EP3108019B1 - Method for conductively heating sheet metal in pairs, and heating device for carrying out said method - Google Patents

Method for conductively heating sheet metal in pairs, and heating device for carrying out said method Download PDF

Info

Publication number
EP3108019B1
EP3108019B1 EP15705981.7A EP15705981A EP3108019B1 EP 3108019 B1 EP3108019 B1 EP 3108019B1 EP 15705981 A EP15705981 A EP 15705981A EP 3108019 B1 EP3108019 B1 EP 3108019B1
Authority
EP
European Patent Office
Prior art keywords
current
electrodes
metal sheet
sheet
conductive heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15705981.7A
Other languages
German (de)
French (fr)
Other versions
EP3108019A1 (en
Inventor
Bernd-Arno Behrens
Sven HÜBNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Universitaet Hannover
Original Assignee
Leibniz Universitaet Hannover
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Universitaet Hannover filed Critical Leibniz Universitaet Hannover
Publication of EP3108019A1 publication Critical patent/EP3108019A1/en
Application granted granted Critical
Publication of EP3108019B1 publication Critical patent/EP3108019B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/40Direct resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0004Devices wherein the heating current flows through the material to be heated

Definitions

  • the invention relates to a method for conductive heating of a sheet, wherein the sheet or at least one conductive area of the sheet to be heated has an outer contour, which is not rectangular, according to claim 1.
  • the invention also relates to a conductive heating device for performing a method for conductive heating of a sheet according to claim 10.
  • the invention relates to the field of metalworking, in particular the production of parts made of sheet metal, such as. B. vehicle body panels.
  • the production of such sheet metal parts is z. B. on production lines, such. B. extrusion lines.
  • Such production lines usually have forming facilities and trimming equipment and optionally facilities for performing other methods, such. B. shape property changes, coating, press hardening, etc., which are connected to each other in terms of process technology.
  • components made of high-strength or vorfestem material to be produced are made of high-strength or fungem material to be produced.
  • a sheet In press hardening, a sheet is heated to a temperature of about 950 ° C and cooled during molding.
  • a martensitic structure By targeted cooling (hardening) during press hardening via cooled pressing tools, a martensitic structure can be created that leads to the desired material properties, eg. B. to a tensile strength of more than 1,500 MPa strains in the range of> 5%.
  • a disadvantage of such heating processes are the relatively long heating times, at the conventional heating z. B. occur in roller hearth furnaces. As a result of the long heating times, a scale formation on the material (burnup of material), which is also disadvantageous.
  • coatings are applied to the component surfaces in accordance with the prior art, which diffuse into the component during the heating of the furnace. The production of coatings is associated with additional effort and costs.
  • An alternative to conventional, relatively long-lasting heating is the heating of a sheet by a conductive heating process.
  • the sheet is heated by applying an electric current through the resulting current heat.
  • a typical warm-up process can be carried out in less than 10 seconds, which has the advantage that no appreciable scale layers can form in the short time, which in turn has the advantage that no scale protection coatings are required.
  • a conductive heating process of metal sheets is e.g. B. in the DE 10 2006 037 637 A1 described.
  • the invention is therefore based on the object to provide a method for conductive heating of a sheet, wherein the sheet or at least one conductively heated region of the sheet has an outer contour, which is not rectangular, with the still a uniform heating of the area to be heated can be achieved.
  • the sheet is called in the terminology of the expert also board and the non-rectangular board blank is called form board. Furthermore, a suitable for this purpose conductive heating device should be specified.
  • the invention has the advantage that a tailored to the outer contour of the sheet or the area to be heated sheet metal arrangement of power supply and current dissipation electrodes is provided, which are arranged piecewise separated along the outer contour and are acted upon by electrically separate electrical energy sources : So can z.
  • the outer contour of the area to be heated in individual turn rectangular surface portions or at least substantially rectangular surface portions are divided and created for each surface section a customized power supply and Stromableitungselektrode with which exactly this area is acted upon by the desired current density.
  • a further pair of power supply and current dissipation electrodes can be arranged and via a second electrical Power source with a matched voltage or a matched current are applied, so that the same current density is generated as in the adjacent area previously mentioned.
  • the entire area to be heated can be subdivided into substantially rectangular area sections, and the same current density can be generated in each area section.
  • transverse currents between the surface sections are avoided, which in turn prevents undefined heating results. Due to the resistance conditions, the current density inevitably sets in and basically can not be forced homogeneously.
  • the conductive heating process with its advantages can thus be made universally usable for any shaped metal sheets.
  • the sheet can be regarded as a resistor in which the current supplied via the electrodes flows.
  • sheets can be brought almost without scale to the desired temperature.
  • the heating process can be performed in a period of 10 seconds or less.
  • the heating time can be determined by the size of the power supply. Basically, the more current is passed through the sheet, the faster the heating can be performed.
  • a sheet is every sheet of electrically conductive metal in question, such. B. steel, aluminum and magnesium sheets.
  • the sheet has it in one advantageous development of the invention to a constant material thickness, at least before it is further processed after the conductive heating process and thereby optionally transformed.
  • a current supply electrode serves to introduce electrical current from the electrical energy source into the metal sheet.
  • a current dissipation electrode serves to drain the current from the sheet back to the source of electrical energy.
  • the electrical energy sources are dimensioned such that the same current densities are introduced from the power supply electrodes in the sheet over all pairs of associated power supply and Stromableitungselektroden and derived from the sheet via the Stromableitungselektroden.
  • the number of current supply electrodes used may be equal to or different from the number of current discharge electrodes used. With the same number, it is advantageous if in each case one current supply electrode and one current discharge electrode form a pair of such electrodes, which are each connected to the same electrical energy source. It is also possible, for. B. electrically connect two power supply electrodes to each other or electrically connect two Stromableitungselektroden together. The non-interconnected electrodes are then connected to different electrical energy sources with different voltage, so that in turn equal current densities can be generated in adjacent surface areas in the sheet.
  • the electrically separate electrical sources must be electrically separated from each other at least at one of its terminals (plus or minus).
  • the plurality of energy sources are not connected to each other and not grounded.
  • the potential of the adjacent energy sources "floats" at the contact line, similar to multiple spot welds operated simultaneously on a vehicle body.
  • the "swim" is a well-known term from the resistance welding technique.
  • the area to be conductively heated can be divided into substantially rectangular area sections.
  • the region to be heated conductively can also be divided into trapezoidal surface sections or substantially trapezoidal surface sections.
  • a combination is also advantageous, ie a division of the region to be heated conductively into rectangular and / or trapezoidal surface sections.
  • a pair of sheets is electrically interconnected by a plurality of electrically insulated from each other, side by side along a transition region from one to the other sheet in their respective trapezoidal surface portions arranged transfer electrodes. By correspondingly opposing arrangements of one sheet with respect to the other sheet can be created in this way with respect.
  • the two connected by means of the transition electrodes trapezoidal surface sections turn a total rectangular surface section, connected to the one side at least one power supply electrode and at the other side at least one current dissipation electrode can be.
  • the flexibility and applicability of the method according to the invention is further increased. It is advantageous, trapezoidal surface portions of the sheets with the same or mirror-symmetrical outer To connect contour with each other via the transition electrodes.
  • trapezoidal surface portions of the same sheet can be electrically connected to each other in pairs via the transfer electrodes to electrically behave then like a rectangular surface section.
  • the trapezoidal surface portions are suitable to divide, in particular with equal angles bevelled sides.
  • one, several or all current supply and current discharge electrodes are each formed as elongated electrodes extending with their largest dimension over a portion of the outer contour of the conductive region to be heated, each of which is connected to an electrical lead only at one end are connected to the electrical energy source.
  • a pair of current supply and current discharge electrodes are connected at diagonally opposite ends to the electrical energy source.
  • one, several or all of the power supply, Stromableitungs- and / or transmission electrodes are formed as cooled with a cooling medium electrodes. So can be used as a cooling medium z. B. be passed through a hollow channel of the respective electrode cooling water.
  • the cooling of the electrodes has the advantage that they do not heat undesirable and a heating-related change in resistance of the electrodes is avoided.
  • a further advantage is that the adjacent sheet is cooled by the cooled electrodes, so that by appropriate arrangement of the electrodes to desired, not to be heated areas of the sheet heating and a concomitant hardening can be avoided. This in turn has the advantage that by the location and arrangement of the electrodes z. B. cutting areas in the subsequent processing of the component, i.
  • edge trimming can be done with conventional tools, eg. B. by the very economical applicable shear cutting. A more elaborate Hartbezel is not required. Also, for joining the component in later welding processes, it is favorable to have non-hardened edge regions. Curing can be done by a subsequent press hardening process.
  • the conductive heating is carried out by means of direct current.
  • This has the advantage compared to alternating current that electrical losses and other adverse effects can be excluded by existing inductors and capacitances in the system. It also generates no reactive power.
  • the existing electrical power can be used completely in the form of active power. By eliminating inductive losses line cross sections and electrical energy sources, eg. As transformers are smaller. In addition, energy is saved.
  • the electrical energy sources can, for. B. three-phase can be supplied from the three-phase network. Also, the calculation and design of the entire system, in particular the electrodes and their arrangement is simplified, because you can work with the simpler, applicable to direct current electrical engineering laws.
  • the conductive heating device can be realized comparatively easily and inexpensively.
  • one, several or all current supply, Stromableitungs- and / or transfer electrodes are moved away from each other during the conductive heating process in order to stretch the sheet.
  • a heating-related expansion of the heated area of the sheet during the heating process can be compensated.
  • a parallel conductor is connected to this electrode for supplying current to a current supply electrode, for transferring energy from or to a transfer electrode and / or for current discharge from a current discharge electrode, which runs parallel to the current lines flowing therein over part of the sheet to be heated is conducted electrically isolated over the sheet metal against the sheet.
  • the parallel conductor may in particular be guided on an edge region of a rectangular or trapezoidal surface section to be heated.
  • one, several or all parallel conductors are designed as conductors cooled with a cooling medium.
  • a conductive heating device according to claim 10.
  • the advantages mentioned above with regard to the method for conductive heating can likewise be realized.
  • the conductive heating device is set up to carry out a method of the type described above.
  • the electrical energy sources may be formed as DC sources.
  • the conductive heating device has a stretching device which is set up to stretch the sheet at least in the conductive heated area during the heating process is.
  • the stretching apparatus may in particular be adapted to move certain current supply, current discharge and / or transfer electrodes away from one another during the conductive heating process.
  • the electrode arrangement of the conductive heating device has transfer electrodes for current transfer between two sheets simultaneously heated in the conductive heating device.
  • a method of conductively heating a sheet e.g. Example, be arranged such that the sheet to be heated is placed in the conductive heating device, then electrodes of the conductive heating device are pressed onto the sheet and then the electrical current flow through the sheet is switched via the electrodes to perform the conductive heating, and after sufficient heating the electrodes are removed from the sheet again, it being advantageous to first turn off the flow of current.
  • the sheet can then continue in the heated state be processed, for. B. be brought by pressing in a desired shape.
  • an electrical energy source z. B. have a welding rectifier. In this way, the required direct current in the desired height of several thousand amps can be provided in a simple and cost-effective manner.
  • the current supply, Stromableitungs- and / or transfer electrodes can, for. B. made of copper or alloyed copper, z. B. CuCoBe or CuBe 2 . Especially with the latter alloys, very hard, robust electrodes can be provided.
  • the mentioned parallel conductors can be made of the same material or another material. For the electrical insulation of the parallel conductors, these z. B. have on the surface of a plasma-sprayed ceramic layer.
  • the conductive heating process can be carried out heat-encapsulated according to an advantageous embodiment of the invention.
  • the sheets are characterized by an external heat encapsulation, for. B. a thermal insulation of the conductive heating device, thermally shielded from the environment.
  • B. a thermal insulation of the conductive heating device, thermally shielded from the environment.
  • the FIG. 1 shows in plan view a cut into a specific shape sheet 1, the z. B. is cut out of a steel coil. It is a shell component for a B-pillar of a motor vehicle before forming in a press.
  • the metal sheet 1 is first subdivided into substantially rectangular surface sections 2, 4 and a substantially trapezoidal surface section 3.
  • electrodes of an electrode arrangement of a conductive heating device are made tailor-made, which are then connected to the sheet 1 for carrying out the conductive heating process.
  • the area section 3 In order to further optimize the manufacturing process in the case of non-rectangular area sections which result from the subdivision explained above, in this case the area section 3, according to the invention two sheets 1 are simultaneously heated in the conductive heating device.
  • the two sheets are preferably next as in FIG. 2 shown arranged and created the required electrodes accordingly.
  • the FIG. 3 shows the in FIG. 2 illustrated sheets 1, according to FIG. 3
  • the conductive heating device 10 comprises the aforementioned custom-made electrode assembly, the power supply electrodes 11, 12, 13, 14, 15, power dissipation electrodes 16, 17, 18, 19, 20 and transfer electrodes 31 has.
  • At the rectangular surface portions 2, 4 of the sheets 1 are respective pairs of each of a power supply electrode and a power dissipation electrode, as in FIG FIG.
  • the transfer electrodes 31 are electrically isolated from each other, e.g. B. by being arranged as metal blocks with a certain distance from each other. In this way will be out of the two trapezoidal surface sections 3, a uniform electrical rectangular area between the electrodes 12, 19 created.
  • the transfer electrodes 31 may, for. B. at a width of 20 mm at a distance of 5 mm from each other. In order to ensure a uniform spacing of the transfer electrodes from each other, they can, for. B. be mounted on an insulating plate and pressed as a one-piece transfer electrode assembly on the sheets 1. In an industrial implementation, e.g. all electrodes are mounted on a large base plate, with installation e.g. in a hydraulic press.
  • FIG. 4 shows a further conductive heating device 10, which is adapted to not heat the respective surface portions 4 of the sheets 1.
  • the electrodes 14 and 17 are not connected directly to their respective electrical energy source 22 and 25, but over along the direction of current flow in the respective sheet guided parallel conductor 26, 27 by the parallel conductors 26, 27 can continue a parallel course of the streamlines in the adjacent surface portions 3 are ensured to the transfer electrodes 31, which would not be ensured without the parallel electrodes 26, 27.
  • the parallel electrodes 26, 27 can be cooled, which has the further advantage that the cooling is also transferred to the sheet 1 and thus unwanted heat transfer from the heated surface portions of the sheet can be prevented in the non-heated surface portions 4.
  • the transmission electrodes 31 may be formed as cooled electrodes.
  • the FIG. 5 shows an example of a cooled electrode on the basis of the parallel conductor 27. In the longitudinal direction through the respective electrode extends a bore 28, which forms a cooling channel. Through the cooling channel can coolant, z. As cooling water, are passed. If the electrode is designed as a parallel conductor 26, 27, this is formed insulated on the outer surface, ie there is no electrical contact with the sheet 1. In the remaining electrodes 11, 12, 13, 14, 15, 16, 17, 18, 19 , 20, 31 of course, the electrical contact with the sheet 1 is necessary.
  • the FIG. 5 shows an example of a cooled electrode on the basis of the parallel conductor 27. In the longitudinal direction through the respective electrode extends a bore 28, which forms a cooling channel. Through the cooling channel can coolant, z. As cooling water, are passed. If the electrode is designed as a parallel conductor 26, 27, this is formed insulated on the outer surface, ie there is no electrical contact with the sheet 1. In the remaining electrodes 11, 12, 13, 14, 15, 16,
  • FIG. 5 shows by means of two parallel conductor 27 by way of example a paired arrangement above and below the sheet 1.
  • the arranged below the plate 1 parallel conductor 27 is based on a thrust bearing 32 against a contact force F, which is exerted on the above the plate 1 arranged parallel conductor 27.
  • FIG. 6 shows a further embodiment of a conductive heating device 10, which, except for the differences explained below of the device 10 according to FIG. 4 equivalent.
  • the conductive heating device is adapted with regard to the formation of the parallel conductors 26, 27 and the transmission electrodes 21 by forming these not as linearly extending electrodes, but according to the desired ones , are angled to be heated surface areas.
  • the current supply electrode 12 and the current discharge electrode 19 are accordingly compared to FIG. 4 something shortened trained.
  • the sheets 1 can also be different than before in the FIGS. 2 to 6 be arranged represented, for. B. as in the FIG. 7 specified.
  • the rectangular surface sections 2 and 4 are as described above with the current supply electrodes and the current collector electrodes and the associated connected to electrical energy sources.
  • trapezoidal surface portions 3 results in comparison to the embodiments described above, the difference that to maintain the same current densities and thus the same heating behavior for connecting the surface portions 3 between the sheets 1 not juxtaposed transfer electrodes are provided, but as shown arranged crosswise Transfer electrodes 31, so that by the transfer electrodes 31 results in a spider-like construction.
  • the transfer electrodes 31 are still electrically isolated from each other, z. B. by the electrodes are passed past each other in different height levels or are designed as electrically insulated cable. As a result, homogeneous resistance ratios can be realized analogous to rectangular sheets.
  • An advantage of this embodiment is the saving of two energy sources, since the rectangular surface sections 2, 4 of the board can be connected as a series circuit to a power source.
  • the surface portions 2 are connected in series with the power source 22.
  • the electrodes 14, 16 can be connected together or combined to form an electrode.
  • the surface portions 4 are connected in series with the power source 24.
  • the electrodes 15, 17 can be connected together or combined to form an electrode.
  • connection points of the connection lines of the energy sources to the electrodes are as far apart as possible and the current discharge points as possible further apart.
  • FIG. 8 shows an advantageous embodiment of an electrode 80, which can be used as Stromzu effets-, Stromableitungs- and / or transfer electrode.
  • the electrode 80 in turn has a bore 28 which forms a cooling channel.
  • the in the illustration according to FIG. 8 The upwardly facing surface of the electrode 80, which is the contact surface of the electrode with the sheet, is formed unevenly with a certain structure. In the illustrated embodiment, a comb-like structure is created by 81 grooves 82 are formed between elevations. By such an uneven surface, which is brought into contact with the sheet to be heated, isolated hotspots can be selectively avoided, ie places where there is an above-average heating of the sheet.
  • hotspots have been considered to be disadvantageous and attempts have been made to avoid them because they have the disadvantage that the sheet is heated uncontrollably in such places.
  • a positive temperature coefficient of the sheet also increases with the heating of the specific electrical resistance at such locations of the sheet, so that a kind of avalanche effect occurs because the hotspot areas heat comparatively quickly and come at the points of highest temperature to damage the sheet can (burn).
  • the conductive heating device according to the invention is further developed by forming at least one current supply, current dissipation and / or transition electrode as an electrode 80 with an uneven structured contact surface.
  • the contact surface of the electrode is a surface that is electrically brought into direct contact with the sheet.
  • the uneven structured contact surface of the electrode can be realized, for example, by providing a plurality of rectangular electrode edges, as in US Pat FIG. 8 shown. Instead of the illustrated linear pattern, the uneven structured contact surface may also be formed by punctiform elevations on the surface.
  • the surface structure of the contact surface may be a regular or irregular structure.
  • the method according to the invention is thus further developed in that the conductive heating of the sheet takes place via an uneven structured contact surface of at least one current supply, current discharge and / or transition electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

Die Erfindung betrifft ein Verfahren zum konduktiven Erwärmen eines Blechs, wobei das Blech oder zumindest ein konduktiv zu erwärmender Bereich des Blechs eine äußere Kontur hat, die nicht rechteckförmig ist, gemäß dem Anspruch 1. Die Erfindung betrifft außerdem eine konduktive Erwärmungseinrichtung zur Durchführung eines Verfahrens zum konduktiven Erwärmen eines Blechs gemäß dem Anspruch 10.The invention relates to a method for conductive heating of a sheet, wherein the sheet or at least one conductive area of the sheet to be heated has an outer contour, which is not rectangular, according to claim 1. The invention also relates to a conductive heating device for performing a method for conductive heating of a sheet according to claim 10.

Allgemein betrifft die Erfindung das Gebiet der Metallbearbeitung, insbesondere der Herstellung von Teilen aus Blech, wie z. B. Fahrzeug-Karosserieteile. Die Fertigung solcher Blech-Formteile erfolgt z. B. auf Fertigungsstraßen, wie z. B. Serienpressstraßen. Solche Fertigungsstraßen weisen üblicherweise Umformeinrichtungen und Beschneideinrichtungen sowie gegebenenfalls Einrichtungen zur Durchführung weiterer Verfahren, wie z. B. Formeigenschaftsänderungen, Beschichtung, Presshärtung etc. auf, die prozesstechnisch miteinander verbunden sind. In vielen Fällen sollen dabei Bauteile aus hoch- bzw. höchsfestem Material hergestellt werden.In general, the invention relates to the field of metalworking, in particular the production of parts made of sheet metal, such as. B. vehicle body panels. The production of such sheet metal parts is z. B. on production lines, such. B. extrusion lines. Such production lines usually have forming facilities and trimming equipment and optionally facilities for performing other methods, such. B. shape property changes, coating, press hardening, etc., which are connected to each other in terms of process technology. In many cases, components made of high-strength or hochsfestem material to be produced.

Beim Presshärten wird ein Blech auf eine Temperatur von ca. 950°C erwärmt und während der Formgebung abgekühlt. Durch gezielte Abkühlung (Härten) während des Presshärtens über gekühlte Presswerkzeuge kann ein martensitisches Gefüge geschaffen werden, dass zu den gewünschten Werkstoffeigenschaften führt, z. B. zu einer Zugfestigkeit von über 1.500 MPa Dehnungen im Bereich von >5 %. Nachteilig bei solchen Erwärmungsprozessen sind die relativ langen Erwärmungszeiten, die bei der konventionellen Erwärmung z. B. in Rollenherdöfen auftreten. Als Folge der langen Erwärmungszeiten kommt es zu einer Zunderbildung am Material (Abbrand von Material), was ebenfalls nachteilig ist. Um dem entgegenzuwirken, werden dem Stand der Technik folgend Beschichtungen auf den Bauteiloberflächen aufgebracht, die während der Ofenerwärmung in das Bauteil hinein diffundieren. Die Herstellung der Beschichtungen ist mit zusätzlichem Aufwand und Kosten verbunden.In press hardening, a sheet is heated to a temperature of about 950 ° C and cooled during molding. By targeted cooling (hardening) during press hardening via cooled pressing tools, a martensitic structure can be created that leads to the desired material properties, eg. B. to a tensile strength of more than 1,500 MPa strains in the range of> 5%. A disadvantage of such heating processes are the relatively long heating times, at the conventional heating z. B. occur in roller hearth furnaces. As a result of the long heating times, a scale formation on the material (burnup of material), which is also disadvantageous. In order to counteract this, coatings are applied to the component surfaces in accordance with the prior art, which diffuse into the component during the heating of the furnace. The production of coatings is associated with additional effort and costs.

Eine Alternative zur konventionellen, relativ lange dauernden Erwärmung ist die Erwärmung eines Blechs durch einen konduktiven Erwärmungsprozess. Dabei wird das Blech durch Anlegen eines elektrischen Stroms durch die dabei entstehende Stromwärme erwärmt. Bei entsprechend großen elektrischen Strömen kann ein typischer Aufwärmprozess in weniger als 10 Sekunden durchgeführt werden, was den Vorteil hat, dass sich in der kurzen Zeit keine nennenswerten Zunderschichten bilden können, was wiederum den Vorteil hat, dass keine Zunderschutzbeschichtungen erforderlich sind. Ein konduktiver Erwärmungsprozess von Metallblechen ist z. B. in der DE 10 2006 037 637 A1 beschrieben.An alternative to conventional, relatively long-lasting heating is the heating of a sheet by a conductive heating process. The sheet is heated by applying an electric current through the resulting current heat. With correspondingly large electrical currents, a typical warm-up process can be carried out in less than 10 seconds, which has the advantage that no appreciable scale layers can form in the short time, which in turn has the advantage that no scale protection coatings are required. A conductive heating process of metal sheets is e.g. B. in the DE 10 2006 037 637 A1 described.

Die Vorschläge aus dem Stand der Technik sind bisher in der Praxis nur sehr begrenzt anwendbar, weil sie sich nur für Erwärmungsprozesse von nahezu rechteckigen Bauteilen oder rechteckigen Teilbereichen von Bauteilen eignen. Viele in der Praxis zu fertigende Bauteile, z. B. Karosseriebauteile bei Kraftfahrzeugen, weisen jedoch nicht diese ideale Rechteckform des zu erwärmenden Blechs oder eines zu erwärmenden Bereichs des Blechs auf. Vielmehr sind viele Bauteile unregelmäßig geformt. Bei Anwendung der Vorschläge aus dem Stand der Technik wäre eine ungleichmäßige Erwärmung des Bauteils die Folge, was wiederum nicht zu den gewünschten Fertigungsergebnissen führt.The proposals from the prior art have hitherto been applicable in practice only to a very limited extent, because they are only suitable for heating processes of nearly rectangular components or rectangular partial regions of components. Many components to be manufactured in practice, eg. As body parts in motor vehicles, but do not have this ideal rectangular shape of the sheet to be heated or a portion of the sheet to be heated. Rather, many components are irregular shaped. When applying the proposals of the prior art, uneven heating of the component would result, which in turn does not lead to the desired manufacturing results.

Aus der WO 2007/109546 A2 und der EP 2 489 747 A1 sind Vorschläge zur konduktiven Erwärmung von nicht-rechteckförmigen Blechen bekannt.From the WO 2007/109546 A2 and the EP 2 489 747 A1 Proposals for conductive heating of non-rectangular sheets are known.

Der Erfindung liegt daher die Aufgabe zu Grunde, ein Verfahren zum konduktiven Erwärmen eines Blechs anzugeben, wobei das Blech oder zumindest ein konduktiv zu erwärmender Bereich des Blechs eine äußere Kontur hat, die nicht rechteckförmig ist, mit dem dennoch eine gleichmäßige Erwärmung des zu erwärmenden Bereichs erzielt werden kann. Das Blech heißt in der Terminologie des Fachmanns auch Platine und der nicht-rechteckige Platinenzuschnitt heißt Formplatine. Ferner soll eine hierfür geeignete konduktive Erwärmungseinrichtung angegeben werden.The invention is therefore based on the object to provide a method for conductive heating of a sheet, wherein the sheet or at least one conductively heated region of the sheet has an outer contour, which is not rectangular, with the still a uniform heating of the area to be heated can be achieved. The sheet is called in the terminology of the expert also board and the non-rectangular board blank is called form board. Furthermore, a suitable for this purpose conductive heating device should be specified.

Diese Aufgabe wird durch ein Verfahren zum konduktiven Erwärmen eines Blechs gemäß Anspruch 1 gelöst. Die Erfindung hat den Vorteil, dass eine an die äußere Kontur des Blechs bzw. des zu erwärmenden Bereichs des Blechs maßgeschneidert angepasste Anordnung von Stromzuleitungs- und Stromableitungselektroden geschaffen wird, die stückweise getrennt entlang der äußeren Kontur angeordnet werden und von elektrisch getrennten elektrischen Energiequellen beaufschlagt werden: So kann z. B. die äußere Kontur des zu erwärmenden Bereichs in einzelne wiederum rechteckige Flächenabschnitte oder zumindest im Wesentlichen rechteckige Flächenabschnitte aufgeteilt werden und für jeden Flächenabschnitt eine angepasste Stromzuleitungs- und Stromableitungselektrode geschaffen werden, mit denen genau dieser Bereich mit der gewünschten Stromdichte beaufschlagt wird. In einem benachbarten, ebenfalls im Wesentlichen rechteckförmig definierten Flächenabschnitt kann ein weiteres Paar von Stromzuleitungs- und Stromableitungselektroden angeordnet werden und über eine zweite elektrische Energiequelle mit einer angepassten Spannung oder einem angepassten Strom beaufschlagt werden, sodass die gleiche Stromdichte erzeugt wird wie in dem benachbarten, zuvor angegebenen Flächenabschnitt. Auf diese Weise kann der gesamte zu erwärmende Bereich in im Wesentlichen rechteckige Flächenabschnitte unterteilt werden und in jedem Flächenabschnitt die gleiche Stromdichte erzeugt werden. Durch Erzeugung der gleichen Stromdichten in allen Flächenabschnitten werden Querströme zwischen den Flächenabschnitten vermieden und damit wiederum undefinierte Erwärmungsergebnisse verhindert. Die Stromdichte stellt sich aufgrund der Widerstandsverhältnisse zwangsläufig ein und kann grundsätzlich nicht homogen erzwungen werden. Nur eine homogene Stromdichte erwirkt aber homogene Erwärmung, da immer die gleiche Leistung pro Fläche umgesetzt wird. Hier wird der Ansatz verfolgt, die Widerstandsverhältnisse in der Formplatine durch die beschriebene Art und Weise so einzustellen, dass homogene Stromdichten resultieren. Auf diese Weise kann eine gleichmäßige konduktive Erwärmung auch eines unregelmäßig geformten Blechs oder eines unregelmäßig geformten zu erwärmenden Bereichs des Blechs realisiert werden. Durch die Erfindung kann somit der konduktive Erwärmungsprozess mit seinen Vorteilen universell für beliebig geformte Bleche einsetzbar gemacht werden. Zur Erzeugung nahezu gleicher, homogener Stromdichten kann dabei das Blech als Widerstand angesehen werden, in dem der über die Elektroden zugeführte Strom fließt.This object is achieved by a method for conductive heating of a sheet according to claim 1. The invention has the advantage that a tailored to the outer contour of the sheet or the area to be heated sheet metal arrangement of power supply and current dissipation electrodes is provided, which are arranged piecewise separated along the outer contour and are acted upon by electrically separate electrical energy sources : So can z. B. the outer contour of the area to be heated in individual turn rectangular surface portions or at least substantially rectangular surface portions are divided and created for each surface section a customized power supply and Stromableitungselektrode with which exactly this area is acted upon by the desired current density. In a neighboring, likewise substantially rectangular defined surface portion, a further pair of power supply and current dissipation electrodes can be arranged and via a second electrical Power source with a matched voltage or a matched current are applied, so that the same current density is generated as in the adjacent area previously mentioned. In this way, the entire area to be heated can be subdivided into substantially rectangular area sections, and the same current density can be generated in each area section. By generating the same current densities in all surface sections, transverse currents between the surface sections are avoided, which in turn prevents undefined heating results. Due to the resistance conditions, the current density inevitably sets in and basically can not be forced homogeneously. However, only a homogeneous current density obtains homogeneous heating, since always the same power per area is implemented. Here, the approach is followed to adjust the resistance ratios in the form of the board by the manner described so that homogeneous current densities result. In this way, a uniform conductive heating of even an irregularly shaped sheet or an irregularly shaped to be heated area of the sheet can be realized. By means of the invention, the conductive heating process with its advantages can thus be made universally usable for any shaped metal sheets. In order to produce virtually identical, homogeneous current densities, the sheet can be regarded as a resistor in which the current supplied via the electrodes flows.

Mit der Erfindung können Bleche nahezu zunderfrei auf die gewünschte Temperatur gebracht werden. Der Erwärmungsprozess kann in einem Zeitraum von 10 Sekunden oder weniger durchgeführt werden. Die Erwärmungsdauer kann dabei durch die Größe der Stromzufuhr festgelegt werden. Grundsätzlich gilt, je mehr Strom durch das Blech geführt wird, desto schneller kann die Erwärmung durchgeführt werden.With the invention sheets can be brought almost without scale to the desired temperature. The heating process can be performed in a period of 10 seconds or less. The heating time can be determined by the size of the power supply. Basically, the more current is passed through the sheet, the faster the heating can be performed.

Als Blech kommt jedes Blech aus elektrisch leitfähigem Metall in Frage, wie z. B. Stahl-, Aluminium- und Magnesiumbleche. Das Blech weist dabei in einer vorteilhaften Weiterbildung der Erfindung eine gleichbleibende Materialdicke auf, zumindest bevor es nach dem konduktiven Erwärmungsprozess weiter bearbeitet wird und dabei gegebenenfalls umgeformt wird.As a sheet is every sheet of electrically conductive metal in question, such. B. steel, aluminum and magnesium sheets. The sheet has it in one advantageous development of the invention to a constant material thickness, at least before it is further processed after the conductive heating process and thereby optionally transformed.

Eine Stromzuleitungselektrode dient dabei zum Einleiten elektrischen Stroms von der elektrischen Energiequelle in das Blech. Eine Stromableitungselektrode dient zum Ableiten des Stroms von dem Blech zurück zur elektrischen Energiequelle. Gemäß einer vorteilhaften Weiterbildung der Erfindung sind die elektrischen Energiequellen derart dimensioniert, dass über alle Paare von einander zugeordneten Stromzuleitungs- und Stromableitungselektroden gleiche Stromdichten von den Stromzuleitungselektroden in das Blech eingeleitet und über die Stromableitungselektroden von dem Blech abgeleitet werden.A current supply electrode serves to introduce electrical current from the electrical energy source into the metal sheet. A current dissipation electrode serves to drain the current from the sheet back to the source of electrical energy. According to an advantageous embodiment of the invention, the electrical energy sources are dimensioned such that the same current densities are introduced from the power supply electrodes in the sheet over all pairs of associated power supply and Stromableitungselektroden and derived from the sheet via the Stromableitungselektroden.

Die Anzahl der verwendeten Stromzuleitungselektroden kann gleich oder ungleich der Anzahl der verwendeten Stromableitungselektroden sein. Bei gleicher Anzahl ist es vorteilhaft, wenn jeweils eine Stromzuleitungselektrode und eine Stromableitungselektrode ein Paar solcher Elektroden, die jeweils an dieselbe elektrische Energiequelle angeschlossen sind, bilden. Es ist auch möglich, z. B. zwei Stromzuleitungselektroden elektrisch miteinander zu verbinden oder zwei Stromableitungselektroden elektrisch miteinander zu verbinden. Die jeweils nicht miteinander verbundenen Elektroden sind dann an verschiedene elektrische Energiequellen mit unterschiedlicher Spannung verbunden, sodass wiederum gleiche Stromdichten in benachbarten Flächenbereichen in dem Blech erzeugt werden können.The number of current supply electrodes used may be equal to or different from the number of current discharge electrodes used. With the same number, it is advantageous if in each case one current supply electrode and one current discharge electrode form a pair of such electrodes, which are each connected to the same electrical energy source. It is also possible, for. B. electrically connect two power supply electrodes to each other or electrically connect two Stromableitungselektroden together. The non-interconnected electrodes are then connected to different electrical energy sources with different voltage, so that in turn equal current densities can be generated in adjacent surface areas in the sheet.

Die voneinander elektrisch getrennten elektrischen Energiequellen müssen dabei zumindest an einem ihrer Anschlüsse (Plus oder Minus) voneinander elektrisch getrennt sein. In einer vorteilhaften Weiterbildung der Erfindung sind die mehreren Energiequellen untereinander nicht verbunden und nicht geerdet. Hierdurch "schwimmt" sich das Potential der benachbarten Energiequellen an der Berührungslinie ein, ähnlich wie bei mehreren gleichzeitig betriebenen Punktschweißungen an einer Fahrzeugkarosserie. Das "Einschwimmen" ist ein bekannter Begriff aus der Widerstandsschweißtechnik.The electrically separate electrical sources must be electrically separated from each other at least at one of its terminals (plus or minus). In an advantageous embodiment of the invention, the plurality of energy sources are not connected to each other and not grounded. As a result, the potential of the adjacent energy sources "floats" at the contact line, similar to multiple spot welds operated simultaneously on a vehicle body. The "swim" is a well-known term from the resistance welding technique.

Zur Sicherstellung der gleichen Stromdichten in dem Blech ist es ferner vorteilhaft, wenn zwischen einem Paar von einander zugeordneten Stromableitungs- und Stromzuleitungselektroden keine andere Elektrode angeordnet wird, über die dem Blech von einer weiteren elektrischen Energiequelle Strom zugeleitet oder von dem Blech Strom zu einer weiteren elektrischen Energiequelle abgeleitet wird. Hierdurch werden Unregelmäßigkeiten in der gewünschten gleichen Stromdichte in dem Blech vermieden.To ensure the same current densities in the sheet, it is also advantageous if between a pair of associated Stromableitungs- and power supply electrodes, no other electrode is arranged, fed to the sheet of electricity from another electric power source or from the sheet of electricity to another electrical Energy source is derived. As a result, irregularities in the desired same current density in the sheet are avoided.

Wie erwähnt, kann der konduktiv zu erwärmende Bereich in im Wesentlichen rechteckige Flächenabschnitte aufgeteilt werden. Der konduktiv zu erwärmende Bereich kann auch in trapezförmige Flächenabschnitte oder im Wesentlichen trapezförmige Flächenabschnitte aufgeteilt werden. Auch eine Kombination ist vorteilhaft, d.h. eine Aufteilung des konduktiv zu erwärmenden Bereichs in rechteckige und/oder trapezförmige Flächenabschnitte. Zur Erreichung gleicher Stromdichten in trapezförmigen Flächenabschnitten wird gemäß der Erfindung ein Paar von Blechen durch mehrere elektrisch gegeneinander isolierte, nebeneinander entlang eines Übergangsbereichs von einem zum anderen Blech in deren jeweils trapezförmigen Flächenabschnitten angeordneten Übertragungselektroden miteinander elektrisch verbunden. Durch entsprechend gegensätzliche Anordnungen des einen Blechs gegenüber dem anderen Blech kann auf diese Weise bzgl. der zwei mittels der Übergangselektroden verbundenen trapezförmigen Flächenabschnitte wiederum ein insgesamt rechteckförmiger Flächenabschnitt geschaffen werden, an den an einer Seite wenigstens eine Stromzuleitungselektrode und an der anderen Seite wenigstens eine Stromableitungselektrode angeschlossen werden kann. Auf diese Weise wird die Flexibilität und Anwendbarkeit des erfindungsgemäßen Verfahrens weiter erhöht. Vorteilhaft ist es dabei, trapezförmige Flächenabschnitte der Bleche mit gleicher oder spiegelsymmetrischer äußerer Kontur miteinander über die Übergangselektroden zu verbinden.As mentioned, the area to be conductively heated can be divided into substantially rectangular area sections. The region to be heated conductively can also be divided into trapezoidal surface sections or substantially trapezoidal surface sections. A combination is also advantageous, ie a division of the region to be heated conductively into rectangular and / or trapezoidal surface sections. In order to achieve the same current densities in trapezoidal surface portions, a pair of sheets is electrically interconnected by a plurality of electrically insulated from each other, side by side along a transition region from one to the other sheet in their respective trapezoidal surface portions arranged transfer electrodes. By correspondingly opposing arrangements of one sheet with respect to the other sheet can be created in this way with respect. The two connected by means of the transition electrodes trapezoidal surface sections turn a total rectangular surface section, connected to the one side at least one power supply electrode and at the other side at least one current dissipation electrode can be. In this way, the flexibility and applicability of the method according to the invention is further increased. It is advantageous, trapezoidal surface portions of the sheets with the same or mirror-symmetrical outer To connect contour with each other via the transition electrodes.

Gemäß einer vorteilhaften Weiterbildung der Erfindung können auch trapezförmige Flächenabschnitte desselben Blechs paarweise elektrisch miteinander über die Übertragungselektroden miteinander elektrisch verbunden werden, um sich elektrisch dann wie ein rechteckförmiger Flächenabschnitt zu verhalten. Hierzu sind die trapezförmigen Flächenabschnitte geeignet einzuteilen, insbesondere mit gleichen Winkeln abgeschrägter Seiten.According to an advantageous embodiment of the invention, trapezoidal surface portions of the same sheet can be electrically connected to each other in pairs via the transfer electrodes to electrically behave then like a rectangular surface section. For this purpose, the trapezoidal surface portions are suitable to divide, in particular with equal angles bevelled sides.

Im Ergebnis können somit auch bei trapezförmigen Flächenabschnitten auf diese Weise homogene Widerstandsverhältnisse analog zu rechteckförmigen Blechen realisiert werden.As a result, even with trapezoidal surface sections in this way homogeneous resistance ratios can be realized analogous to rectangular sheets.

Gemäß der Lehre der Erfindung werden damit vielfältig kompliziert geformte Bleche auf eine Rechteckform bzw. eine Kombination von Rechteckformen zurückgeführt, sodass mit geringem operativem Aufwand gleiche Stromdichten erzeugt werden können.According to the teachings of the invention, a variety of complicated shaped sheets are thus attributed to a rectangular shape or a combination of rectangular shapes, so that the same current densities can be generated with little operational effort.

Gemäß einer vorteilhaften Weiterbildung der Erfindung sind eine, mehrere oder alle Stromzuleitungs- und Stromableitungselektroden jeweils als längliche, sich mit ihrer größten Abmessung über einen Abschnitt der äußeren Kontur des konduktiv zu erwärmenden Bereichs erstreckende Elektroden ausgebildet, die jeweils nur an einem Ende mit einer elektrischen Zuleitung mit der elektrischen Energiequelle verbunden sind. Dies hat den Vorteil, dass die elektrische Energie an einer definierten Stelle der Elektrode eingespeist bzw. abgeführt wird. Dies vereinfacht die Berechnung und Auslegung der erforderlichen Elektroden.According to an advantageous development of the invention, one, several or all current supply and current discharge electrodes are each formed as elongated electrodes extending with their largest dimension over a portion of the outer contour of the conductive region to be heated, each of which is connected to an electrical lead only at one end are connected to the electrical energy source. This has the advantage that the electrical energy is fed or removed at a defined point of the electrode. This simplifies the calculation and design of the required electrodes.

Gemäß einer vorteilhaften Weiterbildung der Erfindung wird ein Paar von Stromzuleitungs- und Stromableitungselektroden an diagonal gegenüberliegenden Enden mit der elektrischen Energiequelle verbunden. Dies hat den Vorteil, dass sich für jede Stromlinie des durch das Blech fließenden Stroms derselbe Gesamtwiderstand ergibt, da jeweils ein mehr oder weniger großer Anteil der Stromzuleitungs- und Stromableitungselektrode durchflossen werden muss und diese Anteile für jede Stromlinie in Summe immer denselben Wert ergeben. Auch hierdurch kann das Ziel einer gewünschten gleichen Stromdichte in dem Blech gefördert werden. Es gilt: Gesamtwierstand = Innenwidersand der Stromquelle + Widerstände Zuleitungen + Elektroden + Blech .

Figure imgb0001
According to an advantageous development of the invention, a pair of current supply and current discharge electrodes are connected at diagonally opposite ends to the electrical energy source. This has the advantage that the same for each streamline of the current flowing through the sheet Total resistance results, since in each case a more or less large portion of the current supply and current dissipation electrode must be traversed and these shares for each streamline in sum always give the same value. This also allows the goal of a desired same current density in the sheet to be promoted. The following applies: Gesamtwierstand = Internal resistance of the power source + Resistors supply lines + electrodes + sheet ,
Figure imgb0001

Gemäß einer vorteilhaften Weiterbildung der Erfindung sind eine, mehrere oder alle Stromzuleitungs-, Stromableitungs- und/oder Übertragungselektroden als mit einem Kühlmedium gekühlte Elektroden ausgebildet. So kann als Kühlmedium z. B. durch einen Hohlkanal der jeweiligen Elektrode Kühlwasser geleitet werden. Die Kühlung der Elektroden hat den Vorteil, dass sich diese nicht unerwünscht erhitzen und eine erwärmungsbedingte Widerstandsänderung der Elektroden vermieden wird. Ein weiterer Vorteil ist, dass durch die gekühlten Elektroden auch das angrenzende Blech gekühlt wird, sodass durch entsprechende Anordnung der Elektroden an gewünschten, nicht zu erwärmenden Bereichen des Blechs eine Erwärmung und eine damit einhergehende Härtung vermieden werden kann. Dies hat wiederum den Vorteil, dass durch die Lage und Anordnung der Elektroden z. B. Schnittbereiche bei der späteren Weiterverarbeitung des Bauteils, d.h. des Blechs nach der Umformung, definiert werden können, die nicht gehärtet sind. Auf diese Weise kann ein Randbeschneiden mit konventionellen Werkzeugen erfolgen, z. B. durch das sehr wirtschaftlich anwendbare Scherschneiden. Ein aufwendigeres Hartbeschneiden ist nicht erforderlich. Auch für ein Fügen des Bauteils in späteren Schweißprozessen ist es günstig, nicht gehärtete Randbereiche zu haben. Eine Härtung kann durch einen anschließenden Presshärteprozess erfolgen.According to an advantageous embodiment of the invention, one, several or all of the power supply, Stromableitungs- and / or transmission electrodes are formed as cooled with a cooling medium electrodes. So can be used as a cooling medium z. B. be passed through a hollow channel of the respective electrode cooling water. The cooling of the electrodes has the advantage that they do not heat undesirable and a heating-related change in resistance of the electrodes is avoided. A further advantage is that the adjacent sheet is cooled by the cooled electrodes, so that by appropriate arrangement of the electrodes to desired, not to be heated areas of the sheet heating and a concomitant hardening can be avoided. This in turn has the advantage that by the location and arrangement of the electrodes z. B. cutting areas in the subsequent processing of the component, i. of the sheet after forming, can be defined, which are not hardened. In this way, edge trimming can be done with conventional tools, eg. B. by the very economical applicable shear cutting. A more elaborate Hartbeschneiden is not required. Also, for joining the component in later welding processes, it is favorable to have non-hardened edge regions. Curing can be done by a subsequent press hardening process.

Gemäß einer vorteilhaften Weiterbildung der Erfindung wird die konduktive Erwärmung mittels Gleichstrom durchgeführt. Dies hat im Vergleich zu Wechselstrom den Vorteil, dass elektrische Verluste und sonstige nachteilige Effekte durch im System vorhandene Induktivitäten und Kapazitäten ausgeschlossen werden können. Es wird dadurch auch keine Blindleistung erzeugt. Die vorhandene elektrische Leistung kann vollständig in Form von Wirkleistung genutzt werden. Durch den Entfall induktiver Verluste können Leitungsquerschnitte und elektrische Energiequellen, z. B. Transformatoren, kleiner dimensioniert werden. Zudem wird Energie gespart. Die elektrischen Energiequellen können z. B. dreiphasig aus dem Drehstromnetz versorgt werden. Auch die Berechnung und Auslegung des gesamten Systems, insbesondere der Elektroden und deren Anordnung, vereinfacht sich, weil mit den einfacheren, für Gleichstrom geltenden elektrotechnischen Gesetzmäßigkeiten gearbeitet werden kann.According to an advantageous embodiment of the invention, the conductive heating is carried out by means of direct current. This has the advantage compared to alternating current that electrical losses and other adverse effects can be excluded by existing inductors and capacitances in the system. It also generates no reactive power. The existing electrical power can be used completely in the form of active power. By eliminating inductive losses line cross sections and electrical energy sources, eg. As transformers are smaller. In addition, energy is saved. The electrical energy sources can, for. B. three-phase can be supplied from the three-phase network. Also, the calculation and design of the entire system, in particular the electrodes and their arrangement is simplified, because you can work with the simpler, applicable to direct current electrical engineering laws.

Durch die Erfindung kann auf komplizierte Steuerungen für die Erzeugung gleichmäßiger Stromdichten im Blech verzichtet werden. Hierdurch kann die konduktive Erwärmungseinrichtung vergleichsweise einfach und kostengünstig realisiert werden.By the invention can be dispensed with complicated controls for the generation of uniform current densities in the sheet. As a result, the conductive heating device can be realized comparatively easily and inexpensively.

Gemäß einer vorteilhaften Weiterbildung der Erfindung werden eine, mehrere oder alle Stromzuleitungs-, Stromableitungs- und/oder Übertragungselektroden während des konduktiven Erwärmungsprozesses voneinander fortbewegt, um das Blech zu strecken. Hierdurch kann eine erwärmungsbedingte Ausdehnung des erwärmten Bereichs des Blechs während des Erwärmungsprozesses kompensiert werden.According to an advantageous embodiment of the invention, one, several or all current supply, Stromableitungs- and / or transfer electrodes are moved away from each other during the conductive heating process in order to stretch the sheet. As a result, a heating-related expansion of the heated area of the sheet during the heating process can be compensated.

Gemäß einer vorteilhaften Weiterbildung der Erfindung wird zur Stromzuführung zu einer Stromzuleitungselektrode, zur Stromübertragung von oder zu einer Übertragungselektrode und/oder zur Stromableitung von einer Stromableitungselektrode ein Parallelleiter an diese Elektrode angeschlossen, der über einen Teil des zu erwärmenden Blechs parallel zu den Stromlinien darin fließender Ströme gegenüber dem Blech elektrisch isoliert über das Blech geführt wird. Der Parallelleiter kann insbesondere an einem Randbereich eines zu erwärmenden rechteckigen oder trapezförmigen Flächenabschnitts geführt sein.According to an advantageous development of the invention, a parallel conductor is connected to this electrode for supplying current to a current supply electrode, for transferring energy from or to a transfer electrode and / or for current discharge from a current discharge electrode, which runs parallel to the current lines flowing therein over part of the sheet to be heated is conducted electrically isolated over the sheet metal against the sheet. The parallel conductor may in particular be guided on an edge region of a rectangular or trapezoidal surface section to be heated.

Dies hat den Vorteil, dass durch entsprechende Anordnung eines solchen Parallelleiters bestimmte Bereiche des Blechs von einer Erwärmung ausgeschlossen werden können und zugleich die Stromlinien in einem dem Parallelleiter benachbarten zu erwärmenden Flächenabschnitt in der gewünschten Richtung geführt werden können. Insbesondere kann ein unerwünschter Stromfluss durch den nicht zu erwärmenden Bereich des Blechs durch Stromverdrängungseffekte (Abstoßung von parallel angeordneten stromdurchflossenen Leitern) vermieden werden. Die Feldlinien stoßen sich ebenfalls ab. Auf diese Weise können z. B. sogenannte Tailored Tempered Blanks hergestellt werden, d. h. Bleche, die nur in bestimmten, gewünschten Bereichen gehärtet sind und in anderen Bereichen ungehärtet bleiben. Dies ist z. B. bei Fahrzeugkarosserieteilen zum Erzeugen eines bestimmten Verformungsverhaltens im Crashfall gewünscht. Der Parallelleiter muss elektrisch isoliert sein, aber nicht unbedingt thermisch. Auf diese Weise kann der Parallelleiter eine erwünschte Kühlung des Blechs bewirken.This has the advantage that by appropriate arrangement of such a parallel conductor certain areas of the sheet can be excluded from heating and at the same time the streamlines can be performed in a direction adjacent to the parallel conductor to be heated surface portion in the desired direction. In particular, unwanted current flow through the area of the sheet which is not to be heated can be avoided by means of current displacement effects (repulsion of conductors arranged in parallel current-carrying). The field lines are also repelled. In this way, for. B. so-called tailored tempered blanks are made, d. H. Sheets that are only hardened in certain desired areas and remain uncured in other areas. This is z. B. desired in vehicle body parts for generating a certain deformation behavior in the event of a crash. The parallel conductor must be electrically isolated, but not necessarily thermally. In this way, the parallel conductor can cause a desired cooling of the sheet.

Gemäß einer vorteilhaften Weiterbildung der Erfindung sind eine, mehrere oder alle Parallelleiter als mit einem Kühlmedium gekühlte Leiter ausgebildet.According to an advantageous development of the invention, one, several or all parallel conductors are designed as conductors cooled with a cooling medium.

Die eingangs genannte Aufgabe wird außerdem durch eine konduktive Erwärmungseinrichtung gemäß Anspruch 10 gelöst. Mit der konduktiven Erwärmungseinrichtung sowie den nachfolgend genannten weiteren Ausgestaltungen der konduktiven Erwärmungseinrichtung können ebenfalls die zuvor bezüglich des Verfahrens zum konduktiven Erwärmen genannten Vorteile realisiert werden.The aforementioned object is also achieved by a conductive heating device according to claim 10. With the conductive heating device and the further embodiments of the conductive heating device mentioned below, the advantages mentioned above with regard to the method for conductive heating can likewise be realized.

Gemäß einer vorteilhaften Weiterbildung der Erfindung ist die konduktive Erwärmungseinrichtung zur Durchführung eines Verfahrens der zuvor beschriebenen Art eingerichtet. So können z. B. die elektrischen Energiequellen als Gleichstromquellen ausgebildet sein.According to an advantageous development of the invention, the conductive heating device is set up to carry out a method of the type described above. So z. B. the electrical energy sources may be formed as DC sources.

Gemäß einer vorteilhaften Weiterbildung der Erfindung weist die konduktive Erwärmungseinrichtung eine Streckvorrichtung auf, die zum Strecken des Blechs zummindest in dem konduktiv erwärmten Bereich während des Erwärmungsprozesses eingerichtet ist. Die Streckvorrichtung kann insbesondere dazu eingerichtet sein, während des konduktiven Erwärmungsprozesses bestimmte Stromzuleitungs-, Stromableitungs- und/oder Übertragungselektroden voneinander fortzubewegen.According to an advantageous development of the invention, the conductive heating device has a stretching device which is set up to stretch the sheet at least in the conductive heated area during the heating process is. The stretching apparatus may in particular be adapted to move certain current supply, current discharge and / or transfer electrodes away from one another during the conductive heating process.

Gemäß der Erfindung weist die Elektrodenanordnung der konduktiven Erwärmungseinrichtung Übertragungselektroden zur Stromübertragung zwischen zwei in der konduktiven Erwärmungseinrichtung gleichzeitig erwärmten Blechen auf.According to the invention, the electrode arrangement of the conductive heating device has transfer electrodes for current transfer between two sheets simultaneously heated in the conductive heating device.

Unter Anwendung der zuvor erläuterten konduktiven Erwärmungseinrichtung kann ein Verfahren zum konduktiven Erwärmen eines Blechs z. B. derart durchgeführt werden, dass das zu erwärmende Blech in der konduktiven Erwärmungseinrichtung angeordnet wird, dann Elektroden der konduktiven Erwärmungseinrichtung auf das Blech gepresst werden und dann der elektrische Stromfluss durch das Blech über die Elektroden eingeschaltet wird, um die konduktive Erwärmung durchzuführen, und nach ausreichender Erwärmung die Elektroden wieder vom Blech entfernt werden, wobei es vorteilhaft ist, zuvor den Stromfluss abzuschalten. Das Blech kann dann im erwärmten Zustand weiter verarbeitet werden, z. B. durch Pressen in eine gewünschte Form gebracht werden.Using the conductive heating device explained above, a method of conductively heating a sheet, e.g. Example, be arranged such that the sheet to be heated is placed in the conductive heating device, then electrodes of the conductive heating device are pressed onto the sheet and then the electrical current flow through the sheet is switched via the electrodes to perform the conductive heating, and after sufficient heating the electrodes are removed from the sheet again, it being advantageous to first turn off the flow of current. The sheet can then continue in the heated state be processed, for. B. be brought by pressing in a desired shape.

Zur Bereitstellung des Gleichstroms kann eine elektrische Energiequelle z. B. einen Schweißgleichrichter aufweisen. Auf diese Weise kann auf einfache und kostengünstige Weise der erforderliche Gleichstrom in der gewünschten Höhe von mehreren Tausend Ampere bereitgestellt werden.To provide the direct current, an electrical energy source z. B. have a welding rectifier. In this way, the required direct current in the desired height of several thousand amps can be provided in a simple and cost-effective manner.

Die Stromzuleitungs-, Stromableitungs- und/oder Übertragungselektroden können z. B. aus Kupfer oder legiertem Kupfer hergestellt sein, z. B. aus CuCoBe oder CuBe2. Insbesondere mit den letztgenannten Legierungen können sehr harte, robuste Elektroden bereitgestellt werden. Die genannten Parallelleiter können aus demselben Material oder einem anderen Material hergestellt werden. Für die elektrische Isolation der Parallelleiter können diese z. B. an der Oberfläche eine plasmagespritzte Keramikschicht aufweisen.The current supply, Stromableitungs- and / or transfer electrodes can, for. B. made of copper or alloyed copper, z. B. CuCoBe or CuBe 2 . Especially with the latter alloys, very hard, robust electrodes can be provided. The mentioned parallel conductors can be made of the same material or another material. For the electrical insulation of the parallel conductors, these z. B. have on the surface of a plasma-sprayed ceramic layer.

Der konduktive Erwärmungsprozess kann gemäß einer vorteilhaften Weiterbildung der Erfindung wärmegekapselt durchgeführt werden. Dabei werden die Bleche durch eine äußere Wärmekapselung, z. B. eine Wärmeisolierung der konduktiven Erwärmungseinrichtung, thermisch von der Umgebung abgeschirmt. Hierdurch wird die Wärmestrahlung in die Umgebung reduziert und damit Kosten und Erwärmungszeit eingespart. Versuche haben gezeigt, dass einfache Wärmeabschirmplatten schon gute Vorteile bieten. Eine Isolierung wie im Ofenbau ist noch besser. Hierdurch können auch Umwelteinflüsse für den Erwärmungsprozess ausgeschlossen werden.The conductive heating process can be carried out heat-encapsulated according to an advantageous embodiment of the invention. The sheets are characterized by an external heat encapsulation, for. B. a thermal insulation of the conductive heating device, thermally shielded from the environment. As a result, the heat radiation is reduced in the environment and thus saves costs and heating time. Experiments have shown that simple Wärmeabschirmplatten already offer good benefits. An insulation as in the furnace is even better. As a result, environmental influences for the heating process can be excluded.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Verwendung von Zeichnungen näher erläutert.The invention will be explained in more detail by means of embodiments using drawings.

Es zeigen

Figur 1
ein Blech-Rohteil zur Herstellung einer B-Säule eines Kraftfahrzeugs und
Figur 2
zwei Blech-Rohteile gemäß Figur 1 und
Figur 3
eine konduktive Erwärmungseinrichtung sowie die zwei BlechRohteile gemäß Figur 2 und
Figur 4
eine weitere konduktive Erwärmungseinrichtung sowie die zwei Blech-Rohteile gemäß Figur 2 und
Figur 5
die Anordnung eines Parallelleiters auf einem Blech in Querschnittsdarstellung und
Figur 6
eine weitere konduktive Erwärmungseinrichtung sowie die zwei Blech-Rohteile gemäß Figur 2 und
Figur 7
eine weitere konduktive Erwärmungseinrichtung sowie die zwei Blech-Rohteile gemäß Figur 2 und
Figur 8
eine Ausführungsform einer Elektrode in perspektivischer Darstellung.
Show it
FIG. 1
a sheet blank for the production of a B-pillar of a motor vehicle and
FIG. 2
two sheet metal blanks according to FIG. 1 and
FIG. 3
a conductive heating device and the two BlechRohteile according to FIG. 2 and
FIG. 4
another conductive heating device and the two sheet blanks according to FIG. 2 and
FIG. 5
the arrangement of a parallel conductor on a sheet in cross-sectional view and
FIG. 6
another conductive heating device and the two sheet blanks according to FIG. 2 and
FIG. 7
another conductive heating device and the two sheet blanks according to FIG. 2 and
FIG. 8
an embodiment of an electrode in perspective view.

In den Figuren werden gleiche Bezugszeichen für einander entsprechende Elemente verwendet.In the figures, like reference numerals are used for corresponding elements.

Die Figur 1 zeigt in Draufsicht ein in eine bestimmte Form geschnittenes Blech 1, das z. B. aus einem Stahlcoil ausgeschnitten ist. Es handelt sich um ein Rohbauteil für eine B-Säule eines Kraftfahrzeugs vor dem Umformen in einer Presse. Um das Blech 1 mit gleichmäßiger Stromdichte im gesamten Bereich konduktiv zu erwärmen, wird das Blech 1 zunächst in im Wesentlichen rechteckförmige Flächenabschnitte 2, 4 und einen im Wesentlichen trapezförmigen Flächenabschnitt 3 unterteilt. Entsprechend der Unterteilung in die Flächenabschnitte 2, 3, 4 werden Elektroden einer Elektrodenanordnung einer konduktiven Erwärmungseinrichtung maßgeschneidert hergestellt, die dann zur Durchführung des konduktiven Erwärmungsprozesses mit dem Blech 1 verbunden werden.The FIG. 1 shows in plan view a cut into a specific shape sheet 1, the z. B. is cut out of a steel coil. It is a shell component for a B-pillar of a motor vehicle before forming in a press. In order to conductively heat the metal sheet 1 with a uniform current density in the entire region, the metal sheet 1 is first subdivided into substantially rectangular surface sections 2, 4 and a substantially trapezoidal surface section 3. Corresponding to the subdivision into the surface sections 2, 3, 4, electrodes of an electrode arrangement of a conductive heating device are made tailor-made, which are then connected to the sheet 1 for carrying out the conductive heating process.

Zur weiteren Optimierung des Fertigungsprozesses im Fall von nicht-rechteckförmigen Flächenabschnitten, die sich aus der zuvor erläuterten Unterteilung ergeben, in diesem Fall dem Flächenabschnitt 3, werden gemäß der Erfindung zwei Bleche 1 gleichzeitig in der konduktiven Erwärmungseinrichtung erwärmt. Dafür werden die zwei Bleche vorzugsweise nächst wie in Figur 2 dargestellt angeordnet und die erforderlichen Elektroden entsprechend geschaffen.
Die Figur 3 zeigt die in Figur 2 dargestellten Bleche 1, die gemäß Figur 3 noch etwas näher aneinander angeordnet sind, in einer konduktiven Erwärmungseinrichtung 10. Die konduktive Erwärmungseinrichtung 10 weist die zuvor erwähnte maßgeschneidert hergestellte Elektrodenanordnung auf, die Stromzuleitungselektroden 11, 12, 13, 14, 15, Stromableitungselektroden 16, 17, 18, 19, 20 und Übertragungselektroden 31 aufweist. An den rechteckförmigen Flächenabschnitten 2, 4 der Bleche 1 sind jeweilige Paare von jeweils einer Stromzuleitungselektrode und einer Stromableitungselektrode, wie in Figur 3 dargestellt, angeschlossen und mit jeweils einer eigenen elektrischen Energiequelle 21, 22, 23, 24, 25, z. B. einem Transformator mit angeschlossenem Gleichrichter zur Bereitstellung von Gleichstrom, verbunden bzw. über einen in der Figur 3 nicht dargestellten elektrischen Schalter verbindbar. Der Stromfluss zwischen den jeweiligen Elektroden ist durch die auf dem jeweiligen Blech 1 dargestellten Pfeile wiedergegeben, die Stromlinien darstellen. Im mittleren Bereich der Bleche 1, nämlich in den beiden trapezförmigen Flächenabschnitten 3, ist an dem rechts dargestellten Blech 1 eine Stromzuleitungselektrode 12 und an dem links dargestellten Blech 1 eine Stromableitungselektrode 19 angeschlossen. Um eine gleiche Stromdichte über die vertikale Erstreckung der trapezförmigen Flächenabschnitte 3 zu gewährleisten, sind die trapezförmigen Flächenabschnitte 3 in der Mitte zwischen den Blechen 1 mit mehreren Übertragungselektroden 31 miteinander verbunden. Die Übertragungselektroden 31 sind elektrisch voneinander isoliert, z. B. indem sie als Metallblöcke mit einem gewissen Abstand voneinander angeordnet sind. Auf diese Weise wird aus den zwei trapezförmigen Flächenabschnitten 3 ein in elektrischer Hinsicht einheitlicher rechteckförmiger Bereich zwischen den Elektroden 12, 19 geschaffen.
In order to further optimize the manufacturing process in the case of non-rectangular area sections which result from the subdivision explained above, in this case the area section 3, according to the invention two sheets 1 are simultaneously heated in the conductive heating device. For this, the two sheets are preferably next as in FIG. 2 shown arranged and created the required electrodes accordingly.
The FIG. 3 shows the in FIG. 2 illustrated sheets 1, according to FIG. 3 The conductive heating device 10 comprises the aforementioned custom-made electrode assembly, the power supply electrodes 11, 12, 13, 14, 15, power dissipation electrodes 16, 17, 18, 19, 20 and transfer electrodes 31 has. At the rectangular surface portions 2, 4 of the sheets 1 are respective pairs of each of a power supply electrode and a power dissipation electrode, as in FIG FIG. 3 shown, connected and each with its own electrical energy source 21, 22, 23, 24, 25, z. As a transformer with a rectifier connected to provide DC, connected or via a in the FIG. 3 not shown electrical switch connectable. The current flow between the respective electrodes is represented by the arrows shown on the respective sheet 1, which represent streamlines. In the central region of the sheets 1, namely in the two trapezoidal surface portions 3, a current supply electrode 12 and to the plate 1 shown on the left a Stromableitungselektrode 19 is connected to the plate 1 shown on the right. In order to ensure the same current density over the vertical extension of the trapezoidal surface sections 3, the trapezoidal surface sections 3 are connected to each other in the middle between the sheets 1 with a plurality of transmission electrodes 31. The transfer electrodes 31 are electrically isolated from each other, e.g. B. by being arranged as metal blocks with a certain distance from each other. In this way will be out of the two trapezoidal surface sections 3, a uniform electrical rectangular area between the electrodes 12, 19 created.

Die Übertragungselektroden 31 können z. B. bei einer Breite von 20 mm im Abstand von 5 mm voneinander entfernt angeordnet sein. Um eine gleichmäßige Beabstandung der Übertragungselektroden voneinander zu gewährleisten, können sie z. B. auf einer isolierenden Platte befestigt sein und als einstückige Übertragungselektroden-Anordnung auf die Bleche 1 gepresst werden. In einer Industrieumsetzung können z.B. alle Elektroden auf einer großen Grundplatte befestigt sein, mit Einbau z.B. in eine hydraulische Presse.The transfer electrodes 31 may, for. B. at a width of 20 mm at a distance of 5 mm from each other. In order to ensure a uniform spacing of the transfer electrodes from each other, they can, for. B. be mounted on an insulating plate and pressed as a one-piece transfer electrode assembly on the sheets 1. In an industrial implementation, e.g. all electrodes are mounted on a large base plate, with installation e.g. in a hydraulic press.

In vielen Fällen sollen Bleche wie das Blech 1 gemäß Figur 1 nicht an allen Stellen durch Erwärmung gehärtet werden, sondern es sollen z. B. zur Erzielung einer gewünschten Verformungscharakteristik im Crashfall eines Fahrzeugs bestimmte Bereiche nicht gehärtet werden. Auch hierzu ist die vorliegende Erfindung geeignet. Die Figur 4 zeigt eine weitere konduktive Erwärmungseinrichtung 10, die dazu eingerichtet ist, die jeweiligen Flächenabschnitte 4 der Bleche 1 nicht zu erwärmen. Hierzu werden die Elektroden 14 bzw. 17 nicht direkt mit ihrer jeweiligen elektrischen Energiequelle 22 bzw. 25 verbunden, sondern über entlang der Stromflussrichtung im jeweiligem Blech geführte Parallelleiter 26, 27. Durch die Parallelleiter 26, 27 kann ein weiterhin paralleler Verlauf der Stromlinien in den benachbarten Flächenabschnitten 3 hin zu den Übertragungselektroden 31 gewährleistet werden, was ohne die Parallelelektroden 26, 27 nicht sichergestellt wäre. Zudem können die Parallelelektroden 26, 27 gekühlt werden, was den weiteren Vorteil hat, dass sich die Kühlung auch auf das Blech 1 überträgt und damit eine unerwünschte Wärmeübertragung von den erwärmten Flächenabschnitten des Blechs in die nicht zu erwärmenden Flächenabschnitte 4 verhindert werden kann.In many cases, sheets should be like sheet 1 according to FIG. 1 not be hardened at all points by heating, but it should, for. B. certain areas are not hardened to achieve a desired deformation characteristics in the event of a crash of a vehicle. Also for this purpose, the present invention is suitable. The FIG. 4 shows a further conductive heating device 10, which is adapted to not heat the respective surface portions 4 of the sheets 1. For this purpose, the electrodes 14 and 17 are not connected directly to their respective electrical energy source 22 and 25, but over along the direction of current flow in the respective sheet guided parallel conductor 26, 27 by the parallel conductors 26, 27 can continue a parallel course of the streamlines in the adjacent surface portions 3 are ensured to the transfer electrodes 31, which would not be ensured without the parallel electrodes 26, 27. In addition, the parallel electrodes 26, 27 can be cooled, which has the further advantage that the cooling is also transferred to the sheet 1 and thus unwanted heat transfer from the heated surface portions of the sheet can be prevented in the non-heated surface portions 4.

In einer vorteilhaften Ausgestaltung werden auch einige oder alle der übrigen Elektroden 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 gekühlt. Auch die Übertragungselektroden 31 können als gekühlte Elektroden ausgebildet sein. Die Figur 5 zeigt ein Beispiel für eine gekühlte Elektrode anhand des Parallelleiters 27. In Längsrichtung durch die jeweilige Elektrode verläuft eine Bohrung 28, die einen Kühlkanal bildet. Durch den Kühlkanal kann Kühlflüssigkeit, z. B. Kühlwasser, geleitet werden. Sofern die Elektrode als Parallelleiter 26, 27 ausgebildet ist, ist dieser an der Außenoberfläche isoliert ausgebildet, d. h. es besteht kein elektrischer Kontakt zum Blech 1. Bei den übrigen Elektroden 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 31 ist selbstverständlich der elektrische Kontakt zum Blech 1 notwendig. Die Figur 5 zeigt anhand zweier Parallelleiter 27 beispielhaft eine paarweise Anordnung oberhalb und unterhalb des Blechs 1. Der unterhalb des Blechs 1 angeordnete Parallelleiter 27 stützt sich auf einem Gegenlager 32 gegenüber einer Anpresskraft F ab, die auf den oberhalb des Blechs 1 angeordneten Parallelleiter 27 ausgeübt wird.In an advantageous embodiment, some or all of the remaining electrodes 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 are cooled. Also the transmission electrodes 31 may be formed as cooled electrodes. The FIG. 5 shows an example of a cooled electrode on the basis of the parallel conductor 27. In the longitudinal direction through the respective electrode extends a bore 28, which forms a cooling channel. Through the cooling channel can coolant, z. As cooling water, are passed. If the electrode is designed as a parallel conductor 26, 27, this is formed insulated on the outer surface, ie there is no electrical contact with the sheet 1. In the remaining electrodes 11, 12, 13, 14, 15, 16, 17, 18, 19 , 20, 31 of course, the electrical contact with the sheet 1 is necessary. The FIG. 5 shows by means of two parallel conductor 27 by way of example a paired arrangement above and below the sheet 1. The arranged below the plate 1 parallel conductor 27 is based on a thrust bearing 32 against a contact force F, which is exerted on the above the plate 1 arranged parallel conductor 27.

Die Figur 6 zeigt eine weitere Ausführungsform einer konduktiven Erwärmungseinrichtung 10, die bis auf die nachfolgend erläuterten Unterschiede der Einrichtung 10 gemäß Figur 4 entspricht. Gemäß Figur 6 sind die nicht zu erwärmenden Flächenbereiche der Bleche 1 gegenüber der Figur 4 noch etwas vergrößert und erfassen außer den Flächenabschnitten 4 noch daran angrenzende Randbereiche der Flächenabschnitte 3. Dementsprechend ist die konduktive Erwärmungseinrichtung hinsichtlich der Ausbildung der Parallelleiter 26, 27 sowie der Übertragungselektroden 21 angepasst, indem diese nicht als linear verlaufende Elektroden ausgebildet sind, sondern entsprechend den gewünschten, zu erwärmenden Flächenbereichen abgewinkelt sind. Die Stromzuleitungselektrode 12 und die Stromableitungselektrode 19 sind dementsprechend im Vergleich zu Figur 4 etwas verkürzt ausgebildet.The FIG. 6 shows a further embodiment of a conductive heating device 10, which, except for the differences explained below of the device 10 according to FIG FIG. 4 equivalent. According to FIG. 6 are the non-heating surface areas of the sheets 1 relative to the FIG. 4 In addition to the surface sections 4, edge regions of the surface sections 3 still adjoining them also grasp and capture. Accordingly, the conductive heating device is adapted with regard to the formation of the parallel conductors 26, 27 and the transmission electrodes 21 by forming these not as linearly extending electrodes, but according to the desired ones , are angled to be heated surface areas. The current supply electrode 12 and the current discharge electrode 19 are accordingly compared to FIG. 4 something shortened trained.

Die Bleche 1 können auch anders als zuvor in den Figuren 2 bis 6 dargestellt angeordnet werden, z. B. wie in der Figur 7 angegeben. Die rechteckförmigen Flächenabschnitte 2 und 4 sind dabei wie zuvor beschrieben mit den Stromzuleitungselektroden und den Stromableitungselektroden sowie den zugehörigen elektrischen Energiequellen verbunden. Bezüglich der mittleren, trapezförmigen Flächenabschnitte 3 ergibt sich im Vergleich zu den zuvor beschriebenen Ausführungsformen der Unterschied, dass zur Beibehaltung gleicher Stromdichten und damit gleichen Erwärmungsverhaltens zur Verbindung der Flächenabschnitte 3 zwischen den Blechen 1 nicht nebeneinander angeordnete Übertragungselektroden vorgesehen werden, sondern wie dargestellt über Kreuz angeordnete Übertragungselektroden 31, sodass sich durch die Übertragungselektroden 31 eine spinnenförmige Konstruktion ergibt. Die Übertragungselektroden 31 sind dabei weiterhin elektrisch gegeneinander isoliert, z. B. indem die Elektroden in unterschiedlichen Höhenebenen aneinander vorbeigeführt sind oder als elektrisch isolierte Kabel ausgebildet sind. Hierdurch können homogene Widerstandsverhältnisse analog zu rechteckförmigen Blechen realisiert werden.The sheets 1 can also be different than before in the FIGS. 2 to 6 be arranged represented, for. B. as in the FIG. 7 specified. The rectangular surface sections 2 and 4 are as described above with the current supply electrodes and the current collector electrodes and the associated connected to electrical energy sources. With respect to the mean, trapezoidal surface portions 3 results in comparison to the embodiments described above, the difference that to maintain the same current densities and thus the same heating behavior for connecting the surface portions 3 between the sheets 1 not juxtaposed transfer electrodes are provided, but as shown arranged crosswise Transfer electrodes 31, so that by the transfer electrodes 31 results in a spider-like construction. The transfer electrodes 31 are still electrically isolated from each other, z. B. by the electrodes are passed past each other in different height levels or are designed as electrically insulated cable. As a result, homogeneous resistance ratios can be realized analogous to rectangular sheets.

Ein Vorteil dieser Ausführungsform ist die Einsparung von zwei Energiequellen, da die rechteckförmigen Flächenabschnitte 2, 4 der Platine als Reihenschaltung an eine Energiequelle angeschlossen werden können. So sind die Flächenabschnitte 2 in Reihe mit der Energiequelle 22 verbunden. Die Elektroden 14, 16 können miteinander verbunden oder zu einer Elektrode vereint werden. Die Flächenabschnitte 4 sind in Reihe mit der Energiequelle 24 verbunden. Die Elektroden 15, 17 können miteinander verbunden oder zu einer Elektrode vereint werden.An advantage of this embodiment is the saving of two energy sources, since the rectangular surface sections 2, 4 of the board can be connected as a series circuit to a power source. Thus, the surface portions 2 are connected in series with the power source 22. The electrodes 14, 16 can be connected together or combined to form an electrode. The surface portions 4 are connected in series with the power source 24. The electrodes 15, 17 can be connected together or combined to form an electrode.

Wie erwähnt ist es vorteilhaft, ein Paar von Stromzuleitungs- und Stromableitungselektroden an diagonal gegenüberliegenden Enden mit der elektrischen Energiequelle zu verbinden. Wie zudem in den Figuren erkennbar ist, ist es zusätzlich vorteilhaft, die Anschlussstellen der Anschlussleitungen der Energiequellen an die Elektroden an einer Seite (links/rechts) des Blechs möglichst weit voneinander entfernt anzuordnen, so dass die Stromeinleitstellen möglichst weiter auseinander liegen und die Stromableitstellen möglichst weiter auseinander liegen.As mentioned, it is advantageous to connect a pair of power supply and drain electrodes at diagonally opposite ends to the source of electrical energy. As can also be seen in the figures, it is additionally advantageous to arrange the connection points of the connection lines of the energy sources to the electrodes on one side (left / right) of the sheet metal as far apart as possible so that the current introduction points are as far apart as possible and the current discharge points as possible further apart.

Die Figur 8 zeigt eine vorteilhafte Ausführungsform einer Elektrode 80, die als Stromzuleitungs-, Stromableitungs- und/oder Übertragungselektrode eingesetzt werden kann. Die Elektrode 80 weist wiederum eine Bohrung 28 auf, die einen Kühlkanal bildet. Die in der Darstellung gemäß Figur 8 nach oben weisende Oberfläche der Elektrode 80, die die Kontaktoberfläche der Elektrode zum Blech ist, ist uneben mit einer bestimmten Struktur ausgebildet. Im dargestellten Ausführungsbeispiel ist eine kammartige Struktur erzeugt, indem zwischen Erhebungen 81 Nuten 82 gebildet sind. Durch eine solche unebene Oberfläche, die mit dem zu erwärmenden Blech in Kontakt gebracht wird, können gezielt vereinzelte Hotspots vermieden werden, d.h. Stellen, an denen eine überdurchschnittlich starke Erwärmung des Blechs erfolgt. Durch die Erzeugung einer Vielzahl verteilter kleiner Kontaktflächen mit den Blech, verteilt über die Oberfläche oder einen Teil der Oberfläche des zu erwärmenden Blechs, lässt sich verblüffender Weise eine Homogenisierung der Erwärmung erreichen, ohne dass durch die Kontaktflächen Beschädigungen erzeugt werden oder vereinzelte Hotspots auftreten. Auf diese Weise werden nachteilige Effekte bekannter Elektroden, bei denen zum Teil unerwünschte Hotspots auftreten, kompensiert. Hierdurch wird insbesondere eine homogene Erwärmung des Blechs gefördert. Diese ist günstig für die Durchführung eines kontrollierten, reproduzierbaren Härtungsprozesses des Blechs.The FIG. 8 shows an advantageous embodiment of an electrode 80, which can be used as Stromzuleitungs-, Stromableitungs- and / or transfer electrode. The electrode 80 in turn has a bore 28 which forms a cooling channel. The in the illustration according to FIG. 8 The upwardly facing surface of the electrode 80, which is the contact surface of the electrode with the sheet, is formed unevenly with a certain structure. In the illustrated embodiment, a comb-like structure is created by 81 grooves 82 are formed between elevations. By such an uneven surface, which is brought into contact with the sheet to be heated, isolated hotspots can be selectively avoided, ie places where there is an above-average heating of the sheet. By generating a plurality of distributed small contact surfaces with the sheet, distributed over the surface or part of the surface of the sheet to be heated, can be achieved amazingly homogenization of the heating, without causing damage through the contact surfaces or scattered hot spots occur. In this way, adverse effects of known electrodes, which sometimes undesirable hot spots occur compensated. As a result, in particular a homogeneous heating of the sheet is promoted. This is favorable for carrying out a controlled, reproducible hardening process of the sheet.

Bisher wurden Hotspots als nachteilig angesehen und es wurde versucht, diese zu vermeiden, weil sie den Nachteil haben, dass das Blech an solchen Stellen unkontrolliert erwärmt wird. Bei positivem Temperaturkoeffizienten des Blechs erhöht sich zudem mit der Erwärmung der spezifische elektrische Widerstand an solchen Stellen des Blechs, so dass eine Art Lawineneffekt eintritt, da sich die Hotspot-Bereiche vergleichsweise schnell erwärmen und es an den Stellen der höchsten Temperatur zu Beschädigungen des Blechs kommen kann (Durchbrennen).So far, hotspots have been considered to be disadvantageous and attempts have been made to avoid them because they have the disadvantage that the sheet is heated uncontrollably in such places. With a positive temperature coefficient of the sheet also increases with the heating of the specific electrical resistance at such locations of the sheet, so that a kind of avalanche effect occurs because the hotspot areas heat comparatively quickly and come at the points of highest temperature to damage the sheet can (burn).

Demgemäß wird nach der hier beschriebenen neuen Lehre eine undefinierte bzw. vereinzelte Erzeugung von Hotspots vermieden. Stattdessen werden viele kleine Kontaktstellen nahe beieinander erzeugt, die dann für einen kontrollierten, reproduzierbaren Erwärmungsprozess und damit für einen Härtungsprozess des Blechs förderlich sind. Durch eine Kühlung der Elektrode kann dieser Effekt sogar noch verstärkt werden. Durch die Vielzahl kleiner Kontaktstellen kann eine Linie von "Mini-Hotspots" erzeugt werden, die die von der Kühlwirkung der Elektrode erzeugten Abkühlungen kompensiert.Accordingly, according to the new teaching described herein, an undefined or isolated generation of hotspots avoided. Instead, many small contact points are created close to each other, which are then conducive to a controlled, reproducible heating process and thus to a hardening process of the sheet. By cooling the electrode, this effect can even be enhanced. Due to the large number of small contact points, a line of "mini-hotspots" can be generated, which compensates for the cooling caused by the cooling effect of the electrode.

Dementsprechend wird die erfindungsgemäße konduktive Erwärmungseinrichtung weitergebildet, indem wenigstens eine Stromzuleitungs-, Stromableitungs- und/oder Übergangselektrode als Elektrode 80 mit einer unebenen strukturierten Kontaktoberfläche ausgebildet ist. Die Kontaktoberfläche der Elektrode ist eine Oberfläche, die elektrisch in direkten Kontakt mit dem Blech gebracht wird. Die unebene strukturierte Kontaktoberfläche der Elektrode kann z.B. durch Vorsehen einer Vielzahl rechtwinkliger Elektrodenkanten realisiert werden, wie in der Figur 8 dargestellt. Statt dem dargestellten linienförmigen Muster kann die unebene strukturierte Kontaktoberfläche auch durch punktuelle Erhebungen auf der Oberfläche gebildet sein. Die Oberflächenstruktur der Kontaktoberfläche kann eine regelmäßige oder unregelmäßige Struktur sein.Accordingly, the conductive heating device according to the invention is further developed by forming at least one current supply, current dissipation and / or transition electrode as an electrode 80 with an uneven structured contact surface. The contact surface of the electrode is a surface that is electrically brought into direct contact with the sheet. The uneven structured contact surface of the electrode can be realized, for example, by providing a plurality of rectangular electrode edges, as in US Pat FIG. 8 shown. Instead of the illustrated linear pattern, the uneven structured contact surface may also be formed by punctiform elevations on the surface. The surface structure of the contact surface may be a regular or irregular structure.

Das erfindungsgemäße Verfahren wird somit dahingehend weitergebildet, dass das konduktive Erwärmen des Blechs über eine unebene strukturierte Kontaktoberfläche wenigstens einer Stromzuleitungs-, Stromableitungs- und/oder Übergangselektrode erfolgt.The method according to the invention is thus further developed in that the conductive heating of the sheet takes place via an uneven structured contact surface of at least one current supply, current discharge and / or transition electrode.

Claims (13)

  1. Method for conductively heating a metal sheet (1), the metal sheet (1) or at least one region to be conductively heated of the metal sheet (1) that is having a non-rectangular outer contour, wherein an assembly of current-supplying and current-removing electrodes (11-20) adapted to the outer contour is formed, said electrodes being arranged separately from one another on its own along the outer contour and being connected to electrical energy sources (21-25) which are electrically insulated from one another and are dimensioned in such a way that, between all pairs of associated current-supplying and current-removing electrodes (11-20), essentially the same current densities are produced in the metal sheet (1) or the regions to be conductively heated, characterized in that metal sheets (1) each with at least one trapezoidal zone (3) of their region to be conductively heated are conductively heated in pairs, wherein a pair of metal sheets (1) are electrically connected to one another by a number of transfer electrodes (31) that are electrically insulated from one another and are arranged next one another along the transfer region from one metal sheet (1) to the other.
  2. Method according to Claim 1, characterized in that the non-rectangular outer contour of the region to be conductively heated is divided into essentially rectangular and/or trapezoidal zones (2, 3, 4) and, in a way corresponding to the division into the zones (2, 3, 4), an electrode assembly adapted thereto is provided, comprising at least current-supplying and current-removing electrodes (11-20) and, in the presence of at least one trapezoidal zone, transfer electrodes (31).
  3. Method according to one of the preceding claims, characterized in that one or more or all of the current-supplying and current-removing electrodes (11-20) are respectively formed as elongated electrodes extending with their greatest dimension over a portion of the outer contour of the region to be conductively heated, which are in each case only connected at one end (29, 30) by an electrical supply lead to the electrical energy source (21-25).
  4. Method according to one of the preceding claims, characterized in that a pair of current-supplying and current-removing electrodes (11-20) are connected to the electrical energy source (21-25) at diagonally opposite ends (29, 30).
  5. Method according to one of the preceding claims, characterized in that one or more or all of the current-supplying, current-removing and/or transfer electrodes (11-20, 31) are formed as electrodes that are cooled with a cooling medium.
  6. Method according to one of the preceding claims, characterized in that the conductive heating is carried out by means of direct current.
  7. Method according to one of the preceding claims, characterized in that one or more or all of the current-supplying, current-removing and/or transfer electrodes (11-20, 31) are moved away from one another during the conductive heating process, in order to stretch the metal sheet.
  8. Method according to one of the preceding claims, characterized in that, for supplying current to a current-supplying electrode (11-15), for transferring current from or to a transfer electrode (31) and/or for removing current from a current-removing electrode (16-20), a parallel conductor (26, 27) is connected to this electrode and, over part of the metal sheet (1) to be heated, is taken over the metal sheet (1) parallel to the flow lines of currents flowing therein while being electrically insulated from the metal sheet (1).
  9. Method according to one of the preceding claims, characterized in that, as a result of the contacting of the metal sheet, one or more or all of the current-supplying, current-removing and/or transfer electrodes (11-20, 31) cool a peripheral region in such a way that no heat treatment of the metal sheet takes place in the pressing region of the respective electrodes.
  10. Conductive heating device (10) for carrying out a method for conductively heating a metal sheet (1), the metal sheet (1) or at least one region to be conductively heated of the metal sheet (1) having a non-rectangular outer contour, wherein the conductive heating device (10) has an assembly of current-supplying and current-removing electrodes (11-20) adapted to the outer contour, said electrodes being arranged separately from one another on its own along the outer contour and being connected by means of separate electrical supply leads to electrical energy sources (21-25) which are electrically insulated from one another, wherein the electrical energy sources (21-25) are dimensioned in such a way that, between all pairs of associated current-supplying and current-removing electrodes (11-20), the same current densities are produced in the metal sheet (1), characterized in that the electrode assembly of the conductive heating device (10) has transfer electrodes (31) for transferring current between two metal sheets (1) simultaneously heated in the conductive heating direction (10).
  11. Conductive heating device according to Claim 10, characterized in that the conductive heating device (10) is designed for carrying out a method according to one of Claims 1 to 10.
  12. Conductive heating device according to Claim 10 or 11, characterized in that the electrical energy sources (21-25) are designed as direct current sources.
  13. Conductive heating device according to one of Claims 10 to 12, characterized in that the conductive heating device (10) has a stretching device, which is designed for stretching the metal sheet (1), at least in the conductively heated region, during the heating process.
EP15705981.7A 2014-02-18 2015-02-18 Method for conductively heating sheet metal in pairs, and heating device for carrying out said method Active EP3108019B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014102033.2A DE102014102033B4 (en) 2014-02-18 2014-02-18 Method for conductive heating of a sheet and heating device therefor
PCT/EP2015/053382 WO2015124604A1 (en) 2014-02-18 2015-02-18 Method for conductively heating sheet metal, and heating device for carrying out said method

Publications (2)

Publication Number Publication Date
EP3108019A1 EP3108019A1 (en) 2016-12-28
EP3108019B1 true EP3108019B1 (en) 2018-12-26

Family

ID=52574144

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15705981.7A Active EP3108019B1 (en) 2014-02-18 2015-02-18 Method for conductively heating sheet metal in pairs, and heating device for carrying out said method

Country Status (4)

Country Link
EP (1) EP3108019B1 (en)
JP (1) JP6679595B2 (en)
DE (1) DE102014102033B4 (en)
WO (1) WO2015124604A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017104494B4 (en) 2017-03-03 2021-10-21 Gottfried Wilhelm Leibniz Universität Hannover Process for forming a sheet metal and manufacturing plant with conductive heating device
EP3589756B1 (en) 2017-03-03 2024-05-15 Gottfried Wilhelm Leibniz Universität Hannover Method for forming a sheet metal and manufacturing system with conductive heating device
DE102017110221A1 (en) * 2017-05-11 2018-11-15 Gottfried Wilhelm Leibniz Universität Hannover Process for heat treatment of a component and plant therefor
DE102020125946A1 (en) 2020-10-05 2022-04-07 HEGGEMANN Aktiengesellschaft Process for processing an electrically conductive sheet metal blank

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404047A (en) * 1980-12-10 1983-09-13 Lasalle Steel Company Process for the improved heat treatment of steels using direct electrical resistance heating
GB8324643D0 (en) * 1983-09-14 1983-10-19 British Steel Corp Production of grain orientated steel
DE19527827C2 (en) * 1995-07-29 1998-02-12 Kuka Schweissanlagen & Roboter Method and device for generating electrical heat
DE10238972B4 (en) * 2002-08-20 2004-07-15 C.D. Wälzholz Produktionsgesellschaft mbH Method and device for the continuous tempering of strip steel and correspondingly produced strip steel
DE10339119B3 (en) * 2003-08-22 2005-03-17 Benteler Automobiltechnik Gmbh Method of making hardened steel structural component, involves cutting panel from coil, heating, hardening and cold-forming to form structural component
DE102005018974B4 (en) * 2004-04-29 2015-04-09 Kuka Systems Gmbh Method and device for heating electrically conductive uncoated or coated circuit boards
US7714253B2 (en) * 2006-03-16 2010-05-11 Noble Advanced Technologies, Inc. Method and apparatus for the uniform resistance heating of articles
DE102006037637A1 (en) * 2006-08-10 2008-02-14 Müller Weingarten AG Procedures for heating of metal sheets for hot deformation, comprises inserting work pieces by means of a transport device into a forming tool and heating the work pieces during the transportation procedure by a heating device
DE102008051471B4 (en) * 2008-09-30 2012-01-26 Elisabeth Braun Method for heating sheet metal parts
DE102009016027A1 (en) * 2009-04-02 2010-10-07 Volkswagen Ag Method for producing a component, in particular a body part, and production line for carrying out the method
CN102575310B (en) * 2009-10-16 2013-11-20 丰田自动车株式会社 Energization heating method and energization heating device
DE102014101891A1 (en) * 2014-02-14 2015-08-20 Thyssenkrupp Ag System for warming up workpieces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102014102033A1 (en) 2015-08-20
JP2018508934A (en) 2018-03-29
DE102014102033B4 (en) 2016-09-22
EP3108019A1 (en) 2016-12-28
WO2015124604A1 (en) 2015-08-27
JP6679595B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
EP2907881B2 (en) Thermoforming line and method for the preparation of thermoformed sheet metal products
EP2014777B1 (en) Method and device for thermal treatment of metal sheet
EP3108019B1 (en) Method for conductively heating sheet metal in pairs, and heating device for carrying out said method
DE10212819B4 (en) Process for the production of a metallic component
EP2883967B1 (en) Method and device for post-treatment of a hardened metallic moulded part by means of electrical resistance heating
DE69203655T2 (en) Process for welding copper parts.
EP3411163B1 (en) Device for producing hardened steel components and hardening method
EP3259377B1 (en) Method for conductively heating sheet metal and heating device therefor
WO2010083976A1 (en) Device for soldering a conductor onto a circuit carrier
EP3589756B1 (en) Method for forming a sheet metal and manufacturing system with conductive heating device
EP2540405A2 (en) Device and method for manufacturing circuit boards of varying thicknesses
EP2512721B1 (en) Method of and device for severing a component using cooled electrodes
DE102019121576A1 (en) Method for producing a press-hardened sheet metal component and heating device
DE102019106797B4 (en) Process for producing different electrical conductivities within a conductor track, use of the method and conductor track
EP3276012A1 (en) Tempering station with jacket heating conductor
EP3375250B1 (en) Device for a heating means for a vehicle
DE102016113403B4 (en) Temperature control station and method for operating the temperature control station
DE19757394A1 (en) Method for joining electrically conductive parts and device for carrying it out
DE102020125946A1 (en) Process for processing an electrically conductive sheet metal blank
DE909241C (en) Inductor for the electro-inductive heating of workpieces
DE102018219930A1 (en) Hot-forming and press-hardening tool and method for producing a molded component with at least two structural areas of different ductility
DE102012021025A1 (en) Method for inductive heating of workpiece e.g. semi-finished sheet product, involves forming induction coil by electric conductor and arranging electrical insulation element on surface of semi-finished product or metal sheet component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180807

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1081509

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015007419

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015007419

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190218

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190326

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20190927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190326

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015007419

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240216

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240222

Year of fee payment: 10