) reaches or exceeds a predefined threshold value (M).
  7. Arrangement having an electric switch (20), having at least one movable switch contact which is moved by a movable armature (60) of an electromagnetic actuator (10) of the arrangement in order to switch the switch (20) on and off,
    - wherein a spring device (40) of the arrangement is disposed between the movable switch contact and the armature (60), and
    - wherein, in order to move the armature (60) from a predefined starting position (Xa), in which the switch contacts of the switch are open, into a predefined armature end position (Xe), in which the switch contacts are closed and spring energy is stored in the spring device (40), a magnetic flux is generated in an excitation winding (80) of the actuator (10) by way of an excitation current (I(t)) being fed into the excitation winding (80),
    characterized in that
    - the switch (20) has a control device (100) which determines an armature position - referred to in the following as the contact strike armature position (Xc) - at which the switch contacts meet each other during the closing operation, before the armature (60) reaches the armature end position (Xe),
    - wherein the control device (100) is designed in such a way that said control device determines the magnetic flux through the excitation winding (80) or determines a flux variable correlating to the magnetic flux through the excitation winding (80), and a flux value (Φist(t)) is formed,
    - wherein the control device (100) is designed in such a way that said control device determines the magnetomotive force in the excitation winding (80) with consideration for at least the excitation current (I(t)) flowing through the excitation winding (80) and the number of turns (W) of the excitation winding (80), and a magnetomotive value (Θ(t)) is formed, and
    - wherein the control device (100) is designed in such a way that said control device determines the contact strike armature position (Xc) with consideration for a position data set (POS) stored in a memory (120) of the control device (100), which data set indicates the particular armature position as a function of magnetomotive values and flux values,
    - wherein the control device (100) is designed in such a way that, in order to move the armature (60) from the starting position (Xa) into the armature end position (Xe), said control device regulates the magnetic flux through the excitation winding (80) to a constant setpoint flux by means of a constant flux regulation in at least one time interval, before the armature (60) reaches the contact strike armature position (Xc),
    - wherein the control device (100) is designed in such a way that said control device shuts off the constant flux regulation or switches it to another setpoint flux (Φconst2) as soon as the armature (60) reaches the contact strike armature position (Xc), by virtue of the fact that said control device reduces the magnetic flux by reducing the excitation current (I(t)) flowing through the excitation winding (80).
  8. Arrangement having a switch (20) according to Claim 7, characterized in that
    - the control device (100) comprises a microprocessor or a microcontroller and the memory, in which the position data set (POS) is stored, and
    - the microprocessor or the microcontroller is programmed in such a way that it can carry out one of the methods according to Claims 1 to 6.
EP15741894.8A 2014-04-29 2015-04-01 Arrangement comprising an electric switch and an electromagnetic actuator Active EP3111454B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014208014.2A DE102014208014B4 (en) 2014-04-29 2014-04-29 Electrical switch with electromagnetic actuator
PCT/EP2015/057169 WO2015165684A1 (en) 2014-04-29 2015-04-01 Electric switch having an electromagnetic actuator

Publications (2)

Publication Number Publication Date
EP3111454A1 EP3111454A1 (en) 2017-01-04
EP3111454B1 true EP3111454B1 (en) 2020-08-05

Family

ID=53724280

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15741894.8A Active EP3111454B1 (en) 2014-04-29 2015-04-01 Arrangement comprising an electric switch and an electromagnetic actuator

Country Status (9)

Country Link
US (1) US9870888B2 (en)
EP (1) EP3111454B1 (en)
BR (1) BR112016025233A2 (en)
CA (1) CA2947369C (en)
DE (1) DE102014208014B4 (en)
ES (1) ES2829805T3 (en)
MX (1) MX352673B (en)
WO (1) WO2015165684A1 (en)
ZA (1) ZA201606480B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3301700B1 (en) * 2016-09-29 2023-03-29 ABB Schweiz AG A medium voltage contactor
DE102017111960B4 (en) * 2017-05-31 2019-05-09 Phoenix Contact Gmbh & Co. Kg Electromechanical relay for determining a position of an anchor
BE1025259B1 (en) * 2017-05-31 2019-01-07 Phoenix Contact Gmbh & Co. Kg Electromechanical relay for determining a position of an anchor
JP6964039B2 (en) * 2018-04-20 2021-11-10 株式会社荏原製作所 Electromagnet controller and electromagnet system
EP3594972B1 (en) * 2018-07-13 2023-10-04 ABB Schweiz AG Drive for a low-, medium-, or high-voltage switchgear, and method for operating the same
DE102018216211B3 (en) * 2018-09-24 2020-02-20 Siemens Aktiengesellschaft Short-circuiting device and converter
DE102018131749A1 (en) * 2018-12-11 2020-06-18 Phoenix Contact Gmbh & Co. Kg Arrangement for determining an armature position of a relay
CN110686883B (en) * 2019-11-01 2021-08-10 珠海优特电力科技股份有限公司 Disconnecting link on-off state detection device
FR3106694B1 (en) * 2020-01-24 2022-02-18 Schneider Electric Ind Sas Electromagnetic actuator, electrical switching device comprising such an electromagnetic actuator
DE102020204338B4 (en) 2020-04-03 2023-09-21 Siemens Aktiengesellschaft Triggering device with intelligent control for actuating a switching device and method for operating such a triggering device
FR3119461B1 (en) * 2021-02-04 2023-07-21 Schneider Electric Ind Sas Method for estimating an operating state of an electrical switching device and electrical switching device for implementing such a method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19544207C2 (en) 1995-11-28 2001-03-01 Univ Dresden Tech Process for model-based measurement and control of movements on electromagnetic actuators
EP1964141A1 (en) 2005-12-22 2008-09-03 Siemens Aktiengesellschaft Method and device for operating a switching device
DE102008040668A1 (en) 2008-07-24 2010-01-28 Zf Friedrichshafen Ag Method for controlling an electromagnet
DE102009042777B4 (en) * 2009-09-25 2014-03-06 Kendrion (Donaueschingen/Engelswies) GmbH Electromagnetic actuator
DE102011083282B3 (en) * 2011-09-23 2013-02-21 Siemens Aktiengesellschaft Electromagnetic drive

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3111454A1 (en) 2017-01-04
MX352673B (en) 2017-12-04
MX2016012243A (en) 2017-01-19
WO2015165684A1 (en) 2015-11-05
US9870888B2 (en) 2018-01-16
ZA201606480B (en) 2019-08-28
DE102014208014A1 (en) 2015-10-29
CA2947369A1 (en) 2015-11-05
ES2829805T3 (en) 2021-06-02
BR112016025233A2 (en) 2017-08-15
CA2947369C (en) 2018-06-12
US20170110274A1 (en) 2017-04-20
DE102014208014B4 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
EP3111454B1 (en) Arrangement comprising an electric switch and an electromagnetic actuator
EP3053171B1 (en) Electromagnetic actuator
EP3597891B1 (en) Electrical determination of characteristics of magnetic switching valves
DE102012112547A1 (en) "Method and Welding Device for Electrical Resistance Welding"
DE102009047453A1 (en) Magnetic valve i.e. injection valve, operating method for internal combustion engine, involves obtaining movement end information of armature and/or valve needle, where subsequent control of valve depends upon obtained information
EP3867659B1 (en) Method for determining a switching state of a valve, and solenoid valve assembly
DE102011016895A1 (en) Method for determining wear state of electromagnetic actuator during its operation, involves determining magnetic flux and current flowing through coil, during operation of actuator in its initial, end or intermediate positions
DE19910497A1 (en) Magnetic core position determining during its actuation by magnetic field by measuring differential induction from a temporal value of coil current from ohmic resistance of magnetic coil and change of coil current over time interval
EP3625809B1 (en) Method for switching over a solenoid valve
EP2605860A1 (en) Glue valve and method for controlling same
DE10332595B4 (en) Device and method for driving electrical switching devices
EP3669385B1 (en) Method for setting the attractive behaviour of an electromagnetic feedback actuator
WO2007020210A1 (en) Control device and method for controlling an actuator for a transmission switching point
DE102016108778A1 (en) Fuel injection control device
DE102022202224B3 (en) Method of determining the position of an armature of an electromagnet and fluid system
DE102011051877A1 (en) adjustment
DE102015218293A1 (en) Solenoid valve with an armature with movable stage
DE102008048828A1 (en) Method for determining stroke of two actuating elements driven by drive element, involves determining position of drive element, when actuating element is arranged in predetermined position
EP3953958A1 (en) Method for closing a contactor, and contactor having temperature compensation
DE102011083282B3 (en) Electromagnetic drive
DE102019217405A1 (en) Improved control of an electromagnetic actuator by means of a hysteresis cancellation and a two-point controller
DE102018218800A1 (en) Actuator device, valve device and method for detecting a position of an actuator
WO2017050683A1 (en) Method for controlling an electrical drive, and electrical drive
DE102007020944A1 (en) Magnetic drive for application in shock absorber regulating valve, has armature that is formed in two parts, where spring arrangement is base positioned in electrical currentless condition of coil between two final positions
DE102017209889B4 (en) Switching arrangement and method for determining the switching position of an electromagnetically actuated switching element with a plurality of switching positions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190828

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200317

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1299864

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015013178

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201207

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015013178

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2829805

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210602

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

26N No opposition filed

Effective date: 20210507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210723

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201205

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1299864

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230421

Year of fee payment: 9

Ref country code: DE

Payment date: 20220620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230720

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805