EP3080829B1 - Elektrische schaltvorrichtung mit transduktorschaltung und elektronischer wechselstromauslöseschaltung - Google Patents

Elektrische schaltvorrichtung mit transduktorschaltung und elektronischer wechselstromauslöseschaltung Download PDF

Info

Publication number
EP3080829B1
EP3080829B1 EP14792976.4A EP14792976A EP3080829B1 EP 3080829 B1 EP3080829 B1 EP 3080829B1 EP 14792976 A EP14792976 A EP 14792976A EP 3080829 B1 EP3080829 B1 EP 3080829B1
Authority
EP
European Patent Office
Prior art keywords
circuit
current
transformer
switching apparatus
electrical switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14792976.4A
Other languages
English (en)
French (fr)
Other versions
EP3080829A1 (de
Inventor
Xin Zhou
Harry J. Carlino
Brian S. Caffro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Corp
Original Assignee
Eaton Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/100,214 external-priority patent/US9025298B2/en
Application filed by Eaton Corp filed Critical Eaton Corp
Publication of EP3080829A1 publication Critical patent/EP3080829A1/de
Application granted granted Critical
Publication of EP3080829B1 publication Critical patent/EP3080829B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/08Terminals; Connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/123Automatic release mechanisms with or without manual release using a solid-state trip unit

Definitions

  • the disclosed concept pertains generally to electrical switching apparatus and, more particularly, to circuit breakers including a plurality of separable contacts.
  • Circuit breakers have been used in alternating current (AC) applications and direct current (DC) applications.
  • the applications for DC circuit breakers have been very small.
  • DC molded case circuit breakers have used mechanical thermal and magnetic trip units for overload and short circuit protection, while some DC air circuit breakers employ electronic trip units.
  • Magnetic trip units instantaneously trip the circuit breaker when the current in the protected circuit exceeds a predetermined level.
  • magnetic trip units are difficult to calibrate and are not as accurate as electronic trip units.
  • Thermal trip units are less susceptible to nuisance tripping, but take a longer amount of time to trip the circuit breaker, and are susceptible to ambient thermal conditions causing accuracy problems. Because of these problems thermal and magnetic trip units are not typically used in the larger size and higher current rated circuit breakers in AC applications, but rather, AC electronic trip units, which use a current transformer to sense the AC current, are used.
  • DC circuit breakers such as DC air circuit breakers have used a DC electronic trip unit in combination with a shunt to sense the DC current in the protected circuit.
  • the DC electronic trip unit provides enhanced control and tripping accuracy of the circuit breaker over thermal and magnetic trip units.
  • DC circuit breakers which include a DC electronic trip unit are costly as compared to the high volume and readily available AC electronic trip units.
  • the short circuit current level can be relatively low (e.g., less than 200% of the rated current and usually about 125% to 135% of the rated current). Due to the relatively low short circuit current level, DC circuit breakers which use thermal and magnetic trip units are typically not desirable because it is difficult to set the magnetic trip unit precisely at these low levels and could cause excessive nuisance tripping and the thermal trip unit may not offer adequate protection due to the long time it takes to trip the circuit breaker. While a DC circuit breaker which uses a DC electronic trip unit can offer suitable circuit protection in photovoltaic applications, the cost of the DC circuit breaker with a DC electronic trip unit is a concern.
  • EP 2 461 345 A1 shows an electrical switching apparatus including at least one pole, a plurality of first terminals, a plurality of second terminals, a plurality of pairs of separable contacts, and a plurality of field-configurable jumpers.
  • Each of the plurality of field-configurable jumpers electrically connects two of the pairs of separable contacts in series.
  • Each of the plurality of field-configurable jumpers are electrically connected to: two of the first terminals; two of the first terminals or two of the second terminals; or one of the first terminals and one of the second terminals.
  • an electrical switching apparatus having an electronic trip circuit includes a transductor circuit and an alternating current electronic trip circuit used for direct current applications.
  • an electrical switching apparatus as set forth in claim 1 is provided. Further embodiments are inter alia disclosed in the dependent claims.
  • the electrical switching apparatus comprises: a plurality of first terminals including two input terminals structured to electrically connect to a direct current power source; a plurality of second terminals including two output terminals structured to electrically connect to a direct current load; a plurality of pairs of separable contacts; a plurality of conductors that electrically connect each pair of separable contacts between one of the first terminals and one of the second terminals; a transductor circuit that senses a direct current between at least one of the input terminals and at least one of the output terminals and outputs an alternating current proportional to the direct current; and an alternating current electronic trip circuit structured to control the plurality of pairs of separable contacts to separate based on the alternating current output from the transductor circuit, the alternating current electronic trip circuit including a rectifier circuit having a rectifier circuit input and a rectifier circuit output, the rectifier
  • number shall mean one or an integer greater than one (i.e., a plurality).
  • electrical conductor shall mean a wire (e.g., without limitation, solid; stranded; insulted; non-insulated), a copper conductor, an aluminum conductor, a suitable metal conductor, or other suitable material or object that permits an electric current to flow easily.
  • processor shall mean a programmable analog and/or digital device that can store, retrieve, and process data; a computer; a workstation; a personal computer; a controlled; a digital signal processor; a microprocessor; a microcontroller; a microcomputer; a central processing unit; a mainframe computer; a mini-computer; a server; a networked processor; or any suitable processing device or apparatus.
  • Figure 1 is a circuit diagram of an electrical switching apparatus I which can be, for example and without limitation, a circuit breaker.
  • the electrical switching apparatus 1 is electrically connected to a protected circuit 300 (shown in phantom line drawings).
  • the protected circuit 300 includes a DC power source 302 and a DC load 304.
  • the electrical switching apparatus 1 includes one or more pairs of separable contacts 406.
  • the electrical switching apparatus 1 also includes an operating mechanism 414 that opens and closes the one or more pairs of separable contacts 406 and a trip actuator 416 that cooperates with the operating mechanism 414 to trip open the one or more pairs of separable contacts 406.
  • the electrical switching apparatus 1 senses a DC current in the protected circuit 300, and based on the sensed DC current, separates the one or more pairs of separable contacts 406 to interrupt the protected circuit 300.
  • the electrical switching apparatus 1 includes a transductor circuit 100 which is inductively coupled with the protected circuit 300.
  • the transductor circuit 100 outputs an AC current which is proportional to the DC current flowing in the protected circuit 300.
  • the AC current output by the transductor circuit 100 can be used to determine a level of the DC current in the protected circuit 300.
  • the electrical switching apparatus 1 also includes an AC electronic trip circuit 200.
  • the AC electronic trip circuit 200 is electrically connected to the transductor circuit 100 and receives the AC current output by the transductor circuit 100.
  • the AC electronic trip circuit 200 determines a level of the Current in the protected circuit 300 based on the AC current received from the transductor circuit 100.
  • the AC electronic trip circuit 200 controls the one or more pairs of separable contacts 406 to separate.
  • the AC electronic trip circuit 200 provides enhanced control of tripping of the electrical switching apparatus 1 over known prior circuit breakers which use mechanical thermal and magnetic trip units.
  • the AC electronic trip circuit 200 is economical to produce, as similar components can be used for both AC and DC protected circuit applications.
  • the transductor circuit 100 includes a first current transformer 110 and a second current transformer 120.
  • the first current transformer 110 and the second current transformer 120 include respective secondary windings 114 and 124 which are inductively coupled with the protected circuit 300.
  • the first current transformer 110 and the second current transformer 120 are electrically connected in series opposition with each other such that an electromotive force induced in the first current transformer 110 by the DC current in the protected circuit 300 is opposed to an electromotive force induced in the second current transformer 120 by the DC current in the protected circuit 300.
  • This arrangement electrically neutralizes the transformer effect.
  • the transductor circuit can also be designed in a fashion that it magnetically neutralizes the transformer effect.
  • the transductor circuit 100 also includes a power source which provides an AC voltage to the secondary findings of the first and second AC current transformers 110, 120.
  • the power source includes an AC power source 104 and a third transformer 102 to isolate the AC power source 104 from the first and second AC current transformers 110, 120, Arranging the AC current transformers 110, 120 in series opposition with each other and providing the AC power source 104 causes the transductor circuit 100 to output an AC current which is proportional to the DC current in the protected circuit 300. It is contemplated that any suitable power source may be employed to provide the AC voltage to the secondary windings of the first and second AC current transformers 110, 120.
  • the third transformer 102 is omitted from the power source and the AC power source 104 is electrically connected to the secondary winding of the first AC current transformer 110.
  • the power source includes a DC/AC inverter 127 which is electrically connected to the secondary winding of the first AC current transformer 110 and converts a DC voltage generated by a second DC power source 128 into an AC voltage.
  • the secondary windings 114 and 124 of the current transformers 110, 120 have first ends 112 and 122 and second ends 116 and 126, respectively.
  • the first end 112 of the first current transformer 110 is electrically connected to the third transformer 102.
  • the second end 116 of the first current transformer 110 is electrically connected to the second end 126 of the second current transformer 120.
  • the first end 122 of the second current transformer 120 is electrically connected to the AC electronic trip circuit 200.
  • the electrical connection between the first current transformer 110 and the second transformer 120 is changed such that the second end 116 of the first current transformer 110 is electrically connected to the first end 122 of the second current transformer 120 and the second end 126 of the second current transformer 120 is electrically connected to the AC electronic trip circuit 200.
  • the first current transformer 110 and the second current transformer 120 are electrically connected in series opposition with each other with respect to the electromotive forces induced by the DC current in the protected circuit 300.
  • FIG. 2 examples of different configurations of the electrical switching apparatus 1 are shown.
  • the conductive path includes first terminals 402, second terminals 404, pairs of separable contacts 406, jumpers 408, and conductors 410.
  • Two of the first terminals 402 are input terminals which are configured to electrically connect to the DC power source 302.
  • Two of the second terminals 404 are output terminals which are structured to electrically connect to the DC load 304.
  • the first terminals 402, second terminals 404, pairs of separable contacts 406, jumpers 408, and conductors 410 are connected in series to complete a circuit between the DC power source 302 and DC load 304.
  • the first current transformer 110 and the second current transformer 120 are inductively coupled to at least one of the conductors 410. While Figures 2 and 3 show two examples placements of the first current transformer 110 and the second current transformer 120, the disclosed concept is not limited to those example placements.
  • the first current transformer 110 and the second current transformer 120 may be placed at a suitable location in order to inductively couple to any of the conductors 410.
  • the jumpers 408 are each connected between one of the first terminals 402 and one of the second terminals 404.
  • the configuration of jumpers 408 shown in the example of Figure 2 is generally suitable for a potentially ungrounded load where the DC load 304 is not electrically connected to a ground 412.
  • the jumpers 408 are each connected between two of the first terminals 402 or two of the second terminals 404.
  • the configuration of jumpers 408 shown in the example of Figure 3 is generally suitable for a potentially grounded load where the DC load 304 is electrically connected to a ground 412.
  • the change in configuration of the jumpers 408 between the examples shown in Figures 2 and 3 changes the direction of the electromotive force induced in one of the current transformers 110, 120.
  • the electrical connection between the first current transformer 110 and the second current transformer 120 should also be changed to keep the first current transformer 110 and the second current transformer 120 electrically connected in series opposition so that it neutralizes the transformer effect.
  • configuration plugs 500 and 500' are included in the electrical switching apparatus 1.
  • the configuration plug 500 electrically connects the secondary windings of the first current transformer 110 and the second current transformer 120 in the same manner as shown in Figure 1 .
  • the configuration plug 500' electrically connects the second end 116 of the first current transformer 110 with the first end 122 of the second current transformer 120 and the second end 126 of the second current transformer 120 with the AC electronic trip circuit 200.
  • the configuration plugs 500 and 500' can form a configuration plug set where the configuration plugs 500 and 500' respectively correspond to a different configuration of the electrical switching apparatus 1.
  • the first configuration plug 500 can be used in conjunction with the example configuration of the electrical switching apparatus 1 shown in Figure 2
  • the second configuration plug 500' can be used in conjunction with the example configuration of the electrical switching apparatus 1 shown in Figure 3 .
  • the configuration plugs 500 and 500' can each include resistors 501.
  • a resistance value of the resistors 501 can be selected to correspond to a rating of the electrical switching apparatus 1 so that the voltage drop across the resistors at the rated DC current stays at a constant value,
  • the configuration plug set can include different configuration plugs which correspond to electrical connections between the first current transformer 110 and the second current transformer 120, and also can correspond to different ratings of the electrical switching apparatus 1.
  • the electrical switching apparatus 1 is configured for use with the potentially ungrounded direct current load 304.
  • the AC electronic trip circuit 200 includes first, second, and third rectifier circuits 202,204,206, first, second, and third interface circuits 208,210,212, a trip threshold setting circuit 214, and a processor 216.
  • the first rectifier circuit 202 includes a first rectifier circuit input 218 and a first rectifier circuit output 220.
  • the first rectifier circuit input 218 is electrically connected to the tranductor circuit 100 and is structured to receive the alternating current output from the transductor circuit 100.
  • the first rectifier circuit 202 rectifies the alternating current and outputs the rectified alternating current to the first rectifier circuit output 220.
  • the first interface circuit 208 includes a first interface circuit input 222 and a first interface circuit output 224.
  • the first interface circuit input 222 is electrically connected to the first rectifier circuit output 220 and is structured to receive the rectified alternating current.
  • the first interface circuit input 222 is also electrically connected to the trip threshold setting circuit 214.
  • the trip threshold setting circuit 214 is structured to set a threshold at which the processor 216 controls the trip actuator 416 to cause the operating mechanism 414 to separate and open the separable contacts 406.
  • the first interface circuit output 224 is electrically connected to a first processor input 226 of the processor 216.
  • the processor 216 is structured to monitor the first processor input 226 and to determine whether a trip condition (e.g., without limitation, an over current condition) exists. When the processor 216 determines that a trip condition exists, it outputs a control signal to the trip actuator 416 to control the trip actuator 416 to cause the operating mechanism 414 to separate and open the separable contacts 406.
  • a trip condition e.g., without limitation, an over current condition
  • the second and third rectifier circuits 204,206 are structured similar to the first rectifier circuit 202 and the second and third interface circuits 210,212 are structured similar to the first interface circuit 208.
  • each of the first, second, and third rectifier circuits 202,204,206 correspond to one of the phases.
  • the output of the transductor circuit 100 only needs to electrically connect to one of the first, second, and third rectifier circuits 202,204,206 and the others are not used.
  • the electrical switching apparatus 1 has a configuration that is generally suitable for a potentially grounded load where the DC load 304 is electrically connected to a ground 412.
  • FIG 10 is a circuit diagram of the AC electronic trip circuit 200 in accordance with an example embodiment of the disclosed concept.
  • the first rectifier circuit includes a full-wave rectifier 228.
  • the first interface circuit 208 includes a resistor R1 electrically connected between the first interface input 222 and the first interface output 224. Changing the value of the resistor R1 changes the magnitude of the current at the first processor input 226.
  • the processor 216 can be programmed based on receiving a predetermined level of current at the first processor input 226 when a rated current flows through the protected circuit. Generally, the processor 216 will be programmed based on an AC application. That is, the processor 216 will be programmed based on receiving a current having a first value at the first processor input 226 when a rated AC current flows through the protected circuit.
  • the output of the transductor circuit 100 when a rated DC current flows through the protected circuit will be different than the output of the current transformers used in an AC application.
  • the value of the resistor R1 can be selected in order that the current at the first processor input 226 is substantially the same as the first value when a rated DC current flows through the power circuit. In one example embodiment, the value of the resistor R1 is about 6.3 k ⁇ .
  • the second and third rectifier circuits 204,206 also include full-wave rectifiers 230,232 similar to the full-wave rectifier 228 in the first rectifier circuit 202.
  • the second and third interface circuits 210,212 also include resistors R2,R3 similar to the resistor R1 in the first interface circuit 208. While the second and third rectifier circuits 204,206 and the second and third interface circuits 210,212 are not used in the disclosed electrical switching apparatus 1, it will be appreciated by those having ordinary skill in the art that the output of the transductor circuit 100 may be electrically connected to any one of the first, second, or third rectifier circuits 202,204,206.
  • the trip threshold setting circuit 214 includes a zener diode D1.
  • the override threshold for instantaneous trip is based on the breakdown voltage of the zener diode.
  • the zener diode has a breakdown voltage of about 2.7 V.
  • Figure 11 shows an example plot of the effects of changing the AC voltage provided to the secondary windings of the first and second AC current transformers 110,120 (also referred to as the AC excitation voltage) for a 250 A rated electrical switching apparatus.
  • the horizontal axis of the plot corresponds to the actual direct current flowing through the protected circuit and the vertical axis or the plot corresponds to the current that the processor 216 senses flowing through the protected circuit.
  • the actual and sensed current would be the same.
  • Experimentation and/or simulation may be used to determine an acceptable AC excitation voltage or range of excitation voltages for a particular application.
  • the AC excitation voltage is within a range of about 121.5 V RMS to about 148.5 V RMS .
  • the AC excitation voltage is within a range of about 288 V RMS to about 352 V RMS .
  • the AC excitation voltage is within a range of about ⁇ 10% of a predetermined value (e.g., without limitation, 135 V RMS ; 320 V RMS ).
  • the disclosed electrical switching apparatus 1 includes a suitable circuit interrupter mechanism, such as the separable contacts 406 that are opened and closed by the disclosed operating mechanism 414, although the disclosed concept is applicable to a wide range of circuit interruption mechanisms (e.g., without limitation, solid state switches like FET or IGBT devices; contractor contacts) and/or solid state based control protection devices (e.g., without limitation, drives; soft-starters; DC/DC converters) and/or operating mechanisms (e.g., without limitation, electrical, electro-mechanical, or mechanical mechanisms).
  • circuit interruption mechanisms e.g., without limitation, solid state switches like FET or IGBT devices; contractor contacts
  • solid state based control protection devices e.g., without limitation, drives; soft-starters; DC/DC converters
  • operating mechanisms e.g., without limitation, electrical, electro-mechanical, or mechanical mechanisms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Claims (14)

  1. Elektrische Schaltvorrichtung (1), die Folgendes aufweist:
    eine Vielzahl von ersten Anschlüssen (402), die zwei Eingangsanschlüsse aufweisen, die so strukturiert sind, dass sie elektrisch mit einer Gleichstromleistungsquelle (302) verbunden sind;
    eine Vielzahl von zweiten Anschlüssen (404), die zwei Ausgangsanschlüsse aufweisen, die so strukturiert sind, dass sie elektrisch mit einer Gleichstromlast (304) verbunden sind;
    eine Vielzahl von Paaren von trennbaren Kontakten (406);
    einen Betätigungsmechanismus (414), der konfiguriert ist, um die trennbaren Kontakte (406) zu öffnen und zu schließen;
    eine Auslösebetätigungsvorrichtung (416), die konfiguriert ist, um mit dem Betätigungsmechanismus (414) zusammenzuarbeiten, um die trennbaren Kontakte (406) durch Auslösen zu öffnen;
    eine Vielzahl von Leitern (410), die elektrisch jedes Paar von trennbaren Kontakten (406) zwischen einem der ersten Anschlüsse (402) und einem der zweiten Anschlüssen (404) anschließen;
    eine Transduktor- bzw. Wandlerschaltung (100), die einen Gleichstrom zwischen mindestens einem der Eingangsanschlüsse und mindestens einem der Ausgangsanschlüsse abfühlt und einen Wechselstrom proportional zu dem Gleichstrom ausgibt; und
    eine elektronische Wechselstromauslöseschaltung (200), die so strukturiert ist, dass sie die Vielzahl von Paaren von trennbaren Kontakten (406) beim Trennen steuert, und zwar basierend auf dem Wechselstrom, der aus der Wandlerschaltung (100) ausgegeben wird, wobei die elektronische Wechselstromauslöseschaltung (200) eine Gleichrichterschaltung (218) mit einem Gleichrichterschaltungseingang (218) und einem Gleichrichterschaltungsausgang (220) aufweist, wobei der Gleichrichterschaltungseingang (220) elektrisch mit der Wandlerschaltung (100) verbunden ist, weiter eine Schnittstellenschaltung (208) mit einem Schnittstellenschaltungseingang (222) und einem Schnittstellenschaltungsausgang (224), wobei der Schnittstellenschaltungseingang (222) elektrisch mit dem Gleichrichterschaltungsausgang (220) verbunden ist, und einen Prozessor (216) mit einem Prozessoreingang (226), der elektrisch mit dem Schnittstellenschaltungsausgang (222) verbunden ist, wobei der Prozessor (226) so strukturiert ist, dass er ein Steuersignal zur Steuerung der Auslösebetätigungsvorrichtung (416) ausgibt, um zu bewirken, dass der Betätigungsmechanismus (414) die Vielzahl von Paaren von trennbaren Kontakten (406) trennt und öffnet,
    wobei die Vielzahl von Leitern (410) einen ersten Leiter und einen zweiten Leiter aufweist; wobei die Wandlerschaltung (100) einen ersten Stromtransformator (110) mit einer Sekundärwicklung (114) aufweist, die induktiv mit dem ersten Leiter gekoppelt ist, einen zweiten Stromtransformator (120) mit einer Sekundärwicklung (124), die induktiv mit dem zweiten Leiter gekoppelt ist, und eine Wechselstromleistungsschaltung (102, 104; 127, 128), die konfiguriert ist, um eine Wechselspannung an den ersten Stromtransformator (110) und den zweiten Stromtransformator (120) zu liefern; und
    wobei die Sekundärwicklungen (114; 124) des ersten Stromtransformators (110) und des zweiten Stromtransformators (120) elektrisch in gegenüberliegender Reihe verbunden sind, so dass eine elektromotorische Kraft, die in der Sekundärwicklung (114) des ersten Stromtransformators (110) durch den Gleichstrom induziert wird, entgegengesetzt zu einer elektromotorische Kraft ist, die in der Sekundärwicklung (124) des zweiten Stromtransformators (120) durch den Gleichstrom induziert wird.
  2. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Gleichrichterschaltung einen Vollwellengleichrichter bzw. Brückengleichrichter (228) aufweist.
  3. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Schnittstellenschaltung (208) einen Widerstand aufweist, der elektrisch zwischen dem Schnittstellenschaltungseingang (222) und dem Schnittstellenschaltungsausgang (224) angeschlossen ist; und wobei der Widerstand einen vorbestimmten Wert hat.
  4. Elektrische Schaltvorrichtung (1) nach Anspruch 3, wobei der Prozessor (216) basierend auf einem Empfang eines Stroms mit einem ersten Wert an dem Prozessoreingang (226) programmiert wird, wenn ein Nennstrom durch die Vielzahl von Leitern (410) fließt; und wobei der vorbestimmte Wert des Widerstandes so ausgewählt wird, dass der am Prozessoreingang (226) empfangene Strom im Wesentlichen den ersten Wert hat.
  5. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die elektronische Wechselstromauslöseschaltung (200) weiter eine Auslöseschwelleneinstellschaltung (214) aufweist, die strukturiert ist, um eine Override- bzw. Übersteuerungsschwelle einzustellen, bei der der Prozessor (216) die Auslösebetätigungsvorrichtung (416) steuert, um zu bewirken, dass der Betätigungsmechanismus (414) sofort die trennbaren Kontakte (406) trennt.
  6. Elektrische Schaltvorrichtung (1) nach Anspruch 5, wobei die Auslöseschwelleneinstellschaltung (214) eine Zener-Diode aufweist; und wobei die Übersteuerungsschwelle auf einer Durchbruchsspannung der Zener-Diode basiert.
  7. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Wechselspannung innerhalb eines Bereiches von ungefähr 121,5 VRMS bis ungefähr 148,5 VRMS ist.
  8. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Wechselspannung innerhalb eines Bereiches von ungefähr 288 VRMS bis ungefähr 352 VRMS ist.
  9. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Wechselstromleistungsschaltung (102, 104) eine Wechselstromleistungsquelle (104) und einen dritten Transformator (102) aufweist; und wobei die Wechselstromleistungsquelle (104) konfiguriert ist, um die wechselnde Spannung zu dem ersten Stromtransformator (110) und dem zweiten Stromtransformator (120) über den dritten Transformator (102) zu liefern.
  10. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Wechselstromleistungsschaltung (127, 128) einen Gleichstrom/Wechselstrom-Inverter (127) und eine zweite Gleichstromleistungsquelle (128) aufweist; und wobei der Gleichstrom/Wechselstrom-Inverter (127) eine Gleichstromspannung, die durch die zweite Gleichstromleistungsquelle (128) erzeugt wird, in die Wechselspannung umwandelt.
  11. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Sekundärwicklungen (114, 124) von sowohl dem ersten Stromtransformator (110) als auch dem zweiten Transformator (120) ein erstes Ende (112, 122) und ein zweites Ende (116, 126) aufweisen; wobei das erste Ende (112) des ersten Stromtransformators (110) elektrisch mit dem dritten Transformator verbunden ist; wobei das zweite Ende (116) des ersten Transformators (110) elektrisch mit den zweiten Ende (126) des zweiten Transformators (120) verbunden ist; und wobei das erste Ende (122) des zweiten Transformators (120) elektrisch mit der elektronischen Wechselstromauslöseschaltung (200) verbunden ist.
  12. Elektrische Schaltvorrichtung (1) nach Anspruch 11, wobei die Gleichstromlast bezüglich des Potenzials nicht geerdet ist.
  13. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Sekundärwicklungen (114, 124) von sowohl dem ersten Stromtransformator (110) als auch dem zweiten Transformator (120) ein erstes Ende (112, 122) und ein zweites Ende (116, 126) aufweisen; wobei das erste Ende (112) des ersten Stromtransformators (110) elektrisch mit dem dritten Transformator verbunden ist; wobei das zweite Ende (116) des ersten Transformators (110) elektrisch mit dem ersten Ende (122) des zweiten Transformators (120) verbunden ist; und wobei das zweite Ende (126) des zweiten Transformators (120) elektrisch mit der elektronischen Wechselstromauslöseschaltung (200) verbunden ist.
  14. Elektrische Schaltvorrichtung (1) nach Anspruch 14, wobei die Gleichstromlast bezüglich des Potenzials geerdet ist.
EP14792976.4A 2013-12-09 2014-10-23 Elektrische schaltvorrichtung mit transduktorschaltung und elektronischer wechselstromauslöseschaltung Not-in-force EP3080829B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/100,214 US9025298B2 (en) 2012-10-22 2013-12-09 Electrical switching apparatus including transductor circuit and alternating current electronic trip circuit
PCT/US2014/061857 WO2015088654A1 (en) 2013-12-09 2014-10-23 Electrical switching apparatus including transductor circuit and alternating current electronic trip circuit

Publications (2)

Publication Number Publication Date
EP3080829A1 EP3080829A1 (de) 2016-10-19
EP3080829B1 true EP3080829B1 (de) 2017-08-16

Family

ID=51845556

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14792976.4A Not-in-force EP3080829B1 (de) 2013-12-09 2014-10-23 Elektrische schaltvorrichtung mit transduktorschaltung und elektronischer wechselstromauslöseschaltung

Country Status (2)

Country Link
EP (1) EP3080829B1 (de)
WO (1) WO2015088654A1 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB883660A (en) * 1957-04-16 1961-12-06 English Electric Co Ltd Improvements in and relating to electrical protective relay systems
US3475620A (en) * 1967-12-29 1969-10-28 Atomic Energy Commission Heavy current arcing switch
US4743875A (en) * 1986-07-22 1988-05-10 Westinghouse Electric Corp. Circuit breaker having a direct current measuring shunt
CA1293022C (en) * 1989-03-06 1991-12-10 Christopher Gerald Walker Test device for circuit breakers having electronic trip units
US5615075A (en) * 1995-05-30 1997-03-25 General Electric Company AC/DC current sensor for a circuit breaker
JP5038884B2 (ja) * 2007-12-28 2012-10-03 パナソニック株式会社 直流開閉器
US8253044B2 (en) * 2010-12-02 2012-08-28 Eaton Corporation Configurable electrical switching apparatus including a plurality of separable contacts and a plurality of field-configurable jumpers to provide a number of poles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3080829A1 (de) 2016-10-19
WO2015088654A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
US10014679B2 (en) Electrical switching apparatus including alternating current electronic trip circuit with arc fault detection circuit and power supply
EP2963670B1 (de) Neutralpolstromwandlermodul für schutzschalter und neutralstromdetektionsvorrichtung für schutzschalter
CN110546731B (zh) 断路器
CN107438890B (zh) 由电流互感器供电的电子跳闸单元和包括其的断路器
KR20050092721A (ko) 아크-결함 검출 회로 차단기 시스템
ES2968758T3 (es) Sistemas y métodos para regular el consumo de energía de un recolector de energía por inducción (IPH)
EP2899741A1 (de) Vorrichtung zum Schutz vor elektrischen Fehlern
US5969921A (en) Ground fault electrical switching apparatus for coordinating tripping with a downstream ground fault switch
CN102386024B (zh) 用于开关、特别是低压断路器的脱扣单元的电源和开关
CN110088871B (zh) 电气路径故障检测器和包括该故障检测器的断路器
US9025298B2 (en) Electrical switching apparatus including transductor circuit and alternating current electronic trip circuit
EP2909854B1 (de) Elektrische schaltvorrichtung mit transduktorschaltung und elektronischer wechselstromauslöseschaltung
US8089735B2 (en) Hybrid power relay with thermal protection
EP3080829B1 (de) Elektrische schaltvorrichtung mit transduktorschaltung und elektronischer wechselstromauslöseschaltung
EP2509092B1 (de) Elektrische Schaltvorrichtung
US9600012B2 (en) Internal power supply of a device
EP3084799B1 (de) Elektrische schaltvorrichtung mit elektronischer wechselstromauslöseschaltung mit lichtbogenfehlerdetektorschaltung
US20240097428A1 (en) Circuit breaker
Mbunwe et al. Solid-State Protection of a Perturbed Electric Power System Network
Harun Over Current Protection Relay Using PIC Microcontroller
KR101068700B1 (ko) 과전류 보호장치가 없는 누전차단기 및 그의 감도전류 설정방법
HU230909B1 (hu) Kapcsolási elrendezés túláram-korlátozó és egyben megszakító készülékhez villamos berendezések automatikus védelmére

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170331

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 919832

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014013299

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170816

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 919832

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171216

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014013299

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180517

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171023

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180925

Year of fee payment: 5

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20181115 AND 20181130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20181009

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014013299

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014013299

Country of ref document: DE

Owner name: EATON INTELLIGENT POWER LIMITED, IE

Free format text: FORMER OWNER: EATON CORPORATION, CLEVELAND, OHIO, US

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190919

Year of fee payment: 6

Ref country code: IT

Payment date: 20190918

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190918

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191023

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014013299

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201023