EP3084046B1 - Method for manufacturing a part coated with a protective coating - Google Patents

Method for manufacturing a part coated with a protective coating Download PDF

Info

Publication number
EP3084046B1
EP3084046B1 EP14821803.5A EP14821803A EP3084046B1 EP 3084046 B1 EP3084046 B1 EP 3084046B1 EP 14821803 A EP14821803 A EP 14821803A EP 3084046 B1 EP3084046 B1 EP 3084046B1
Authority
EP
European Patent Office
Prior art keywords
current
micro
positive
duration
charge applied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14821803.5A
Other languages
German (de)
French (fr)
Other versions
EP3084046A1 (en
Inventor
Stéphane KNITTEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3084046A1 publication Critical patent/EP3084046A1/en
Application granted granted Critical
Publication of EP3084046B1 publication Critical patent/EP3084046B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation

Definitions

  • the invention relates to parts coated with a protective coating as well as methods of making such parts.
  • RMICs refractory matrix composite materials
  • niobium-based alloys appear to be particularly promising in order to replace or be used in addition to existing nickel-based superalloys. These various alloys have the advantage of exhibiting higher melting points than existing superalloys. Moreover, the niobium-based alloys can also advantageously have relatively low densities (6.5-7 g / cm 3 compared to 8-9 g / cm 3 for nickel-based superalloys). Such alloys can therefore advantageously make it possible to significantly reduce the mass of parts of turbomachines, for example of high pressure turbine blades, due to their low density and their mechanical properties close to those of nickel-based superalloys at temperatures around 1100 ° C.
  • Niobium-based alloys can generally contain many additional elements such as silicon (Si), titanium (Ti), chromium (Cr), aluminum (Al), hafnium (Hf), molybdenum (Mo), or tin (Sn), for example.
  • These alloys have a microstructure consisting of a niobium (Nb ss ) matrix reinforced by addition elements dissolved in solid solution. This phase ensures the toughness of the alloys at low temperature. With this refractory matrix are associated precipitates of refractory metal silicides, the composition and structure of which may vary according to the addition elements (M 3 Si, M 5 Si 3 ).
  • alloys can exhibit particularly advantageous mechanical properties at high temperature (T> 1100 ° C.).
  • T> 1100 ° C. high temperature
  • their behavior in hot oxidation can now limit their use on a large scale.
  • alloys based on niobium silicides when exposed to high temperature (> 1000 ° C), they can oxidize by internal oxidation via the diffusion of oxygen through the alloy (mainly in the solution niobium solid).
  • a layer may then form on the surface comprising a mixture of oxides resulting from the elements contained in the substrate.
  • the oxide layer formed may be poorly adherent and unprotective due to the uncontrolled growth of unwanted oxides.
  • More or less complex silicates can be formed. Without outside assistance, the silicon content in the alloys may be insufficient to generate enough silicates to develop a sufficiently protective oxide layer upon exposure to high temperature.
  • the present invention relates to a method according to claim 1.
  • the present invention advantageously makes it possible to achieve a self-regulatory regime during the micro-arc oxidation treatment.
  • the fact of reaching such a regime is characterized by a progressive disappearance of the electric arcs when one observes with the naked eye the part subjected to the imposed cycles of current.
  • the invention advantageously makes it possible to form on the surface of the part a dense protective coating of oxides which may contain a relatively high silicate content.
  • a protective coating advantageously makes it possible to improve protection against oxidation and hot corrosion as well as the wear resistance of the material.
  • Another advantage associated with the implementation of a treatment by micro-arc oxidation lies in the possibility of producing ceramic coatings electrochemically in aqueous solution and at low temperature.
  • the ratio (amount of positive charge applied to the part) / (amount of negative charge applied to the part) may, for all or part of the current cycles, be between 0.8 and 0.9.
  • the part can first be subjected to a succession of current cycles for which the ratio (amount of positive charge applied to the part) / (amount of negative charge applied to the part) is between 0.9 and 1.6, the part can then be subjected to a succession of current cycles for which the ratio ( amount of positive charge applied to the part) / (amount of negative charge applied to the part) is between 0.8 and 0.9.
  • Such a modulation of the ratio (amount of positive charge applied to the part) / (amount of negative charge applied to the part) advantageously makes it possible to accelerate the formation of the protective coating.
  • the ratio (amount of positive charge applied to the part) / (amount of negative charge applied to the part) may, for all or part of the current cycles, be between 0.85 and 0.90 .
  • the part may, for example, comprise, in particular consist of, a niobium matrix in which inclusions of metal silicides chosen from: Nb 5 Si 3 and / or Nb 3 Si are present.
  • Each current cycle includes a positive stabilization phase during which a constant current of positive intensity passes through the part, the duration of the positive stabilization phase being between 15% and 50%, for example between 17% and 23%, of the total duration of said cycle.
  • Each current cycle includes a negative stabilization phase during which a constant current of negative intensity passes through the part, the duration of the negative stabilization phase being between 30% and 80%, for example between 55% and 65%, of the total duration of said cycle.
  • the density of the current flowing through the part during the positive stabilization phase can be between 10 A / dm 2 and 100 A / dm 2 , for example between 50 A / dm 2 and 70 A / dm 2 .
  • the density of the current flowing through the part during the negative stabilization phase can, in absolute value, be between 10 A / dm 2 and 100 A / dm 2 .
  • the ratio (density of the current passing through the part during the negative stabilization phase) / (density of the current passing through the part during the positive stabilization phase) can, in absolute value, be between 30% and 80 %, for example between 50% and 60%.
  • the part may be present in an electrolyte and the electrolyte may comprise, before the start of the micro-arc oxidation treatment, a silicate for example present in a concentration greater than or equal to 1 g / L, for example greater or equal to 15 g / L.
  • the silicate may, before the start of the micro-arc oxidation treatment, be present in the electrolyte in a concentration of between 1 g / L and Cs where Cs denotes the limiting solubility concentration of the silicate in the electrolyte.
  • Cs can, for example, be equal to 300 g / L.
  • Such electrolytes advantageously make it possible to further increase the content of silicates present in the protective coating obtained and thus to further improve the corrosion resistance of the coated part.
  • the electrolyte solvent can, for example, be water.
  • the pH of the electrolyte can, for example, be between 10 and 14 during all or part of the micro-arc oxidation treatment.
  • the part is present in an electrolyte and the electrolyte can be maintained at a temperature less than or equal to 40 ° C, for example less than or equal to 20 ° C, during all or part of the treatment by micro oxidation. -bows.
  • a cooling system can help maintain the electrolyte at such temperatures. It is general knowledge of those skilled in the art to adapt the cooling carried out in order to maintain the electrolyte at these temperatures.
  • the time during which the part is treated by micro-arc oxidation may be greater than or equal to 10 minutes, for example between 10 minutes and 60 minutes.
  • the part can be treated by a micro-arc oxidation treatment making it possible to achieve a self-regulation regime, the self-regulation regime then being able to be maintained for a period of less than or equal to 10 minutes, for example example for a period of between 3 minutes and 10 minutes.
  • each current cycle includes a positive current rise phase during which the intensity of the current flowing through the part is positive and strictly increasing, the duration of the positive current rise phase being able to be between 3% and 15%, for example between 9% and 13%, of the total duration of said cycle.
  • each current cycle includes a positive current descent phase during which the intensity of the current flowing through the part is positive and strictly decreasing, the duration of the positive current descent phase being able to be between 1% and 10%, for example between 1.5% and 2.5%, of the total duration of said cycle.
  • each current cycle includes a zero current stabilization phase during which the part is not traversed by any current, the duration of the zero current stabilization phase being able to be between 0.5% and 1. , 5% of the total duration of said cycle.
  • each current cycle includes a negative current descent phase during which the intensity of the current flowing through the part is negative and strictly decreasing, the duration of the negative current descent phase being able to be between 1% and 10%, for example 2.5% and 3.5%, of the total duration of said cycle.
  • each current cycle includes a negative current rise phase during which the intensity of the current flowing through the part is negative and strictly increasing, the duration of the negative current rise phase being able to be between 1% and 10%, for example between 1.5% and 2.5%, of the total duration of said cycle.
  • the part is present in an electrolyte and the current can pass during the micro-arc oxidation treatment through the part as well as a counter-electrode present in the electrolyte, the counter-electrode having the same shape. than the room.
  • a counter-electrode of shape adapted to that of the part advantageously allows for parts of relatively complex to overcome the problems of distribution of current lines. More generally, whatever the shape of the counter-electrode, the latter can be located at a distance of between 1 cm and 20 cm from the part. For example, the counter electrode is located 2.5 cm from the workpiece.
  • the part is advantageous for the part to be separated from the counter-electrode by a distance less than or equal to 20 cm in order to reduce the current losses in the electrolyte and to increase the efficiency of the process.
  • the cycles of current applied can be periodic.
  • the frequency of the current cycles may be between 50 Hz and 1000 Hz, and for example be between 50 Hz and 150 Hz.
  • the thickness of the coating formed may be greater than or equal to 20 ⁇ m, preferably 50 ⁇ m.
  • the thickness of the coating formed is, for example, between 100 ⁇ m and 150 ⁇ m.
  • the part can, for example, constitute a turbine engine blade.
  • the part can also, for example, constitute a valve or a turbine engine distributor.
  • the present invention also relates to a part coated with a protective coating capable of being obtained by implementing a method as described above as well as a turbomachine comprising such a part.
  • the patent further describes the use for improving the resistance to oxidation of a part of a micro-arc oxidation treatment in which a part comprising a niobium matrix in which inclusions of metal silicides are present is subjected to a succession of current cycles, the ratio (quantity of positive charge applied to the part) / (amount of negative charge applied to the part) being, for each current cycle, between 0.80 and 1.6.
  • the patent further describes the use for improving the wear resistance of a part of a micro-arc oxidation treatment in which a part comprising a niobium matrix in which inclusions of metal silicides are present is subjected to a succession of current cycles, the ratio (quantity of positive charge applied to the part) / (quantity of negative charge applied to the part) being, for each current cycle, between 0.80 and 1.6.
  • a protective coating 3 is formed on the outer surface S of a part 2 comprising a niobium matrix in which inclusions of metal silicides are present.
  • the thickness e of the coating 3 formed may, for example, be between 20 ⁇ m and 150 ⁇ m.
  • FIG. 2 We represented at the figure 2 an experimental device for implementing a micro-arc oxidation treatment which can be used within the framework of the present invention.
  • Part 2 is immersed in an electrolyte 10 comprising silicates.
  • a counter-electrode 6 is present opposite the part 2 and is also immersed in electrolyte 10.
  • counter-electrodes are present on either side of the part.
  • the counter electrode 6 can, for example, be cylindrical in shape and, for example, be made of 304L stainless steel.
  • the part 2 and the counter-electrode 6 are connected to a generator 5 which subjects them to a succession of current cycles.
  • a first oxide layer is first formed on the external surface S of the part 2 treated.
  • a sufficient current is applied in order to reach the dielectric breakdown point of the first oxide layer initially formed on the surface S of the part 2. Electric arcs are then generated and lead to the formation of a plasma on the surface S of part 2 treated.
  • the protective coating 3 is then formed by converting the elements contained in the part 2 but also by incorporating elements contained in the electrolyte 10.
  • the experimental device used further comprises a cooling system (not shown) making it possible to limit heating of the electrolyte during the micro-arc oxidation treatment.
  • a succession of periodic current cycles is applied to part 2.
  • the form of one of the applied current cycles is supplied to the figure 3 .
  • the parameters are given in Table 1 shown below: ⁇ u> Table 1 ⁇ /u> I p : Intensity of the current flowing through the part during the positive stabilization phase T 1 : duration of the positive current rise phase T 2 : duration of the positive stabilization phase I n : Intensity of the current flowing through the part during the negative stabilization phase T 3 : duration of the decay phase of the positive current Q p : amount of positive charge applied to the part during the current cycle T 4 : duration of the stabilization phase at zero current T 5 : duration of the descent phase of the negative current Q n : amount of negative charge applied to the part during the current cycle T 6 : duration of the negative stabilization phase T: Period of current cycles T 7 : duration of the negative current rise phase F: Frequency of current cycles T 8 : duration of the stabilization phase at zero current
  • the counter-electrode 6 can, as illustrated, have a shape similar to that of the part 2 and match its shape.
  • the part and the counter-electrode can also both be of cylindrical shape or of planar shape.
  • a substrate has been treated by a method according to the invention.
  • Table 2 details the operating conditions below (the times are expressed in% of the total duration of the current cycle).
  • the imposed cycle comprises the same succession of phases as the current cycle shown in figure 3 .
  • a self-regulatory regime characterized by a gradual extinction of the electric arcs was reached after about 30 minutes of treatment.
  • the sample was further treated for a further 5 minutes in an autoregulation regime so as to grow the oxide layer formed and improve its compactness.
  • the layer formed on the surface of the substrate was characterized by scanning electron microscopy (see figures 6A and 6B ).
  • the layer formed turns out to be uniform in appearance over the entire circumference of the bar and at the level of the two areas analyzed.
  • the coating formed by micro-arc anodic oxidation is perfectly adherent.
  • the coating formed by micro-arc anodic oxidation is perfectly adherent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Physical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

Arrière-plan de l'inventionBackground of the invention

L'invention concerne des pièces revêtues d'un revêtement protecteur ainsi que des procédés de fabrication de telles pièces.The invention relates to parts coated with a protective coating as well as methods of making such parts.

Actuellement au sein des parties les plus chaudes des turbomachines seuls les superalliages à base de nickel sont utilisés à l'échelle industrielle. Bien que ces superalliages à base de nickel soient revêtus d'un système de barrière thermique, leur température d'utilisation peut être limitée à 1150°C en raison de la proximité de leur point de fusion.Currently, in the hottest parts of turbomachines, only nickel-based superalloys are used on an industrial scale. Although these nickel-based superalloys are coated with a thermal barrier system, their operating temperature may be limited to 1150 ° C due to the proximity of their melting point.

De récents travaux de recherche se sont focalisés sur la mise en œuvre de nouveaux matériaux à base de métaux réfractaires capables d'être utilisés à des températures supérieures aux températures d'utilisation des superalliages à base de nickel. Ces familles de matériaux sont couramment appelées : matériaux composites à matrice réfractaire (RMICs).Recent research work has focused on the implementation of new materials based on refractory metals capable of being used at temperatures above the operating temperatures of nickel-based superalloys. These families of materials are commonly called: refractory matrix composite materials (RMICs).

Parmi les solutions mises en évidence, les alliages à base de niobium apparaissent comme particulièrement prometteurs afin de remplacer ou d'être utilisés en complément des superalliages à base de nickel existants. Ces différents alliages ont l'avantage de présenter des points de fusion supérieurs aux superalliages existants. Par ailleurs, les alliages à base de niobium peuvent aussi avantageusement présenter des densités relativement faibles (6,5-7 g/cm3 à comparer à 8-9 g/cm3 pour les superalliages à base de nickel). De tels alliages peuvent donc avantageusement permettre de réduire significativement la masse de pièces de turbomachines, par exemple d'aubages de turbine haute pression, en raison de leur faible densité et de leurs propriétés mécaniques proches de celles des superalliages à base de nickel à des températures voisines de 1100°C.Among the solutions highlighted, niobium-based alloys appear to be particularly promising in order to replace or be used in addition to existing nickel-based superalloys. These various alloys have the advantage of exhibiting higher melting points than existing superalloys. Moreover, the niobium-based alloys can also advantageously have relatively low densities (6.5-7 g / cm 3 compared to 8-9 g / cm 3 for nickel-based superalloys). Such alloys can therefore advantageously make it possible to significantly reduce the mass of parts of turbomachines, for example of high pressure turbine blades, due to their low density and their mechanical properties close to those of nickel-based superalloys at temperatures around 1100 ° C.

Les alliages à base de niobium peuvent généralement comporter de nombreux éléments d'additions tels que le silicium (Si), le titane (Ti), le chrome (Cr), l'aluminium (Al), le hafnium (Hf), le molybdène (Mo), ou l'étain (Sn), par exemple. Ces alliages présentent une microstructure constituée d'une matrice de niobium (Nbss) renforcée par des éléments d'additions dissous en solution solide. Cette phase assure la ténacité des alliages à basse température. A cette matrice réfractaire sont associés des précipités de siliciures de métaux réfractaires dont la composition et la structure peuvent varier selon les éléments d'additions (M3Si, M5Si3).Niobium-based alloys can generally contain many additional elements such as silicon (Si), titanium (Ti), chromium (Cr), aluminum (Al), hafnium (Hf), molybdenum (Mo), or tin (Sn), for example. These alloys have a microstructure consisting of a niobium (Nb ss ) matrix reinforced by addition elements dissolved in solid solution. This phase ensures the toughness of the alloys at low temperature. With this refractory matrix are associated precipitates of refractory metal silicides, the composition and structure of which may vary according to the addition elements (M 3 Si, M 5 Si 3 ).

Ces alliages peuvent présenter à haute température (T>1100°C) des propriétés mécaniques particulièrement intéressantes. Toutefois, leur comportement en oxydation à chaud peut aujourd'hui limiter leur utilisation à grande échelle. En effet, lorsque les alliages à base de siliciures de niobium sont exposés à haute température (>1000°C), ils peuvent s'oxyder par oxydation interne via la diffusion de l'oxygène au travers de l'alliage (principalement dans la solution solide de niobium). Il peut alors se former en surface une couche comportant un mélange d'oxydes issus des éléments contenus dans le substrat. La couche d'oxydes formée peut être peu adhérente et non protectrice en raison de la croissance anarchique d'oxydes non souhaités. Des silicates plus ou moins complexes peuvent être formés. Sans assistance extérieure, la teneur en silicium dans les alliages peut être insuffisante pour générer suffisamment de silicates afin de développer une couche d'oxydes suffisamment protectrice lors de l'exposition à haute température.These alloys can exhibit particularly advantageous mechanical properties at high temperature (T> 1100 ° C.). However, their behavior in hot oxidation can now limit their use on a large scale. Indeed, when alloys based on niobium silicides are exposed to high temperature (> 1000 ° C), they can oxidize by internal oxidation via the diffusion of oxygen through the alloy (mainly in the solution niobium solid). A layer may then form on the surface comprising a mixture of oxides resulting from the elements contained in the substrate. The oxide layer formed may be poorly adherent and unprotective due to the uncontrolled growth of unwanted oxides. More or less complex silicates can be formed. Without outside assistance, the silicon content in the alloys may be insufficient to generate enough silicates to develop a sufficiently protective oxide layer upon exposure to high temperature.

On connaît en particulier DE 10 2006 017820 qui divulgue des pièces de turbine formées d'un alliage niobium-silicium. On connaît en outre FR 2 877 018 qui divulgue un procédé d'oxydation micro arc pour revêtir des pièces destinées à être utilisées à des températures de l'ordre de 100°C à 150°C.We know in particular DE 10 2006 017820 which discloses turbine parts formed from a niobium-silicon alloy. We also know FR 2 877 018 which discloses a micro arc oxidation process for coating parts intended to be used at temperatures of the order of 100 ° C to 150 ° C.

Il existe donc un besoin pour améliorer la résistance à la corrosion et à l'oxydation à chaud présentée par ce type d'alliages à base de niobium.There is therefore a need to improve the resistance to corrosion and to hot oxidation presented by this type of niobium-based alloys.

Il existe encore un besoin pour disposer de nouveaux matériaux présentant à la fois de bonnes propriétés mécaniques (ténacité à froid et fluage à haute température pour les pièces mobiles) ainsi qu'une bonne résistance à la corrosion et à l'oxydation à haute température.There is also a need for new materials having both good mechanical properties (cold toughness and high temperature creep for the moving parts) as well as good resistance to corrosion and to oxidation at high temperature.

Objet et résumé de l'inventionPurpose and summary of the invention

La présente invention vise un procédé selon la revendication 1.The present invention relates to a method according to claim 1.

La présente invention permet avantageusement d'atteindre durant le traitement par oxydation micro-arcs un régime d'autorégulation. Le fait d'atteindre un tel régime est caractérisé par une disparition progressive des arcs électriques lorsque l'on observe à l'œil nu la pièce soumise aux cycles de courant imposés.The present invention advantageously makes it possible to achieve a self-regulatory regime during the micro-arc oxidation treatment. The fact of reaching such a regime is characterized by a progressive disappearance of the electric arcs when one observes with the naked eye the part subjected to the imposed cycles of current.

L'invention permet avantageusement de former à la surface de la pièce un revêtement d'oxydes protecteur dense et pouvant comporter une teneur en silicates relativement élevée. Un tel revêtement protecteur permet avantageusement d'améliorer la protection contre l'oxydation et la corrosion à chaud ainsi que la résistance à l'usure du matériau.The invention advantageously makes it possible to form on the surface of the part a dense protective coating of oxides which may contain a relatively high silicate content. Such a protective coating advantageously makes it possible to improve protection against oxidation and hot corrosion as well as the wear resistance of the material.

Un autre avantage lié à la mise en œuvre d'un traitement par oxydation micro-arcs réside dans la possibilité de réaliser des revêtements céramiques par voie électrochimique en solution aqueuse et à basse température.Another advantage associated with the implementation of a treatment by micro-arc oxidation lies in the possibility of producing ceramic coatings electrochemically in aqueous solution and at low temperature.

De préférence, le rapport (quantité de charge positive appliquée à la pièce) / (quantité de charge négative appliquée à la pièce) peut, pour tout ou partie des cycles de courant, être compris entre 0,8 et 0,9.Preferably, the ratio (amount of positive charge applied to the part) / (amount of negative charge applied to the part) may, for all or part of the current cycles, be between 0.8 and 0.9.

Dans un exemple de réalisation, la pièce peut d'abord être soumise à une succession de cycles de courant pour lesquels le rapport (quantité de charge positive appliquée à la pièce) / (quantité de charge négative appliquée à la pièce) est compris entre 0,9 et 1,6, la pièce pouvant ensuite être soumise à une succession de cycles de courant pour lesquels le rapport (quantité de charge positive appliquée à la pièce) / (quantité de charge négative appliquée à la pièce) est compris entre 0,8 et 0,9.In an exemplary embodiment, the part can first be subjected to a succession of current cycles for which the ratio (amount of positive charge applied to the part) / (amount of negative charge applied to the part) is between 0.9 and 1.6, the part can then be subjected to a succession of current cycles for which the ratio ( amount of positive charge applied to the part) / (amount of negative charge applied to the part) is between 0.8 and 0.9.

Une telle modulation du rapport (quantité de charge positive appliquée à la pièce) / (quantité de charge négative appliquée à la pièce) permet avantageusement d'accélérer la formation du revêtement protecteur.Such a modulation of the ratio (amount of positive charge applied to the part) / (amount of negative charge applied to the part) advantageously makes it possible to accelerate the formation of the protective coating.

Dans un exemple de réalisation, le rapport (quantité de charge positive appliquée à la pièce) / (quantité de charge négative appliquée à la pièce) peut, pour tout ou partie des cycles de courant, être compris entre 0,85 et 0,90.In an exemplary embodiment, the ratio (amount of positive charge applied to the part) / (amount of negative charge applied to the part) may, for all or part of the current cycles, be between 0.85 and 0.90 .

La pièce peut, par exemple, comporter, notamment consister en, une matrice de niobium dans laquelle sont présentes des inclusions de siliciures métalliques choisis parmi : Nb5Si3 et/ou Nb3Si.The part may, for example, comprise, in particular consist of, a niobium matrix in which inclusions of metal silicides chosen from: Nb 5 Si 3 and / or Nb 3 Si are present.

Chaque cycle de courant comporte une phase de stabilisation positive durant laquelle un courant constant d'intensité positive traverse la pièce, la durée de la phase de stabilisation positive étant comprise entre 15 % et 50 %, par exemple entre 17 % et 23 %, de la durée totale dudit cycle.Each current cycle includes a positive stabilization phase during which a constant current of positive intensity passes through the part, the duration of the positive stabilization phase being between 15% and 50%, for example between 17% and 23%, of the total duration of said cycle.

Chaque cycle de courant comporte une phase de stabilisation négative durant laquelle un courant constant d'intensité négative traverse la pièce, la durée de la phase de stabilisation négative étant comprise entre 30% et 80 %, par exemple entre 55 % et 65 %, de la durée totale dudit cycle.Each current cycle includes a negative stabilization phase during which a constant current of negative intensity passes through the part, the duration of the negative stabilization phase being between 30% and 80%, for example between 55% and 65%, of the total duration of said cycle.

Dans un exemple de réalisation, la densité du courant traversant la pièce durant la phase de stabilisation positive peut être comprise entre 10 A/dm2 et 100 A/dm2, par exemple entre 50 A/dm2 et 70 A/dm2.In an exemplary embodiment, the density of the current flowing through the part during the positive stabilization phase can be between 10 A / dm 2 and 100 A / dm 2 , for example between 50 A / dm 2 and 70 A / dm 2 .

Dans un exemple de réalisation, la densité du courant traversant la pièce durant la phase de stabilisation négative peut, en valeur absolue, être comprise entre 10 A/dm2 et 100 A/dm2.In an exemplary embodiment, the density of the current flowing through the part during the negative stabilization phase can, in absolute value, be between 10 A / dm 2 and 100 A / dm 2 .

Dans un exemple de réalisation, le rapport (densité du courant traversant la pièce durant la phase de stabilisation négative)/(densité du courant traversant la pièce durant la phase de stabilisation positive) peut, en valeur absolue, être compris entre 30 % et 80 %, par exemple entre 50 % et 60 %.In an exemplary embodiment, the ratio (density of the current passing through the part during the negative stabilization phase) / (density of the current passing through the part during the positive stabilization phase) can, in absolute value, be between 30% and 80 %, for example between 50% and 60%.

De préférence, la pièce peut être présente dans un électrolyte et l'électrolyte peut comporter, avant le début du traitement d'oxydation micro-arcs, un silicate par exemple présent en une concentration supérieure ou égale à 1 g/L, par exemple supérieure ou égale à 15 g/L. Le silicate peut, avant le début du traitement d'oxydation micro-arcs, être présent dans l'électrolyte en une concentration comprise entre 1 g/L et Cs où Cs désigne la concentration limite de solubilité du silicate dans l'électrolyte. Cs peut, par exemple, être égal à 300 g/L.Preferably, the part may be present in an electrolyte and the electrolyte may comprise, before the start of the micro-arc oxidation treatment, a silicate for example present in a concentration greater than or equal to 1 g / L, for example greater or equal to 15 g / L. The silicate may, before the start of the micro-arc oxidation treatment, be present in the electrolyte in a concentration of between 1 g / L and Cs where Cs denotes the limiting solubility concentration of the silicate in the electrolyte. Cs can, for example, be equal to 300 g / L.

De tels électrolytes permettent avantageusement d'augmenter encore la teneur en silicates présents dans le revêtement protecteur obtenu et ainsi d'améliorer encore la résistance à la corrosion de la pièce revêtue.Such electrolytes advantageously make it possible to further increase the content of silicates present in the protective coating obtained and thus to further improve the corrosion resistance of the coated part.

Le solvant de l'électrolyte peut, par exemple, être de l'eau.The electrolyte solvent can, for example, be water.

Le pH de l'électrolyte peut, par exemple, être compris entre 10 et 14 durant tout ou partie du traitement d'oxydation micro-arcs.The pH of the electrolyte can, for example, be between 10 and 14 during all or part of the micro-arc oxidation treatment.

Dans un exemple de réalisation, la pièce est présente dans un électrolyte et l'électrolyte peut être maintenu à une température inférieure ou égale à 40°C, par exemple inférieure ou égale à 20 °C, durant tout ou partie du traitement par oxydation micro-arcs.In an exemplary embodiment, the part is present in an electrolyte and the electrolyte can be maintained at a temperature less than or equal to 40 ° C, for example less than or equal to 20 ° C, during all or part of the treatment by micro oxidation. -bows.

Dans ce cas, un système de refroidissement peut permettre de maintenir l'électrolyte à de telles températures. Il va des connaissances générales de l'homme du métier d'adapter le refroidissement réalisé afin de maintenir l'électrolyte à ces températures.In this case, a cooling system can help maintain the electrolyte at such temperatures. It is general knowledge of those skilled in the art to adapt the cooling carried out in order to maintain the electrolyte at these temperatures.

Dans un exemple de réalisation, la durée pendant laquelle la pièce est traitée par oxydation micro-arcs peut être supérieure ou égale à 10 minutes, par exemple comprise entre 10 minutes et 60 minutes.In an exemplary embodiment, the time during which the part is treated by micro-arc oxidation may be greater than or equal to 10 minutes, for example between 10 minutes and 60 minutes.

Dans un exemple de réalisation, la pièce peut être traitée par un traitement d'oxydation micro-arcs permettant d'atteindre un régime d'autorégulation, le régime d'autorégulation pouvant alors être maintenu pendant une durée inférieure ou égale à 10 minutes, par exemple pendant une durée comprise entre 3 minutes et 10 minutes.In an exemplary embodiment, the part can be treated by a micro-arc oxidation treatment making it possible to achieve a self-regulation regime, the self-regulation regime then being able to be maintained for a period of less than or equal to 10 minutes, for example example for a period of between 3 minutes and 10 minutes.

Dans un exemple de réalisation, chaque cycle de courant comporte une phase de montée du courant positif durant laquelle l'intensité du courant traversant la pièce est positive et strictement croissante, la durée de la phase de montée du courant positif pouvant être comprise entre 3 % et 15 %, par exemple entre 9 % et 13 %, de la durée totale dudit cycle.In an exemplary embodiment, each current cycle includes a positive current rise phase during which the intensity of the current flowing through the part is positive and strictly increasing, the duration of the positive current rise phase being able to be between 3% and 15%, for example between 9% and 13%, of the total duration of said cycle.

Dans un exemple de réalisation, chaque cycle de courant comporte une phase de descente du courant positif durant laquelle l'intensité du courant traversant la pièce est positive et strictement décroissante, la durée de la phase de descente du courant positif pouvant être comprise entre 1 % et 10 %, par exemple entre 1,5 % et 2,5 %, de la durée totale dudit cycle.In an exemplary embodiment, each current cycle includes a positive current descent phase during which the intensity of the current flowing through the part is positive and strictly decreasing, the duration of the positive current descent phase being able to be between 1% and 10%, for example between 1.5% and 2.5%, of the total duration of said cycle.

Dans un exemple de réalisation, chaque cycle de courant comporte une phase de stabilisation à courant nul durant laquelle la pièce n'est traversée par aucun courant, la durée de la phase de stabilisation à courant nul pouvant être comprise entre 0,5 % et 1,5 % de la durée totale dudit cycle.In an exemplary embodiment, each current cycle includes a zero current stabilization phase during which the part is not traversed by any current, the duration of the zero current stabilization phase being able to be between 0.5% and 1. , 5% of the total duration of said cycle.

Dans un exemple de réalisation, chaque cycle de courant comporte une phase de descente du courant négatif durant laquelle l'intensité du courant traversant la pièce est négative et strictement décroissante, la durée de la phase de descente du courant négatif pouvant être comprise entre 1% et 10 %, par exemple 2,5 % et 3,5 %, de la durée totale dudit cycle.In an exemplary embodiment, each current cycle includes a negative current descent phase during which the intensity of the current flowing through the part is negative and strictly decreasing, the duration of the negative current descent phase being able to be between 1% and 10%, for example 2.5% and 3.5%, of the total duration of said cycle.

Dans un exemple de réalisation, chaque cycle de courant comporte une phase de montée du courant négatif durant laquelle l'intensité du courant traversant la pièce est négative et strictement croissante, la durée de la phase de montée du courant négatif pouvant être comprise entre 1 % et 10 %, par exemple entre 1,5 % et 2,5 %, de la durée totale dudit cycle.In an exemplary embodiment, each current cycle includes a negative current rise phase during which the intensity of the current flowing through the part is negative and strictly increasing, the duration of the negative current rise phase being able to be between 1% and 10%, for example between 1.5% and 2.5%, of the total duration of said cycle.

Dans un exemple de réalisation, chaque cycle de courant comporte :

  • une phase de montée du courant positif durant laquelle l'intensité du courant traversant la pièce est positive et strictement croissante, la durée de la phase de montée du courant positif étant par exemple comprise entre 3 % et 15 %, par exemple entre 9 % et 13 %, de la durée totale dudit cycle, puis
  • une phase de stabilisation positive durant laquelle un courant constant d'intensité positive traverse la pièce, la durée de la phase de stabilisation positive étant comprise entre 15 % et 50 %, par exemple entre 17 % et 23 %, de la durée totale dudit cycle, puis
  • une phase de descente du courant positif durant laquelle l'intensité du courant traversant la pièce est positive et strictement décroissante, la durée de la phase de descente du courant positif étant, par exemple, comprise entre 1 % et 10 %, par exemple entre 1,5 % et 2,5 %, de la durée totale dudit cycle, puis
  • éventuellement une phase de stabilisation à courant nul durant laquelle la pièce n'est traversée par aucun courant, la durée de la phase de stabilisation à courant nul pouvant être comprise entre 0,5 % et 1,5 % de la durée totale dudit cycle, puis
  • une phase de descente du courant négatif durant laquelle l'intensité du courant traversant la pièce est négative et strictement décroissante, la durée de la phase de descente du courant négatif étant, par exemple, comprise entre 1% et 10 %, par exemple 2,5 % et 3,5 %, de la durée totale dudit cycle, puis
  • une phase de stabilisation négative durant laquelle un courant constant d'intensité négative traverse la pièce, la durée de la phase de stabilisation négative étant comprise entre 30 % et 80 %, par exemple entre 55 % et 65 %, de la durée totale dudit cycle, puis
  • une phase de montée du courant négatif durant laquelle l'intensité du courant traversant la pièce est négative et strictement croissante, la durée de la phase de montée du courant négatif étant, par exemple, comprise entre 1 % et 10 %, par exemple entre 1,5 % et 2,5 %, de la durée totale dudit cycle.
In an exemplary embodiment, each current cycle comprises:
  • a positive current rise phase during which the intensity of the current flowing through the part is positive and strictly increasing, the duration of the positive current rise phase being for example between 3% and 15%, for example between 9% and 13% of the total duration of said cycle, then
  • a positive stabilization phase during which a constant current of positive intensity passes through the part, the duration of the positive stabilization phase being between 15% and 50%, for example between 17% and 23%, of the total duration of said cycle , then
  • a positive current descent phase during which the intensity of the current passing through the part is positive and strictly decreasing, the duration of the positive current descent phase being, for example, between 1% and 10%, for example between 1.5% and 2.5%, of the total duration of said cycle, then
  • possibly a zero-current stabilization phase during which the part is not traversed by any current, the duration of the zero-current stabilization phase being able to be between 0.5% and 1.5% of the total duration of said cycle, then
  • a negative current descent phase during which the intensity of the current flowing through the part is negative and strictly decreasing, the duration of the negative current descent phase being, for example, between 1% and 10%, for example 2, 5% and 3.5%, of the total duration of said cycle, then
  • a negative stabilization phase during which a constant current of negative intensity passes through the part, the duration of the negative stabilization phase being between 30% and 80%, for example between 55% and 65%, of the total duration of said cycle , then
  • a negative current rise phase during which the intensity of the current flowing through the part is negative and strictly increasing, the duration of the negative current rise phase being, for example, between 1% and 10%, for example between 1 , 5% and 2.5%, of the total duration of said cycle.

Dans un exemple de réalisation, la pièce est présente dans un électrolyte et le courant peut traverser durant le traitement d'oxydation micro-arcs la pièce ainsi qu'une contre-électrode présente dans l'électrolyte, la contre-électrode ayant la même forme que la pièce.In an exemplary embodiment, the part is present in an electrolyte and the current can pass during the micro-arc oxidation treatment through the part as well as a counter-electrode present in the electrolyte, the counter-electrode having the same shape. than the room.

L'utilisation d'une contre-électrode de forme adaptée à celle de la pièce permet avantageusement pour des pièces de forme relativement complexe de s'affranchir des problèmes de répartition des lignes de courant. Plus généralement, quelle que soit la forme de la contre-électrode, celle-ci peut être située à une distance comprise entre 1 cm et 20 cm de la pièce. Par exemple, la contre-électrode est située à 2,5 cm de la pièce.The use of a counter-electrode of shape adapted to that of the part advantageously allows for parts of relatively complex to overcome the problems of distribution of current lines. More generally, whatever the shape of the counter-electrode, the latter can be located at a distance of between 1 cm and 20 cm from the part. For example, the counter electrode is located 2.5 cm from the workpiece.

Il est avantageux que la pièce soit séparée de la contre-électrode par une distance inférieure ou égale à 20 cm afin de diminuer les pertes de courant dans l'électrolyte et d'augmenter l'efficacité du procédé. En outre, il est avantageux que la pièce soit séparée de la contre-électrode par une distance supérieure ou égale à 1 cm afin de limiter l'impact des effets de bord.It is advantageous for the part to be separated from the counter-electrode by a distance less than or equal to 20 cm in order to reduce the current losses in the electrolyte and to increase the efficiency of the process. In addition, it is advantageous for the part to be separated from the counter-electrode by a distance greater than or equal to 1 cm in order to limit the impact of edge effects.

Dans un exemple de réalisation, les cycles de courant appliqués peuvent être périodiques. Dans un exemple de réalisation, la fréquence des cycles de courant peut être comprise entre 50 Hz et 1000 Hz, et par exemple être comprise entre 50 Hz et 150 Hz.In an exemplary embodiment, the cycles of current applied can be periodic. In an exemplary embodiment, the frequency of the current cycles may be between 50 Hz and 1000 Hz, and for example be between 50 Hz and 150 Hz.

L'épaisseur du revêtement formé peut être supérieure ou égale à 20 µm, de préférence à 50 µm. L'épaisseur du revêtement formé est, par exemple, comprise entre 100 µm et 150 µm.The thickness of the coating formed may be greater than or equal to 20 μm, preferably 50 μm. The thickness of the coating formed is, for example, between 100 μm and 150 μm.

La pièce peut, par exemple, constituer une aube de turbomachine. La pièce peut encore, par exemple, constituer une vanne ou un distributeur de turbomachine.The part can, for example, constitute a turbine engine blade. The part can also, for example, constitute a valve or a turbine engine distributor.

La présente invention vise également une pièce revêtue par un revêtement protecteur susceptible d'être obtenue par mise en œuvre d'un procédé tel que décrit plus haut ainsi qu'une turbomachine comportant une telle pièce.The present invention also relates to a part coated with a protective coating capable of being obtained by implementing a method as described above as well as a turbomachine comprising such a part.

Le brevet décrit encore l'utilisation pour améliorer la résistance à l'oxydation d'une pièce d'un traitement d'oxydation micro-arcs dans lequel une pièce comportant une matrice de niobium dans laquelle des inclusions de siliciures métalliques sont présentes est soumise à une succession de cycles de courant, le rapport (quantité de charge positive appliquée à la pièce) / (quantité de charge négative appliquée à la pièce) étant, pour chaque cycle de courant, compris entre 0,80 et 1,6.The patent further describes the use for improving the resistance to oxidation of a part of a micro-arc oxidation treatment in which a part comprising a niobium matrix in which inclusions of metal silicides are present is subjected to a succession of current cycles, the ratio (quantity of positive charge applied to the part) / (amount of negative charge applied to the part) being, for each current cycle, between 0.80 and 1.6.

Le brevet décrit encore l'utilisation pour améliorer la résistance à l'usure d'une pièce d'un traitement d'oxydation micro-arcs dans lequel une pièce comportant une matrice de niobium dans laquelle des inclusions de siliciures métalliques sont présentes est soumise à une succession de cycles de courant, le rapport (quantité de charge positive appliquée à la pièce) / (quantité de charge négative appliquée à la pièce) étant, pour chaque cycle de courant, compris entre 0,80 et 1,6.The patent further describes the use for improving the wear resistance of a part of a micro-arc oxidation treatment in which a part comprising a niobium matrix in which inclusions of metal silicides are present is subjected to a succession of current cycles, the ratio (quantity of positive charge applied to the part) / (quantity of negative charge applied to the part) being, for each current cycle, between 0.80 and 1.6.

Le brevet décrit encore un procédé de fabrication d'une pièce revêtue d'un revêtement protecteur, le procédé comportant l'étape suivante :

  • formation par traitement d'oxydation micro-arcs d'un revêtement protecteur sur la surface externe d'une pièce, la pièce comportant une matrice de niobium dans laquelle des inclusions de siliciures métalliques sont présentes, un régime d'autorégulation étant atteint durant le traitement d'oxydation micro-arcs.
The patent also describes a method of manufacturing a part coated with a protective coating, the method comprising the following step:
  • formation by micro-arc oxidation treatment of a protective coating on the external surface of a part, the part comprising a niobium matrix in which inclusions of metal silicides are present, a self-regulatory regime being achieved during the treatment oxidation micro-arcs.

Les caractéristiques et avantages décrits plus haut s'appliquent à ce dernier aspect de l'invention.The characteristics and advantages described above apply to this last aspect of the invention.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels :

  • la figure 1 représente, de manière schématique et partielle, une section d'une pièce revêtue par un revêtement protecteur obtenue par mise en œuvre d'un procédé selon l'invention,
  • la figure 2 représente de manière schématique et partielle un dispositif expérimental pour la mise en œuvre d'un procédé selon l'invention,
  • la figure 3 représente de manière schématique un exemple de cycle de courant utilisable dans un traitement d'oxydation micro-arcs selon l'invention,
  • la figure 4 représente de manière schématique et partielle une variante de réalisation d'une contre-électrode utilisable dans le cadre d'un procédé selon l'invention,
  • la figure 5 est une photographie du résultat obtenu après traitement par un procédé selon l'invention d'une pièce comportant une matrice de niobium dans laquelle des inclusions de siliciures métalliques sont présentes, et
  • les figures 6A et 6B sont des observations en section par microscopie électronique à balayage du revêtement protecteur formé à la surface de la pièce de la figure 5.
Other characteristics and advantages of the invention will emerge from the following description of particular embodiments of the invention, given by way of non-limiting examples, with reference to the appended drawings, in which:
  • the figure 1 represents, schematically and partially, a section of a part coated with a protective coating obtained by implementing a method according to the invention,
  • the figure 2 schematically and partially represents an experimental device for the implementation of a method according to the invention,
  • the figure 3 schematically represents an example of a current cycle that can be used in a micro-arc oxidation treatment according to the invention,
  • the figure 4 schematically and partially represents an alternative embodiment of a counter-electrode that can be used in the context of a method according to the invention,
  • the figure 5 is a photograph of the result obtained after treatment by a method according to the invention of a part comprising a niobium matrix in which inclusions of metal silicides are present, and
  • the figures 6A and 6B are sectional observations by scanning electron microscopy of the protective coating formed on the surface of the part of the figure 5 .

Description détaillée de modes de réalisationDetailed description of embodiments

On a représenté, à la figure 1, une section d'une pièce 1 revêtue d'un revêtement protecteur. Un revêtement protecteur 3 est formé sur la surface externe S d'une pièce 2 comportant une matrice de niobium dans laquelle des inclusions de siliciures métalliques sont présentes.We have represented, at the figure 1 , a section of a part 1 coated with a protective coating. A protective coating 3 is formed on the outer surface S of a part 2 comprising a niobium matrix in which inclusions of metal silicides are present.

L'épaisseur e du revêtement 3 formé peut, par exemple, être comprise entre 20 µm et 150 µm.The thickness e of the coating 3 formed may, for example, be between 20 μm and 150 μm.

On a représenté à la figure 2 un dispositif expérimental pour la mise en œuvre d'un traitement d'oxydation micro-arcs utilisable dans le cadre de la présente invention. La pièce 2 est immergée dans un électrolyte 10 comportant des silicates. Une contre-électrode 6 est présente en regard de la pièce 2 et est elle aussi immergée dans l'électrolyte 10. Dans une variante non illustrée, des contre-électrodes sont présentes de part et d'autre de la pièce. La contre-électrode 6 peut, par exemple, être de forme cylindrique et, par exemple, être constituée d'un acier inoxydable 304L. La pièce 2 et la contre-électrode 6 sont reliées à un générateur 5 lequel les soumet à une succession de cycles de courant.We represented at the figure 2 an experimental device for implementing a micro-arc oxidation treatment which can be used within the framework of the present invention. Part 2 is immersed in an electrolyte 10 comprising silicates. A counter-electrode 6 is present opposite the part 2 and is also immersed in electrolyte 10. In a variant not shown, counter-electrodes are present on either side of the part. The counter electrode 6 can, for example, be cylindrical in shape and, for example, be made of 304L stainless steel. The part 2 and the counter-electrode 6 are connected to a generator 5 which subjects them to a succession of current cycles.

Lors de la mise en œuvre du procédé selon l'invention, une première couche d'oxyde se forme tout d'abord sur la surface externe S de la pièce 2 traitée. Un courant suffisant est appliqué afin d'atteindre le point de claquage diélectrique de la première couche d'oxyde initialement formée à la surface S de la pièce 2. Des arcs électriques sont alors générés et conduisent à la formation d'un plasma en surface S de la pièce 2 traitée. Le revêtement protecteur 3 est alors formé par conversion des éléments contenus dans la pièce 2 mais aussi par incorporation d'éléments contenus dans l'électrolyte 10. Le dispositif expérimental utilisé comporte, en outre, un système de refroidissement (non représenté) permettant de limiter l'échauffement de l'électrolyte durant le traitement d'oxydation micro-arcs.During the implementation of the method according to the invention, a first oxide layer is first formed on the external surface S of the part 2 treated. A sufficient current is applied in order to reach the dielectric breakdown point of the first oxide layer initially formed on the surface S of the part 2. Electric arcs are then generated and lead to the formation of a plasma on the surface S of part 2 treated. The protective coating 3 is then formed by converting the elements contained in the part 2 but also by incorporating elements contained in the electrolyte 10. The experimental device used further comprises a cooling system (not shown) making it possible to limit heating of the electrolyte during the micro-arc oxidation treatment.

On applique à la pièce 2 une succession de cycles de courant périodiques. La forme d'un des cycles de courant appliqué est fournie à la figure 3. Les paramètres sont donnés dans le tableau 1 figurant ci-dessous : Tableau 1 Ip : Intensité du courant traversant la pièce durant la phase de stabilisation positive T1 : durée de la phase de montée du courant positif T2 : durée de la phase de stabilisation positive In : Intensité du courant traversant la pièce durant la phase de stabilisation négative T3 : durée de la phase de descente du courant positif Qp : quantité de charge positive appliquée à la pièce durant le cycle de courant T4 : durée de la phase de stabilisation à courant nul T5 : durée de la phase de descente du courant négatif Qn : quantité de charge négative appliquée à la pièce durant le cycle de courant T6 : durée de la phase de stabilisation négative T : Période des cycles de courant T7 : durée de la phase de montée du courant négatif F : Fréquence des cycles de courant T8 : durée de la phase de stabilisation à courant nul A succession of periodic current cycles is applied to part 2. The form of one of the applied current cycles is supplied to the figure 3 . The parameters are given in Table 1 shown below: <u> Table 1 </u> I p : Intensity of the current flowing through the part during the positive stabilization phase T 1 : duration of the positive current rise phase T 2 : duration of the positive stabilization phase I n : Intensity of the current flowing through the part during the negative stabilization phase T 3 : duration of the decay phase of the positive current Q p : amount of positive charge applied to the part during the current cycle T 4 : duration of the stabilization phase at zero current T 5 : duration of the descent phase of the negative current Q n : amount of negative charge applied to the part during the current cycle T 6 : duration of the negative stabilization phase T: Period of current cycles T 7 : duration of the negative current rise phase F: Frequency of current cycles T 8 : duration of the stabilization phase at zero current

Comme illustré à la figure 3, chacun des cycles de courant appliqués peut comporter la succession suivante de phases :

  • phase de montée du courant positif, puis
  • phase de stabilisation positive, puis
  • phase de descente du courant positif, puis
  • éventuellement phase de stabilisation à courant nul, puis
  • phase de descente du courant négatif, puis
  • phase de stabilisation négative, puis
  • phase de montée du courant négatif.
As shown in figure 3 , each of the applied current cycles can comprise the following succession of phases:
  • positive current rise phase, then
  • positive stabilization phase, then
  • positive current fall phase, then
  • possibly zero current stabilization phase, then
  • negative current descent phase, then
  • negative stabilization phase, then
  • negative current rise phase.

La durée totale du cycle de courant correspond à la somme suivante : i = 1 7 T i ,

Figure imgb0001
c'est-à-dire à la durée séparant le début de la phase de montée du courant positif de la fin de la phase de montée du courant négatif. La fréquence des cycles de courant correspond quant à elle à la grandeur 1 i = 1 8 T i .
Figure imgb0002
The total duration of the current cycle corresponds to the following sum: i = 1 7 T i ,
Figure imgb0001
i.e. the time between the start of the positive current rise phase and the end of the current rise phase negative. The frequency of the current cycles corresponds to the magnitude 1 i = 1 8 T i .
Figure imgb0002

On a représenté à la figure 4 une variante de réalisation dans laquelle la contre-électrode 6 a une forme adaptée à celle de la pièce 2.We represented at the figure 4 an alternative embodiment in which the counter-electrode 6 has a shape adapted to that of the part 2.

La contre-électrode 6 peut, comme illustré, avoir une forme similaire à celle de la pièce 2 et épouser sa forme. La pièce et la contre-électrode peuvent encore être toutes les deux de forme cylindrique ou de forme plane.The counter-electrode 6 can, as illustrated, have a shape similar to that of the part 2 and match its shape. The part and the counter-electrode can also both be of cylindrical shape or of planar shape.

ExempleExample

Un substrat a été traité par un procédé selon l'invention. Le tableau 2 détaille ci-dessous les conditions opératoires (les temps sont exprimés en % de la durée totale du cycle de courant). Le cycle imposé comporte la même succession de phases que le cycle de courant représenté à la figure 3. Tableau 2 Paramètres électriques Composition de l'électrolyte avant le début du traitement d'oxydation micro-arcs Composition du substrat de base avant le début du traitement d'oxydation micro-arcs (%atomique) : alliage MASC (décrit dans US 5942055 ) I (A) = 11 NaOH = 0,4 g/L Nb = 47% R = In/Ip = 55% Na2SiO2,5H2O = 15g/L Ti = 25 % Fréquence = 100 Hz pH 12-13 Hf = 8 % Qp/Qn = 0,87 solvant = eau Cr = 2 % T1 =11% Al = 2 % T2 = 20 % Si = 16 % T3 = 2 % T4 = 1 % T5 = 3 % T6 = 61 % T7 = 2 % A substrate has been treated by a method according to the invention. Table 2 details the operating conditions below (the times are expressed in% of the total duration of the current cycle). The imposed cycle comprises the same succession of phases as the current cycle shown in figure 3 . <u> Table 2 </u> Electrical parameters Composition of the electrolyte before the start of the micro-arc oxidation treatment Composition of the base substrate before the start of the micro-arc oxidation treatment (atomic%): MASC alloy (described in US 5,942,055 ) I (A) = 11 NaOH = 0.4 g / L Nb = 47% R = I n / I p = 55% Na 2 SiO 2 , 5H 2 O = 15g / L Ti = 25% Frequency = 100 Hz pH 12-13 Hf = 8% Q p / Q n = 0.87 solvent = water Cr = 2% T1 = 11% Al = 2% T2 = 20% If = 16% T3 = 2% T4 = 1% T5 = 3% T6 = 61% T7 = 2%

Un régime d'autorégulation caractérisé par une extinction progressive des arcs électriques a été atteint après environ 30 minutes de traitement. L'échantillon a encore traité 5 minutes supplémentaires en régime d'autorégulation de manière à faire croître la couche d'oxyde formée et améliorer sa compacité.A self-regulatory regime characterized by a gradual extinction of the electric arcs was reached after about 30 minutes of treatment. The sample was further treated for a further 5 minutes in an autoregulation regime so as to grow the oxide layer formed and improve its compactness.

Ces conditions opératoires ont avantageusement permis de former un revêtement protecteur relativement dense d'épaisseur environ égale à 150 µm à la surface de l'éprouvette traitée.These operating conditions have advantageously made it possible to form a relatively dense protective coating with a thickness approximately equal to 150 μm on the surface of the treated specimen.

Après traitement, le barreau apparait parfaitement revêtu. Son aspect macroscopique est donné à la figure 5.After treatment, the bar appears perfectly coated. Its macroscopic aspect is given to the figure 5 .

La couche formée à la surface du substrat a été caractérisée par microscopie électronique à balayage (voir figures 6A et 6B). La couche formée s'avère d'un aspect uniforme sur l'ensemble de la circonférence du barreau et au niveau des deux zones analysées.The layer formed on the surface of the substrate was characterized by scanning electron microscopy (see figures 6A and 6B ). The layer formed turns out to be uniform in appearance over the entire circumference of the bar and at the level of the two areas analyzed.

Le revêtement formé par oxydation anodique micro-arcs est parfaitement adhérent.The coating formed by micro-arc anodic oxidation is perfectly adherent.

L'expression « comportant/contenant un(e) » doit se comprendre comme « comportant/contenant au moins un(e) ».The expression "comprising / containing one" should be understood as "comprising / containing at least one".

L'expression « compris(e) entre ... et ... » ou « allant de ... à ... » doit se comprendre comme incluant les bornes.The expression "between ... and ..." or "ranging from ... to ..." should be understood as including the limits.

Le revêtement formé par oxydation anodique micro-arcs est parfaitement adhérent.The coating formed by micro-arc anodic oxidation is perfectly adherent.

L'expression « comportant/contenant un(e) » doit se comprendre comme « comportant/contenant au moins un(e) ».The expression "comprising / containing one" should be understood as "comprising / containing at least one".

L'expression « compris(e) entre ... et ... » ou « allant de ... à ... » doit se comprendre comme incluant les bornes.The expression "between ... and ..." or "ranging from ... to ..." should be understood as including the limits.

Claims (8)

  1. A method of fabricating a part (1) coated with a protective coating, the method including the following step:
    • using micro-arc oxidation treatment to form a protective coating (3) on the outside surface (S) of a part (2), the part (2) comprising a niobium matrix having metallic silicide inclusions present therein, the current passing through the part (2) being controlled during the micro-arc oxidation treatment in order to subject the part (2) to a succession of current cycles, the ratio of (quantity of positive charge applied to the part)/(quantity of negative charge applied to the part) lying in the range 0.80 to 1.6 for each current cycle,
    wherein each current cycle includes:
    - a positive stabilization stage during which a constant positive current (Ip) passes through the part (2), the duration of the positive stabilization stage (T2) lying in the range 15% to 50% of the total duration of said cycle, and
    - a negative stabilization stage during which a constant negative current (In) passes through the part (2), the duration of the negative stabilization stage (T6) lying in the range 30% to 80% of the total duration of said cycle.
  2. A method according to claim 1, characterized in that the part (2) is present in an electrolyte (10), and in that prior to the beginning of the micro-arc oxidation treatment the electrolyte (10) includes a silicate.
  3. A method according to claim 1 or 2, characterized in that the part (2) is present in an electrolyte (10), and in that throughout all or part of the micro-arc oxidation treatment, the electrolyte (10) is maintained at a temperature less than or equal to 40°C.
  4. A method according to any one of claims 1 to 3, characterized in that the part (2) is present in an electrolyte (10), and in that during the micro-arc oxidation treatment, the current passes through the part (2) and through a counter-electrode (6) present in the electrolyte (10), the counter-electrode (6) having the same shape as the part (2).
  5. A method according to any one of claims 1 to 4, characterized in that the duration during which the part (2) is subjected to micro-arc oxidation treatment is greater than or equal to 10 minutes.
  6. A method according to any one of claims 1 to 5, characterized in that the part (2) is subjected to a micro-arc oxidation treatment enabling self-regulation conditions to be achieved, said self-regulation conditions then being maintained for a duration lying in the range 3 minutes to 10 minutes.
  7. A method according to any one of claims 1 to 6, characterized in that, for all or part of the current cycles, the ratio (quantity of positive charge applied to the part)/(quantity of negative charge applied to the part) lies in the range 0.8 to 0.9.
  8. A method according to any one of claims 1 to 7, characterized in that the part (2) is initially subjected to a succession of current cycles for which the ratio (quantity of positive charge applied to the part)/(quantity of negative charge applied to the part) lies in the range 0.9 to 1.6, the part subsequently being subjected to a succession of current cycles for which the ratio (quantity of positive charge applied to the part)/(quantity of negative charge applied to the part) lies in the range 0.8 to 0.9.
EP14821803.5A 2013-12-16 2014-12-08 Method for manufacturing a part coated with a protective coating Active EP3084046B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1362707A FR3014912B1 (en) 2013-12-16 2013-12-16 PROCESS FOR MANUFACTURING A COVERED PART WITH A PROTECTIVE COATING
PCT/FR2014/053206 WO2015092205A1 (en) 2013-12-16 2014-12-08 Method for manufacturing a part coated with a protective coating

Publications (2)

Publication Number Publication Date
EP3084046A1 EP3084046A1 (en) 2016-10-26
EP3084046B1 true EP3084046B1 (en) 2020-07-22

Family

ID=50489233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14821803.5A Active EP3084046B1 (en) 2013-12-16 2014-12-08 Method for manufacturing a part coated with a protective coating

Country Status (7)

Country Link
US (1) US10233558B2 (en)
EP (1) EP3084046B1 (en)
JP (1) JP6509869B2 (en)
CN (1) CN105829584B (en)
CA (1) CA2933952C (en)
FR (1) FR3014912B1 (en)
WO (1) WO2015092205A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3359711A1 (en) * 2015-12-16 2018-08-15 Henkel AG & Co. KGaA Method for deposition of titanium-based protective coatings on aluminum
FR3110605B1 (en) 2020-05-20 2023-06-30 Lag2M METHOD AND INSTALLATION FOR THE TREATMENT OF METAL PARTS BY MICRO-ARC OXIDATION
FR3111146A1 (en) 2021-06-03 2021-12-10 Lag2M PLANT FOR TREATMENT OF METAL PARTS BY MICRO-ARC OXIDATION

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956080A (en) * 1973-03-01 1976-05-11 D & M Technologies Coated valve metal article formed by spark anodizing
US5720866A (en) * 1996-06-14 1998-02-24 Ara Coating, Inc. Method for forming coatings by electrolyte discharge and coatings formed thereby
AT1669U1 (en) * 1996-11-22 1997-09-25 Plansee Ag OXIDATION PROTECTIVE LAYER FOR REFRACTIVE METALS
ATE541962T1 (en) * 1999-08-17 2012-02-15 Isle Coat Ltd MULTIFUNCTIONAL LIGHT METAL-BASED COMPOSITE PROTECTIVE COATING
JP3321600B2 (en) 1999-11-25 2002-09-03 独立行政法人産業技術総合研究所 High oxidation resistance Nb-Al-Si based intermetallic compound
JP2001226734A (en) 2000-02-15 2001-08-21 Chokoon Zairyo Kenkyusho:Kk Niobium base composite material and its producing method
US20060016690A1 (en) * 2004-07-23 2006-01-26 Ilya Ostrovsky Method for producing a hard coating with high corrosion resistance on articles made anodizable metals or alloys
FR2877018B1 (en) * 2004-10-25 2007-09-21 Snecma Moteurs Sa MICRO ARC OXIDATION PROCESS FOR MAKING A COATING ON A METALLIC SUBSTRATE, AND USE THEREOF
KR100872679B1 (en) * 2004-11-05 2008-12-10 니혼 파커라이징 가부시키가이샤 Method for electrolytically depositing a ceramic coating on a metal, electrolyte for such electrolytic ceramic coating method, and metal member
DE102006017820A1 (en) * 2006-04-13 2007-10-18 General Electric Co. Heat stable composition containing Nb and Si in which the Si content is less than 9 atom.% and containing at least one element selected from Tim Hf, Cr and Al useful in gas turbine technology
CN101605929B (en) * 2006-09-27 2011-11-09 Zypro株式会社 Ceramic coated metal material and production method thereof
EP2371996B1 (en) * 2008-12-26 2016-03-09 Nihon Parkerizing Co., Ltd. Method of electrolytic ceramic coating for metal, electrolysis solution for electrolytic ceramic coating for metal, and metallic material
EA201390824A1 (en) * 2011-02-08 2014-02-28 Кембридж Нанотерм Лимитед ISOLATED METAL SUBSTRATE
CN102877104A (en) * 2012-10-09 2013-01-16 西南石油大学 Low-voltage rapid micro-arc oxidation technique
CN103233257B (en) * 2013-03-27 2015-05-27 西南石油大学 Metal oxide doped micro-arc oxidation film preparation technology

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3084046A1 (en) 2016-10-26
WO2015092205A1 (en) 2015-06-25
JP6509869B2 (en) 2019-05-08
CN105829584A (en) 2016-08-03
CN105829584B (en) 2019-11-05
JP2016540894A (en) 2016-12-28
FR3014912B1 (en) 2016-01-01
FR3014912A1 (en) 2015-06-19
CA2933952C (en) 2022-02-22
US10233558B2 (en) 2019-03-19
CA2933952A1 (en) 2015-06-25
US20170002476A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
WO2016042262A1 (en) Composite nuclear fuel cladding, production method thereof and uses of same against oxidation/hydriding
EP3084046B1 (en) Method for manufacturing a part coated with a protective coating
FR2989923A1 (en) MULTILAYER MATERIAL RESISTANT TO OXIDATION IN NUCLEAR MEDIA.
EP3277855B1 (en) Cermet electrode material
EP3377680B1 (en) Aircraft engine part comprising an erosion protective coating and process for manufacturing such a part
EP3469111B1 (en) Process for manufacturing a part made of nickel-based superalloy containing hafnium
FR2593114A1 (en) LAMINATED COMPOSITE MATERIAL WITH A DIFFUSION STOP LAYER, ESPECIALLY FOR SLIP AND FRICTION ELEMENTS, AND METHOD FOR MANUFACTURING SAME
FR3030577B1 (en) INTERMETALLIC ALLOY BASED ON TITANIUM
EP3320287B1 (en) Method for heat treating a preform made of titanium alloy powder
EP3227468B1 (en) Method for manufacturing a part coated with a protective coating
EP3287857B1 (en) Method for obtaining a zirconia item having a metallic appearance
CH515622A (en) High-temp solid electrolyte fuel cell - with composite electrode/elec
EP3109339B1 (en) Method for treating a workpiece made of tantalum or a tantalum alloy
FR2974659A1 (en) THERMAL CONDUCTOR WITH LOW TEMPERATURE
EP0885980B1 (en) Process for forming a superficial layer having a high hardness by plasma-free thermochemical treatment
FR3031989A1 (en) METHOD FOR PROCESSING A WORKPIECE AND PART COMPRISING A COATING
WO2019058068A1 (en) Turbine part made of superalloy comprising rhenium and/or ruthenium and associated manufacturing method
EP3559321B1 (en) Chemical wall-treatment method that reduces the formation of coke
WO2023161576A1 (en) Alloy powder, method for manufacturing a part based on this alloy, and part thus obtained
FR3113254A1 (en) Protection against oxidation or corrosion of a hollow superalloy part
WO2023161577A1 (en) Alloy powder, method for manufacturing a part based on said alloy and resulting part
OA18425A (en) Electrode cermet material.
FR2994022A1 (en) METHOD FOR CONTRACTING SEMICONDUCTOR MATERIAL WITH CONTACT LAYER AND SEMICONDUCTOR COMPONENT OBTAINED
FR2974658A1 (en) WIRING MATERIAL FOR SUPERCONDUCTING MAGNET

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180322

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014068082

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1293469

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1293469

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014068082

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

26N No opposition filed

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201208

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231121

Year of fee payment: 10

Ref country code: FR

Payment date: 20231122

Year of fee payment: 10

Ref country code: DE

Payment date: 20231121

Year of fee payment: 10