EP3087256B1 - Method for cooling down a steam turbine - Google Patents

Method for cooling down a steam turbine Download PDF

Info

Publication number
EP3087256B1
EP3087256B1 EP15703512.2A EP15703512A EP3087256B1 EP 3087256 B1 EP3087256 B1 EP 3087256B1 EP 15703512 A EP15703512 A EP 15703512A EP 3087256 B1 EP3087256 B1 EP 3087256B1
Authority
EP
European Patent Office
Prior art keywords
cooling fluid
steam
closure member
line
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15703512.2A
Other languages
German (de)
French (fr)
Other versions
EP3087256A2 (en
Inventor
Edwin Gobrecht
Stefan Riemann
Gerta Zimmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL15703512T priority Critical patent/PL3087256T3/en
Priority to EP15703512.2A priority patent/EP3087256B1/en
Publication of EP3087256A2 publication Critical patent/EP3087256A2/en
Application granted granted Critical
Publication of EP3087256B1 publication Critical patent/EP3087256B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/14Casings or housings protecting or supporting assemblies within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium

Definitions

  • the invention relates to a steam turbine plant having a steam turbine, which has a steam inlet region, an exhaust steam region and an axially interposed Beschaufelungs Scheme and with a suction device for extracting cooling fluid from the turbine housing, wherein at least one closable by a closure member and releasable cooling fluid inlet is provided the upstream of the Abdampf Suitees - based on the flow direction of flowing in a normal power operation through the turbine housing action steam - is arranged and can be introduced by the cooling fluid for cooling after a load shutdown to a temperature below the operating temperature in the turbine housing, wherein the steam turbine plant further comprises a valve through which the cooling fluid flows, the valve having a drainage device for draining the valve, wherein the drainage device is a drainage L includes.
  • a steam turbine in particular a high-pressure turbine or a medium-pressure turbine with upstream reheat, occur during a power operation temperatures of about 500 ° C.
  • the turbine housing and the turbine runner and other turbine components such as live steam valve, trip valve, turbine blade, etc., are heated to a high temperature.
  • the turbine rotor of a turbine with a reduced rotational speed can be further rotated by means of a rotating device for a predetermined period of time and the vapor atmosphere can be evacuated via an evacuation device.
  • forced cooling forced cooling
  • a cooling fluid is flowed through the steam turbine via a suction device and an air inlet, thereby achieving a forced cooling.
  • the procedure is as follows:
  • the exhaust steam area is fluidly coupled to a suction device and the cooling steam supply is made possible at the main steam valve via a plug or a small housing opening.
  • the removal of the plug or the creation of a small housing opening is relatively cumbersome and requires a lot of time.
  • a live steam valve must have a correspondingly small opening due to the design.
  • a special tool for releasing the plug or the small housing opening is required.
  • a method for cooling a steam turbine is, for example, from AU2008202733 known. The invention seeks to remedy this situation and to indicate a possibility, such as the supply of a cooling fluid during the forced cooling can be done easier.
  • a steam turbine plant having a steam turbine which has a steam inlet region, an exhaust steam region and an axially interposed blading area, which is further formed with a suction device for extracting cooling fluid from the turbine housing, wherein at least one closable by a closure member and a releasable cooling fluid inlet is provided, which is upstream of the Abdampf Suitees - based on the flow direction of flowing in a normal power operation through the turbine housing action steam - and is introduced by the cooling fluid for cooling after a load shutdown to a temperature below the operating temperature in the turbine housing, wherein the Steam turbine plant further comprises a A valve through which the cooling fluid flows, the valve having drainage means for draining the valve, the drainage means comprising a drainage conduit, the drainage means having a branch fluidly connected to the cooling fluid inlet.
  • the object is achieved by a method for cooling a steam turbine with a turbine housing in which a cooling fluid inlet is fluidly connected to the turbine housing after load shutdown and flowing through the cooling fluid inlet cooling fluid, in particular air, by means of a suction device with heat absorption through the turbine housing in the direction of normal power operation is performed by the steam turbine flowing action steam, wherein the cooling fluid flows through a valve, characterized in that the valve has a dewatering device through which the cooling fluid flows.
  • the invention thus proposes the way to realize the supply of air not via the plug or the small housing opening, but via a lockable additional connection to the drainage pipe.
  • Drainage lines are usually located at a geodetically low point of the valve, with most valves having such a drainage line.
  • it is now proposed to arrange a separate branch on the drainage of the valve and to enable the cooling air supply via this branch.
  • a cooling fluid line is connected via the branch, through which the cooling fluid flows and is sucked through the steam turbine via the suction device and leads to effective cooling.
  • the closure member is arranged in the cooling fluid conduit, wherein advantageously a second closure member is arranged in the cooling fluid conduit.
  • a second branch is arranged between the first closure element and the second closure element of the cooling fluid line, wherein the second branch is fluidically connected to a second drainage line and a second drainage unit or a condensate for draining the cooling fluid is arranged in this second drainage line.
  • the second drainage line is fluidically connected to a condenser.
  • the accumulating water is effectively dissipated in the condensate.
  • FIG. 1 shows a schematic representation of a part of a steam turbine plant 1.
  • Fresh steam flows through a steam generator not shown in a first steam line 2 through a quick-closing valve 3 and a control valve 4.
  • the steam flows through a second steam line 5 in a steam turbine 6.
  • steam flows into a steam inlet region (not illustrated in more detail) and flows out of an exhaust steam region via a third steam line 7 out of the steam turbine 6.
  • the third steam line 7 is fluidically connected to a condenser 8, wherein in the third steam line 7, a further valve 9 is arranged.
  • the condenser 8 is fluidly connected to a suction device 11 via a line 10.
  • a cooling fluid line 12 is arranged on the quick-acting valve 3 or control valve 4.
  • a closure member 13 is disposed in the cooling fluid conduit 12.
  • the closure member 13 is opened and via the cooling fluid line 12 passes a cooling medium such as cooling air through the quick-closing valve 3 and control valve 4 in the second steam line 5 and from there into the Beschaufelungs Scheme the steam turbine 6.
  • This forced flow takes place by the valve 9 is opened and via the suction device 11, a forced flow is achieved.
  • FIG. 2 shows an expanded steam turbine plant 14.
  • Fresh steam is produced here in a steam generator 15 and fed via a first steam line 45 of a high-pressure turbine part 16.
  • a first valve 17 and a second valve 18 are arranged one after the other.
  • the steam generated in the steam generator 15 live steam flows here via the first main steam line 45 and the first valve 17 and second valve 18 in the high-pressure turbine section 16 and from there via a Abdampf Siemens and a first exhaust steam line 19 in the reheater of the steam generator 15th
  • the steam flowing out of the high-pressure turbine section 16 is reheated to a reheater 15b, that is to say the steam generator 15b. H. brought to a higher temperature and passed through a hot superheater 20 and a first medium pressure valve 21 and a second medium pressure valve 22 in a medium-pressure turbine section 23.
  • the first medium-pressure valve 21 is designed as a quick-closing valve.
  • the second medium-pressure valve 22 is designed as a control valve.
  • the steam flowing out of the medium-pressure turbine section 23 flows via a overflow line 24 into a low-pressure turbine section 26.
  • the low-pressure turbine section 26 is supplied with steam via an additional steam via an additional line 27 and an additional valve 28.
  • the effluent from the low-pressure turbine section 26 steam passes into a condenser 29 and condenses there to water.
  • a branch 30 is arranged between the first valve 17 and the second valve 18.
  • the first valve 17 is designed as a quick-closing valve.
  • the second valve 18 is designed as a control valve.
  • a branch line 31 is arranged, which opens into a drainage line 32.
  • the branch line 31 also has a flange 33.
  • a cooling fluid line 34 is coupled.
  • a closure member is arranged, which has a first closure member 35 and a second closure member 36.
  • a second branch 37 is arranged, wherein the second branch 37 is connected to a further branch line 38.
  • this further branch line 38 is a Kondensomat 39 arranged for draining the steam located in the further branch line 38.
  • the hot superheater line 20 is made almost identical with respect to the branch 30. Therefore, a separate description has been omitted and taken over the reference numerals for located in the hot superheater line 20 components for forced cooling.
  • the steam flows via the first main steam line 45 into the high-pressure turbine section 16, wherein via the branch 30 and the drainage line 32, a drainage is performed.
  • the first closure member 35 and the second closure member 36 are closed in this case.
  • a cooling medium supply to the first closure member 35 is made possible, with the first closure member 35 and the second closure member 36 being opened.
  • the cooling medium may be cooling air.
  • the double shut-off can be either fully automated integrated into the turbine control or manually operated. In the second case, the double shut-off must be equipped with limit switches. So it can be ensured that the startup of the steam turbine 6 takes place only when the valves are closed.
  • the suction device 11 in the FIG. 2 not shown. The suction device 11 would be coupled to the first closure member.
  • the medium-pressure turbine section 23 is also supplied with cooling medium.
  • the cooling medium may be cooling air.
  • FIG. 3 shows a cross-sectional view of a valve 40, which may be formed as a second valve 18 or first valve 17, for example.
  • the valve 40 comprises a valve housing 41 and a valve plug, not shown.
  • valve inlet 42 Via a valve inlet 42, steam flows through the valve 40 and passes via the valve outlet 43 to the high-pressure turbine section 16 and low-pressure turbine section 23, respectively.
  • Dewatering 44 is arranged at a geodetic favorable point. This drainage 44 is connected to a drainage line 46. In this drainage line 46, a flange 33 is arranged, to which the cooling fluid line 34 is connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

Die Erfindung betrifft eine Dampfturbinenanlage mit einer Dampfturbine, die einen Dampfeinlassbereich, einen Abdampfbereich und einen von einem Turbinengehäuse umgebenen axial dazwischen angeordneten Beschaufelungsbereich sowie mit einer Saugeinrichtung zur Absaugung von Kühlfluid aus dem Turbinengehäuse, wobei zumindest ein durch ein Verschlussorgan verschließbarer und freigebbarer Kühlfluideinlass vorgesehen ist, der stromauf des Abdampfbereiches - bezogen auf die Strömungsrichtung von bei einem normalen Leistungsbetrieb durch das Turbinengehäuse strömenden Aktionsdampfes - angeordnet ist und durch den Kühlfluid zur Abkühlung nach einer Lastabschaltung auf eine Temperatur unterhalb der Betriebstemperatur in das Turbinengehäuse einführbar ist, wobei die Dampfturbinenanlage ferner ein Ventil umfasst, durch das das Kühlfluid strömt, wobei das Ventil eine Entwässerungseinrichtung zum Entwässern des Ventils aufweist, wobei die Entwässerungseinrichtung eine Entwässerungsleitung umfasst.The invention relates to a steam turbine plant having a steam turbine, which has a steam inlet region, an exhaust steam region and an axially interposed Beschaufelungsbereich and with a suction device for extracting cooling fluid from the turbine housing, wherein at least one closable by a closure member and releasable cooling fluid inlet is provided the upstream of the Abdampfbereiches - based on the flow direction of flowing in a normal power operation through the turbine housing action steam - is arranged and can be introduced by the cooling fluid for cooling after a load shutdown to a temperature below the operating temperature in the turbine housing, wherein the steam turbine plant further comprises a valve through which the cooling fluid flows, the valve having a drainage device for draining the valve, wherein the drainage device is a drainage L includes.

In einer Dampfturbine, insbesondere einer Hochdruckturbine oder einer Mitteldruckturbine mit vorgeschalteter Zwischenüberhitzung, treten während eines Leistungsbetriebs Temperaturen von über 500°C auf. Während eines solchen Leistungsbetriebs, der einige Wochen oder Monate dauern kann, werden das Turbinengehäuse sowie der Turbinenläufer und andere Turbinenkomponenten, wie Frischdampfventil, Schnellschlussventil, Turbinenschaufel usw. auf eine hohe Temperatur aufgeheizt. Nach Abschalten der gesamten Dampfturbinenanlage kann der Turbinenläufer einer Turbine mit verminderter Drehzahl mittels einer Dreheinrichtung über eine vorgegebene Zeitdauer hinweg weitergedreht und die Dampfatmosphäre über eine Evakuierungseinrichtung evakuiert werden. Um möglichst frühzeitig nach Abschalten der Dampfturbine Wartungs- oder Kontrollarbeiten sowie gegebenenfalls Nachrüstarbeiten durchführen zu können, kann es unter Umständen wünschenswert sein, die Dampfturbine unter Einhaltung vorgegebener Grenzen für auftretende Dehnungsunterschiede zwischen Turbinenläufer und beispielsweise Turbinengehäuse möglichst schnell abzukühlen.In a steam turbine, in particular a high-pressure turbine or a medium-pressure turbine with upstream reheat, occur during a power operation temperatures of about 500 ° C. During such a power operation, which may take several weeks or months, the turbine housing and the turbine runner and other turbine components, such as live steam valve, trip valve, turbine blade, etc., are heated to a high temperature. After switching off the entire steam turbine plant, the turbine rotor of a turbine with a reduced rotational speed can be further rotated by means of a rotating device for a predetermined period of time and the vapor atmosphere can be evacuated via an evacuation device. To perform as early as possible after switching off the steam turbine maintenance or inspection work and, if necessary, retrofitting may, it may be desirable to cool the steam turbine as quickly as possible while adhering to predetermined limits for occurring differences in expansion between turbine rotor and turbine housing, for example.

Dazu hat es sich bewährt, eine so genannte Zwangsabkühlung (forced cooling) in Betrieb zu nehmen. Dabei wird über eine Saugeinrichtung und einer Lufteinleitung ein Kühlfluid durch die Dampfturbine geströmt und dadurch eine Zwangsabkühlung erreicht. Hierbei wird folgendermaßen vorgegangen: Im Falle der Zwangsabkühlung wird der Abdampfbereich mit einer Saugeinrichtung strömungstechnisch gekoppelt und am Frischdampfventil wird über ein Plug bzw. eine kleine Gehäuseöffnung die Kühlfluidzufuhr ermöglicht. Das Entfernen des Plugs oder die Erstellung einer kleinen Gehäuseöffnung ist vergleichsweise umständlich und erfordert viel Zeit. Darüber hinaus muss ein Frischdampfventil bauartbedingt eine entsprechend kleine Öffnung besitzen. Des Weiteren ist ein Spezialwerkzeug zum Lösen des Plugs oder der kleinen Gehäuseöffnung erforderlich. Ein Verfahren zur Kühlung einer Dampfturbine ist zum Beispiel aus der AU2008202733 bekannt. Die Erfindung möchte hier Abhilfe schaffen und eine Möglichkeit angeben, wie die Zufuhr eines Kühlfluids bei der Zwangsabkühlung einfacher erfolgen kann.For this purpose, it has been proven to take a so-called forced cooling (forced cooling) into operation. In this case, a cooling fluid is flowed through the steam turbine via a suction device and an air inlet, thereby achieving a forced cooling. The procedure is as follows: In the case of forced cooling, the exhaust steam area is fluidly coupled to a suction device and the cooling steam supply is made possible at the main steam valve via a plug or a small housing opening. The removal of the plug or the creation of a small housing opening is relatively cumbersome and requires a lot of time. In addition, a live steam valve must have a correspondingly small opening due to the design. Furthermore, a special tool for releasing the plug or the small housing opening is required. A method for cooling a steam turbine is, for example, from AU2008202733 known. The invention seeks to remedy this situation and to indicate a possibility, such as the supply of a cooling fluid during the forced cooling can be done easier.

Diese Aufgabe wird gelöst durch Dampfturbinenanlage mit einer Dampfturbine, die einen Dampfeinlassbereich, einen Abdampfbereich und einen von einem Turbinengehäuse umgebenen axial dazwischen angeordneten Beschaufelungsbereich aufweist, ferner mit einer Saugeinrichtung zur Absaugung von Kühlfluid aus dem Turbinengehäuse ausgebildet ist, wobei zumindest ein durch ein Verschlussorgan verschließbarer und freigebbarer Kühlfluideinlass vorgesehen ist, der stromauf des Abdampfbereiches - bezogen auf die Strömungsrichtung von bei einem normalen Leistungsbetrieb durch das Turbinengehäuse strömenden Aktionsdampfes - angeordnet ist und durch den Kühlfluid zur Abkühlung nach einer Lastabschaltung auf eine Temperatur unterhalb der Betriebstemperatur in das Turbinengehäuse einführbar ist, wobei die Dampfturbinenanlage ferner umfasst ein Ventil durch das das Kühlfluid strömt, wobei das Ventil eine Entwässerungseinrichtung zum Entwässern des Ventils aufweist, wobei die Entwässerungseinrichtung eine Entwässerungsleitung umfasst, wobei die Entwässerungseinrichtung eine Abzweigung aufweist, die strömungstechnisch mit dem Kühlfluideinlass verbunden ist.This object is achieved by a steam turbine plant having a steam turbine which has a steam inlet region, an exhaust steam region and an axially interposed blading area, which is further formed with a suction device for extracting cooling fluid from the turbine housing, wherein at least one closable by a closure member and a releasable cooling fluid inlet is provided, which is upstream of the Abdampfbereiches - based on the flow direction of flowing in a normal power operation through the turbine housing action steam - and is introduced by the cooling fluid for cooling after a load shutdown to a temperature below the operating temperature in the turbine housing, wherein the Steam turbine plant further comprises a A valve through which the cooling fluid flows, the valve having drainage means for draining the valve, the drainage means comprising a drainage conduit, the drainage means having a branch fluidly connected to the cooling fluid inlet.

Des Weiteren wird die Aufgabe gelöst durch ein Verfahren zum Abkühlen einer Dampfturbine mit einem Turbinengehäuse bei dem nach Lastabschaltung ein Kühlfluideinlass strömungstechnisch mit dem Turbinengehäuse verbunden wird und durch den Kühlfluideinlass einströmendes Kühlfluid, insbesondere Luft, mittels einer Saugeinrichtung unter Wärmeaufnahme durch das Turbinengehäuse in Richtung des bei normalem Leistungsbetrieb durch die Dampfturbine strömenden Aktionsdampfes geführt wird, wobei das Kühlfluid durch ein Ventil strömt, dadurch gekennzeichnet, dass das Ventil eine Entwässerungseinrichtung aufweist, durch die das Kühlfluid strömt.Furthermore, the object is achieved by a method for cooling a steam turbine with a turbine housing in which a cooling fluid inlet is fluidly connected to the turbine housing after load shutdown and flowing through the cooling fluid inlet cooling fluid, in particular air, by means of a suction device with heat absorption through the turbine housing in the direction of normal power operation is performed by the steam turbine flowing action steam, wherein the cooling fluid flows through a valve, characterized in that the valve has a dewatering device through which the cooling fluid flows.

Die Erfindung schlägt somit den Weg ein, die Zufuhr von Luft nicht über den Plug oder die kleine Gehäuseöffnung, sondern über einen absperrbaren Zusatzanschluss an der Entwässerungsleitung zu realisieren. Entwässerungsleitungen sind üblicherweise an einem geodätisch niedrigen Punkt des Ventils angeordnet, wobei die meisten Ventile solch eine Entwässerungsleitung aufweisen. Erfindungsgemäß wird nunmehr vorgeschlagen, einen separaten Abzweig an der Entwässerung des Ventils anzuordnen und über diesen Abzweig die Kühlluftzufuhr zu ermöglichen.The invention thus proposes the way to realize the supply of air not via the plug or the small housing opening, but via a lockable additional connection to the drainage pipe. Drainage lines are usually located at a geodetically low point of the valve, with most valves having such a drainage line. According to the invention, it is now proposed to arrange a separate branch on the drainage of the valve and to enable the cooling air supply via this branch.

Das umständliche Entfernen des Plugs oder das Herstellen einer kleinen Gehäuseöffnung am Ventil entfällt daher gänzlich. Darüber hinaus ist kein Spezialwerkzeug zum Lösen des Plugs erforderlich.The cumbersome removal of the plug or the creation of a small housing opening on the valve is therefore completely eliminated. In addition, no special tool for releasing the plug is required.

Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.Advantageous developments are specified in the subclaims.

So wird in einer ersten vorteilhaften Weiterbildung über die Abzweigung eine Kühlfluidleitung angeschlossen, durch die das Kühlfluid strömt und über die Saugeinrichtung durch die Dampfturbine gesaugt wird und zu einer wirksamen Abkühlung führt.Thus, in a first advantageous development, a cooling fluid line is connected via the branch, through which the cooling fluid flows and is sucked through the steam turbine via the suction device and leads to effective cooling.

Vorteilhafterweise wird in der Kühlfluidleitung das Verschlussorgan angeordnet, wobei vorteilhafterweise ein zweites Verschlussorgan in der Kühlfluidleitung angeordnet ist.Advantageously, the closure member is arranged in the cooling fluid conduit, wherein advantageously a second closure member is arranged in the cooling fluid conduit.

Zwischen dem ersten Verschlussorgan und dem zweiten Verschlussorgan der Kühlfluidleitung ist eine zweite Abzweigung angeordnet, wobei die zweite Abzweigung strömungstechnisch mit einer zweiten Entwässerungsleitung verbunden ist und in dieser zweiten Entwässerungsleitung eine zweite Entwässerungseinheit oder ein Kondensomat zum Entwässern des Kühlfluids angeordnet ist.A second branch is arranged between the first closure element and the second closure element of the cooling fluid line, wherein the second branch is fluidically connected to a second drainage line and a second drainage unit or a condensate for draining the cooling fluid is arranged in this second drainage line.

Vorteilhafterweise ist die zweite Entwässerungsleitung strömungstechnisch mit einem Kondensator verbunden. Somit wird das anfallende Wasser im Kondensomat wirkungsvoll abgeleitet.Advantageously, the second drainage line is fluidically connected to a condenser. Thus, the accumulating water is effectively dissipated in the condensate.

Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden.The above-described characteristics, features, and advantages of this invention, as well as the manner in which they will be achieved, will become clearer and more clearly understood in connection with the following description of the embodiments, which will be described in detail in conjunction with the drawings.

Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen beschrieben. Diese soll die Ausführungsbeispiele nicht maßgeblich darstellen, vielmehr ist die Zeichnung, wo zur Erläuterung dienlich, in schematisierter und/oder leicht verzerrter Form ausgeführt. Im Hinblick auf Ergänzungen der in der Zeichnung unmittelbar erkennbaren Lehren wird auf den einschlägigen Stand der Technik verwiesen. Es zeigen:

Figur 1
eine schematische Darstellung der Zwangsabkühlung,
Figur 2
eine Dampfturbinenanlage, und
Figur 3
eine Querschnittansicht eines Ventils.
Embodiments of the invention will be described below with reference to the drawings. This is not intended to represent the embodiments significantly, but the drawing, where appropriate for explanation, executed in a schematized and / or slightly distorted form. With regard to additions to the teachings directly recognizable in the drawing reference is made to the relevant prior art. Show it:
FIG. 1
a schematic representation of the forced cooling,
FIG. 2
a steam turbine plant, and
FIG. 3
a cross-sectional view of a valve.

Die Figur 1 zeigt eine schematische Darstellung eines Teils einer Dampfturbinenanlage 1. Frischdampf strömt über einen nicht näher dargestellten Dampferzeuger in eine erste Dampfleitung 2 durch ein Schnellschlussventil 3 und ein Stellventil 4. Nach dem Stellventil 4 strömt der Dampf über eine zweite Dampfleitung 5 in eine Dampfturbine 6. Der Dampf strömt hierbei in einen nicht näher dargestellten Dampfeinlassbereich und strömt aus einem Abdampfbereich über eine dritte Dampfleitung 7 aus der Dampfturbine 6 heraus. Die dritte Dampfleitung 7 ist strömungstechnisch mit einem Kondensator 8 verbunden, wobei in der dritten Dampfleitung 7 ein weiteres Ventil 9 angeordnet ist. Der Kondensator 8 ist über eine Leitung 10 strömungstechnisch mit einer Saugeinrichtung 11 verbunden. Ferner ist eine Kühlfluidleitung 12 an dem Schnellschlussventil 3 oder Stellventil 4 angeordnet. Ein Verschlussorgan 13 ist in der Kühlfluidleitung 12 angeordnet.The FIG. 1 shows a schematic representation of a part of a steam turbine plant 1. Fresh steam flows through a steam generator not shown in a first steam line 2 through a quick-closing valve 3 and a control valve 4. After the control valve 4, the steam flows through a second steam line 5 in a steam turbine 6. Der In this case, steam flows into a steam inlet region (not illustrated in more detail) and flows out of an exhaust steam region via a third steam line 7 out of the steam turbine 6. The third steam line 7 is fluidically connected to a condenser 8, wherein in the third steam line 7, a further valve 9 is arranged. The condenser 8 is fluidly connected to a suction device 11 via a line 10. Furthermore, a cooling fluid line 12 is arranged on the quick-acting valve 3 or control valve 4. A closure member 13 is disposed in the cooling fluid conduit 12.

Während der Zwangsabkühlung wird das Verschlussorgan 13 geöffnet und über die Kühlfluidleitung 12 gelangt ein Kühlmedium wie beispielsweise Kühlluft durch das Schnellschlussventil 3 bzw. Stellventil 4 in die zweite Dampfleitung 5 und von dort in den Beschaufelungsbereich der Dampfturbine 6. Diese Zwangsströmung erfolgt dadurch, indem das Ventil 9 geöffnet wird und über die Saugeinrichtung 11 eine Zwangsströmung erreicht wird.During the forced cooling, the closure member 13 is opened and via the cooling fluid line 12 passes a cooling medium such as cooling air through the quick-closing valve 3 and control valve 4 in the second steam line 5 and from there into the Beschaufelungsbereich the steam turbine 6. This forced flow takes place by the valve 9 is opened and via the suction device 11, a forced flow is achieved.

Die Figur 2 zeigt eine erweiterte Dampfturbinenanlage 14. Frischdampf wird hier in einem Dampferzeuger 15 hergestellt und über eine erste Frischdampfleitung 45 einer Hochdruck-Teilturbine 16 zugeführt. In der ersten Frischdampfleitung 45 sind ein erstes Ventil 17 und ein zweites Ventil 18 nacheinander angeordnet. Der im Dampferzeuger 15 erzeugte Frischdampf strömt hierbei über die erste Frischdampfleitung 45 und dem ersten Ventil 17 und zweiten Ventil 18 in die Hochdruck-Teilturbine 16 und von dort über einen Abdampfbereich und einer ersten Abdampfleitung 19 in den Zwischenüberhitzer des Dampferzeugers 15.The FIG. 2 shows an expanded steam turbine plant 14. Fresh steam is produced here in a steam generator 15 and fed via a first steam line 45 of a high-pressure turbine part 16. In the first main steam line 45, a first valve 17 and a second valve 18 are arranged one after the other. The steam generated in the steam generator 15 live steam flows here via the first main steam line 45 and the first valve 17 and second valve 18 in the high-pressure turbine section 16 and from there via a Abdampfbereich and a first exhaust steam line 19 in the reheater of the steam generator 15th

Im Dampferzeuger 15 wird der aus der Hochdruck-Teilturbine 16 ausströmende Dampf in einen Zwischenüberhitzer 15b zwischenüberhitzt, d. h. auf eine höhere Temperatur gebracht und über eine heiße Überhitzerleitung 20 und einem ersten Mitteldruckventil 21 und einem zweiten Mitteldruckventil 22 in eine Mitteldruck-Teilturbine 23 geführt. Das erste Mitteldruckventil 21 ist als Schnellschlussventil ausgebildet. Das zweite Mitteldruckventil 22 ist als Regelventil ausgebildet.In the steam generator 15, the steam flowing out of the high-pressure turbine section 16 is reheated to a reheater 15b, that is to say the steam generator 15b. H. brought to a higher temperature and passed through a hot superheater 20 and a first medium pressure valve 21 and a second medium pressure valve 22 in a medium-pressure turbine section 23. The first medium-pressure valve 21 is designed as a quick-closing valve. The second medium-pressure valve 22 is designed as a control valve.

Der aus der Mitteldruck-Teilturbine 23 ausströmende Dampf strömt über eine Überströmleitung 24 in eine Niederdruck-Teilturbine 26. Die Niederdruck-Teilturbine 26 wird über einen zusätzlichen Dampf über eine Zusatzleitung 27 und einem Zusatzventil 28 mit Dampf versorgt. Der aus der Niederdruck-Teilturbine 26 ausströmende Dampf gelangt in einen Kondensator 29 und kondensiert dort zu Wasser.The steam flowing out of the medium-pressure turbine section 23 flows via a overflow line 24 into a low-pressure turbine section 26. The low-pressure turbine section 26 is supplied with steam via an additional steam via an additional line 27 and an additional valve 28. The effluent from the low-pressure turbine section 26 steam passes into a condenser 29 and condenses there to water.

Zwischen dem ersten Ventil 17 und dem zweiten Ventil 18 ist eine Abzweigung 30 angeordnet. Das erste Ventil 17 ist als Schnellschlussventil ausgebildet. Das zweite Ventil 18 ist als Regelventil ausgebildet. An dieser Abzweigung 30 ist eine Abzweigleitung 31 angeordnet, die in einer Entwässerungsleitung 32 mündet. Die Abzweigleitung 31 weist ferner einen Flansch 33 auf. An diesem Flansch 33 ist eine Kühlfluidleitung 34 angekoppelt. In dieser Kühlfluidleitung 34 ist ein Verschlussorgan angeordnet, das ein erstes Verschlussorgan 35 und ein zweites Verschlussorgan 36 aufweist. Zwischen dem ersten Verschlussorgan 35 und dem zweiten Verschlussorgan 36 ist eine zweite Abzweigung 37 angeordnet, wobei die zweite Abzweigung 37 mit einer weiteren Abzweigleitung 38 verbunden ist. In dieser weiteren Abzweigleitung 38 ist ein Kondensomat 39 zum Entwässern des in der weiteren Abzweigleitung 38 befindlichen Dampfes angeordnet.Between the first valve 17 and the second valve 18, a branch 30 is arranged. The first valve 17 is designed as a quick-closing valve. The second valve 18 is designed as a control valve. At this branch 30, a branch line 31 is arranged, which opens into a drainage line 32. The branch line 31 also has a flange 33. At this flange 33, a cooling fluid line 34 is coupled. In this cooling fluid conduit 34, a closure member is arranged, which has a first closure member 35 and a second closure member 36. Between the first closure member 35 and the second closure member 36, a second branch 37 is arranged, wherein the second branch 37 is connected to a further branch line 38. In this further branch line 38 is a Kondensomat 39 arranged for draining the steam located in the further branch line 38.

Die heiße Überhitzerleitung 20 ist nahezu identisch ausgeführt in Bezug auf die Abzweigung 30. Daher wurde auf eine gesonderte Beschreibung verzichtet und die Bezugszeichen für die in der heißen Überhitzerleitung 20 befindlichen Bauteile für die Zwangsabkühlung übernommen.The hot superheater line 20 is made almost identical with respect to the branch 30. Therefore, a separate description has been omitted and taken over the reference numerals for located in the hot superheater line 20 components for forced cooling.

Im Normalbetrieb strömt der Dampf über die erste Frischdampfleitung 45 in die Hochdruck-Teilturbine 16, wobei über die Abzweigung 30 und der Entwässerungsleitung 32 eine Entwässerung durchgeführt wird. Das erste Verschlussorgan 35 und das zweite Verschlussorgan 36 sind hierbei geschlossen.In normal operation, the steam flows via the first main steam line 45 into the high-pressure turbine section 16, wherein via the branch 30 and the drainage line 32, a drainage is performed. The first closure member 35 and the second closure member 36 are closed in this case.

Im Falle einer Zwangsabkühlung wird an das erste Verschlussorgan 35 eine Kühlmediumzufuhr ermöglicht, wobei das erste Verschlussorgan 35 und das zweite Verschlussorgan 36 geöffnet werden. Das Kühlmedium kann Kühlluft sein. Man spricht hier von einer Doppelabsperrung mit zwischenliegender Tiefpunktentwässerung. Die Doppelabsperrung kann entweder voll automatisiert in die Turbinenleittechnik integriert werden oder manuell bedient werden. Im zweiten Fall muss die Doppelabsperrung mit Endlagenschalter versehen sein. So kann sichergestellt werden, dass das Anfahren der Dampfturbine 6 nur bei geschlossenen Armaturen erfolgt. Der Übersichtlichkeit wegen ist die Saugeinrichtung 11 in der Figur 2 nicht dargestellt. Die Saugeinrichtung 11 würde an das erste Verschlussorgan angekoppelt werden.In the case of forced cooling, a cooling medium supply to the first closure member 35 is made possible, with the first closure member 35 and the second closure member 36 being opened. The cooling medium may be cooling air. This is referred to as a double shut-off with interposed bottom drainage. The double shut-off can be either fully automated integrated into the turbine control or manually operated. In the second case, the double shut-off must be equipped with limit switches. So it can be ensured that the startup of the steam turbine 6 takes place only when the valves are closed. For the sake of clarity, the suction device 11 in the FIG. 2 not shown. The suction device 11 would be coupled to the first closure member.

In nahezu identischer Weise wird ebenso die Mitteldruck-Teilturbine 23 mit Kühlmedium versorgt. Das Kühlmedium kann Kühlluft sein.In almost identical manner, the medium-pressure turbine section 23 is also supplied with cooling medium. The cooling medium may be cooling air.

Die Figur 3 zeigt eine Querschnittsansicht eines Ventils 40, was beispielsweise als zweites Ventil 18 oder erstes Ventil 17 ausgebildet sein kann. Das Ventil 40 umfasst ein Ventilgehäuse 41 und einen nicht näher dargestellten Ventilkegel.The FIG. 3 shows a cross-sectional view of a valve 40, which may be formed as a second valve 18 or first valve 17, for example. The valve 40 comprises a valve housing 41 and a valve plug, not shown.

Über einen Ventileinlass 42 strömt Dampf durch das Ventil 40 und gelangt über den Ventilauslass 43 zur Hochdruck-Teilturbine 16 bzw. Niederdruck-Teilturbine 23. An einer geodätisch günstigen Stelle ist eine Entwässerung 44 angeordnet. Diese Entwässerung 44 ist mit einer Entwässerungsleitung 46 verbunden. In dieser Entwässerungsleitung 46 ist ein Flansch 33 angeordnet, an die die Kühlfluidleitung 34 angeschlossen wird.Via a valve inlet 42, steam flows through the valve 40 and passes via the valve outlet 43 to the high-pressure turbine section 16 and low-pressure turbine section 23, respectively. Dewatering 44 is arranged at a geodetic favorable point. This drainage 44 is connected to a drainage line 46. In this drainage line 46, a flange 33 is arranged, to which the cooling fluid line 34 is connected.

Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention has been further illustrated and described in detail by the preferred embodiment, the invention is not limited by the disclosed examples, and other variations can be derived therefrom by those skilled in the art without departing from the scope of the invention.

Claims (11)

  1. Steam turbine unit (1) comprising a steam turbine (6) which has a steam inlet region, an exhaust steam region and a blading region which is surrounded by a turbine housing and is arranged axially in between, and furthermore is designed with a suction device (11) for sucking cooling fluid out of the turbine housing,
    wherein at least one cooling fluid inlet is provided which is closeable and openable by a closure member (35, 36), is arranged upstream of the exhaust steam region - with respect to the flow direction of action steam flowing through the turbine housing during normal power operation - and through which, after a power cut-off, cooling fluid for cooling to a temperature below the operating temperature can be introduced into the turbine housing, wherein the steam turbine unit (1) furthermore comprises a valve (3, 4, 9, 17, 18, 21, 22, 40) through which the cooling fluid flows,
    wherein the valve (3, 4, 9, 17, 18, 21, 22, 40) has a drainage device for draining the valve (3, 4, 9, 17, 18, 21, 22, 40),
    wherein the drainage device comprises a drainage line (32, 36), characterized in that the drainage device has a junction (30, 37) which is connected in terms of flow to the cooling fluid inlet.
  2. Steam turbine unit (1) according to Claim 1, wherein the junction (30, 37) comprises a cooling fluid line (34) through which the cooling fluid flows.
  3. Steam turbine unit (1) according to Claim 2, wherein the closure member (35, 36) is arranged in the cooling fluid line (34).
  4. Steam turbine unit (1) according to Claim 2 or 3, wherein a second closure member (36) is arranged in the cooling fluid line (34).
  5. Steam turbine unit (1) according to Claim 4, wherein, between the closure member (35) and the second closure member (36), the cooling fluid line (34) has a second junction (37).
  6. Steam turbine unit (1) according to Claim 5, wherein the second junction (37) is connected in terms of flow to a second drainage line (46), and a second drainage device or a steam trap (39) for draining the cooling fluid line (34) is arranged in said second drainage line (46).
  7. Steam turbine unit (1) according to Claim 6, wherein the second drainage line (44) is connected in terms of flow to a condenser (29).
  8. Method for cooling a steam turbine (6) having a turbine housing, in which, after a power cut-off, a cooling fluid inlet is connected in terms of flow to the turbine housing, and cooling fluid, in particular air, flowing through the cooling fluid inlet is conducted, while at the same time absorbing heat, through the turbine housing by means of a suction device (11) in the direction of the action steam flowing through the steam turbine (6) during the normal power operation,
    wherein the cooling fluid flows through a valve (3, 4, 9, 17, 18, 21, 22, 40),
    characterized in that
    the valve (3, 4, 9, 17, 18, 21, 22, 40) has a drainage device through which the cooling fluid flows.
  9. Method according to Claim 8, in which the cooling fluid flows via a closure member (35, 36) in a drainage line (32).
  10. Method according to Claim 9, wherein a second closure member (36) is arranged in the drainage line (32), and the drainage line (32, 44) between the closure member (35) and the second closure member (36) has a second junction (37), wherein a second drainage device or steam trap (39) is arranged in a second drainage line (44) which is connected in terms of flow to the second junction (37).
  11. Method according to Claim 10, wherein the closure member and the second closure member (36) are designed with limit switches, and starting of the steam turbine (6) is possible only with closure member (35) closed and second closure member (36) closed.
EP15703512.2A 2014-03-12 2015-01-28 Method for cooling down a steam turbine Active EP3087256B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL15703512T PL3087256T3 (en) 2014-03-12 2015-01-28 Method for cooling down a steam turbine
EP15703512.2A EP3087256B1 (en) 2014-03-12 2015-01-28 Method for cooling down a steam turbine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14159049.7A EP2918788A1 (en) 2014-03-12 2014-03-12 Method for cooling a steam turbine
PCT/EP2015/051660 WO2015135681A2 (en) 2014-03-12 2015-01-28 Method for cooling down a steam turbine
EP15703512.2A EP3087256B1 (en) 2014-03-12 2015-01-28 Method for cooling down a steam turbine

Publications (2)

Publication Number Publication Date
EP3087256A2 EP3087256A2 (en) 2016-11-02
EP3087256B1 true EP3087256B1 (en) 2017-11-01

Family

ID=50272394

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14159049.7A Withdrawn EP2918788A1 (en) 2014-03-12 2014-03-12 Method for cooling a steam turbine
EP15703512.2A Active EP3087256B1 (en) 2014-03-12 2015-01-28 Method for cooling down a steam turbine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP14159049.7A Withdrawn EP2918788A1 (en) 2014-03-12 2014-03-12 Method for cooling a steam turbine

Country Status (9)

Country Link
US (1) US11346245B2 (en)
EP (2) EP2918788A1 (en)
JP (1) JP6282757B2 (en)
KR (1) KR101834686B1 (en)
CN (1) CN106103909B (en)
ES (1) ES2658054T3 (en)
PL (1) PL3087256T3 (en)
RU (1) RU2640891C1 (en)
WO (1) WO2015135681A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3109420A1 (en) * 2015-06-25 2016-12-28 Siemens Aktiengesellschaft Method for cooling a fluid flow engine
CN110374835B (en) * 2019-07-29 2021-09-03 东南大学 Variable-speed driving system and driving method for water feeding pump of double-machine regenerative unit
CN111365084B (en) * 2020-02-24 2022-08-19 东方电气集团东方汽轮机有限公司 Power station steam turbine maintenance system with rapid cooling function and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220907A (en) * 1982-06-15 1983-12-22 Hitachi Ltd Cooling of steam turbine and apparatus therefor
JPH06193406A (en) * 1992-12-24 1994-07-12 Toshiba Corp Forced cooling device for turbine
ATE230065T1 (en) 1996-06-21 2003-01-15 Siemens Ag TURBINE SHAFT AND METHOD FOR COOLING A TURBINE SHAFT
WO1998013588A1 (en) * 1996-09-26 1998-04-02 Siemens Aktiengesellschaft Steam turbine, steam turbine plant and method of cooling a steam turbine
DE19640298A1 (en) * 1996-09-30 1998-04-09 Siemens Ag Steam turbine, method for cooling a steam turbine in ventilation mode and method for reducing condensation in a steam turbine in power mode
DE19823251C1 (en) * 1998-05-26 1999-07-08 Siemens Ag Steam turbine low-pressure stage cooling method e.g. for power station turbines
AU2008202733A1 (en) * 2007-06-20 2009-01-22 Stanwell Corporation Limited Method and apparatus for cooling a steam turbine
CN103195508B (en) * 2013-04-11 2015-08-19 上海电气电站设备有限公司 Steam turbine accelerate cooling system and cooling means

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20160119198A (en) 2016-10-12
EP3087256A2 (en) 2016-11-02
CN106103909A (en) 2016-11-09
US11346245B2 (en) 2022-05-31
WO2015135681A2 (en) 2015-09-17
EP2918788A1 (en) 2015-09-16
RU2640891C1 (en) 2018-01-12
ES2658054T3 (en) 2018-03-08
PL3087256T3 (en) 2018-04-30
CN106103909B (en) 2017-10-13
WO2015135681A3 (en) 2016-03-17
US20170067364A1 (en) 2017-03-09
KR101834686B1 (en) 2018-03-05
JP6282757B2 (en) 2018-02-21
JP2017517665A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
DE60126721T2 (en) Combined circulation system with gas turbine
DE102011051415A1 (en) System with a feed water heater for removing heat from a low pressure steam turbine
EP1934434A2 (en) Method for heating a steam turbine
EP3087256B1 (en) Method for cooling down a steam turbine
EP0928365B1 (en) Steam turbine, steam turbine plant and method of cooling a steam turbine
DE102008029941A1 (en) Steam power plant includes bypass pipe which allows only a portion of maximum allowable steam mass flow to be supplied to corresponding pressure stage of steam turbine
DE102011011123B4 (en) Steam plant and process for configuring the steam plant
EP1191192A1 (en) Method and apparatus for preheating and dewatering of turbine stage steam conduits
EP1998014A2 (en) Method for operating a multi-stage steam turbine
WO2010034659A2 (en) Steam power plant for generating electrical energy
EP2546476A1 (en) Steam turbine installation and method for operating the steam turbine installation
DE102016112601A1 (en) Device for power generation according to the ORC principle, geothermal system with such a device and operating method
WO2015135792A1 (en) Control concept for district heating extraction in a steam power plant
WO2019007557A1 (en) Steam turbine and method for operating same
DE112006002967T5 (en) Residual steam discharge mechanism and residual steam removal process for a steam cooling duct of a gas turbine
EP1455066B1 (en) Cooling of a turbine and method therefore
DE102012108992A1 (en) Method for operating air-cooled condensing system of steam turbine plant, involves determining that majority of steam pipe system of air-cooled condensing system contains external gas
WO2016188671A1 (en) Water/steam circuit of a gas and steam turbine system
EP3109420A1 (en) Method for cooling a fluid flow engine
EP2496799B1 (en) Method for retrofitting a fossil-fueled power station with a carbon dioxide separation device
EP1953351A1 (en) Concept for pre-heating and starting of steam turbines with inlet temperatures of over 650°C
EP3365534B1 (en) Method for preheating feed water of a steam generator of a power plant, and steam power plant for carrying out the method
EP3183426B1 (en) Controlled cooling of turbine shafts
EP3087257A1 (en) Steam power installation comprising valve-stem leakage steam line
EP2675999B1 (en) Steam turbine with dummy piston sealing arrangement for blocking saturated steam

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160725

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015002256

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01D0025120000

Ipc: F01D0025320000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/00 20060101ALI20170505BHEP

Ipc: F01D 25/32 20060101AFI20170505BHEP

Ipc: F01D 25/12 20060101ALI20170505BHEP

Ipc: F01K 13/02 20060101ALI20170505BHEP

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20170531

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 942251

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015002256

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2658054

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180308

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180202

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180301

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180201

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180423

Year of fee payment: 4

Ref country code: CH

Payment date: 20180403

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015002256

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

26N No opposition filed

Effective date: 20180802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180128

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190123

Year of fee payment: 5

Ref country code: PL

Payment date: 20190104

Year of fee payment: 5

Ref country code: IT

Payment date: 20190130

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171101

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015002256

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200128

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 942251

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230113

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 10

Ref country code: CZ

Payment date: 20240109

Year of fee payment: 10