EP3080399B1 - Turbocharger - Google Patents

Turbocharger Download PDF

Info

Publication number
EP3080399B1
EP3080399B1 EP14793041.6A EP14793041A EP3080399B1 EP 3080399 B1 EP3080399 B1 EP 3080399B1 EP 14793041 A EP14793041 A EP 14793041A EP 3080399 B1 EP3080399 B1 EP 3080399B1
Authority
EP
European Patent Office
Prior art keywords
vane
turbine wheel
turbine
guide
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14793041.6A
Other languages
German (de)
French (fr)
Other versions
EP3080399A1 (en
Inventor
Ralf Böning
Ivo Sandor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP3080399A1 publication Critical patent/EP3080399A1/en
Application granted granted Critical
Publication of EP3080399B1 publication Critical patent/EP3080399B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the invention relates to an exhaust gas turbocharger according to the preamble of the main claim.
  • an internal combustion engine can be additionally supplied with fresh air, whereby more fuel can be burned. Accordingly, the exhaust gas turbocharger can increase the power of the internal combustion engine. In addition, exhaust gas turbochargers can also increase the efficiency of the internal combustion engine.
  • an exhaust gas turbocharger has a turbine with a turbine wheel and a compressor with a compressor wheel, wherein the turbine wheel and the compressor wheel are mostly arranged on a common shaft.
  • the turbine wheel is in this case driven via an exhaust gas mass flow of the internal combustion engine, and this in turn drives the compressor wheel.
  • the compressor also called a compressor, compresses fresh air sucked in and feeds it to the combustion engine.
  • the common shaft of the compressor and the turbine is often stored in a bearing housing of the turbocharger.
  • the turbine of the turbine disposed in a turbine housing and, correspondingly, the compressor wheel of the compressor in a compressor housing.
  • variable turbine geometry adjustment systems In order to improve the adaptation of the turbine power to an operation of the internal combustion engine, so-called variable turbine geometry adjustment systems have been developed, in particular in diesel engines, but lately also in gasoline engines.
  • the most common form of variable turbine geometry consists of a Vorleitgitter with adjustable vanes, which are arranged in front of the turbine wheel.
  • the vanes are adjustable between an open position and a closed position depending on a current operating state of the internal combustion engine.
  • About the adjustment of the vanes and the Leitgitters can exhaust back pressure as well also the manner of inflow of the exhaust gas mass flow are influenced on the turbine wheel.
  • a flow cross section of the exhaust gas mass flow to the turbine wheel can be changed.
  • the flow cross section of the exhaust gas mass flow to the turbine wheel is in this case the largest in the open position of the guide vanes and lowest in the closed position. At a lower exhaust mass flow, the vanes are moved to the closed position. Due to the small flow cross section in the closed position, the speed of the exhaust gas mass flow increases between the guide vanes. The exhaust gas mass flow thus hits the turbine blades at a higher speed, as a result of which the rotational speed of the shaft and thus the power of the exhaust gas turbocharger increase. As a result, sufficient fresh air can be compressed by the compressor and added to the internal combustion engine even at low exhaust gas mass flow. Thus, the power of the exhaust gas turbocharger can be adjusted as needed to the operating condition of the internal combustion engine.
  • the invention has for its object to develop an improved exhaust gas turbocharger, in which the power is increased, especially in a low speed range of the internal combustion engine.
  • the exhaust gas turbocharger comprises a turbine with a turbine wheel, wherein the turbine wheel is mounted axially in a turbine housing and turbine blades each having an inlet edge for a media flow.
  • the turbine housing is an adjustable guide grid with a plurality arranged by vanes for variable adjustment of a flow cross section with respect to the leading edge of the turbine wheel.
  • the guide vanes each have a blade trailing edge facing the turbine wheel and a blade leading edge facing away from the turbine wheel.
  • a plane is spanned by an axis of rotation of the turbine wheel and at least one point lying on the leading edge.
  • a projection of the leading edge onto this plane is inclined axially (inclined leading edge) at least in a region opposite the axis of rotation of the turbine wheel.
  • the guide vanes are arranged radially around the turbine wheel at least in this area. An example of such a sloping leading edge of a turbine wheel is shown in FIG FIG. 10 shown.
  • the turbocharger according to the invention is further distinguished by the fact that, to further improve the flow guidance, at least two cross sections of a respective guide vane perpendicular to the axis of rotation each have a different shape.
  • different flow filaments each define a smallest distance on a guide blade surface leading to the media flow from the blade leading edge to the blade trailing edge, wherein the different flow threads each have an equal length.
  • the flow threads can each have an equal length. Different flow paths of the exhaust gas mass flow on the guide vane are then of equal length. As a result, the flow guidance of the medium flow from the guide blade to the turbine wheel is designed to be particularly favorable.
  • the projection of the leading edge onto the plane is understood to be a mapping of a three-dimensional leading edge onto a two-dimensional plane.
  • a turbine having such an inclined leading edge is also referred to as a radial-axial turbine or a semi-axial-flow turbine.
  • one varies radial distance of the leading edge perpendicular to the axis of rotation of the turbine wheel in said area.
  • the advantages of a semi-axial flow turbine with the advantages of a turbine having an adjustable guide grid, the guide grid having a plurality of vanes can be combined. Due to the inclined leading edge, the turbine wheel can have a lower moment of inertia than a turbine wheel with a projection of an entry edge on said plane parallel to the axis of rotation of the turbine wheel (straight leading edge), which is also called turbine wheel with radial inflow. As a result, the performance and the response of the exhaust gas turbocharger, in particular in a low-speed region of the internal combustion engine, increased.
  • the adjustable vanes also improve the performance of the engine in the low speed range.
  • the turbine wheel according to the invention can be made smaller than turbine wheels with a straight leading edge.
  • the Vorleitgitter can be made smaller and with fewer vanes. Consequently, costs can be saved.
  • the projection of the leading edge onto the plane can also be at least partially parallel to the axis of rotation of the turbine wheel.
  • the axially inclined projection of the leading edge may be inclined in sections by an angle of at least 30 ° relative to the axis of rotation of the turbine wheel. This angle can have a constant value. In typical embodiments, this angle is less than 60 °.
  • An example of an inclined projection of an entry edge at an angle ⁇ with respect to a rotational axis of a turbine wheel is shown in FIG FIG. 10 shown.
  • a projection of the blade trailing edge on said plane, at least in the said area also axially inclined relative to the axis of rotation.
  • the blade trailing edge of a respective vane is substantially parallel to the leading edge of a respective nearest turbine blade.
  • the blade trailing edge has a same inclination angle with respect to the axis of rotation of the turbine wheel as the leading edge.
  • the projection of the blade trailing edge is parallel to the projection for the projection of the leading edge.
  • a gap between the blade trailing edge and the leading edge thus has a substantially constant value. The flow guidance of the media flow from the guide vanes to the turbine wheel can thereby be improved.
  • the vanes are adjustable between an open position and a closed position. At least in the open position, a minimum radial distance of the blade trailing edge of a respective vane perpendicular to the axis of rotation of the turbine wheel may be smaller than a maximum radial distance of the leading edge of a respective nearest turbine blade perpendicular to the axis of rotation of the turbine wheel. In this case, the blade trailing edge thus undercuts in the radial direction the leading edge of a nearest turbine blade. As a result, the media flow can be performed as close as possible to the turbine wheel.
  • a gap width between the blade trailing edge and the leading edge is minimal.
  • the gap width is less than 2 mm. Taking into account manufacturing and assembly tolerances, however, the gap width is typically greater than 0.5 mm. In a preferred embodiment, the gap width is 1 mm.
  • a first cross section is in each case a guide vane perpendicular to the axis of rotation of the turbine wheel about a Angle inclined relative to a second cross section of the respective vane perpendicular to the axis of rotation of the turbine wheel. That is, the vane in this embodiment has a twisted shape. Due to the twisted shape of the guide vane, the medium flow before striking the leading edge receives, in addition to a velocity component perpendicular to the axis of rotation, a velocity component parallel to the axis of rotation, ie in the axial direction. This improves a flow guidance of the medium flow from the guide blade to the turbine wheel.
  • the first cross section may be inclined at an angle greater than 5 ° relative to the second cross section. Typically, this angle is less than 25 °.
  • profile center lines each in each case share a guide vane in each case a cross section of the vane perpendicular to the axis of rotation of its length into two equally thick halves.
  • the profile center lines extend from the blade trailing edge to the blade leading edge of the guide blade.
  • the profile center lines are curved at least in sections.
  • the at least partially curved profile center line may have a single constant radius of curvature. In other embodiments, it can also have regions of different radii of curvature. It can be provided that the profile center line is straight in a first region and curved in a second region. All profile center lines each one vane are preferably formed equal. Alternatively, the profile centerline within the respective vane may also be varied.
  • a vane surface leading to the media flow and extending from the blade trailing edge to the blade leading edge of the vane is domed.
  • the blade leading edge and the blade trailing edge of two adjacent vanes are shaped such that they form an opening in the closed position of the guide vanes for a flow guidance of the media flow to the turbine wheel.
  • a shape of the blade leading edge is conformed to a shape of the blade trailing edge to form a streamlined nozzle. In this way, a favorable flow guidance of the media flow can be realized.
  • the turbine wheel is mounted in typical embodiments together with a compressor wheel on a shaft, wherein the shaft is mounted in a bearing housing.
  • the vanes are mounted on vane shafts with the vanes shafts rotatably mounted in a vane ring.
  • a heat shield is preferably arranged to conduct fluid. The heat shield may reduce heat input into said bearing housing and may provide for improved flow routing of the media flow from the vanes to the turbine wheel.
  • FIG. 1 shows a cross section of a portion of an exhaust gas turbocharger 1.
  • a turbine 2 with a turbine wheel 4 is shown.
  • the turbine wheel 4 is mounted axially on a shaft 5 defining a rotation axis 7 in a turbine housing 6.
  • On the shaft 5 is also a not-shown compressor in a compressor housing.
  • the shaft 5 of the turbine wheel 4 and the compressor wheel is mounted in a bearing housing 9.
  • the turbine wheel 4 has a hub 3 with turbine blades 8 arranged thereon.
  • the turbine blades 8 each comprise an inlet edge 10 and an outlet edge 11 for an exhaust gas mass flow from an internal combustion engine.
  • the internal combustion engine is a diesel engine.
  • the internal combustion engine can also be a gasoline engine.
  • the exhaust gas turbocharger 1 has a variable turbine geometry, which comprises an adjustable guide grid 12 with a plurality of guide vanes 14 for variably setting a flow cross-section 16 with respect to said inlet edge 10 of the turbine wheel 4, wherein the guide grid 12 is arranged in the turbine housing 6.
  • the exhaust gas mass flow is guided to the turbine blade 8 of the turbine wheel 4 via the guide vanes 14.
  • the exhaust gas mass flow first encounters a blade leading edge 20 facing away from the turbine wheel 4 and reaches the inlet edge 10 of the turbine wheel 4 via a blade surface 19 and a blade trailing edge 18 facing the turbine wheel.
  • the vanes 14 are adjustable between an open position and a closed position.
  • the guide vanes 14 are arranged on guide blade shafts 21, which are rotatably mounted in a guide blade bearing ring 22.
  • the vanes 14 are bounded by the vane ring 22 and a disk 15.
  • the guide vanes 14 of the guide grid 12 are adjustable in dependence on an operating state of the internal combustion engine by a non-illustrated electric actuator.
  • the actuator may alternatively be designed as a pressure cell.
  • a heat shield 23 is arranged, which reduces a heat input of the exhaust gas mass flow in a bearing of the shaft 5 in the bearing housing 9.
  • the heat shield 23 is resiliently arranged on a spring arm 24 and clamped between the blade bearing ring 22 and the bearing housing 9. Further, the heat shield 23 favors a flow guidance of the exhaust gas mass flow onto the turbine wheel 4. As the guide vane shafts 21 rotate from the closed position to the open position of the guide vanes 14, the vanes 14 are pivoted over the heat shield 23.
  • FIG. 1 is a plane spanned by the axis of rotation 7 of the turbine wheel 4 and a lying on the leading edge 10 point P. It can be seen that a projection of the three-dimensional leading edge 10 is inclined axially to this plane relative to the axis of rotation 7 of the turbine wheel 4.
  • the vanes 14 are arranged radially around the leading edge 10 of the turbine wheel 4. In the figure, the projection of the entire leading edge 10 is inclined.
  • turbine 2 is thus a turbine with semi-axial inflow.
  • the exhaust gas mass flow flows predominantly radially from a flow housing, not shown, of the turbine to the front edges 20 of the guide vanes 14, while, in addition to a radial flow component, also impinges on the leading edge 10 of the turbine blades 8 with an axial flow component.
  • the axially inclined projection of the leading edge 10 on the plane is inclined by an angle ⁇ of about 48 ° relative to the axis of rotation 7 of the turbine wheel 4. It can also be seen that a projection of the blade trailing edge 18 on the said plane relative to the axis of rotation 7 is inclined axially by the same angle ⁇ of approximately 48 °.
  • the blade trailing edge 18 thus runs substantially parallel to the leading edge 10 of a respectively adjacent turbine blade 8.
  • a gap 26 between the leading edge 10 and blade trailing edge 18 is thus substantially of constant thickness and is about 1 mm.
  • guide vanes 14 are in an open position. In this position, a minimum radial distance x of the blade trailing edge 18 of a respective vane 14 perpendicular to the axis of rotation 7 is smaller than a maximum radial distance y of the leading edge 10 of a respective nearest turbine blade 14 perpendicular to the axis of rotation 7. Die Leitschaufeln 14 thus undercut the turbine blades 8 in the region of the leading edge 10.
  • FIG. 2 shows a plan view of the turbine 4 and the vanes 14 in the FIG. 1 shown turbine in the open position of the vanes 14.
  • the bearing housing 9 and the disc 15 have been omitted.
  • FIG. 3 shows an enlargement of the detail A from the FIG. 2 in a perspective view.
  • the vanes 14 have a domed vane surface 19.
  • the vane surface 19 in the top view of FIG. 2 to recognize.
  • the guide vanes 14 also have inclined blade edges 18 in order to guide the exhaust gas mass flow as close as possible to the turbine wheel 4 clean. This goes in particular from the perspective view of FIG. 3 the leading edge 10 and the blade trailing edge 18.
  • FIGS. 4 and 5 show the arrangement FIG. 2 in a central vane position or in a closed position of the guide vanes 14.
  • FIG. 5 It will be appreciated that the blade leading edge 20 and blade trailing edge 18 of two adjacent vanes 14 are shaped to form a streamlined nozzle 28 for directing flow of the exhaust gas mass flow to the turbine wheel 4.
  • the nozzle 28 can be seen in the figure as a breakthrough 28.
  • FIGS. 6A to 6D different cross sections of differently shaped vanes 14 are shown perpendicular to the axis of rotation 7.
  • a profile centerline 30 of the vane 14 divides a cross-section of the vane 14 of its length 31 into two equally thick halves.
  • the profile center line 30 in this case extends from the blade trailing edge 18 to the blade leading edge 20.
  • the profile axis is a straight line while in FIG. 6B the profile center line 30 is curved and a constant radius of curvature having a finite value.
  • the profile centerline 30 off FIG. 6C on the other hand, it has two differently curved regions, each with different radii of curvature.
  • the profile center line 30 from the FIG. 6D which is partially curved and sectionally straight.
  • FIG. 6D A perspective view of a not yet mounted vane 14 with a guide shaft 5 from the in the FIGS. 1 to 5 shown exhaust gas turbocharger 1 is for clarity again in the FIG. 7 shown.
  • the guide vane 14 On one of the disk 15 facing side 35 ', the guide vane 14 has a in the FIG. 6D shown cross section. Also on a blade bearing ring side facing 34 ', the guide vane 14 in the FIG. 6D shown cross section, wherein the two cross section are twisted against each other by an angle ⁇ of 10 ° (see. FIG. 9 ).
  • a single vane 14 all cross-sections of the FIGS. 6A to 6D having.
  • Different flow filaments 33 are each defined by a minimum distance on the vane surface 19 from the blade leading edge 20 to the blade trailing edge 18. To ensure that exhaust mass flows cover an equally long flow path on each vane surface 19 to the turbine wheel 4, different flow filaments 33 each have an equal length on.
  • FIG. 8 is another schematic view of the vane 14 of the FIGS. 1 to 5 and 7 shown.
  • the flow threads 33 in FIG. 8 have an equal length. To ensure this, the vane 14 is twisted, ie, the vane surface 19 is curved.
  • FIG. 9 are two cross sections of the in the Figures 1-5 . 7 and 8th shown guide vane 14 perpendicular to the axis of rotation 7 of the turbine wheel 4 shown. It can be seen here that a first cross section 34 of the guide blade 14 on the side facing the blade bearing ring 34 'is inclined by the angle ⁇ of 10 ° with respect to a second cross section 35 of the guide blade 14 on the side 35' facing the disk 15.
  • FIG. 10 is the turbine wheel 4 with semi-axial inflow from the FIGS. 1 to 5 again shown in a schematic representation.
  • a plane is spanned by the axis of rotation 7 of the turbine wheel 4 and at least one point P lying on the leading edge 10.
  • the projection of the leading edge 10 on this plane is inclined axially by the angle ⁇ with respect to the axis of rotation 7 of the turbine wheel 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Description

Die Erfindung betrifft einen Abgasturbolader gemäß dem Oberbegriff des Hauptanspruchs.The invention relates to an exhaust gas turbocharger according to the preamble of the main claim.

Mittels eines Abgasturboladers kann einem Verbrennungsmotor zusätzlich Frischluft zugeführt werden, wodurch mehr Kraftstoff verbrannt werden kann. Dementsprechend kann der Abgasturbolader die Leistung des Verbrennungsmotors steigern. Darüber hinaus vermögen Abgasturbolader auch den Wirkungsgrad des Verbrennungsmotors zu erhöhen.By means of an exhaust gas turbocharger, an internal combustion engine can be additionally supplied with fresh air, whereby more fuel can be burned. Accordingly, the exhaust gas turbocharger can increase the power of the internal combustion engine. In addition, exhaust gas turbochargers can also increase the efficiency of the internal combustion engine.

Typischerweise weist ein Abgasturbolader eine Turbine mit einem Turbinenrad und einen Verdichter mit einem Verdichterrad auf, wobei das Turbinenrad und das Verdichterrad zumeist auf einer gemeinsamen Welle angeordnet sind. Das Turbinenrad wird hierbei über einen Abgasmassenstrom des Verbrennungsmotors angetrieben, und dieser treibt wiederum das Verdichterrad an. Der Verdichter, auch Kompressor genannt, verdichtet angesaugte Frischluft und führt diese dem Verbrennungsmotor zu. Die gemeinsame Welle des Verdichters und der Turbine ist oftmals in einem Lagergehäuse des Turboladers gelagert. Des Weiteren ist z.B. das Turbinenrad der Turbine in einem Turbinengehäuse angeordnet und entsprechend das Verdichterrad des Verdichters in einem Verdichtergehäuse.Typically, an exhaust gas turbocharger has a turbine with a turbine wheel and a compressor with a compressor wheel, wherein the turbine wheel and the compressor wheel are mostly arranged on a common shaft. The turbine wheel is in this case driven via an exhaust gas mass flow of the internal combustion engine, and this in turn drives the compressor wheel. The compressor, also called a compressor, compresses fresh air sucked in and feeds it to the combustion engine. The common shaft of the compressor and the turbine is often stored in a bearing housing of the turbocharger. Furthermore, e.g. the turbine of the turbine disposed in a turbine housing and, correspondingly, the compressor wheel of the compressor in a compressor housing.

Um eine Anpassung der Turbinenleistung an einen Betrieb des Verbrennungsmotors zu verbessern, sind insbesondere bei Dieselmotoren, in letzter Zeit aber auch bei Ottomotoren, sogenannte variable Turbinengeometrie-Verstellsysteme entwickelt worden. Hierbei besteht die häufigste Form der variablen Turbinengeometrie aus einem Vorleitgitter mit verstellbaren Leitschaufeln, welche vor dem Turbinenrad angeordnet sind. Die Leitschaufeln sind in Abhängigkeit von einem aktuellen Betriebszustand des Verbrennungsmotors zwischen einer offenen Stellung und einer geschlossenen Stellung verstellbar. Über die Einstellung der Leitschaufeln und des Leitgitters kann ein Abgasgegendruck sowie auch die Art und Weise der Zuströmung des Abgasmassenstromes auf das Turbinenrad beeinflusst werden. So kann ein Strömungsquerschnitt des Abgasmassenstromes zum Turbinenrad verändert werden. Der Strömungsquerschnitt des Abgasmassenstromes zum Turbinenrad ist hierbei in der offenen Stellung der Leitschaufeln am größten und in der geschlossenen Stellung am geringsten. Bei einem geringeren Abgasmassenstrome werden die Leitschaufeln in die geschlossene Stellung bewegt. Durch den geringen Strömungsquerschnitt in der geschlossenen Stellung erhöht sich die Geschwindigkeit des Abgasmassenstromes zwischen den Leitschaufeln. Der Abgasmassenstrom trifft somit mit höherer Geschwindigkeit auf die Turbinenschaufeln, wodurch die Drehzahl der Welle und somit die Leistung des Abgasturboladers steigt. Hierdurch kann auch bei geringem Abgasmassenstrom genügend Frischluft durch den Verdichter verdichtet werden und dem Verbrennungsmotor zugefügt werden. Somit kann die Leistung des Abgasturboladers bedarfsgemäß an den Betriebszustand des Verbrennungsmotors eingestellt werden.In order to improve the adaptation of the turbine power to an operation of the internal combustion engine, so-called variable turbine geometry adjustment systems have been developed, in particular in diesel engines, but lately also in gasoline engines. Here, the most common form of variable turbine geometry consists of a Vorleitgitter with adjustable vanes, which are arranged in front of the turbine wheel. The vanes are adjustable between an open position and a closed position depending on a current operating state of the internal combustion engine. About the adjustment of the vanes and the Leitgitters can exhaust back pressure as well also the manner of inflow of the exhaust gas mass flow are influenced on the turbine wheel. Thus, a flow cross section of the exhaust gas mass flow to the turbine wheel can be changed. The flow cross section of the exhaust gas mass flow to the turbine wheel is in this case the largest in the open position of the guide vanes and lowest in the closed position. At a lower exhaust mass flow, the vanes are moved to the closed position. Due to the small flow cross section in the closed position, the speed of the exhaust gas mass flow increases between the guide vanes. The exhaust gas mass flow thus hits the turbine blades at a higher speed, as a result of which the rotational speed of the shaft and thus the power of the exhaust gas turbocharger increase. As a result, sufficient fresh air can be compressed by the compressor and added to the internal combustion engine even at low exhaust gas mass flow. Thus, the power of the exhaust gas turbocharger can be adjusted as needed to the operating condition of the internal combustion engine.

In den Druckschriften WO 2008/137410 A2 und WO 2013/116136 A1 sind Abgasturbolader gezeigt, die jeweils eine variable Turbinengeometrie mit verstellbaren Leitschaufeln aufweisen.In the pamphlets WO 2008/137410 A2 and WO 2013/116136 A1 exhaust gas turbochargers are shown, each having a variable turbine geometry with adjustable vanes.

Der Erfindung liegt die Aufgabe zugrunde, einen verbesserten Abgasturbolader zu entwickeln, bei dem die Leistung insbesondere in einem niedrigen Drehzahlbereich des Verbrennungsmotors erhöht ist.The invention has for its object to develop an improved exhaust gas turbocharger, in which the power is increased, especially in a low speed range of the internal combustion engine.

Diese Aufgabe wird durch einen Abgasturbolader mit den Merkmalen des Hauptanspruchs gelöst. Weitere Ausführungsformen der Erfindung ergeben sich mit den Merkmalen der Unteransprüche und der Ausführungsbeispiele.This object is achieved by an exhaust gas turbocharger with the features of the main claim. Further embodiments of the invention will become apparent with the features of the subclaims and the embodiments.

Der erfindungsgemäße Abgasturbolader umfasst eine Turbine mit einem Turbinenrad, wobei das Turbinenrad axial in einem Turbinengehäuse gelagert ist und Turbinenschaufeln mit jeweils einer Eintrittskante für einen Medienstrom aufweist. Im Turbinengehäuse ist ein verstellbares Leitgitter mit einer Mehrzahl von Leitschaufeln zur veränderlichen Einstellung eines Strömungsquerschnitts bezüglich der Eintrittskante des Turbinenrades angeordnet. Die Leitschaufeln weisen jeweils eine dem Turbinenrad zugewandte Schaufelhinterkante und eine vom Turbinenrad abgewandte Schaufelvorderkante auf. Eine Ebene wird durch eine Drehachse des Turbinenrades und mindestens einen auf der Eintrittskante liegenden Punkt aufgespannt. Eine Projektion der Eintrittskante auf diese Ebene ist zumindest in einem Bereich gegenüber der Drehachse des Turbinenrades axial geneigt (geneigte Eintrittskante). Weiterhin sind die Leitschaufeln zumindest in diesem Bereich radial um das Turbinenrad angeordnet. Ein Beispiel einer solchen geneigten Eintrittskante eines Turbinenrades ist zur Veranschaulichung in der Figur 10 gezeigt.The exhaust gas turbocharger according to the invention comprises a turbine with a turbine wheel, wherein the turbine wheel is mounted axially in a turbine housing and turbine blades each having an inlet edge for a media flow. In the turbine housing is an adjustable guide grid with a plurality arranged by vanes for variable adjustment of a flow cross section with respect to the leading edge of the turbine wheel. The guide vanes each have a blade trailing edge facing the turbine wheel and a blade leading edge facing away from the turbine wheel. A plane is spanned by an axis of rotation of the turbine wheel and at least one point lying on the leading edge. A projection of the leading edge onto this plane is inclined axially (inclined leading edge) at least in a region opposite the axis of rotation of the turbine wheel. Furthermore, the guide vanes are arranged radially around the turbine wheel at least in this area. An example of such a sloping leading edge of a turbine wheel is shown in FIG FIG. 10 shown.

Der erfindungsgemäße Turbolader zeichnet sich weiterhin dadurch aus, dass zur weiteren Verbesserung der Strömungsführung mindestens zwei Querschnitte jeweils einer Leitschaufel senkrecht zur Drehachse jeweils eine unterschiedliche Form aufweisen. Dabei definieren unterschiedliche Strömungsfäden jeweils einen geringsten Abstand auf einer den Medienstrom führenden Leitschaufeloberfläche von der Schaufelvorderkante bis zur Schaufelhinterkante, wobei die unterschiedlichen Strömungsfäden jeweils eine gleiche Länge aufweisen.The turbocharger according to the invention is further distinguished by the fact that, to further improve the flow guidance, at least two cross sections of a respective guide vane perpendicular to the axis of rotation each have a different shape. In this case, different flow filaments each define a smallest distance on a guide blade surface leading to the media flow from the blade leading edge to the blade trailing edge, wherein the different flow threads each have an equal length.

Beispielsweise können die Strömungsfäden bei verdrillt geformten Leitschaufeln oder bei unterschiedlich geformten Querschnitten einer Leitschaufel jeweils eine gleiche Länge aufweisen. Unterschiedliche Strömungswege des Abgasmassenstromes auf der Leitschaufel sind dann von gleicher Länge. Dadurch ist die Strömungsführung des Medienstroms von der Leitschaufel auf das Turbinenrad besonders günstig ausgeführt.For example, in the case of twist-shaped guide vanes or in the case of differently shaped cross-sections of a guide vane, the flow threads can each have an equal length. Different flow paths of the exhaust gas mass flow on the guide vane are then of equal length. As a result, the flow guidance of the medium flow from the guide blade to the turbine wheel is designed to be particularly favorable.

Unter der Projektion der Eintrittskante auf die Ebene wird im Sinne der vorliegenden Anmeldung eine Abbildung einer dreidimensionalen Eintrittskante auf eine zweidimensionale Ebene verstanden. Eine Turbine mit einer derartigen geneigten Eintrittskante wird auch als Radial-Axial-Turbine oder Turbine mit halbaxialer Zuströmung bezeichnet. Typischerweise variiert ein radialer Abstand der Eintrittskante senkrecht zur Drehachse des Turbinenrades in dem genannten Bereich.In the context of the present application, the projection of the leading edge onto the plane is understood to be a mapping of a three-dimensional leading edge onto a two-dimensional plane. A turbine having such an inclined leading edge is also referred to as a radial-axial turbine or a semi-axial-flow turbine. Typically, one varies radial distance of the leading edge perpendicular to the axis of rotation of the turbine wheel in said area.

Durch die Erfindung können die Vorteile einer Turbine mit halbaxialer Zuströmung mit den Vorteilen einer Turbine mit einem verstellbaren Leitgitter, wobei das Leitgitter eine Mehrzahl von Leitschaufeln aufweist, kombiniert werden. Durch die geneigte Eintrittskante kann das Turbinenrad ein geringeres Trägheitsmoment aufweisen als ein Turbinenrad mit einer Projektion einer Eintrittskante auf die genannte Ebene parallel zur Drehachse des Turbinenrades (gerade Eintrittskante), das auch Turbinenrad mit radialer Zuströmung genannt wird. Hierdurch wird die Leistung und das Ansprechverhalten des Abgasturboladers, insbesondere in einem Bereich niedriger Drehzahl des Verbrennungsmotors, gesteigert. Die verstellbaren Leitschaufeln sorgen ebenfalls für eine Verbesserung der Leistung des Verbrennungsmotors im niedrigen Drehzahlbereich.With the invention, the advantages of a semi-axial flow turbine with the advantages of a turbine having an adjustable guide grid, the guide grid having a plurality of vanes, can be combined. Due to the inclined leading edge, the turbine wheel can have a lower moment of inertia than a turbine wheel with a projection of an entry edge on said plane parallel to the axis of rotation of the turbine wheel (straight leading edge), which is also called turbine wheel with radial inflow. As a result, the performance and the response of the exhaust gas turbocharger, in particular in a low-speed region of the internal combustion engine, increased. The adjustable vanes also improve the performance of the engine in the low speed range.

Aufgrund des geringeren Trägheitsmoments kann das erfindungsgemäße Turbinenrad kleiner gebaut werden als Turbinenräder mit einer geraden Eintrittskante. Hierdurch kann das Vorleitgitter kleiner und mit weniger Leitschaufeln ausgeführt werden. Folglich können Kosten eingespart werden.Due to the lower moment of inertia, the turbine wheel according to the invention can be made smaller than turbine wheels with a straight leading edge. As a result, the Vorleitgitter can be made smaller and with fewer vanes. Consequently, costs can be saved.

Außerhalb des genannten Bereichs kann die Projektion der Eintrittskante auf die Ebene auch zumindest teilweise parallel zur Drehachse des Turbinenrades sein.Outside the range mentioned, the projection of the leading edge onto the plane can also be at least partially parallel to the axis of rotation of the turbine wheel.

Die axial geneigte Projektion der Eintrittskante kann abschnittsweise um einen Winkel von mindestens 30° gegenüber der Drehachse des Turbinenrades geneigt sein. Dieser Winkel kann einen konstanten Wert aufweisen. In typischen Ausführungen beträgt dieser Winkel weniger als 60°. Ein Beispiel einer um einen Winkel ϕ gegenüber einer Drehachse eines Turbinenrades geneigten Projektion einer Eintrittskante ist zur Veranschaulichung in der Figur 10 gezeigt.The axially inclined projection of the leading edge may be inclined in sections by an angle of at least 30 ° relative to the axis of rotation of the turbine wheel. This angle can have a constant value. In typical embodiments, this angle is less than 60 °. An example of an inclined projection of an entry edge at an angle φ with respect to a rotational axis of a turbine wheel is shown in FIG FIG. 10 shown.

Bevorzugt ist eine Projektion der Schaufelhinterkante auf die genannte Ebene zumindest in dem genannten Bereich ebenfalls axial geneigt gegenüber der Drehachse. Hierdurch kann eine Strömungsführung des Medienstroms von den Leitschaufeln zum Turbinenrad verbessert werden.Preferably, a projection of the blade trailing edge on said plane, at least in the said area also axially inclined relative to the axis of rotation. As a result, a flow guidance of the media flow from the guide vanes to the turbine wheel can be improved.

In bevorzugter Weise verläuft die Schaufelhinterkante jeweils einer Leitschaufel im Wesentlichen parallel zur Eintrittskante einer jeweils nächstliegenden Turbinenschaufel. Die Schaufelhinterkante weist einen gleichen Neigungswinkel gegenüber der Drehachse des Turbinenrades wie die Eintrittskante auf. In diesem Fall ist also die Projektion der Schaufelhinterkante parallel zur Projektion zur Projektion der Eintrittskante. Typischerweise hat ein Spalt zwischen der Schaufelhinterkante und der Eintrittskante also im Wesentlichen einen konstanten Wert. Die Strömungsführung des Medienstroms von den Leitschaufeln zum Turbinenrad kann dadurch verbessert werden.Preferably, the blade trailing edge of a respective vane is substantially parallel to the leading edge of a respective nearest turbine blade. The blade trailing edge has a same inclination angle with respect to the axis of rotation of the turbine wheel as the leading edge. In this case, therefore, the projection of the blade trailing edge is parallel to the projection for the projection of the leading edge. Typically, a gap between the blade trailing edge and the leading edge thus has a substantially constant value. The flow guidance of the media flow from the guide vanes to the turbine wheel can thereby be improved.

Üblicherweise sind die Leitschaufeln zwischen einer offenen Stellung und einer geschlossenen Stellung verstellbar. Zumindest in der offenen Stellung kann ein minimaler radialer Abstand der Schaufelhinterkante jeweils einer Leitschaufel senkrecht zur Drehachse des Turbinenrades kleiner sein als ein maximaler radialer Abstand der Eintrittskante einer jeweils nächstliegenden Turbinenschaufel senkrecht zur Drehachse des Turbinenrades. In diesem Fall hinterschneidet die Schaufelhinterkante also in radialer Richtung die Eintrittskante einer nächstliegenden Turbinenschaufel. Hierdurch kann der Medienstrom möglichst nahe an das Turbinenrad geführt werden. Bevorzugt ist eine Spaltbreite zwischen Schaufelhinterkante und Eintrittskante minimal. Beispielsweise ist die Spaltbreite kleiner als 2 mm. Unter Berücksichtigung von Fertigungs- und Montagetoleranzen ist die ist die Spaltbreite typischerweise jedoch größer als 0, 5 mm. In einer bevorzugten Ausführungsform beträgt die Spaltbreite 1 mm.Typically, the vanes are adjustable between an open position and a closed position. At least in the open position, a minimum radial distance of the blade trailing edge of a respective vane perpendicular to the axis of rotation of the turbine wheel may be smaller than a maximum radial distance of the leading edge of a respective nearest turbine blade perpendicular to the axis of rotation of the turbine wheel. In this case, the blade trailing edge thus undercuts in the radial direction the leading edge of a nearest turbine blade. As a result, the media flow can be performed as close as possible to the turbine wheel. Preferably, a gap width between the blade trailing edge and the leading edge is minimal. For example, the gap width is less than 2 mm. Taking into account manufacturing and assembly tolerances, however, the gap width is typically greater than 0.5 mm. In a preferred embodiment, the gap width is 1 mm.

Vorzugsweise ist ein erster Querschnitt jeweils einer Leitschaufel senkrecht zur Drehachse des Turbinenrades um einen Winkel geneigt gegenüber einem zweiten Querschnitt der jeweiligen Leitschaufel senkrecht zur Drehachse des Turbinenrades. Das heißt, dass die Leitschaufel in dieser Ausführung eine verdrillte Form aufweist. Durch die verdrillte Form der Leitschaufel erhält der Medienstrom vor dem Auftreffen auf die Eintrittskante neben einer Geschwindigkeitskomponente senkrecht zur Drehachse eine Geschwindigkeitskomponente parallel zur Drehachse, d.h. in axialer Richtung. Hierdurch wird eine Strömungsführung des Medienstroms von der Leitschaufel auf das Turbinenrad verbessert. Der erste Querschnitt kann um einen Winkel von größer als 5° geneigt sein gegenüber dem zweiten Querschnitt. Typischerweise beträgt dieser Winkel weniger als 25°.Preferably, a first cross section is in each case a guide vane perpendicular to the axis of rotation of the turbine wheel about a Angle inclined relative to a second cross section of the respective vane perpendicular to the axis of rotation of the turbine wheel. That is, the vane in this embodiment has a twisted shape. Due to the twisted shape of the guide vane, the medium flow before striking the leading edge receives, in addition to a velocity component perpendicular to the axis of rotation, a velocity component parallel to the axis of rotation, ie in the axial direction. This improves a flow guidance of the medium flow from the guide blade to the turbine wheel. The first cross section may be inclined at an angle greater than 5 ° relative to the second cross section. Typically, this angle is less than 25 °.

Gemäß einer weiteren Definition teilen Profilmittellinien jeweils einer Leitschaufel jeweils einen Querschnitt der Leitschaufel senkrecht zur Drehachse seiner Länge nach in zwei gleich dicke Hälften. Die Profilmittellinien erstrecken sich hierbei von der Schaufelhinterkante zu der Schaufelvorderkante der Leitschaufel. Vorzugsweise sind die Profilmittellinien zumindest abschnittsweise gekrümmt. Hierdurch kann die Strömungsführung von der Leitschaufel zum Turbinenrad weiter verbessert werden.According to a further definition, profile center lines each in each case share a guide vane in each case a cross section of the vane perpendicular to the axis of rotation of its length into two equally thick halves. The profile center lines extend from the blade trailing edge to the blade leading edge of the guide blade. Preferably, the profile center lines are curved at least in sections. As a result, the flow guidance from the guide blade to the turbine wheel can be further improved.

Die zumindest abschnittsweise gekrümmte Profilmittellinie kann einen einzigen konstanten Krümmungsradius aufweisen. Sie kann in anderen Ausführungen auch bereichsweise jeweils verschiedene Krümmungsradien aufweisen. Es kann vorgesehen sein, dass die Profilmittellinie in einem ersten Bereich gerade ist und in einem zweiten Bereich gekrümmt ist. Sämtliche Profilmittellinien jeweils einer Leitschaufel sind vorzugsweise gleichgeformt. Alternativ kann der Profilmittellinie innerhalb der jeweiligen Leitschaufel auch variiert werden.The at least partially curved profile center line may have a single constant radius of curvature. In other embodiments, it can also have regions of different radii of curvature. It can be provided that the profile center line is straight in a first region and curved in a second region. All profile center lines each one vane are preferably formed equal. Alternatively, the profile centerline within the respective vane may also be varied.

Typischerweise ist eine den Medienstrom führende und sich von der Schaufelhinterkante bis zur Schaufelvorderkante der Leitschaufel erstreckende Leitschaufeloberfläche gewölbt. Bevorzugt sind die Schaufelvorderkante und die Schaufelhinterkante zweier benachbarter Leitschaufeln derart geformt, dass sie in der geschlossenen Stellung der Leitschaufeln einen Durchbruch für eine Strömungsführung des Medienstroms zum Turbinenrad bilden. Vorzugsweise ist eine Form der Schaufelvorderkante an eine Form der Schaufelhinterkante angepasst, um eine strömungsgünstige Düse zu bilden. Hierdurch kann eine günstige Strömungsführung des Medienstroms realisiert werden.Typically, a vane surface leading to the media flow and extending from the blade trailing edge to the blade leading edge of the vane is domed. Preferably, the blade leading edge and the blade trailing edge of two adjacent vanes are shaped such that they form an opening in the closed position of the guide vanes for a flow guidance of the media flow to the turbine wheel. Preferably, a shape of the blade leading edge is conformed to a shape of the blade trailing edge to form a streamlined nozzle. In this way, a favorable flow guidance of the media flow can be realized.

Das Turbinenrad ist in typischen Ausführungen zusammen mit einem Verdichterrad auf einer Welle gelagert, wobei die Welle in einem Lagergehäuse gelagert ist. Üblicherweise sind die die Leitschaufeln auf Leitschaufelwellen befestigt, wobei die Leitschaufelwellen drehbar in einem Schaufellagerring angeordnet sind. Zwischen dem Schaufellagerring und der Welle ist vorzugsweise ein Hitzeschild strömungsführend angeordnet. Der Hitzeschild kann einen Hitzeeintrag in das genannte Lagergehäuse verringern und kann für eine verbesserte Strömungsführung des Medienstroms von den Leitschaufeln zum Turbinenrad sorgen.The turbine wheel is mounted in typical embodiments together with a compressor wheel on a shaft, wherein the shaft is mounted in a bearing housing. Typically, the vanes are mounted on vane shafts with the vanes shafts rotatably mounted in a vane ring. Between the vane ring and the shaft, a heat shield is preferably arranged to conduct fluid. The heat shield may reduce heat input into said bearing housing and may provide for improved flow routing of the media flow from the vanes to the turbine wheel.

Durch die oben beschriebenen Verbesserungen der Strömungsführung des Medienstroms von den Leitschaufeln zum Turbinenrad können geringere Strömungsverluste auftreten, was zu einem besseren Wirkungsgrad der Turbine führt.Due to the above-described improvements of the flow guidance of the media flow from the vanes to the turbine wheel lower flow losses can occur, resulting in a better efficiency of the turbine.

Ausführungsbeispiele werden anhand der beigefügten Figuren erläutert. In den Figuren zeigt

Fig. 1
einen Querschnitt eines turbinenseitigen Abschnitts eines Abgasturboladers;
Fig. 2
eine Draufsicht auf ein Turbinenrad und radial um das Turbinenrad angeordnete Leitschaufeln in einer Offenstellung der Leitschaufeln;
Fig. 3
eine perspektivische Darstellung einer Eintrittskante sowie einer nächstliegenden Schaufelhinterkante;
Fig. 4
die Anordnung aus Figur 2 in einer mittleren Schaufelstellung;
Fig. 5
eine Vergrößerung der Anordnung aus Figur 2 in einer geschlossenen Stellung der Leitschaufeln;
Fign. 6A-6D
verschiedene Querschnitte einer Leitschaufel;
Fig. 7
eine perspektivische Darstellung einer auf einer Leitschaufelwelle angeordneten Leitschaufel;
Fig. 8
eine Vorderansicht auf zwei Leitschaufeln;
Fig. 9
um einen Winkel α geneigte Querschnitte einer Leitschaufel und
Fig. 10
eine schematische Darstellung des Turbinenrades aus den Figur 1-5.
Embodiments will be explained with reference to the accompanying figures. In the figures shows
Fig. 1
a cross section of a turbine-side portion of an exhaust gas turbocharger;
Fig. 2
a plan view of a turbine wheel and arranged radially around the turbine wheel vanes in an open position of the vanes;
Fig. 3
a perspective view of an entrance edge and a nearest blade trailing edge;
Fig. 4
the arrangement FIG. 2 in a middle vane position;
Fig. 5
an enlargement of the arrangement FIG. 2 in a closed position of the vanes;
FIGS. 6A-6D
different cross sections of a vane;
Fig. 7
a perspective view of a arranged on a vane shaft vane;
Fig. 8
a front view on two vanes;
Fig. 9
through an angle α inclined cross sections of a vane and
Fig. 10
a schematic representation of the turbine wheel from the Figure 1-5 ,

Funktionsgleiche Teile bzw. wiederkehrende Merkmale sind in den Figuren durchgängig mit den gleichen Bezugszeichen gekennzeichnet.Functionally identical parts or recurrent features are indicated in the figures throughout with the same reference numerals.

Figur 1 zeigt einen Querschnitt eines Abschnitts eines Abgasturboladers 1. Im gezeigten Abschnitt ist eine Turbine 2 mit einem Turbinenrad 4 gezeigt. Das Turbinenrad 4 ist axial auf einer eine Drehachse 7 definierenden Welle 5 in einem Turbinengehäuse 6 gelagert. Auf der Welle 5 befindet sich ebenfalls ein nicht gezeigtes Verdichterrad in einem Verdichtergehäuse. Die Welle 5 des Turbinenrades 4 und des Verdichterrades ist in einem Lagergehäuse 9 gelagert. FIG. 1 shows a cross section of a portion of an exhaust gas turbocharger 1. In the section shown, a turbine 2 with a turbine wheel 4 is shown. The turbine wheel 4 is mounted axially on a shaft 5 defining a rotation axis 7 in a turbine housing 6. On the shaft 5 is also a not-shown compressor in a compressor housing. The shaft 5 of the turbine wheel 4 and the compressor wheel is mounted in a bearing housing 9.

Das Turbinenrad 4 weist eine Nabe 3 mit darauf angeordneten Turbinenschaufeln 8 auf. Die Turbinenschaufeln 8 umfassen jeweils eine Eintrittskante 10 und eine Austrittkante 11 für einen Abgasmassenstrom aus einem Verbrennungsmotor. Im gezeigten Beispiel ist der Verbrennungsmotor ein Dieselmotor. Alternativ kann der Verbrennungsmotor aber auch ein Ottomotor sein.The turbine wheel 4 has a hub 3 with turbine blades 8 arranged thereon. The turbine blades 8 each comprise an inlet edge 10 and an outlet edge 11 for an exhaust gas mass flow from an internal combustion engine. Im shown For example, the internal combustion engine is a diesel engine. Alternatively, the internal combustion engine can also be a gasoline engine.

Der Abgasturbolader 1 weist eine variable Turbinengeometrie auf, die ein verstellbaren Leitgitter 12 mit einer Mehrzahl von Leitschaufeln 14 zur veränderlichen Einstellung eines Strömungsquerschnitts 16 bezüglich der genannten Eintrittskante 10 des Turbinenrades 4 umfasst, wobei das Leitgitter 12 im Turbinengehäuse 6 angeordnet ist. Über die Leitschaufeln 14 wird der Abgasmassenstrom auf die Turbinenschaufel 8 des Turbinenrades 4 geführt. Hierbei trifft der Abgasmassenstrom zunächst auf eine vom Turbinenrad 4 abgewandte Schaufelvorderkante 20 und gelangt über eine Schaufeloberfläche 19 und eine dem Turbinenrad zugewandte Schaufelhinterkante 18 zur Eintrittskante 10 des Turbinenrades 4.The exhaust gas turbocharger 1 has a variable turbine geometry, which comprises an adjustable guide grid 12 with a plurality of guide vanes 14 for variably setting a flow cross-section 16 with respect to said inlet edge 10 of the turbine wheel 4, wherein the guide grid 12 is arranged in the turbine housing 6. The exhaust gas mass flow is guided to the turbine blade 8 of the turbine wheel 4 via the guide vanes 14. In this case, the exhaust gas mass flow first encounters a blade leading edge 20 facing away from the turbine wheel 4 and reaches the inlet edge 10 of the turbine wheel 4 via a blade surface 19 and a blade trailing edge 18 facing the turbine wheel.

Die Leitschaufeln 14 sind zwischen einer Offenstellung und einer geschlossenen Stellung verstellbar. Dazu sind die Leitschaufeln 14 auf Leitschaufelwellen 21 angeordnet, die in einem Leitschaufellagerring 22 drehbar gelagert sind. Die Leitschaufeln 14 sind durch den Leitschaufellagerring 22 und eine Scheibe 15 begrenzt. Die Leitschaufeln 14 des Leitgitters 12 sind in Abhängigkeit von einem Betriebszustand des Verbrennungsmotors durch einen nicht-dargestellten elektrischen Aktuator verstellbar. Der Aktuator kann alternativ auch als Druckdose ausgebildet sein.The vanes 14 are adjustable between an open position and a closed position. For this purpose, the guide vanes 14 are arranged on guide blade shafts 21, which are rotatably mounted in a guide blade bearing ring 22. The vanes 14 are bounded by the vane ring 22 and a disk 15. The guide vanes 14 of the guide grid 12 are adjustable in dependence on an operating state of the internal combustion engine by a non-illustrated electric actuator. The actuator may alternatively be designed as a pressure cell.

Zwischen der Nabe 3 und dem Leitschaufellagerring 22 ist ein Hitzeschild 23 angeordnet, der einen Wärmeeintrag des Abgasmassenstromes in eine Lagerung der Welle 5 im Lagergehäuse 9 reduziert. Um temperaturbedingte Verbiegungen zu kompensieren, ist der Hitzeschild 23 an einem Federarm 24 federnd angeordnet und zwischen dem Schaufellagerring 22 und dem Lagergehäuse 9 eingespannt. Ferner begünstigt der Hitzeschild 23 eine Strömungsführung des Abgasmassenstromes auf das Turbinenrad 4. Beim Drehen der Leitschaufelwellen 21 von der geschlossenen Stellung in die Offenstellung der Leitschaufeln 14, werden die Leitschaufeln 14 über den Hitzeschild 23 geschwenkt.Between the hub 3 and the Leitschaufellagerring 22, a heat shield 23 is arranged, which reduces a heat input of the exhaust gas mass flow in a bearing of the shaft 5 in the bearing housing 9. In order to compensate for temperature-induced bending, the heat shield 23 is resiliently arranged on a spring arm 24 and clamped between the blade bearing ring 22 and the bearing housing 9. Further, the heat shield 23 favors a flow guidance of the exhaust gas mass flow onto the turbine wheel 4. As the guide vane shafts 21 rotate from the closed position to the open position of the guide vanes 14, the vanes 14 are pivoted over the heat shield 23.

In der Figur 1 wird eine Ebene aufgespannt durch die Drehachse 7 des Turbinenrades 4 und einen auf der Eintrittskante 10 liegenden Punkt P. Zu erkennen ist, dass eine Projektion der dreidimensionalen Eintrittskante 10 auf diese Ebene gegenüber der Drehachse 7 des Turbinenrades 4 axial geneigt ist. Die die Leitschaufeln 14 sind um die Eintrittskante 10 des Turbinenrades 4 radial angeordnet. In der Figur ist die Projektion der gesamten Eintrittskante 10 geneigt.In the FIG. 1 is a plane spanned by the axis of rotation 7 of the turbine wheel 4 and a lying on the leading edge 10 point P. It can be seen that a projection of the three-dimensional leading edge 10 is inclined axially to this plane relative to the axis of rotation 7 of the turbine wheel 4. The vanes 14 are arranged radially around the leading edge 10 of the turbine wheel 4. In the figure, the projection of the entire leading edge 10 is inclined.

Die beschriebene axial geneigte Projektion der Eintrittskante 10 auf die genannte Ebene wird häufig als geneigte oder schräge Eintrittskante 10 bezeichnet. Die in der Figur 1 gezeigte Turbine 2 ist also eine Turbine mit halbaxialer Zuströmung. Der Abgasmassenstrom strömt aus einem nicht gezeigten Strömungsgehäuse der Turbine überwiegend radial auf die Vorderkanten 20 der Leitschaufeln 14, während sie neben einer radialen Strömungskomponente auch mit einer axialen Strömungskomponente auf die Eintrittskante 10 der Turbinenschaufeln 8 treffen.The described axially inclined projection of the leading edge 10 on said plane is often referred to as an inclined or sloping leading edge 10. The in the FIG. 1 shown turbine 2 is thus a turbine with semi-axial inflow. The exhaust gas mass flow flows predominantly radially from a flow housing, not shown, of the turbine to the front edges 20 of the guide vanes 14, while, in addition to a radial flow component, also impinges on the leading edge 10 of the turbine blades 8 with an axial flow component.

Die axial geneigte Projektion der Eintrittskante 10 auf die Ebene ist um einen Winkel ϕ von etwa 48° gegenüber der Drehachse 7 des Turbinenrades 4 geneigt. Ebenfalls ist zu erkennen, dass eine Projektion der Schaufelhinterkante 18 auf die genannte Ebene gegenüber der Drehachse 7 um den gleichen Winkel ϕ von etwa 48° axial geneigt ist. Die Schaufelhinterkante 18 verläuft also im Wesentlichen parallel zur Eintrittskante 10 einer jeweils nächstliegenden Turbinenschaufel 8. Ein Spalt 26 zwischen Eintrittskante 10 und Schaufelhinterkante 18 ist somit im Wesentlichen von konstanter Dicke und beträgt etwa 1 mm.The axially inclined projection of the leading edge 10 on the plane is inclined by an angle φ of about 48 ° relative to the axis of rotation 7 of the turbine wheel 4. It can also be seen that a projection of the blade trailing edge 18 on the said plane relative to the axis of rotation 7 is inclined axially by the same angle φ of approximately 48 °. The blade trailing edge 18 thus runs substantially parallel to the leading edge 10 of a respectively adjacent turbine blade 8. A gap 26 between the leading edge 10 and blade trailing edge 18 is thus substantially of constant thickness and is about 1 mm.

Die in Figur 1 gezeigten Leitschaufeln 14 befinden sich in einer Offenstellung. In dieser Stellung ist ein minimaler radialer Abstand x der Schaufelhinterkante 18 jeweils einer Leitschaufel 14 senkrecht zur Drehachse 7 kleiner als ein maximaler radialer Abstand y der Eintrittskante 10 einer jeweils nächstliegenden Turbinenschaufel 14 senkrecht zur Drehachse 7. Die Leitschaufeln 14 hinterschneiden somit die Turbinenschaufeln 8 im Bereich der Eintrittskante 10.In the FIG. 1 shown guide vanes 14 are in an open position. In this position, a minimum radial distance x of the blade trailing edge 18 of a respective vane 14 perpendicular to the axis of rotation 7 is smaller than a maximum radial distance y of the leading edge 10 of a respective nearest turbine blade 14 perpendicular to the axis of rotation 7. Die Leitschaufeln 14 thus undercut the turbine blades 8 in the region of the leading edge 10.

Die Figur 2 zeigt eine Aufsicht auf das Turbinenrad 4 und die Leitschaufeln 14 der in der Figur 1 gezeigten Turbine in der Offenstellung der Leitschaufeln 14. Zur besseren Darstellung wurden hier unter anderem das Lagergehäuse 9 und die Scheibe 15 weggelassen. Die Figur 3 zeigt eine Vergrößerung des Details A aus der Figur 2 in einer perspektivischen Darstellung. Wie aus den Figuren 2 und 3 hervorgeht, weisen die Leitschaufeln 14 eine gewölbte Leitschaufeloberfläche 19 auf. Aus diesem Grund ist die Leitschaufeloberfläche 19 in der Aufsicht der Figur 2 zu erkennen. Neben der geneigten Eintrittskante 10 des Turbinenrades 4 besitzen die Leitschaufeln 14 ebenfalls geneigte Schaufelkanten 18, um den Abgasmassenstrom bis möglichst nahe an das Turbinenrad 4 sauber zu führen. Dies geht insbesondere aus der perspektivischen Darstellung der Figur 3 der Eintrittskante 10 und der Schaufelhinterkante 18 hervor.The FIG. 2 shows a plan view of the turbine 4 and the vanes 14 in the FIG. 1 shown turbine in the open position of the vanes 14. For better illustration here, inter alia, the bearing housing 9 and the disc 15 have been omitted. The FIG. 3 shows an enlargement of the detail A from the FIG. 2 in a perspective view. Like from the FIGS. 2 and 3 As can be seen, the vanes 14 have a domed vane surface 19. For this reason, the vane surface 19 in the top view of FIG. 2 to recognize. In addition to the inclined leading edge 10 of the turbine wheel 4, the guide vanes 14 also have inclined blade edges 18 in order to guide the exhaust gas mass flow as close as possible to the turbine wheel 4 clean. This goes in particular from the perspective view of FIG. 3 the leading edge 10 and the blade trailing edge 18.

Figuren 4 und 5 zeigen die Anordnung aus Figur 2 in einer mittleren Leitschaufelstellung bzw. in einer geschlossenen Stellung der Leitschaufeln 14. Insbesondere in Figur 5 ist gut zu erkennen, dass die Schaufelvorderkante 20 und die Schaufelhinterkante 18 zweier benachbarter Leitschaufeln 14 derart geformt sind, dass sie eine strömungsgünstige Düse 28 für eine Strömungsführung des Abgasmassenstromes zum Turbinenrad 4 bilden. Die Düse 28 ist in der Figur als Durchbruch 28 zu erkennen. FIGS. 4 and 5 show the arrangement FIG. 2 in a central vane position or in a closed position of the guide vanes 14. In particular in FIG. 5 It will be appreciated that the blade leading edge 20 and blade trailing edge 18 of two adjacent vanes 14 are shaped to form a streamlined nozzle 28 for directing flow of the exhaust gas mass flow to the turbine wheel 4. The nozzle 28 can be seen in the figure as a breakthrough 28.

In den Figuren 6A bis 6D sind verschiedene Querschnitte unterschiedlich geformter Leitschaufeln 14 senkrecht zur Drehachse 7 gezeigt. Eine Profilmittellinie 30 der Leitschaufel 14 teilt einen Querschnitt der Leitschaufel 14 seiner Länge 31 nach in zwei gleich dicke Hälften. Die Profilmittellinie 30 erstreckt sich hierbei von der Schaufelhinterkante 18 zu der Schaufelvorderkante 20.In the FIGS. 6A to 6D different cross sections of differently shaped vanes 14 are shown perpendicular to the axis of rotation 7. A profile centerline 30 of the vane 14 divides a cross-section of the vane 14 of its length 31 into two equally thick halves. The profile center line 30 in this case extends from the blade trailing edge 18 to the blade leading edge 20.

In Figur 6A ist die Profilmittellinie eine gerade Linie, während in Figur 6B die Profilmittellinie 30 gekrümmt ist und einen konstanten Krümmungsradius aufweist, der einen endlichen Wert hat. Die Profilmittellinie 30 aus Figur 6C hingegen weist zwei verschieden gekrümmte Bereiche mit jeweils unterschiedlichen Krümmungsradien auf. Schließlich zeigt die Profilmittelinie 30 aus der Figur 6D, die abschnittsweise gekrümmt ist und abschnittsweise gerade ist.In FIG. 6A the profile axis is a straight line while in FIG. 6B the profile center line 30 is curved and a constant radius of curvature having a finite value. The profile centerline 30 off FIG. 6C on the other hand, it has two differently curved regions, each with different radii of curvature. Finally, the profile center line 30 from the FIG. 6D , which is partially curved and sectionally straight.

Eine perspektivische Ansicht einer noch nicht montierten Leitschaufel 14 mit einer Leitschaufelwelle 5 aus dem in den Figuren 1 bis 5 gezeigten Abgasturbolader 1 ist zur Deutlichkeit noch mal in der Figur 7 gezeigt. An einer der Scheibe 15 zugewandten Seite 35' weist die Leitschaufel 14 einen in der Figur 6D gezeigten Querschnitt auf. Auch an einer dem Schaufellagerring zugewandten Seite 34' weist die Leitschaufel 14 den in der Figur 6D gezeigten Querschnitt auf, wobei die beiden Querschnitt gegenübereinander um einen Winkel α von 10° verdrillt sind (vgl. Figur 9). Es ist alternativ auch möglich, dass mindestens zwei Querschnitte jeweils einer Leitschaufel 14 senkrecht zur Drehachse 7 des Turbinenrades 4 jeweils eine unterschiedliche Form aufweisen. So kann es vorgesehen sein, dass eine einzige Leitschaufel 14 sämtliche Querschnitte aus den Figuren 6A bis 6D aufweist.A perspective view of a not yet mounted vane 14 with a guide shaft 5 from the in the FIGS. 1 to 5 shown exhaust gas turbocharger 1 is for clarity again in the FIG. 7 shown. On one of the disk 15 facing side 35 ', the guide vane 14 has a in the FIG. 6D shown cross section. Also on a blade bearing ring side facing 34 ', the guide vane 14 in the FIG. 6D shown cross section, wherein the two cross section are twisted against each other by an angle α of 10 ° (see. FIG. 9 ). Alternatively, it is also possible for at least two cross sections of a respective guide blade 14 to have a different shape perpendicular to the axis of rotation 7 of the turbine wheel 4. Thus, it may be provided that a single vane 14 all cross-sections of the FIGS. 6A to 6D having.

Unterschiedliche Strömungsfäden 33 sind jeweils definiert durch einen geringsten Abstand auf der Leitschaufeloberfläche 19 von der Schaufelvorderkante 20 bis zur Schaufelhinterkante 18. Um sicherzustellen, dass Abgasmassenströme einen gleich langen Strömungsweg auf jeweils einer Leitschaufeloberfläche 19 zum Turbinenrad 4 zurücklegen, weisen unterschiedliche Strömungsfäden 33 jeweils eine gleiche Länge auf.Different flow filaments 33 are each defined by a minimum distance on the vane surface 19 from the blade leading edge 20 to the blade trailing edge 18. To ensure that exhaust mass flows cover an equally long flow path on each vane surface 19 to the turbine wheel 4, different flow filaments 33 each have an equal length on.

In der Figur 8 ist eine weitere schematische Ansicht der Leitschaufel 14 aus den Figuren 1 bis 5 und 7 gezeigt. Die Strömungsfäden 33 in Figur 8 weisen eine gleiche Länge auf. Damit dies sichergestellt ist, ist die Leitschaufel 14 verdrillt, d.h., die Leitschaufeloberfläche 19 ist gewölbt ausgeführt.In the FIG. 8 is another schematic view of the vane 14 of the FIGS. 1 to 5 and 7 shown. The flow threads 33 in FIG. 8 have an equal length. To ensure this, the vane 14 is twisted, ie, the vane surface 19 is curved.

In Figur 9 sind zwei Querschnitte der in den Figuren 1-5, 7 und 8 gezeigten Leitschaufel 14 senkrecht zur Drehachse 7 des Turbinenrades 4 gezeigt. Hierbei ist zu erkennen, dass ein erster Querschnitt 34 der Leitschaufel 14 an der dem Schaufellagerring zugewandten Seite 34' um den Winkel α von 10° gegenüber einem zweiten Querschnitt 35 der Leitschaufel 14 an der der Scheibe 15 zugewandten Seite 35' geneigt ist.In FIG. 9 are two cross sections of the in the Figures 1-5 . 7 and 8th shown guide vane 14 perpendicular to the axis of rotation 7 of the turbine wheel 4 shown. It can be seen here that a first cross section 34 of the guide blade 14 on the side facing the blade bearing ring 34 'is inclined by the angle α of 10 ° with respect to a second cross section 35 of the guide blade 14 on the side 35' facing the disk 15.

In der Figur 10 ist das Turbinenrad 4 mit halbaxialer Zuströmung aus den Figuren 1 bis 5 nochmals in schematischer Darstellung gezeigt. In dieser Figur 10 ist zu erkennen, dass eine Ebene durch die Drehachse 7 des Turbinenrades 4 und mindestens einen auf der Eintrittskante 10 liegenden Punkt P aufgespannt wird. Die Projektion der Eintrittskante 10 auf diese Ebene ist axial um den Winkel ϕ gegenüber der Drehachse 7 des Turbinenrades 4 geneigt.In the FIG. 10 is the turbine wheel 4 with semi-axial inflow from the FIGS. 1 to 5 again shown in a schematic representation. In this FIG. 10 It can be seen that a plane is spanned by the axis of rotation 7 of the turbine wheel 4 and at least one point P lying on the leading edge 10. The projection of the leading edge 10 on this plane is inclined axially by the angle φ with respect to the axis of rotation 7 of the turbine wheel 4.

Neben dem ebenfalls in der Figur 1 gezeigten Punkt P, ist es auch möglich, einen anderen Punkt P' an einer anderen Stelle auf der Eintrittskante 10 zu wählen. Die Projektion auf die durch den Punkt P' und die Drehachse 7 definierte Ebene ist auch in diesem Fall um den Winkel ϕ geneigt.In addition to the also in the FIG. 1 It is also possible to choose another point P 'at a different location on the leading edge 10. The projection on the plane defined by the point P 'and the axis of rotation 7 is inclined in this case by the angle φ.

Lediglich in den Ausführungsbeispielen offenbarte Merkmale der verschiedenen Ausführungsformen können miteinander kombiniert und einzeln beansprucht werden.Only features disclosed in the embodiments of the various embodiments can be combined and claimed individually.

Claims (9)

  1. Exhaust-gas turbocharger (1) comprising a turbine (2) with a turbine wheel (4), wherein the turbine wheel (4) is mounted axially in a turbine housing (6) and has turbine vanes (8) with in each case one inlet edge (10) for a medium flow, wherein, in the turbine housing (6), there is arranged an adjustable guide grate (12) with a multiplicity of guide vanes (14) for the variable adjustment of a flow cross section (16) with respect to the inlet edge (10) of the turbine wheel (4), and the guide vanes (14) each have a vane trailing edge (18), facing toward the turbine wheel (4), and a vane leading edge (20), averted from the turbine wheel (4), a plane is spanned by an axis of rotation (7) of the turbine wheel (4) and at least one point (P) that lies on the inlet edge, wherein a projection of the inlet edge (10) onto said plane is, at least in one region, inclined axially in relation to the axis of rotation (7) of the turbine wheel (4), and the guide vanes (14) are, at least in said region, arranged radially around the turbine wheel (4), characterized
    in that at least two cross sections of in each case one guide vane (14) perpendicular to the axis of rotation (7) have in each case a different shape, wherein different flow filaments (33) define in each case a smallest spacing, on a guide vane surface (19), from the vane leading edge (20) to the vane trailing edge (18), wherein the different flow filaments (33) are each of equal length.
  2. Exhaust-gas turbocharger according to Claim 1, characterized in that the axially inclined projection of the inlet edge (10) is, in sections, inclined by an angle ϕ of at least 30° in relation to the axis of rotation (7) of the turbine wheel (4).
  3. Exhaust-gas turbocharger according to one of the preceding claims, characterized in that a projection of the vane trailing edge (18) onto said plane is, at least in the stated region, inclined axially in relation to the axis of rotation (7).
  4. Exhaust-gas turbocharger according to one of the preceding claims, characterized in that the vane trailing edge (18) of in each case one guide vane (14) runs substantially parallel to the inlet edge (10) of a respectively closest turbine vane (8).
  5. Exhaust-gas turbocharger according to one of the preceding claims, wherein the guide vanes (18) are adjustable between an open position and a closed position, and, at least in the open position, a minimum radial spacing (x) of the vane trailing edge (18) of in each case one guide vane (14) perpendicular to the axis of rotation (7) of the turbine wheel (4) is smaller than a maximum radial spacing (y) of the inlet edge (10) of a respectively closest turbine vane (8) perpendicular to the axis of rotation (7) of the turbine wheel (4).
  6. Exhaust-gas turbocharger according to one of the preceding claims, characterized in that a first cross section (34) of in each case one guide vane (14) perpendicular to the axis of rotation (7) of the turbine wheel (4) is inclined by an angle α in relation to a second cross section (35) of the respective guide vane (14) perpendicular to the axis of rotation (7) of the turbine wheel (4).
  7. Exhaust-gas turbocharger according to one of the preceding claims, characterized in that profile centerlines (30) of in each case one guide vane (14) divide in each case one cross section of the guide vane (14) perpendicular to the axis of rotation (7) along the length thereof into two halves of equal thickness, and the profile centerlines (30) extend from the vane leading edge (20) to the vane trailing edge (18) of the guide vane (14), wherein the profile centerlines (30) are curved at least in sections.
  8. Exhaust-gas turbocharger according to one of the preceding claims, characterized in that a guide vane surface (19) which guides the medium flow and which extends from the vane leading edge (20) to the vane trailing edge (18) of the guide vane (14) is arched.
  9. Exhaust-gas turbocharger according to one of Claims 5 to 8, characterized in that the vane leading edge (20) and the vane trailing edge (18) of two adjacent guide vanes (14) are shaped such that, in the closed position of the guide vanes (14), they form an aperture (28) for guidance of the medium flow to the turbine wheel (4).
EP14793041.6A 2013-12-11 2014-10-22 Turbocharger Active EP3080399B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013225642.6A DE102013225642B4 (en) 2013-12-11 2013-12-11 Exhaust gas turbocharger with an adjustable guide grille
PCT/EP2014/072600 WO2015086205A1 (en) 2013-12-11 2014-10-22 Turbocharger

Publications (2)

Publication Number Publication Date
EP3080399A1 EP3080399A1 (en) 2016-10-19
EP3080399B1 true EP3080399B1 (en) 2017-09-13

Family

ID=51846620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14793041.6A Active EP3080399B1 (en) 2013-12-11 2014-10-22 Turbocharger

Country Status (6)

Country Link
US (1) US10808569B2 (en)
EP (1) EP3080399B1 (en)
CN (1) CN105814279B (en)
BR (1) BR112016011440B8 (en)
DE (1) DE102013225642B4 (en)
WO (1) WO2015086205A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018211673A1 (en) * 2018-07-12 2020-01-16 Continental Automotive Gmbh Guide vane and turbine assembly provided with such
US10975886B2 (en) 2016-03-25 2021-04-13 Ihi Corporation Turbocharger

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3102805A4 (en) * 2014-02-04 2018-02-21 Borgwarner Inc. Heat shield for mixed flow turbine wheel turbochargers
DE102014221362A1 (en) * 2014-10-21 2016-04-21 Siemens Aktiengesellschaft Profiling of vanes of nozzles in turbomachinery, in particular compressors
DE102015205208A1 (en) * 2015-03-23 2016-09-29 Bosch Mahle Turbo Systems Gmbh & Co. Kg Charging device with variable turbine geometry
DE102016011838A1 (en) * 2016-10-01 2018-04-05 Daimler Ag Turbine for an exhaust gas turbocharger of an internal combustion engine
EP3636880B1 (en) * 2018-10-11 2023-06-07 BorgWarner, Inc. Turbine wheel
EP3929407A1 (en) * 2020-06-23 2021-12-29 ABB Schweiz AG Modular nozzle ring for a turbine stage of a flow engine
DE102021134071A1 (en) 2021-12-21 2023-06-22 Borgwarner Inc. RADIAL TURBINE WITH VTG GUIDE GRID

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2797858A (en) * 1954-03-22 1957-07-02 Garrett Corp Radial compressors or turbines
US3495921A (en) * 1967-12-11 1970-02-17 Judson S Swearingen Variable nozzle turbine
EP1543220B1 (en) 2002-09-05 2008-05-21 Honeywell International Inc. Turbocharger comprising a variable nozzle device
EP1710415A1 (en) 2005-04-04 2006-10-11 ABB Turbo Systems AG Multiple step turbocharging
EP3150805B1 (en) * 2005-11-25 2020-09-23 BorgWarner, Inc. Variable geometry turbocharger guide vane and turbocharger
EP1811135A1 (en) * 2006-01-23 2007-07-25 ABB Turbo Systems AG Variable guiding device
EP1895106A1 (en) * 2006-08-28 2008-03-05 ABB Turbo Systems AG Sealing of variable guide vanes
GB0707501D0 (en) * 2007-04-18 2007-05-30 Imp Innovations Ltd Passive control turbocharger
BRPI0810328A8 (en) * 2007-05-04 2018-10-30 Borgwarner Inc turbocharger and method of operating a turbocharger
DE102008004014A1 (en) * 2008-01-11 2009-07-23 Continental Automotive Gmbh Guide vane for a variable turbine geometry
CN102203396B (en) * 2008-11-05 2014-01-29 株式会社Ihi Turbocharger
US8834104B2 (en) * 2010-06-25 2014-09-16 Honeywell International Inc. Vanes for directing exhaust to a turbine wheel
JP5866802B2 (en) * 2011-05-26 2016-02-17 株式会社Ihi Nozzle blade
CN202176551U (en) 2011-08-30 2012-03-28 哈尔滨汽轮机厂有限责任公司 Inlet rotatable guide vane of compressor for large-power gas turbine
EP2787181B1 (en) * 2011-11-30 2019-01-09 Mitsubishi Heavy Industries, Ltd. Radial turbine
JP5916377B2 (en) * 2011-12-27 2016-05-11 三菱重工業株式会社 Turbocharger turbine and supercharger assembly method
US9057280B2 (en) * 2012-01-31 2015-06-16 Honeywell International Inc. Contacting vanes
DE112013000483T5 (en) 2012-02-02 2014-09-18 Borgwarner Inc. Semi-axial turbocharger with variable turbine geometry

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975886B2 (en) 2016-03-25 2021-04-13 Ihi Corporation Turbocharger
DE102018211673A1 (en) * 2018-07-12 2020-01-16 Continental Automotive Gmbh Guide vane and turbine assembly provided with such

Also Published As

Publication number Publication date
DE102013225642B4 (en) 2020-09-17
BR112016011440A2 (en) 2017-08-08
US20160312651A1 (en) 2016-10-27
CN105814279B (en) 2019-04-16
DE102013225642A1 (en) 2015-06-11
CN105814279A (en) 2016-07-27
BR112016011440B8 (en) 2023-04-18
EP3080399A1 (en) 2016-10-19
BR112016011440B1 (en) 2021-12-28
WO2015086205A1 (en) 2015-06-18
US10808569B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
EP3080399B1 (en) Turbocharger
EP2108784B1 (en) Flow machine with fluid injector component group
DE4330487C1 (en) Exhaust gas turbocharger for an internal combustion engine
EP2147216B1 (en) Exhaust gas turbocharger
EP2989298B1 (en) Exhaust gas turbocharger
EP2167793B1 (en) Exhaust gas turbocharger for an internal combustion engine
DE112014005032T5 (en) Compressor air return with reduced noise
DE102011108195B4 (en) Turbine for an exhaust gas turbocharger
EP3682116A1 (en) Radial compressor comprising an iris diaphragm mechanism for a charging device of an internal combustion engine, charging device, and lamella for the iris diaphragm mechanism
DE102018221812A1 (en) Exhaust gas turbine with an exhaust gas guide device for an exhaust gas turbocharger and exhaust gas turbocharger
DE112013000544T5 (en) Turbocharger with variable turbine geometry and grooved vanes
DE102016102732A1 (en) Mixed-flow turbine wheel of an exhaust gas turbocharger and exhaust gas turbine with such a turbine wheel
EP2927503B1 (en) Gas turbine compressor, aircraft engine and design method
DE112017005661T5 (en) Variable nozzle unit and turbocharger
DE102007060044A1 (en) Variable turbine geometry
EP3327258A1 (en) Inlet guide vane for a turbo engine
DE102009012132A1 (en) Exhaust gas turbine for internal combustion engine of e.g. passenger car, has adjustable guide vane arranged in upstream of rotor blade in flow passage and rotated at point of variable cross section along longitudinal axis
DE102018212756B3 (en) Radial compressor, supercharger and internal combustion engine with exhaust gas recirculation device
EP3636880B1 (en) Turbine wheel
DE102015014900A1 (en) Radial turbine housing
DE202015007926U1 (en) turbocharger
EP2134925B1 (en) Exhaust gas turbocharger and method for the operation thereof
DE102018221161B4 (en) Exhaust gas turbine of an exhaust gas turbocharger and an exhaust gas turbocharger with a flow-related disruptive element in the turbine housing
DE102015223749A1 (en) Guide a bearing housing-mounted adjusting ring
DE102016213626A1 (en) Turbine for an exhaust gas turbocharger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160711

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170418

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 928366

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014005475

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170913

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014005475

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171022

26N No opposition filed

Effective date: 20180614

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014005475

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 928366

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014005475

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230427 AND 20230503

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231026

Year of fee payment: 10

Ref country code: DE

Payment date: 20231031

Year of fee payment: 10