EP3078824B1 - Combustion engine with exhaust gas energy recovery and method for operation of such a combustion engine - Google Patents

Combustion engine with exhaust gas energy recovery and method for operation of such a combustion engine Download PDF

Info

Publication number
EP3078824B1
EP3078824B1 EP16162625.4A EP16162625A EP3078824B1 EP 3078824 B1 EP3078824 B1 EP 3078824B1 EP 16162625 A EP16162625 A EP 16162625A EP 3078824 B1 EP3078824 B1 EP 3078824B1
Authority
EP
European Patent Office
Prior art keywords
combustion engine
gas
turbine
exhaust
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16162625.4A
Other languages
German (de)
French (fr)
Other versions
EP3078824A1 (en
Inventor
Dr. Peter Schöggl
Karl Wieser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVL List GmbH
Original Assignee
AVL List GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVL List GmbH filed Critical AVL List GmbH
Publication of EP3078824A1 publication Critical patent/EP3078824A1/en
Application granted granted Critical
Publication of EP3078824B1 publication Critical patent/EP3078824B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/168Control of the pumps by bypassing charging air into the exhaust conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D37/00Stabilising vehicle bodies without controlling suspension arrangements
    • B62D37/02Stabilising vehicle bodies without controlling suspension arrangements by aerodynamic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/20Control of the pumps by increasing exhaust energy, e.g. using combustion chamber by after-burning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an internal combustion engine which has a turbine device with a first turbine wheel, which is arranged in an exhaust system of the internal combustion engine in such a way that it can be operated with exhaust gas, and a compressor device with a first compressor wheel.
  • the first turbine wheel and the first compressor wheel are coupled to a common shaft.
  • the invention relates to a method for operating such an internal combustion engine.
  • vehicles that are used in racing and sports are required to increase the liability limits between the tires and the road surface with aerodynamic aids, since these vehicles achieve acceleration, deceleration and cornering acceleration that are equal to 1 g (gravitational acceleration ) sometimes exceed significantly.
  • a strong downforce must be generated on the vehicle body, for example by means of a Front wing, rear wing and especially with the shape of the actual vehicle body.
  • the design of the vehicle underbody plays an outstanding role. The aim here is to accelerate the air flowing under the vehicle floor as much as possible. The higher their speed, the stronger their suction power according to Bernoulli's law and the stronger the downforce exerted on the vehicle underbody.
  • the kinetic energy of the exhaust gases is also used in state-of-the-art racing vehicles.
  • the underbody at the rear of the respective vehicle is bent upwards and usually shielded to the side with vertical aerodynamic baffles and possibly still divided in the middle. This creates a diffuser for the air flowing along the vehicle.
  • the ends of the exhaust pipes are preferably introduced into this diffuser zone with a horizontal jet direction directed towards the rear. Exhaust gases escaping at high speed exert a suction effect on the air under the underbody and increase their speed and thus in turn the suction effect between the road surface and the underbody and thus the downforce of the vehicle.
  • the WO 2010/000285 A1 discloses an internal combustion engine with means for converting thermal exhaust gas energies into mechanical power, wherein a heat exchanger is inserted into the exhaust gas line of the internal combustion engine, which is part of an open gas pressure turbine system, which comprises a compressor located in front of the heat exchanger and a turbine arranged downstream of the heat exchanger.
  • the AT 512 639 A1 relates to a vehicle, in particular a racing vehicle, with an internal combustion engine having a drive unit, and at least one thermal power plant for recovering heat from a heat-emitting component or a heat-emitting assembly, the component or the assembly in at least one space through which a working gas, in particular air, flows borders and is at least partially surrounded by the flow of space.
  • the racing vehicle also has a compressor and a first turbine, the outlet side of the first compressor being fluidly connected to the inlet region of the space, the outlet region of which is fluidly connected to the inlet side of the first turbine, wherein the outlet flow path of the first turbine and the outlet flow path of the first compressor are thermally connected to one another, preferably via at least one first heat exchanger.
  • An outlet opening of the outlet flow path is preferably arranged in the region of a stagnation point on the side of a diffuser of the vehicle facing the roadway.
  • the DE 600 22 907 T2 relates to a waste heat recovery device for an internal combustion engine, which comprises a plurality of exhaust pipes, each extending from cylinders of the multi-cylinder internal combustion engine, and one or more heat exchangers connected to the cylinders, the exhaust pipes comprising one or more manifolds, which bring together exhaust gas from a plurality of the exhaust pipes, each header pipe being provided with a heat exchanger for recovering exhaust gas heat, and wherein the waste heat recovery device further comprises a Rankine cycle system.
  • the EP 0 038 232 A2 relates to a method and a device for power generation by means of a supercharged internal combustion engine, the internal combustion engine being supercharged by an air turbo compressor and the exhaust gases of which displace a derived pressure quantity through a branch line into the exhaust gas line serving to feed the turbine.
  • the internal combustion engine has a turbine device with a first turbine wheel, which is arranged in an exhaust system of the internal combustion engine in such a way that it can be operated with exhaust gas, and a compressor device with a first Compressor wheel, wherein compressed gas, in particular air, is at least partially supplied to the turbine device by the compressor device.
  • the internal combustion engine preferably furthermore has a common shaft to which the turbine device and the compressor device are coupled, the shaft being coupled in particular to the first turbine wheel and the first compressor wheel, and a heat exchanger which is thermally coupled to the exhaust system in this manner to transfer waste heat from the exhaust system to gas compressed by the compressor device, in particular air, which in turn is fed to the turbine device.
  • the heat exchanger has a cross-sectional area which increases in the direction of flow of the compressed gas, in particular in such a way that the macroscopic flow rate of the compressed gas along the entire heat exchanger lies within a predetermined range of values.
  • the vehicle according to the invention has an internal combustion engine according to the invention.
  • the method according to the invention for operating an internal combustion engine uses a conversion of thermal exhaust gas energy into mechanical power by means of an open gas turbine process, which preferably has the following steps: compression of gas, in particular air, by means of an exhaust gas turbine device; transferring waste heat from the exhaust gas of the internal combustion engine to the compressed gas; and supplying the heated, compressed gas to the exhaust gas turbocharger device.
  • a turbine device in the sense of the invention is a rotating turbomachine which converts the energy of at least one flowing fluid into mechanical energy and in particular delivers it to a shaft.
  • a compressor device in the sense of the invention is a fluid energy machine which is used to compress at least one gas.
  • a heat exchanger in the sense of the invention transfers thermal energy from one material flow to another.
  • An exhaust system in the sense of the invention is at least part of those lines which release exhaust gas from the internal combustion engine into the environment.
  • a gas turbine process in the sense of the invention is a thermodynamic process, which is used in particular in a heat engine, and is based on the Joule cycle process.
  • An exhaust gas turbocharger in the sense of the invention is a device for increasing the power or efficiency of piston engines, in which at least one turbine wheel is coupled to a compressor wheel.
  • Coupled in the sense of the invention means the provision of an operative connection between two elements, in particular a rotary connection. Such a coupling is preferably also possible via a transmission.
  • Thermally connected in the sense of the invention means that thermal energy can be exchanged between two elements.
  • the invention is based in particular on the approach of operating a compressor wheel of a compressor with a turbine wheel of an exhaust gas turbine in the exhaust system of an internal combustion engine.
  • This turbine wheel compresses a gas which, after further heating by waste heat from the exhaust gas, is in turn fed to the turbine wheel or to another coupled turbine wheel.
  • Thermal energy extracted from the exhaust gas is converted into kinetic energy based on a gas turbine process. In this way, 10% to 15% more power can be achieved by an internal combustion engine or the efficiency of the internal combustion engine can be increased by the same size.
  • the turbine device and the compressor device preferably their at least one turbine wheel and at least one compressor wheel, are coupled.
  • the compressed gas flows through the heat exchanger with respect to the exhaust gas in the exhaust system in the counterflow principle.
  • the compressor device also supplies the internal combustion engine with gas.
  • the compressor device is part of an exhaust gas turbocharger device of the internal combustion engine.
  • this furthermore has an electric machine, which is also coupled to the shaft.
  • an electric machine makes it possible to convert the recovered thermal energy into electrical energy, which can be stored and can be used for driving, for example, by an electric drive machine of a vehicle, in particular a hybrid vehicle.
  • the electric machine can drive a compressor device of a turbocharger device, for example in order to compensate for a turbo lag in the internal combustion engine.
  • the heat exchanger with a first part of the exhaust system which is arranged downstream of the turbine device with regard to the exhaust gas, is thermal with a second part of the exhaust system, which is arranged upstream of the turbine device and / or at least one exhaust line of a cylinder connected.
  • the compressed gas is fed to the first turbine wheel of the turbine device.
  • the use of the first turbine wheel in the turbine of an exhaust gas turbocharger and also as a gas turbine of a gas turbine process enables a particularly compact design of the internal combustion engine, since no additional turbine has to be provided for the gas turbine process.
  • the turbine device has a second turbine wheel which can be coupled to the common shaft, the exhaust gas of the internal combustion engine driving the first turbine wheel and the compressed gas driving the second turbine wheel.
  • a second turbine wheel which can be coupled to the common shaft, the exhaust gas of the internal combustion engine driving the first turbine wheel and the compressed gas driving the second turbine wheel.
  • the compressor device has a second compressor wheel which can be coupled to the common shaft, the first compressor wheel supplying compressed gas to the turbine device via the heat exchanger and the second compressor wheel supplying compressed gas to the internal combustion engine.
  • the respective compressor or the compressor wheel can be optimized for the requirements of engine charging or heat recovery by the heat exchanger, in particular with regard to pressure, flow rate and / or throughput.
  • the heat exchanger has a cross-sectional area which increases in the direction of flow of the compressed gas, in particular in such a way that the macroscopic flow rate of the compressed gas along the entire heat exchanger lies within a predetermined range of values. This measure minimizes the pressure drop in the heat exchanger, i.e. optimization of efficiency achieved.
  • relaxed gas is supplied from the second turbine wheel to at least one diffuser of the vehicle.
  • the heat exchanger is thermally coupled to part of a gas duct between the second turbine wheel and a diffuser.
  • the compressed gas flows through the heat exchanger in relation to the expanded gas in the gas duct in the counterflow principle.
  • it also has the step of transferring waste heat from the expanded gas emerging from the exhaust gas turbocharger device to the compressed gas.
  • this comprises converting at least some of the mechanical energy generated by the exhaust gas turbocharger device into electrical energy.
  • the method further comprises the step of converting electrical energy into mechanical energy on the exhaust gas turbocharger device.
  • Fig. 1 represents a first embodiment of an internal combustion engine 1 according to the invention.
  • the internal combustion engine has six cylinders, three cylinders 9a, 9b, 9c each being arranged in series.
  • the invention is only described in relation to a triple of cylinders.
  • the corresponding exhaust gas courses, gas routing and heat exchanger also apply accordingly to the other triple on cylinders, as is also shown in the figures.
  • the invention can also be used for any type be used by internal combustion engines.
  • the invention is not limited to a specific number of cylinders, nor to internal combustion engines that work with cylinders.
  • the invention could also be used in rotary lobe machines.
  • Exhaust gas from the cylinders 9a, 9b, 9c preferably flows via exhaust lines 8a, 8b, 8c into an exhaust system 3a, 3b and is preferably released into the environment by the latter.
  • a turbine device 2 is preferably arranged, through which the exhaust gas from the first part 3a, which is located upstream of the turbine device 2, flows, whereby a shaft 5, which is connected to a turbine wheel the turbine device 2 is coupled, is set in rotation.
  • the exhaust gas leaves the internal combustion engine 1 via the second part 3b of the exhaust system.
  • the internal combustion engine 1 preferably also has a compressor device 4, which is set up to compress gas.
  • the compressor device 4 preferably sucks in air from the environment as gas, compresses it by means of a compressor wheel (not shown) and leads it on the one hand via a first part 12a of a gas duct to a first part 6a of a heat exchanger and on the other hand via a further gas duct 13 to a charge cooler (not shown), from where the air is introduced into the combustion chambers of the cylinders 9a, 9b, 9c.
  • the turbine device 2, the compressor device 4 and the shaft 5 thus preferably form the essential elements of an exhaust gas turbocharger device of the prior art, with the difference that air compressed by the compressor device 4 is preferably fed to a heat exchanger 6a, 6b.
  • the air preferably flows via a second part 12b of the gas duct into a second part 6b of the heat exchanger and again via a third part 12c of the gas duct into the working space of the turbine device 2, where the turbine wheel is preferably located.
  • the air compressed by the compressor device 4 is heated by thermal energy contained in the exhaust system 3a, 3b.
  • the exhaust system 3a, 3b is preferably integrated in the areas of the heat exchanger 6a, 6b.
  • the air which has already been preheated by the compression device 4 typically leaves the compression device 4 with about 150 ° C to 200 ° C and has more than 600 ° C when entering the turbine device 2.
  • the potential energy contained in the compressed air is at least partially converted into kinetic energy by the turbine device 2, preferably in a type of gas turbine process, which is also transmitted to the shaft 5.
  • the air heated to over 600 ° C. preferably leaves the turbine device 2 at approximately 200 ° C. to 300 ° C., it being noted that this is the case with the first embodiment of FIG Fig. 1 is mixed with the exhaust gas of the internal combustion engine 1 in the second part 3b of the exhaust system.
  • the internal combustion engine 1 according to the invention can achieve efficiency gains of 10% to 15% compared to a turbocharged internal combustion engine of the prior art.
  • an output of such an internal combustion engine from the prior art can be increased by 15 kW to 20 kW if the energy from the open gas turbine process, which is realized by the compressor 4, the heat exchanger 6a, 6b and the turbine 2, is added.
  • the cross-sectional area of the gas guides and the Heat exchanger starting from the outlet of the compressor device 4 via the first part 12a of the gas guide, the first part 6a of the heat exchanger, the second part 12b of the gas guide, the second part 6b of the heat exchanger and the third part 12c of the gas guide up to the turbine device 2.
  • a flow rate through the gas or air-carrying parts of 50 m / sec. up to 80 m / sec. leads to particularly low throttle losses.
  • the cross section of the gas-carrying parts therefore preferably increases, starting from the compressor device 4 to the turbine device 2, in such a way that a flow rate of 50 m / sec. With increasing temperature and thus increasing volume of the gas or air. up to 80 m / sec. is preserved at every point of the gas-carrying parts. Is a heating of the gas starting from the compressor device 4 to the turbine device 2 from 150 ° C to more than 600 ° C, the cross-section over this distance should preferably double approximately.
  • Fig. 2 relates to a second embodiment of the internal combustion engine 1 according to the invention, in which the shaft 5 is additionally coupled to an electric machine.
  • the electric machine 7 can be used to convert excess energy which is generated by the compressor device 2 into electrical energy which can preferably be stored in an electrochemical energy store.
  • stored electrical energy in an electrochemical store can in turn be reversibly converted into kinetic energy and transmitted to the shaft 5, whereby, for example, the compressor 4 can be driven to provide compressed air to the cylinders 9a, 9b, 9c via the charge cooler (not shown) .
  • This can be used to bridge a turbo lag, for example.
  • the energy generated by the electric machine 7 in generator operation is fed to a further electric machine (also not shown) which can generate a drive torque, for example on the wheels of a vehicle.
  • a compressor device instead of an electric machine 7, it is also possible to use a compressor device.
  • the energy is preferably stored in a compressed gas store and can also be called up reversibly to increase the output of the internal combustion engine 1.
  • Fig. 3 shows a second embodiment of the internal combustion engine 1 according to the invention, which differs from the first embodiment in that the heat exchanger has a third part 6c, which extends from the second part 6b of the heat exchanger via the exhaust lines 8a, 8b, 8c of the cylinders 9a, 9b, 9c extends.
  • the gas compressed by the compressor device 4 is only discharged directly at the end of the exhaust lines 8a, 8b, 8c, which adjoin the engine block, and is conducted to the turbine device 2 via the third part 12c of the gas duct.
  • the extension of the heat exchanger by the third part 6c ensures a better transfer of the thermal energy in the exhaust gas to the air present in the gas-carrying elements.
  • Fig. 4 represents a third embodiment of the internal combustion engine 1 according to the invention, which differs from the first and second embodiments in particular in that the turbine device is divided into two parts 2a, 2b, each of which preferably has a turbine with a turbine wheel.
  • the compressed air from the heat exchanger 6a, 6b is not fed to a first turbine wheel via the third part 12c of the gas duct, which is arranged in the exhaust gas flow of the internal combustion engine 1, but is fed to a second turbine wheel in the second part 2b of the turbine device.
  • the potential energy from the air compressed by the compressor device 4 and heated by the heat exchanger 6a, 6b is converted into kinetic energy in a gas turbine process, which is preferably transmitted to the shaft 5.
  • the expanded gas, which flows out of the second part 2b of the turbine device, is preferably discharged together with the exhaust gas via the second part 3b of the exhaust system.
  • a gas turbine 2b which is separate from the turbine 2a of the exhaust gas turbocharger, has the advantage that each turbine can be optimized for its specific use and its respective operating points. In this way, the turbine 2b can be optimized for a gas turbine process, whereas the turbine 2a taps the pressure (accumulation charge) and the kinetic energy of the exhaust gases (shock charge) from the exhaust gas in the exhaust line.
  • further parts 6c of the heat exchanger can be provided, with which further exhaust-gas-carrying elements of the internal combustion engine 1 are in thermal connection, as shown in FIG Fig. 5 is shown.
  • Fig. 6 represents a first embodiment of a vehicle 10 according to the invention with an internal combustion engine 1 according to the third embodiment.
  • This embodiment of the vehicle is characterized in that the relaxed air exiting from the second part 2b of the turbine device 2 preferably via a fourth part 12d of a gas duct Diffuser 11a, 11b is supplied, which, as in Fig. 6 shown, can consist of two parts, which are preferably arranged in the rear region of the vehicle 10.
  • the diffuser 11a, 11b By flowing the diffuser 11a, 11b with the relaxed air, which has a high flow rate and a higher temperature than the environment, the downforce generated by the diffuser 11A, 11b can be increased on the vehicle.
  • FIG. 4 shows a second embodiment of a vehicle 10 according to the invention, which differs from the first embodiment according to FIG Fig. 6 distinguishes on the one hand in that further parts of the heat exchanger are provided, which in Fig. 7 are designated by the reference numerals 6a and 6d.
  • further parts 6a, 6d can also be provided and / or these can replace one or both of the parts 6b, 6c.
  • the first part 6a of the heat exchanger differs from the second part 6b, the third part 6c and the fourth part 6d of the heat exchanger in that it is not thermally coupled to exhaust gas-carrying elements of the vehicle 10, but with a second part 12b of the gas duct, which supplies the relaxed air emerging from the second part 2b of the turbine device 2 to the diffuser 11a, 11b.
  • the compressed air from the compressor 4 is preferably conveyed further via the heat exchangers 6b, 6c, 6d to the first part of the turbine device 2a, which forms the exhaust gas turbocharger with the compressor device 4.
  • residual thermal energy which is still present in the relaxed air leaving the second part 2b of the turbine device can also be transferred to the compressed air.
  • the relaxed air and the compressed air flow through the heat exchanger 6a to form a compact version in the direct current direction.
  • the compressed one Air also flows through the first part 6a of the heat exchanger in the counterflow direction to the relaxed air, as is the case with regard to the exhaust gas flow in the second part 6b, the third part 6c and the fourth part 6d of the heat exchanger.
  • Figure 8 represents a fourth embodiment of the internal combustion engine 1 according to the invention with an electric machine 7.
  • the compressor device of the fourth embodiment has a first part 4a and a second part 4b, the first part 4a preferably having a first compressor wheel and the second part 4b preferably having a second compressor wheel.
  • the second compressor 4b provides compressed air, preferably via a charge air cooler (not shown), to the combustion chamber of the cylinders 9a, 9b, 9c.
  • the first compressor 4a preferably provides compressed air which flows through the heat exchanger 6a, 6b and executes a gas turbine process together with the turbine device 2. Both turbines 4a, 4b of the turbine device preferably obtain air from the environment as the gas.
  • each compressor can be optimized for its respective field of application.
  • the compressor 4b which together with the turbine device 2 preferably forms an exhaust gas turbocharger device, preferably works with a different outlet pressure for charging the internal combustion engine 1 than the compressor 4a, which provides a pressure for the gas turbine process, which is preferably carried out together with the turbine device 2 .
  • Fig. 9 represents a fifth embodiment of the internal combustion engine according to the invention. This embodiment differs from the embodiments which are shown in FIGS Figures 1 to 8 are shown in that both the turbine device has a first part 2a and a second part 2b, and the compressor device has a first part 4a and a second part 4b.
  • the respective elements can be optimized for their operating range.
  • FIG. 3 shows a third embodiment of the vehicle 10 according to the invention, which is an internal combustion engine 1 according to the fifth embodiment Fig. 9 has, compared to the Fig. 9 further parts 6a, 6d of a heat exchanger are present.
  • this embodiment also has a diffuser 11a, 11b, which preferably consists of two parts which are arranged in the region of the rear of the vehicle 10.
  • This embodiment also has a heat exchanger 6a, which can extract thermal energy from the relaxed air leaving the second turbine 2b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Supercharger (AREA)

Description

Die Erfindung betrifft eine Brennkraftmaschine, welche eine Turbinenvorrichtung mit einem ersten Turbinenrad, welches in der Weise in einer Abgasanlage der Brennkraftmaschine angeordnet ist, dass es mit Abgas betreibbar ist, und eine Verdichtervorrichtung mit einem ersten Verdichterrad, aufweist. Das erste Turbinenrad und das erste Verdichterrad sind mit einer gemeinsamen Welle gekoppelt. Des Weiteren betrifft die Erfindung ein Verfahren zum Betrieb einer solchen Brennkraftmaschine.The invention relates to an internal combustion engine which has a turbine device with a first turbine wheel, which is arranged in an exhaust system of the internal combustion engine in such a way that it can be operated with exhaust gas, and a compressor device with a first compressor wheel. The first turbine wheel and the first compressor wheel are coupled to a common shaft. Furthermore, the invention relates to a method for operating such an internal combustion engine.

In einer Brennkraftmaschine wird nur ein relativ geringer Anteil der im eingesetzten Brennstoff chemisch gebundenen Energie in mechanische Leistung umgesetzt, während ein vergleichsweise großer Anteil über die Abgaswärmeströme und die Kühlwasserströme der Brennkraftmaschine nutzlos in die Umgebung abgegeben werden. Insofern Brennkraftmaschinen für den Einsatz in Fahrzeugen betroffen sind, ist der Anteil der für den Fahrzeugantrieb genutzten mechanischen Energie im Verhältnis zur eingesetzten chemischen Energie des Brennstoffs nochmals geringer, wenn auch die Strahlungswärmeverluste, die Motorreibungsverluste und die Getriebeverluste vergleichsweise gering zu den thermischen Verlusten bei der Verbrennung sind. Mit zunehmender Verknappung und Verteuerung fossiler Brennstoffe wird jedoch eine Steigerung des Gesamtwirkungsgrads von Brennkraftmaschinen immer wichtiger. Ein Ansatz besteht hierbei in der Nutzung der restlichen Energie, welche noch in dem Abgas der Brennkraftmaschine enthalten ist.In an internal combustion engine, only a relatively small proportion of the energy chemically bound in the fuel used is converted into mechanical power, while a comparatively large proportion is uselessly released into the environment via the exhaust gas heat flows and the cooling water flows of the internal combustion engine. Insofar as internal combustion engines for use in vehicles are concerned, the proportion of the mechanical energy used for driving the vehicle is lower in relation to the chemical energy of the fuel, although the radiant heat losses, the engine friction losses and the transmission losses are comparatively low compared to the thermal losses during combustion are. However, as fossil fuels become scarcer and more expensive, the overall efficiency of internal combustion engines becomes increasingly important. One approach here is to use the remaining energy that is still contained in the exhaust gas from the internal combustion engine.

Davon unabhängig besteht bei Fahrzeugen, welche im Renn- und Sportbereich eingesetzt werden, die Notwendigkeit, Haftungsgrenzen zwischen den Reifen und der Fahrbahnoberfläche mit aerodynamischen Hilfsmitteln heraufzusetzen, da bei diesen Fahrzeugen Beschleunigung, Verzögerung und Kurvenbeschleunigung erzielt werden, die den Wert von 1 g (Erdbeschleunigung) z.T. wesentlich überschreiten. Hierfür muss am Fahrzeugkörper ein starker Abtrieb erzeugt werden, beispielsweise mittels eines Frontflügels, Heckflügels und insbesondere mit der Formgebung des eigentlichen Fahrzeugkörpers. Eine herausragende Rolle spielt dabei die Gestaltung des Fahrzeugunterbodens. Bei dieser wird angestrebt, die unter dem Fahrzeugboden strömende Luft so stark wie nur möglich zu beschleunigen. Je höher deren Geschwindigkeit, desto stärker ist nach dem Bernoulli'schen Gesetz deren Saugkraft und desto stärker ist der auf den Fahrzeugunterboden ausgeübte Abtrieb. Um eine möglichst starke Beschleunigung der Unterbodenluft zu erreichen, wird bei Rennfahrzeugen des Stands der Technik auch die kinetische Energie der Abgase herangezogen. Hierfür wird insbesondere der Unterboden am Heck des jeweiligen Fahrzeugs nach oben gebogen und meist mit senkrechten aerodynamischen Leitblechen zur Seite hin abgeschirmt und eventuell noch in der Mitte unterteilt. Auf diese Weise entsteht für die Luft, die an dem Fahrzeug entlangströmt, ein Diffusor. In diese Diffusorzone werden vorzugsweise die Enden der Auspuffrohre mit einer waagrechten, nach hinten zielenden Strahlrichtung eingeleitet. Mit hoher Geschwindigkeit austretende Abgase üben auf die Luft unter dem Unterboden eine Saugwirkung aus und erhöhen deren Geschwindigkeit und hiermit wiederum die Saugwirkung zwischen Fahrbahnoberfläche und dem Unterboden und somit den Abtrieb des Fahrzeugs.Regardless of this, vehicles that are used in racing and sports are required to increase the liability limits between the tires and the road surface with aerodynamic aids, since these vehicles achieve acceleration, deceleration and cornering acceleration that are equal to 1 g (gravitational acceleration ) sometimes exceed significantly. For this, a strong downforce must be generated on the vehicle body, for example by means of a Front wing, rear wing and especially with the shape of the actual vehicle body. The design of the vehicle underbody plays an outstanding role. The aim here is to accelerate the air flowing under the vehicle floor as much as possible. The higher their speed, the stronger their suction power according to Bernoulli's law and the stronger the downforce exerted on the vehicle underbody. In order to achieve the greatest possible acceleration of the underbody air, the kinetic energy of the exhaust gases is also used in state-of-the-art racing vehicles. For this purpose, in particular the underbody at the rear of the respective vehicle is bent upwards and usually shielded to the side with vertical aerodynamic baffles and possibly still divided in the middle. This creates a diffuser for the air flowing along the vehicle. The ends of the exhaust pipes are preferably introduced into this diffuser zone with a horizontal jet direction directed towards the rear. Exhaust gases escaping at high speed exert a suction effect on the air under the underbody and increase their speed and thus in turn the suction effect between the road surface and the underbody and thus the downforce of the vehicle.

Die WO 2010/000285 A1 offenbart eine Brennkraftmaschine mit Mitteln zur Umwandlung von thermischer Abgasenergien in mechanische Leistung, wobei in den Abgasstrang der Brennkraftmaschine ein Wärmetauscher eingesetzt ist, der Teil einer offenen Gasdruckturbinenanlage ist, die einen vor dem Wärmetauscher liegenden Verdichter und einen dem Wärmetauscher nachgeordnete Turbine umfasst.The WO 2010/000285 A1 discloses an internal combustion engine with means for converting thermal exhaust gas energies into mechanical power, wherein a heat exchanger is inserted into the exhaust gas line of the internal combustion engine, which is part of an open gas pressure turbine system, which comprises a compressor located in front of the heat exchanger and a turbine arranged downstream of the heat exchanger.

Die AT 512 639 A1 betrifft ein Fahrzeug, insbesondere ein Rennfahrzeug, mit einer Brennkraftmaschine aufweisend eine Antriebseinheit, und zumindest eine Wärmekraftanlage zur Rückgewinnung von Wärme aus einem wärmeabgebenden Bauteil oder einer wärmeabgebenden Baugruppe, wobei das Bauteil oder die Baugruppe an zumindest einen von einem Arbeitsgas, insbesondere Luft, durchströmten Raum grenzt und zumindest teilweise von dem durchströmten Raum umgeben ist. Das Rennfahrzeug weist des Weiteren einen Verdichter und eine erste Turbine auf, wobei die Austrittsseite des ersten Verdichters mit dem Einlassbereich des Raums strömungsverbunden ist, dessen Auslassbereich mit der Eintrittsseite der ersten Turbine strömungsverbunden ist, wobei der Austrittsströmungsweg der ersten Turbine und der Austrittsströmungsweg des ersten Verdichters, vorzugsweise über zumindest einen ersten Wärmetauscher, thermisch miteinander verbunden sind. Vorzugsweise ist eine Austrittsöffnung des Austrittsströmungswegs im Bereich eines Staupunkts an der Fahrbahn zugewandten Seite eines Diffusors des Fahrzeugs angeordnet.The AT 512 639 A1 relates to a vehicle, in particular a racing vehicle, with an internal combustion engine having a drive unit, and at least one thermal power plant for recovering heat from a heat-emitting component or a heat-emitting assembly, the component or the assembly in at least one space through which a working gas, in particular air, flows borders and is at least partially surrounded by the flow of space. The racing vehicle also has a compressor and a first turbine, the outlet side of the first compressor being fluidly connected to the inlet region of the space, the outlet region of which is fluidly connected to the inlet side of the first turbine, wherein the outlet flow path of the first turbine and the outlet flow path of the first compressor are thermally connected to one another, preferably via at least one first heat exchanger. An outlet opening of the outlet flow path is preferably arranged in the region of a stagnation point on the side of a diffuser of the vehicle facing the roadway.

Die DE 600 22 907 T2 betrifft eine Abwärme-Rückgewinnungsvorrichtung für einen Verbrennungsmotor, welcher eine Mehrzahl an Abgasrohren, die sich jeweils von Zylindern des Mehrzylinder-Verbrennungsmotors erstrecken, und einen oder mehrere Wärmetauscher, die mit den Zylindern verbunden sind, umfasst, wobei die Abgasrohre ein oder mehrere Sammelrohre umfassen, welche Abgas von einer Mehrzahl der Abgasrohre zusammenführen, wobei jedes Sammelrohr mit einem Wärmetauscher zum Rückgewinnen von Abgaswärme versehen ist, und wobei die Abwärme-Rückgewinnungsvorrichtung des Weiteren ein Rankine-Kreislauf-System aufweist.The DE 600 22 907 T2 relates to a waste heat recovery device for an internal combustion engine, which comprises a plurality of exhaust pipes, each extending from cylinders of the multi-cylinder internal combustion engine, and one or more heat exchangers connected to the cylinders, the exhaust pipes comprising one or more manifolds, which bring together exhaust gas from a plurality of the exhaust pipes, each header pipe being provided with a heat exchanger for recovering exhaust gas heat, and wherein the waste heat recovery device further comprises a Rankine cycle system.

Die EP 0 038 232 A2 betrifft ein Verfahren und eine Vorrichtung zur Leistungserzeugung mittels einer aufgeladenen Brennkraftmaschine, wobei der Verbrennungsmotor durch einen Luftturbokompressor aufgeladen wird und dessen Auspuffgase durch eine Zweigleitung in die zur Beschickung der Turbine dienende Auspuffgasleitung eine abgeleitete Druckmenge verdrängen.The EP 0 038 232 A2 relates to a method and a device for power generation by means of a supercharged internal combustion engine, the internal combustion engine being supercharged by an air turbo compressor and the exhaust gases of which displace a derived pressure quantity through a branch line into the exhaust gas line serving to feed the turbine.

Vor dem Hintergrund dieses Stands der Technik ist es ist eine Aufgabe der Erfindung, eine Vorrichtung und ein Verfahren bereitzustellen, bei welchen Restenergie im Abgas auf einfache Weise effizient genutzt werden kann. Eine weitere Aufgabe der Erfindung ist es, den Strömungszustand und/oder die Straßenlage eines Fahrzeugs zu verbessern. Eine Lösung bietet eine Maschine nach Anspruch 1, ein Fahrzeug nach Anspruch 9 und ein Verfahren nach Anspruch 13. Vorteilhafte Ausgestaltungen werden in Unteransprüchen beansprucht. Die Lehre der Ansprüche wird durch ausdrückliche Bezugnahme zum Inhalt der Beschreibung gemacht.Against the background of this prior art, it is an object of the invention to provide an apparatus and a method in which residual energy in the exhaust gas can be used efficiently in a simple manner. Another object of the invention is to improve the flow state and / or the road holding of a vehicle. A solution is provided by a machine according to claim 1, a vehicle according to claim 9 and a method according to claim 13. Advantageous embodiments are claimed in the subclaims. The teaching of the claims is made the content of the description by express reference.

Die erfindungsgemäße Brennkraftmaschine weist eine Turbinenvorrichtung mit einem ersten Turbinenrad, welches in der Weise in eine Abgasanlage der Brennkraftmaschine angeordnet ist, dass sie mit Abgas betreibbar ist, und eine Verdichtervorrichtung mit einem ersten Verdichterrad auf, wobei durch die Verdichtervorrichtung verdichtetes Gas, insbesondere Luft, wenigstens teilweise der Turbinenvorrichtung zugeführt wird. Vorzugsweise weist die Brennkraftmaschine des Weiteren eine gemeinsame Welle, an welche die Turbinenvorrichtung und die Verdichtervorrichtung gekoppelt sind, wobei die Welle insbesondere mit dem ersten Turbinenrad und dem ersten Verdichterrad gekoppelt ist, und einen Wärmetauscher auf, welcher mit der Abgasanlage in der Weise thermisch gekoppelt ist, um Abwärme aus der Abgasanlage auf durch die Verdichtervorrichtung verdichtetes Gas, insbesondere Luft, zu übertragen, welches wiederum der Turbinenvorrichtung zugeführt wird. Der Wärmetauscher weist eine Querschnittsfläche auf, welche in Strömungsrichtung des verdichteten Gases zunimmt, insbesondere in der Weise, dass die makroskopische Strömungsgeschwindigkeit des verdichteten Gases entlang des gesamten Wärmetauschers innerhalb eines vorgegebenen Wertebereichs liegt.The internal combustion engine according to the invention has a turbine device with a first turbine wheel, which is arranged in an exhaust system of the internal combustion engine in such a way that it can be operated with exhaust gas, and a compressor device with a first Compressor wheel, wherein compressed gas, in particular air, is at least partially supplied to the turbine device by the compressor device. The internal combustion engine preferably furthermore has a common shaft to which the turbine device and the compressor device are coupled, the shaft being coupled in particular to the first turbine wheel and the first compressor wheel, and a heat exchanger which is thermally coupled to the exhaust system in this manner to transfer waste heat from the exhaust system to gas compressed by the compressor device, in particular air, which in turn is fed to the turbine device. The heat exchanger has a cross-sectional area which increases in the direction of flow of the compressed gas, in particular in such a way that the macroscopic flow rate of the compressed gas along the entire heat exchanger lies within a predetermined range of values.

Das erfindungsgemäße Fahrzeug weist eine erfindungsgemäße Brennkraftmaschine auf. Das erfindungsgemäße Verfahren zum Betrieb einer Brennkraftmaschine nutzt eine Umwandlung von thermischer Abgasenergie in mechanische Leistung mittels eines offenen Gasturbinenprozesses, wobei dieses vorzugsweise folgende Arbeitsschritte aufweist: Verdichten von Gas, insbesondere Luft, mittels einer Abgasturbinenvorrichtung; übertragen von Abwärme des Abgases des Brennkraftmaschine auf das verdichtete Gas; und zuführen des erwärmten, verdichteten Gases zu der Abgasturboladervorrichtung.The vehicle according to the invention has an internal combustion engine according to the invention. The method according to the invention for operating an internal combustion engine uses a conversion of thermal exhaust gas energy into mechanical power by means of an open gas turbine process, which preferably has the following steps: compression of gas, in particular air, by means of an exhaust gas turbine device; transferring waste heat from the exhaust gas of the internal combustion engine to the compressed gas; and supplying the heated, compressed gas to the exhaust gas turbocharger device.

Eine Turbinenvorrichtung im Sinne der Erfindung ist eine rotierende Strömungsmaschine, welche die Energie wenigstens eines strömenden Fluids in mechanische Energie umwandelt und insbesondere an eine Welle abgibt.A turbine device in the sense of the invention is a rotating turbomachine which converts the energy of at least one flowing fluid into mechanical energy and in particular delivers it to a shaft.

Eine Verdichtervorrichtung im Sinne der Erfindung ist eine Fluidenergiemaschine, welche zum Komprimieren wenigstens eines Gases dient.A compressor device in the sense of the invention is a fluid energy machine which is used to compress at least one gas.

Ein Wärmetauscher im Sinne der Erfindung überträgt thermische Energie von einem Stoffstrom auf einen anderen.A heat exchanger in the sense of the invention transfers thermal energy from one material flow to another.

Eine Abgasanlage im Sinne der Erfindung ist wenigstens ein Teil jener Leitungen, welche Abgas der Brennkraftmaschine in die Umwelt entlassen.An exhaust system in the sense of the invention is at least part of those lines which release exhaust gas from the internal combustion engine into the environment.

Ein Gasturbinenprozess im Sinne der Erfindung ist ein thermodynamischer Prozess, der insbesondere in einer Wärmekraftmaschine Verwendung findet, und basiert auf dem Joule-Kreisprozess.A gas turbine process in the sense of the invention is a thermodynamic process, which is used in particular in a heat engine, and is based on the Joule cycle process.

Ein Abgasturbolader im Sinne der Erfindung ist eine Vorrichtung zur Leistungs- bzw. Effizienzsteigerung von Kolbenmotoren, bei welcher wenigstens ein Turbinenrad mit einem Verdichterrad gekoppelt ist.An exhaust gas turbocharger in the sense of the invention is a device for increasing the power or efficiency of piston engines, in which at least one turbine wheel is coupled to a compressor wheel.

Gekoppelt im Sinne der Erfindung bedeutet das Vorsehen einer Wirkverbindung zwischen zwei Elementen, insbesondere ein Drehverbinden. Eine solche Kopplung ist vorzugsweise auch über ein Getriebe möglich.Coupled in the sense of the invention means the provision of an operative connection between two elements, in particular a rotary connection. Such a coupling is preferably also possible via a transmission.

Thermisch verbunden im Sinne der Erfindung bedeutet, dass Wärmeenergie zwischen zwei Elementen ausgetauscht werden kann.Thermally connected in the sense of the invention means that thermal energy can be exchanged between two elements.

Die Erfindung basiert insbesondere auf dem Ansatz, mit einem Turbinenrad einer Abgasturbine in der Abgasanlage einer Brennkraftmaschine ein Verdichterrad eines Verdichters zu betreiben. Dieses Turbinenrad verdichtet ein Gas, welches, nach einer weiteren Erwärmung durch Abwärme des Abgases, wiederum dem Turbinenrad oder einem weiteren, gekoppelten Turbinenrad zugeführt wird. Dabei wird dem Abgas entnommene thermische Energie auf der Grundlage eines Gasturbinenprozesses in kinetische Energie umgewandelt. Hierdurch kann durch eine Brennkraftmaschine 10% bis 15% mehr Leistung erzielt werden oder die Effizienz der Brennkraftmaschine um dieselbe Größe erhöht werden. Von Bedeutung ist für die Erfindung, dass die Turbinenvorrichtung und die Verdichtervorrichtung, vorzugsweise deren wenigstens eines Turbinenrad und wenigstens eines Verdichterrad gekoppelt sind.The invention is based in particular on the approach of operating a compressor wheel of a compressor with a turbine wheel of an exhaust gas turbine in the exhaust system of an internal combustion engine. This turbine wheel compresses a gas which, after further heating by waste heat from the exhaust gas, is in turn fed to the turbine wheel or to another coupled turbine wheel. Thermal energy extracted from the exhaust gas is converted into kinetic energy based on a gas turbine process. In this way, 10% to 15% more power can be achieved by an internal combustion engine or the efficiency of the internal combustion engine can be increased by the same size. It is important for the invention that the turbine device and the compressor device, preferably their at least one turbine wheel and at least one compressor wheel, are coupled.

In einer vorteilhaften Ausgestaltung der erfindungsgemäßen Brennkraftmaschine durchströmt das verdichtete Gas den Wärmetauscher in Bezug auf das Abgas in der Abgasanlage im Gegenstromprinzip. Durch Ausnutzung des Gegenstromprinzips durch den Wärmetauscher ist eine im Idealfall theoretisch eine vollständige Wärmerückgewinnung der thermischen Energie aus dem Abgas möglich.In an advantageous embodiment of the internal combustion engine according to the invention, the compressed gas flows through the heat exchanger with respect to the exhaust gas in the exhaust system in the counterflow principle. By utilizing the countercurrent principle through the heat exchanger, ideally, a complete heat recovery of the thermal energy from the exhaust gas is theoretically possible.

In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Brennkraftmaschine versorgt die Verdichtervorrichtung des Weiteren die Brennkraftmaschine mit Gas. In diesem Fall ist die Verdichtervorrichtung ein Bestandteil einer Abgasturboladervorrichtung der Brennkraftmaschine. Der Einsatz eines Abgasturboladers zur Verdichtung der einer Brennkraftmaschine vorzugsweise über einen Ladeluftkühler zugeführten Luft führt zu einer besseren Verbrennung und erlaubt somit ebenfalls eine Nutzung der thermischen Energie des Abgases zum Betrieb der Brennkraftmaschine.In a further advantageous embodiment of the internal combustion engine according to the invention, the compressor device also supplies the internal combustion engine with gas. In this case, the compressor device is part of an exhaust gas turbocharger device of the internal combustion engine. The use of an exhaust gas turbocharger to compress the Air supplied to an internal combustion engine, preferably via an intercooler, leads to better combustion and thus also allows the thermal energy of the exhaust gas to be used to operate the internal combustion engine.

In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Brennkraftmaschine weist diese des Weiteren eine Elektromaschine auf, welche ebenfalls mit der Welle gekoppelt ist. Das Vorsehen einer Elektromaschine ermöglicht es, die rückgewonnene thermische Energie in elektrische Energie umzuwandeln, welche gespeichert werden kann und beispielsweise durch eine elektrische Antriebsmaschine eines Fahrzeugs, insbesondere eines Hybridfahrzeugs, zum Antrieb genutzt werden kann. Weiterhin kann die Elektromaschine eine Verdichtervorrichtung einer Turboladervorrichtung antreiben, beispielsweise um eine Turboloch der Verbrennungskraftmaschine auszugleichen.In a further advantageous embodiment of the internal combustion engine according to the invention, this furthermore has an electric machine, which is also coupled to the shaft. The provision of an electric machine makes it possible to convert the recovered thermal energy into electrical energy, which can be stored and can be used for driving, for example, by an electric drive machine of a vehicle, in particular a hybrid vehicle. Furthermore, the electric machine can drive a compressor device of a turbocharger device, for example in order to compensate for a turbo lag in the internal combustion engine.

In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Brennkraftmaschine ist der Wärmetauscher mit einem ersten Teil der Abgasanlage, welcher hinsichtlich des Abgases stromabwärts zur Turbineneinrichtung angeordnet ist, mit einem zweiten Teil der Abgasanlage, welche stromaufwärts der Turbineneinrichtung angeordnet ist und/oder wenigstens ein Abgasstrang eines Zylinders thermisch verbunden. Die möglichst vollständige Ausnutzung des Weges des Abgases durch die Abgasanlage zum Übertragen von thermischer Energie an das den Wärmetauscher durchströmende, verdichtete Gas erhöht die Effizienz bei der Rückgewinnung thermischer Energie.In a further advantageous embodiment of the internal combustion engine according to the invention, the heat exchanger with a first part of the exhaust system, which is arranged downstream of the turbine device with regard to the exhaust gas, is thermal with a second part of the exhaust system, which is arranged upstream of the turbine device and / or at least one exhaust line of a cylinder connected. The fullest possible utilization of the path of the exhaust gas through the exhaust system for the transfer of thermal energy to the compressed gas flowing through the heat exchanger increases the efficiency in the recovery of thermal energy.

In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Brennkraftmaschine wird das verdichtete Gas dem ersten Turbinenrad der Turbinenvorrichtung zugeführt wird. Die Nutzung des ersten Turbinenrads in der Turbine eines Abgasturboladers als auch als Gasturbine eines Gasturbinenprozesses ermöglicht eine besondere kompakte Ausgestaltung der Brennkraftmaschine, da keine zusätzliche Turbine für den Gasturbinenprozesses vorgesehen werden muss.In a further advantageous embodiment of the internal combustion engine according to the invention, the compressed gas is fed to the first turbine wheel of the turbine device. The use of the first turbine wheel in the turbine of an exhaust gas turbocharger and also as a gas turbine of a gas turbine process enables a particularly compact design of the internal combustion engine, since no additional turbine has to be provided for the gas turbine process.

In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Brennkraftmaschine weist die Turbinenvorrichtung ein zweites Turbinenrad auf, welches mit der gemeinsamen Welle koppelbar ist, wobei das Abgas der Brennkraftmaschine das erste Turbinenrad antreibt und das verdichtete Gas das zweite Turbinenrad antreibt. Werden zur Abgasrückgewinnung aus dem verdichteten Gas und zur Abgasrückgewinnung aus dem Abgasstrom der Verbrennungskraftmaschine zwei verschiedene Turbinen verwendet, können diese jeweils auf die verschiedenen Arbeitsprozesse optimiert werden. Insbesondere herrschen in dem verdichteten Gas sowie in dem Abgas andere Drücke, Strömungsgeschwindigkeiten und Temperaturen vor, welche eine unterschiedliche Auslegung der Turbinen bzw. Turbinenräder sinnvoll machen.In a further advantageous embodiment of the internal combustion engine according to the invention, the turbine device has a second turbine wheel which can be coupled to the common shaft, the exhaust gas of the internal combustion engine driving the first turbine wheel and the compressed gas driving the second turbine wheel. Become a Exhaust gas recovery from the compressed gas and two different turbines for exhaust gas recovery from the exhaust gas stream of the internal combustion engine, these can each be optimized for the different work processes. In particular, there are other pressures, flow velocities and temperatures in the compressed gas and in the exhaust gas, which make a different design of the turbines or turbine wheels useful.

In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Brennkraftmaschine weist die Verdichtervorrichtung ein zweites Verdichterrad auf, welches mit der gemeinsamen Welle koppelbar ist, wobei das erste Verdichterrad der Turbinenvorrichtung über den Wärmetauscher verdichtetes Gas zuführt, und das zweite Verdichterrad der Verbrennungskraftmaschine verdichtetes Gas zuführt. Auch hierbei kann der jeweilige Verdichter bzw. das Verdichterrad auf die Notwendigkeiten der Motoraufladung oder der Wärmerückgewinnung durch den Wärmetauscher optimiert werden, insbesondere in Bezug auf Druck, Strömungsgeschwindigkeit und/oder Durchsatz.In a further advantageous embodiment of the internal combustion engine according to the invention, the compressor device has a second compressor wheel which can be coupled to the common shaft, the first compressor wheel supplying compressed gas to the turbine device via the heat exchanger and the second compressor wheel supplying compressed gas to the internal combustion engine. Here, too, the respective compressor or the compressor wheel can be optimized for the requirements of engine charging or heat recovery by the heat exchanger, in particular with regard to pressure, flow rate and / or throughput.

Erfindungsgemäss weist der Wärmetauscher eine Querschnittsfläche auf, welche in Strömungsrichtung des verdichteten Gases zunimmt, insbesondere in der Weise, dass die makroskopische Strömungsgeschwindigkeit des verdichteten Gases entlang des gesamten Wärmetauschers innerhalb eines vorgegebenen Wertebereichs liegt. Durch diese Maßnahme wird der Druckabfall in dem Wärmetauscher minimiert, d.h. eine Optimierung der Effizienz erreicht.According to the invention, the heat exchanger has a cross-sectional area which increases in the direction of flow of the compressed gas, in particular in such a way that the macroscopic flow rate of the compressed gas along the entire heat exchanger lies within a predetermined range of values. This measure minimizes the pressure drop in the heat exchanger, i.e. optimization of efficiency achieved.

Die im vorstehenden Aspekte der Erfindung und die dazugehörigen offenbarten Merkmale und Vorteile in Bezug auf die erfindungsgemäße Brennkraftmaschine gelten auch für die nachstehend beschriebenen Aspekte der Erfindung in Bezug auf das erfindungsgemäße Fahrzeug und das erfindungsgemäße Verfahren entsprechend und umgekehrt.The above aspects of the invention and the associated disclosed features and advantages with respect to the internal combustion engine according to the invention also apply to the aspects of the invention described below in relation to the vehicle and the method according to the invention and vice versa.

In einer weiteren vorteilhaften Ausgestaltung eines erfindungsgemäßen Fahrzeugs wird entspanntes Gas vom zweiten Turbinenrad wenigstens einem Diffusor des Fahrzeugs zugeführt. Hierdurch kann der Abtrieb und damit die Straßenlage des Fahrzeugs verbessert werden.In a further advantageous embodiment of a vehicle according to the invention, relaxed gas is supplied from the second turbine wheel to at least one diffuser of the vehicle. As a result, the downforce and thus the road holding of the vehicle can be improved.

In einer weiteren vorteilhaften Ausgestaltung eines erfindungsgemäßen Fahrzeugs ist der Wärmetauscher mit einem Teil einer Gasführung zwischen dem zweiten Turbinenrad und einem Diffusor thermisch gekoppelt. Hierdurch kann etwaig immer noch in dem entspannten Gas vorhandene thermische Energie aufgefangen werden und damit die Effizienz erhöht werden.In a further advantageous embodiment of a vehicle according to the invention, the heat exchanger is thermally coupled to part of a gas duct between the second turbine wheel and a diffuser. As a result, any thermal energy still present in the expanded gas can be absorbed, thereby increasing efficiency.

In einer weiteren vorteilhaften Ausgestaltung eines erfindungsgemäßen Fahrzeugs durchströmt das verdichtete Gas den Wärmetauscher in Bezug auf das entspannte Gas in der Gasführung im Gegenstromprinzip.In a further advantageous embodiment of a vehicle according to the invention, the compressed gas flows through the heat exchanger in relation to the expanded gas in the gas duct in the counterflow principle.

In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens weist dieses des Weiteren den Arbeitsschritt des Übertragens von Abwärme des aus der Abgasturboladervorrichtung austretenden entspannten Gases auf das verdichtete Gas auf.In a further advantageous embodiment of the method according to the invention, it also has the step of transferring waste heat from the expanded gas emerging from the exhaust gas turbocharger device to the compressed gas.

In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens weist dieses das Umwandeln wenigstens eines Teils von durch die Abgasturboladervorrichtung generierte mechanische in elektrische Energie auf.In a further advantageous embodiment of the method according to the invention, this comprises converting at least some of the mechanical energy generated by the exhaust gas turbocharger device into electrical energy.

In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens weist dieses des Weiteren den Arbeitsschritt des Umwandelns von elektrischer Energie in mechanische Energie an der Abgasturboladervorrichtung auf.In a further advantageous embodiment of the method according to the invention, the method further comprises the step of converting electrical energy into mechanical energy on the exhaust gas turbocharger device.

Weitere Merkmale, Vorteile und Anwendungsmöglichkeiten der Erfindung ergeben sich aus den nachfolgenden Beschreibungen in Zusammenhang mit den Figuren. Es zeigt:

  • Figur 1 eine teilweise schematische Darstellung einer ersten Ausführungsform der erfindungsgemäßen Brennkraftmaschine;
  • Figur 2 eine teilweise schematische Darstellung der ersten Ausführungsform der erfindungsgemäßen Brennkraftmaschine mit zusätzlicher Elektromaschine;
  • Figur 3 eine teilweise schematische Darstellung einer zweiten Ausführungsform der erfindungsgemäßen Brennkraftmaschine mit einer Elektromaschine;
  • Figur 4 eine teilweise schematische Darstellung einer dritten Ausführungsform der erfindungsgemäßen Brennkraftmaschine mit einer Elektromaschine;
  • Figur 5 eine weitere teilweise schematische Darstellung der dritten Ausführungsform der erfindungsgemäßen Brennkraftmaschine mit einer Elektromaschine;
  • Figur 6 eine teilweise schematische Darstellung einer ersten Ausführungsform eines erfindungsgemäßen Fahrzeugs mit einer erfindungsgemäßen Brennkraftmaschine gemäß der dritten Ausführungsform;
  • Figur 7 eine teilweise schematische Darstellung einer zweiten Ausführungsform eines erfindungsgemäßen Fahrzeugs mit einer erfindungsgemäßen Brennkraftmaschine gemäß der dritten Ausführungsform;
  • Figur 8 eine teilweise schematische Darstellung einer vierten Ausführungsform der erfindungsgemäßen Brennkraftmaschine mit einer Elektromaschine;
  • Figur 9 eine teilweise schematische Darstellung einer fünften Ausführungsform der erfindungsgemäßen Brennkraftmaschine mit einer Elektromaschine; und
  • Figur 10 eine teilweise schematische Darstellung einer dritten Ausführungsform eines erfindungsgemäßen Fahrzeugs mit einer erfindungsgemäßen Brennkraftmaschine gemäß der fünften Ausführungsform.
Further features, advantages and possible uses of the invention result from the following descriptions in connection with the figures. It shows:
  • Figure 1 a partially schematic representation of a first embodiment of the internal combustion engine according to the invention;
  • Figure 2 a partial schematic representation of the first embodiment of the internal combustion engine according to the invention with an additional electric machine;
  • Figure 3 a partial schematic representation of a second embodiment of the internal combustion engine according to the invention with an electric machine;
  • Figure 4 a partial schematic representation of a third embodiment of the internal combustion engine according to the invention with an electric machine;
  • Figure 5 a further partially schematic representation of the third embodiment of the internal combustion engine according to the invention with an electric machine;
  • Figure 6 a partial schematic representation of a first embodiment of a vehicle according to the invention with an internal combustion engine according to the invention according to the third embodiment;
  • Figure 7 a partial schematic representation of a second embodiment of a vehicle according to the invention with an internal combustion engine according to the third embodiment;
  • Figure 8 a partial schematic representation of a fourth embodiment of the internal combustion engine according to the invention with an electric machine;
  • Figure 9 a partial schematic representation of a fifth embodiment of the internal combustion engine according to the invention with an electric machine; and
  • Figure 10 a partial schematic representation of a third embodiment of a vehicle according to the invention with an internal combustion engine according to the fifth embodiment.

Fig. 1 stellt eine erste Ausführungsform einer erfindungsgemäßen Brennkraftmaschine 1 dar. Die Brennkraftmaschine weist sechs Zylinder auf, wobei jeweils drei Zylinder 9a, 9b, 9c in Reihe angeordnet sind. Aus Gründen der Übersichtlichkeit wird die Erfindung nur in Bezug auf ein Tripel von Zylindern beschrieben. Die entsprechende Abgasverläufe, Gasführung und Wärmetauscher gelten jedoch auch entsprechend für das andere Tripel an Zylindern, wie in den Figuren auch dargestellt ist. Auch kann die Erfindung für jede Art von Verbrennungskraftmaschine eingesetzt werden. Die Erfindung ist hierbei weder auf eine bestimmte Anzahl an Zylindern beschränkt, noch auf Verbrennungskraftmaschinen, die mit Zylindern arbeiten. So könnte die Erfindung beispielsweise auch bei Drehkolbenmaschinen zum Einsatz kommen. Fig. 1 represents a first embodiment of an internal combustion engine 1 according to the invention. The internal combustion engine has six cylinders, three cylinders 9a, 9b, 9c each being arranged in series. For reasons of clarity, the invention is only described in relation to a triple of cylinders. The corresponding exhaust gas courses, gas routing and heat exchanger also apply accordingly to the other triple on cylinders, as is also shown in the figures. The invention can also be used for any type be used by internal combustion engines. The invention is not limited to a specific number of cylinders, nor to internal combustion engines that work with cylinders. For example, the invention could also be used in rotary lobe machines.

Abgas aus den Zylindern 9a, 9b, 9c strömt vorzugsweise über Abgasstränge 8a, 8b, 8c in eine Abgasanlage 3a, 3b und wird von dieser vorzugsweise in die Umwelt entlassen. Zwischen einem ersten Teil 3a der Abgasanalage und einem zweiten Teil 3b der Abgasanlage ist vorzugsweise eine Turbinenvorrichtung 2 angeordnet, welche von dem Abgas aus dem ersten Teil 3a, welcher stromaufwärts der Turbinenvorrichtung 2 liegt, durchströmt wird, wodurch eine Welle 5, die an einem Turbinenrad der Turbinenvorrichtung 2 gekoppelt ist, in Rotation versetzt wird. Nach Durchströmen der Turbinenvorrichtung 2 verlässt das Abgas die Brennkraftmaschine 1 über den zweiten Teil 3b der Abgasanlage. Vorzugsweise weist die Brennkraftmaschine 1 des Weiteren eine Verdichtervorrichtung 4 auf, welche eingerichtet ist, um Gas zu verdichten. Vorzugsweise saugt die Verdichtervorrichtung 4 als Gas Luft aus der Umwelt an, verdichtet diese mittels einem Verdichterrad (nicht dargestellt) und führt diese einerseits über einen ersten Teil 12a einer Gasführung zu einem ersten Teil 6a eines Wärmetauschers und andererseits über eine weitere Gasführung 13 zu einem Ladekühler (nicht dargestellt), von wo aus die Luft in die Verbrennungsräume der Zylinder 9a, 9b, 9c eingebracht wird.Exhaust gas from the cylinders 9a, 9b, 9c preferably flows via exhaust lines 8a, 8b, 8c into an exhaust system 3a, 3b and is preferably released into the environment by the latter. Between a first part 3a of the exhaust system and a second part 3b of the exhaust system, a turbine device 2 is preferably arranged, through which the exhaust gas from the first part 3a, which is located upstream of the turbine device 2, flows, whereby a shaft 5, which is connected to a turbine wheel the turbine device 2 is coupled, is set in rotation. After flowing through the turbine device 2, the exhaust gas leaves the internal combustion engine 1 via the second part 3b of the exhaust system. The internal combustion engine 1 preferably also has a compressor device 4, which is set up to compress gas. The compressor device 4 preferably sucks in air from the environment as gas, compresses it by means of a compressor wheel (not shown) and leads it on the one hand via a first part 12a of a gas duct to a first part 6a of a heat exchanger and on the other hand via a further gas duct 13 to a charge cooler (not shown), from where the air is introduced into the combustion chambers of the cylinders 9a, 9b, 9c.

Die Turbinenvorrichtung 2, die Verdichtervorrichtung 4 und die Welle 5 bilden somit vorzugsweise die wesentlichen Elemente einer Abgasturboladervorrichtung des Stands der Technik, mit dem Unterschied, dass von der Verdichtervorrichtung 4 verdichtete Luft vorzugsweise einem Wärmetauscher 6a, 6b zugeführt wird. Von dem ersten Teil 6a des Wärmetauschers strömt die Luft vorzugsweise über einen zweiten Teil 12b der Gasführung in einen zweiten Teil 6b des Wärmetauschers und über einen dritten Teil 12c der Gasführung wiederum in den Arbeitsraum der Turbinenvorrichtung 2, wo sich vorzugsweise das Turbinenrad befindet. Während des Durchströmens des Wärmetauschers 6a, 6b wird die durch die Verdichtervorrichtung 4 verdichtete Luft durch von in der Abgasanlage 3a, 3b enthaltene thermische Energie erhitzt. Vorzugweise ist die Abgasanlage 3a, 3b in den Bereichen des Wärmetauscher 6a, 6b in diesen integriert. Typischerweise verlässt die bereits durch die Verdichtungsvorrichtung 4 vorgewärmte Luft die Verdichtungsvorrichtung 4 mit ca. 150°C bis 200°C und weist beim Eintritt in die Turbinenvorrichtung 2 mehr als 600°C auf. Die in der verdichteten Luft enthaltene potenzielle Energie wird durch die Turbinenvorrichtung 2 vorzugsweise in einer Art von Gasturbinenprozess wenigstens teilweise in kinetische Energie umgesetzt, welche ebenfalls auf die Welle 5 übertragen wird. Die auf über 600°C erhitzte Luft verlässt die Turbinenvorrichtung 2 vorzugsweise mit ca. 200°C bis 300°C, wobei zu beachten ist, dass diese bei der ersten Ausführungsform der Fig. 1 mit dem Abgas der Brennkraftmaschine 1 im zweiten Teil 3b der Abgasanlage vermengt ist.The turbine device 2, the compressor device 4 and the shaft 5 thus preferably form the essential elements of an exhaust gas turbocharger device of the prior art, with the difference that air compressed by the compressor device 4 is preferably fed to a heat exchanger 6a, 6b. From the first part 6a of the heat exchanger, the air preferably flows via a second part 12b of the gas duct into a second part 6b of the heat exchanger and again via a third part 12c of the gas duct into the working space of the turbine device 2, where the turbine wheel is preferably located. During the flow through the heat exchanger 6a, 6b, the air compressed by the compressor device 4 is heated by thermal energy contained in the exhaust system 3a, 3b. The exhaust system 3a, 3b is preferably integrated in the areas of the heat exchanger 6a, 6b. The air which has already been preheated by the compression device 4 typically leaves the compression device 4 with about 150 ° C to 200 ° C and has more than 600 ° C when entering the turbine device 2. The potential energy contained in the compressed air is at least partially converted into kinetic energy by the turbine device 2, preferably in a type of gas turbine process, which is also transmitted to the shaft 5. The air heated to over 600 ° C. preferably leaves the turbine device 2 at approximately 200 ° C. to 300 ° C., it being noted that this is the case with the first embodiment of FIG Fig. 1 is mixed with the exhaust gas of the internal combustion engine 1 in the second part 3b of the exhaust system.

Die erfindungsgemäße Brennkraftmaschine 1 kann Effizienzgewinne von 10% bis 15% gegenüber einer turbogeladenen Brennkraftmaschine des Stands der Technik realisieren. So kann eine Leistung einer solchen Brennkraftmaschine aus dem Stand der Technik um 15kW bis 20 kW gesteigert werden, wenn die Energie aus dem offenen Gasturbinenprozess, welcher durch den Verdichter 4, den Wärmetauscher 6a, 6b und die Turbine 2 realisiert wird, addiert wird.The internal combustion engine 1 according to the invention can achieve efficiency gains of 10% to 15% compared to a turbocharged internal combustion engine of the prior art. Thus, an output of such an internal combustion engine from the prior art can be increased by 15 kW to 20 kW if the energy from the open gas turbine process, which is realized by the compressor 4, the heat exchanger 6a, 6b and the turbine 2, is added.

Zwar muss zum Verdichten der Luft von der Verdichtervorrichtung 4 Arbeit aufgewendet werden, allerdings wird diese Arbeit um ein Vielfaches durch die aus dem Abgas rückgewonnene thermische Energie kompensiert. Um in der Gasführung 12a, 12b, 12c und dem Wärmetauscher 6a, 6b möglichst wenig Drosselverluste zu haben, bevorzugt von weniger als 0,5 bar bei einer mit mehr als 2 bar von der Verdichtervorrichtung 4 verdichteten Luft, nimmt die Querschnittsfläche der Gasführungen und des Wärmetauschers ausgehend vom Ausgang der Verdichtervorrichtung 4 über den ersten Teil 12a der Gasführung, den ersten Teil 6a des Wärmetauschers, den zweiten Teil 12b der Gasführung, den zweiten Teil 6b des Wärmetauschers und den dritten Teil 12c der Gasführung bis hin zu der Turbinenvorrichtung 2 zu. Hierbei hat sich herausgestellt, dass vorzugsweise eine Durchflussgeschwindigkeit durch die Gas- bzw. luftführenden Teile von 50 m/Sek. bis 80 m/Sek. zu besonders geringen Drosselverlusten führt. Der Querschnitt der gasführenden Teile nimmt daher vorzugsweise ausgehend von der Verdichtervorrichtung 4 bis zu der Turbinenvorrichtung 2 in der Weise zu, dass bei zunehmender Temperatur und damit zunehmendem Volumen des Gases bzw. der Luft eine Durchflussgeschwindigkeit von 50 m/Sek. bis 80 m/Sek. an jeder Stelle der gasführenden Teile erhalten bleibt. Wird eine Erwärmung des Gases ausgehend von der Verdichtervorrichtung 4 bis zu der Turbinenvorrichtung 2 von 150°C auf mehr als 600°C zugrunde gelegt, so muss sich der Querschnitt über diese Strecke vorzugsweise etwa verdoppeln.Although work has to be done to compress the air from the compressor device 4, this work is compensated many times over by the thermal energy recovered from the exhaust gas. In order to have as little throttling losses as possible in the gas guide 12a, 12b, 12c and the heat exchanger 6a, 6b, preferably less than 0.5 bar with air compressed by the compressor device 4 with more than 2 bar, the cross-sectional area of the gas guides and the Heat exchanger starting from the outlet of the compressor device 4 via the first part 12a of the gas guide, the first part 6a of the heat exchanger, the second part 12b of the gas guide, the second part 6b of the heat exchanger and the third part 12c of the gas guide up to the turbine device 2. It has been found that preferably a flow rate through the gas or air-carrying parts of 50 m / sec. up to 80 m / sec. leads to particularly low throttle losses. The cross section of the gas-carrying parts therefore preferably increases, starting from the compressor device 4 to the turbine device 2, in such a way that a flow rate of 50 m / sec. With increasing temperature and thus increasing volume of the gas or air. up to 80 m / sec. is preserved at every point of the gas-carrying parts. Is a heating of the gas starting from the compressor device 4 to the turbine device 2 from 150 ° C to more than 600 ° C, the cross-section over this distance should preferably double approximately.

Gleiche Elemente sind in den Figuren insbesondere mit gleichen Bezugszeichen bezeichnet.The same elements are denoted in particular by the same reference symbols in the figures.

Fig. 2 betrifft eine zweite Ausführungsform der erfindungsgemäßen Brennkraftmaschine 1, bei welcher die Welle 5 zusätzlich mit einer Elektromaschine gekoppelt ist. Die Elektromaschine 7 kann dazu benutzt werden, überschüssige Energie, welche von der Verdichtervorrichtung 2 erzeugt wird, in elektrische Energie umzuwandeln, welche vorzugsweise in einem elektrochemischen Energiespeicher gespeichert werden kann. Andererseits kann gespeicherte Elektroenergie in einem elektrochemischen Speicher wiederum reversibel in kinetische Energie umgewandelt werden und auf die Welle 5 übertragen werden, wodurch beispielsweise der Verdichter 4 angetrieben werden kann, um den Zylindern 9a, 9b, 9c über den Ladekühler (nicht dargestellt) verdichtete Luft bereitzustellen. Hiermit kann beispielsweise ein Turboloch überbrückt werden. Auch ist denkbar, dass die von der Elektromaschine 7 im Generatorbetrieb erzeugte Energie einer weiteren Elektromaschine (auch nicht dargestellt) zugeführt wird, welche ein Antriebsmoment erzeugen kann, z.B. an den Rädern eines Fahrzeugs. Anstatt einer Elektromaschine 7 ist auch ein Einsatz einer Kompressorvorrichtung möglich. Die Energie wird in diesem Fall vorzugsweise dann in einem Druckgasspeicher gespeichert und kann ebenfalls reversibel zur Steigerung der Leistung der Brennkraftmaschine 1 abgerufen werden. Fig. 2 relates to a second embodiment of the internal combustion engine 1 according to the invention, in which the shaft 5 is additionally coupled to an electric machine. The electric machine 7 can be used to convert excess energy which is generated by the compressor device 2 into electrical energy which can preferably be stored in an electrochemical energy store. On the other hand, stored electrical energy in an electrochemical store can in turn be reversibly converted into kinetic energy and transmitted to the shaft 5, whereby, for example, the compressor 4 can be driven to provide compressed air to the cylinders 9a, 9b, 9c via the charge cooler (not shown) . This can be used to bridge a turbo lag, for example. It is also conceivable that the energy generated by the electric machine 7 in generator operation is fed to a further electric machine (also not shown) which can generate a drive torque, for example on the wheels of a vehicle. Instead of an electric machine 7, it is also possible to use a compressor device. In this case, the energy is preferably stored in a compressed gas store and can also be called up reversibly to increase the output of the internal combustion engine 1.

Alle weiteren Ausführungsformen werden stets mit einer Elektromaschine 7 dargestellt. Die Ausführungsformen können aber auch, wie die erste Ausführungsform aus Fig. 1, ohne diese jeweilige Elektromaschine 7 ausgeführt und betrieben werden. Wie ebenfalls in den Figuren 1 und 2 gezeigt, werden alle weiteren Ausführungsformen mit wenigstens einem Teil 6a des Wärmetauschers um den zweiten Teil 3b der Abgasanlage (Auspuff) und einen ersten Teil 3a der Abgasanlage dargestellt. Auch hier ist es jedoch bei allen Ausführungsformen möglich, nur einen der beiden Teile 6a, 6b des Wärmetauschers vorzusehen, insbesondere den Teil 6a welcher mit dem zweiten Teil 3b der Abgasanlage thermisch verbunden ist.All other embodiments are always shown with an electric machine 7. However, the embodiments can also, like the first embodiment Fig. 1 , are executed and operated without this particular electric machine 7. As also in the Figures 1 and 2nd shown, all further embodiments are shown with at least a part 6a of the heat exchanger around the second part 3b of the exhaust system (exhaust) and a first part 3a of the exhaust system. Here too, however, it is possible in all embodiments to provide only one of the two parts 6a, 6b of the heat exchanger, in particular the part 6a which is thermally connected to the second part 3b of the exhaust system.

Fig. 3 zeigt eine zweite Ausführungsform der erfindungsgemäßen Brennkraftmaschine 1, welche sich von der ersten Ausführungsform dadurch unterscheidet, dass der Wärmetauscher einen dritten Teil 6c aufweist, welcher sich vom zweiten Teil 6b des Wärmetauschers über die Abgasstränge 8a, 8b, 8c der Zylinder 9a, 9b, 9c erstreckt. Das von der Verdichtervorrichtung 4 verdichtete Gas wird erst unmittelbar am Ende der Abgasstränge 8a, 8b, 8c, welche an den Motorblock grenzen, abgeleitet und über den dritten Teil 12c der Gasführung zu der Turbinenvorrichtung 2 geleitet. Durch die Verlängerung des Wärmetauschers um den dritten Teil 6c wird eine bessere Übertragung der thermischen Energie im Abgas auf die in den gasführenden Elementen vorhandene Luft gewährleistet. Fig. 3 shows a second embodiment of the internal combustion engine 1 according to the invention, which differs from the first embodiment in that the heat exchanger has a third part 6c, which extends from the second part 6b of the heat exchanger via the exhaust lines 8a, 8b, 8c of the cylinders 9a, 9b, 9c extends. The gas compressed by the compressor device 4 is only discharged directly at the end of the exhaust lines 8a, 8b, 8c, which adjoin the engine block, and is conducted to the turbine device 2 via the third part 12c of the gas duct. The extension of the heat exchanger by the third part 6c ensures a better transfer of the thermal energy in the exhaust gas to the air present in the gas-carrying elements.

Fig. 4 stellt eine dritte Ausführungsform der erfindungsgemäßen Brennkraftmaschine 1 dar, welche sich von den ersten und zweiten Ausführungsformen insbesondere dadurch unterscheidet, dass die Turbinenvorrichtung in zwei Teile 2a, 2b aufgeteilt ist, welche jeweils vorzugsweise eine Turbine mit einem Turbinenrad aufweisen. Die verdichtete Luft aus dem Wärmetauscher 6a, 6b wird über den dritten Teil 12c der Gasführung hierbei nicht einem ersten Turbinenrad zugeführt, welches im Abgasstrom der Brennkraftmaschine 1 angeordnet ist, sondern wird einem zweiten Turbinenrad im zweiten Teil 2b der Turbinenvorrichtung zugeführt. In diesem zweiten Teil 2b der Turbinenvorrichtung wird die potenzielle Energie aus der durch die Verdichtervorrichtung 4 verdichteten und durch den Wärmetauscher 6a, 6b erhitzten Luft in einem Gasturbinenprozess in kinetische Energie umgewandelt, welche vorzugsweise auf die Welle 5 übertragen wird. Das entspannte Gas, welches aus dem zweiten Teil 2b der Turbinenvorrichtung ausströmt, wird vorzugsweise zusammen mit dem Abgas über den zweiten Teil 3b der Abgasanlage abgeführt. Das Vorsehen einer Gasturbine 2b, welche getrennt von der Turbine 2a des Abgasturboladers ist, hat den Vorteil, dass jede Turbine auf ihren speziellen Einsatz und ihre jeweiligen Betriebspunkte optimiert werden kann. So kann die Turbine 2b auf einen Gasturbinenprozess optimiert werden, wohingegen die Turbine 2a im Abgasstrang insbesondere den Druck (Stauaufladung) und die Bewegungsenergie der Abgase (Stoßaufladung) aus dem Abgas abgreift. Fig. 4 represents a third embodiment of the internal combustion engine 1 according to the invention, which differs from the first and second embodiments in particular in that the turbine device is divided into two parts 2a, 2b, each of which preferably has a turbine with a turbine wheel. The compressed air from the heat exchanger 6a, 6b is not fed to a first turbine wheel via the third part 12c of the gas duct, which is arranged in the exhaust gas flow of the internal combustion engine 1, but is fed to a second turbine wheel in the second part 2b of the turbine device. In this second part 2b of the turbine device, the potential energy from the air compressed by the compressor device 4 and heated by the heat exchanger 6a, 6b is converted into kinetic energy in a gas turbine process, which is preferably transmitted to the shaft 5. The expanded gas, which flows out of the second part 2b of the turbine device, is preferably discharged together with the exhaust gas via the second part 3b of the exhaust system. The provision of a gas turbine 2b, which is separate from the turbine 2a of the exhaust gas turbocharger, has the advantage that each turbine can be optimized for its specific use and its respective operating points. In this way, the turbine 2b can be optimized for a gas turbine process, whereas the turbine 2a taps the pressure (accumulation charge) and the kinetic energy of the exhaust gases (shock charge) from the exhaust gas in the exhaust line.

Auch in dieser Ausführungsform können weitere Teile 6c des Wärmetauschers vorgesehen sein, mit welche weitere abgasführende Elemente der Brennkraftmaschine 1 in thermischer Verbindung stehen, wie dies in Fig. 5 dargestellt ist.Also in this embodiment, further parts 6c of the heat exchanger can be provided, with which further exhaust-gas-carrying elements of the internal combustion engine 1 are in thermal connection, as shown in FIG Fig. 5 is shown.

Fig. 6 stellt eine erste Ausführungsform eines erfindungsgemäßen Fahrzeugs 10 mit einer erfindungsgemäßen Brennkraftmaschine 1 gemäß der dritten Ausführungsform dar. Diese Ausführungsform des Fahrzeugs zeichnet sich dadurch aus, dass die aus dem zweiten Teil 2b der Turbinenvorrichtung 2 austretende entspannte Luft vorzugsweise über einen vierten Teil 12d einer Gasführung einem Diffusor 11a, 11b zugeführt wird, welcher, wie in Fig. 6 dargestellt, aus zwei Teilen bestehen kann, welche vorzugsweise im Heckbereich des Fahrzeugs 10 angeordnet sind. Durch das Anströmen des Diffusors 11a, 11b mit der entspannten Luft, welche eine hohe Durchflussgeschwindigkeit und eine gegenüber der Umwelt erhöhte Temperatur aufweist, kann der durch den Diffusor 11A, 11b erzeugte Abtrieb auf das Fahrzeug verstärkt werden. Fig. 6 represents a first embodiment of a vehicle 10 according to the invention with an internal combustion engine 1 according to the third embodiment. This embodiment of the vehicle is characterized in that the relaxed air exiting from the second part 2b of the turbine device 2 preferably via a fourth part 12d of a gas duct Diffuser 11a, 11b is supplied, which, as in Fig. 6 shown, can consist of two parts, which are preferably arranged in the rear region of the vehicle 10. By flowing the diffuser 11a, 11b with the relaxed air, which has a high flow rate and a higher temperature than the environment, the downforce generated by the diffuser 11A, 11b can be increased on the vehicle.

Figur 7 stellt eine zweite Ausführungsform eines erfindungsgemäßen Fahrzeugs 10 dar, welches sich von der ersten Ausführungsform gemäß der Fig. 6 einerseits dadurch unterscheidet, dass weitere Teile des Wärmetauschers vorgesehen sind, welche in Fig. 7 mit den Bezugszeichen 6a und 6d bezeichnet sind. Selbstverständlich kann auch nur einer der weiteren Teile 6a, 6d vorgesehen sein und/oder diese können einen oder beide der Teile 6b, 6c ersetzen. Der erste Teil 6a des Wärmetauschers unterscheidet sich hierbei von dem zweiten Teil 6b, dem dritten Teil 6c und dem vierten Teil 6d des Wärmetauschers dadurch, dass dieser nicht thermisch mit abgasführenden Elementen des Fahrzeugs 10 gekoppelt ist, sondern mit einem zweiten Teil 12b der Gasführung, welche die aus dem zweiten Teil 2b der Turbinenvorrichtung 2 austretende entspannte Luft dem Diffusor 11a, 11b zuführt. Die verdichtete Luft von dem Verdichter 4 wird vorzugsweise weiter über die Wärmetauscher 6b, 6c, 6d zu dem ersten Teil der Turbinenvorrichtung 2a, welche mit der Verdichtervorrichtung 4 den Abgasturbolader bildet, gefördert. Hierdurch kann auch restliche thermische Energie, welche noch in der den zweiten Teil 2b der Turbinenvorrichtung verlassenden entspannten Luft vorhanden ist, auf die verdichtete Luft übertragen werden. In Fig. 7 durchfließen die entspannte Luft und die verdichtete Luft den Wärmetauscher 6a dabei zur Bildung eine kompakten Ausführung in Gleichstromrichtung. Vorzugsweise kann jedoch auch vorgesehen sein, dass die verdichtete Luft den ersten Teil 6a des Wärmetauschers ebenfalls in Gegenstromrichtung zur entspannten Luft durchfließt, wie dies in Bezug auf den Abgasstrom in dem zweiten Teil 6b, dem dritten Teil 6c und dem vierten Teil 6d des Wärmetauschers der Fall ist. Figure 7 FIG. 4 shows a second embodiment of a vehicle 10 according to the invention, which differs from the first embodiment according to FIG Fig. 6 distinguishes on the one hand in that further parts of the heat exchanger are provided, which in Fig. 7 are designated by the reference numerals 6a and 6d. Of course, only one of the further parts 6a, 6d can also be provided and / or these can replace one or both of the parts 6b, 6c. The first part 6a of the heat exchanger differs from the second part 6b, the third part 6c and the fourth part 6d of the heat exchanger in that it is not thermally coupled to exhaust gas-carrying elements of the vehicle 10, but with a second part 12b of the gas duct, which supplies the relaxed air emerging from the second part 2b of the turbine device 2 to the diffuser 11a, 11b. The compressed air from the compressor 4 is preferably conveyed further via the heat exchangers 6b, 6c, 6d to the first part of the turbine device 2a, which forms the exhaust gas turbocharger with the compressor device 4. As a result, residual thermal energy which is still present in the relaxed air leaving the second part 2b of the turbine device can also be transferred to the compressed air. In Fig. 7 the relaxed air and the compressed air flow through the heat exchanger 6a to form a compact version in the direct current direction. However, it can preferably also be provided that the compressed one Air also flows through the first part 6a of the heat exchanger in the counterflow direction to the relaxed air, as is the case with regard to the exhaust gas flow in the second part 6b, the third part 6c and the fourth part 6d of the heat exchanger.

Figur 8 stellt eine vierte Ausführungsform der erfindungsgemäßen Brennkraftmaschine 1 mit einer Elektromaschine 7 dar. Im Unterschied zu den in den Figuren 1 bis 7 gezeigten ersten bis dritten Ausführungsformen der erfindungsgemäßen Brennkraftmaschine 1 weist die Verdichtervorrichtung der vierten Ausführungsform einen ersten Teil 4a und einen zweiten Teil 4b auf, wobei der erste Teil 4a vorzugsweise ein erstes Verdichterrad, und der zweite Teil 4b vorzugsweise ein zweites Verdichterrad aufweist. Der zweite Verdichter 4b stellt hierbei verdichtete Luft, vorzugsweise über einen Ladeluftkühler (nicht gezeigt), an den Brennraum der Zylinder 9a, 9b, 9c bereit. Der erste Verdichter 4a stellt vorzugsweise verdichtete Luft bereit, welche den Wärmetauscher 6a, 6b durchströmt und zusammen mit der Turbinenvorrichtung 2 einen Gasturbinenprozess ausführt. Beide Turbinen 4a, 4b der Turbinenvorrichtung beziehen dabei als Gas vorzugsweise Luft aus der Umwelt. Figure 8 represents a fourth embodiment of the internal combustion engine 1 according to the invention with an electric machine 7. In contrast to that in FIGS Figures 1 to 7 First to third embodiments of the internal combustion engine 1 according to the invention shown, the compressor device of the fourth embodiment has a first part 4a and a second part 4b, the first part 4a preferably having a first compressor wheel and the second part 4b preferably having a second compressor wheel. The second compressor 4b provides compressed air, preferably via a charge air cooler (not shown), to the combustion chamber of the cylinders 9a, 9b, 9c. The first compressor 4a preferably provides compressed air which flows through the heat exchanger 6a, 6b and executes a gas turbine process together with the turbine device 2. Both turbines 4a, 4b of the turbine device preferably obtain air from the environment as the gas.

Durch das Vorsehen eines ersten Verdichters 4a und eines zweiten Verdichters 4b kann jeder Verdichter auf sein jeweiliges Einsatzfeld optimiert werden. Beispielsweise arbeitet der Verdichter 4b, welcher zusammen mit der Turbinenvorrichtung 2 vorzugsweise eine Abgasturboladervorrichtung bildet, vorzugsweise mit einem anderen Ausgangsdruck für die Aufladung der Brennkraftmaschine 1 als der Verdichter 4a, welche einen Druck für den Gasturbinenprozess bereitstellt, welcher vorzugsweise zusammen mit der Turbinenvorrichtung 2 ausgeführt wird.By providing a first compressor 4a and a second compressor 4b, each compressor can be optimized for its respective field of application. For example, the compressor 4b, which together with the turbine device 2 preferably forms an exhaust gas turbocharger device, preferably works with a different outlet pressure for charging the internal combustion engine 1 than the compressor 4a, which provides a pressure for the gas turbine process, which is preferably carried out together with the turbine device 2 .

Fig. 9 stellt eine fünfte Ausführungsform der erfindungsgemäßen Brennkraftmaschine dar. Diese Ausführungsform unterscheidet sich von den Ausführungsformen, welche in den Figuren 1 bis 8 gezeigt sind, dadurch, dass sowohl die Turbinenvorrichtung einen ersten Teil 2a und einen zweiten Teil 2b, als auch die Verdichtervorrichtung einen ersten Teil 4a und einen zweiten Teil 4b aufweist. Fig. 9 represents a fifth embodiment of the internal combustion engine according to the invention. This embodiment differs from the embodiments which are shown in FIGS Figures 1 to 8 are shown in that both the turbine device has a first part 2a and a second part 2b, and the compressor device has a first part 4a and a second part 4b.

Durch das Vorsehen von jeweils unterschiedlichen Turbinen und Verdichtern für den Turbolader und den Gasturbinenprozess können die jeweiligen Elemente für ihren Betriebsbereich optimiert werden.By providing different turbines and compressors for the turbocharger and the gas turbine process, the respective elements can be optimized for their operating range.

Sowohl bei der vierten Ausführungsform gemäß Fig. 8 als auch bei der fünften Ausführungsform gemäß Fig. 9 sind alle Elemente der Turbinenvorrichtung und der Verdichtervorrichtung mit der der Welle 5 gekoppelt, insbesondere das erste und das zweite Turbinenrad sowie das erste und das zweite Verdichterrad (alle nicht dargestellt). Auch kann der Wärmetauscher beider Ausführungsformen weitere Teile aufweisen, sowie auch eines der beiden dargestellten Teile 6a, 6b des Wärmetauschers weggelassen oder auch ersetzt werden kann.According to both in the fourth embodiment Fig. 8 as well as in the fifth embodiment Fig. 9 all elements of the turbine device and the compressor device are coupled to that of the shaft 5, in particular the first and the second turbine wheel and the first and the second compressor wheel (all not shown). The heat exchanger in both embodiments can also have further parts, and one of the two parts 6a, 6b of the heat exchanger shown can also be omitted or replaced.

Figur 10 stellt eine dritte Ausführungsform des erfindungsgemäßen Fahrzeugs 10 dar, welche eine Brennkraftmaschine 1 gemäß der fünften Ausführungsform nach Fig. 9 aufweist, wobei gegenüber der Fig. 9 weitere Teile 6a, 6d eines Wärmetauschers vorhanden sind. Wie in den Ausführungsformen des erfindungsgemäßen Fahrzeugs 10 der Figuren 6 und 7 weist auch diese Ausführungsform einen Diffusor 11a, 11b auf, welcher vorzugsweise aus zwei Teilen besteht, die im Bereich des Hecks des Fahrzeugs 10 angeordnet sind. Wie bei der Ausführungsform gemäß Fig. 7 weist auch diese Ausführungsform einen Wärmetauscher 6a auf, welcher der entspannten Luft, die die zweite Turbine 2b verlässt, thermische Energie entziehen kann. Figure 10 FIG. 3 shows a third embodiment of the vehicle 10 according to the invention, which is an internal combustion engine 1 according to the fifth embodiment Fig. 9 has, compared to the Fig. 9 further parts 6a, 6d of a heat exchanger are present. As in the embodiments of the vehicle 10 according to the invention from FIGS. 6 and 7, this embodiment also has a diffuser 11a, 11b, which preferably consists of two parts which are arranged in the region of the rear of the vehicle 10. As in the embodiment according to Fig. 7 This embodiment also has a heat exchanger 6a, which can extract thermal energy from the relaxed air leaving the second turbine 2b.

BezugszeichenlisteReference list

11
BrennkraftmaschineInternal combustion engine
2, 2a, 2b,2, 2a, 2b,
TurbinenvorrichtungTurbine device
3a, 3b3a, 3b
AbgasanlageExhaust system
4, 4a, 4b4, 4a, 4b
VerdichtervorrichtungCompressor device
55
Wellewave
6a, 6b, 6c, 6d6a, 6b, 6c, 6d
WärmetauscherHeat exchanger
77
ElektromaschineElectric machine
8a, 8b, 8c8a, 8b, 8c
AbgasstrangExhaust line
9a, 9b, 9c9a, 9b, 9c
Zylindercylinder
1010th
Fahrzeugvehicle
11a, 11b11a, 11b
DiffusorDiffuser
12a, 12b, 12c, 12d, 12e12a, 12b, 12c, 12d, 12e
GasführungGas flow
1313
Gasführung zum LadekühlerGas flow to the charge cooler

Claims (16)

  1. Combustion engine (1) comprising:
    a turbine device (2) with a first turbine wheel, arranged in an exhaust system (3) of the combustion engine (1) in a manner that it is operable by exhaust gas,
    a compressor device (4) with a first compressor wheel, wherein gas, in particular air, compressed by the compressor device (4) is at least partially conveyed to the turbine device (2),
    a shaft (5), which is coupled with the first turbine wheel and the first compressor wheel,
    and a heat exchanger (6a, 6b, 6c, 6d), which is thermally connected to the exhaust system (3) in a manner that exhaust heat of exhaust gas of the combustion machine (1) is conferred to the gas, in particular air, compressed by the compressor device (4) which is conveyed to the turbine device (2),
    characterized in that
    the heat exchanger has a cross sectional area which increases with the direction of flow of the compressed gas in a manner that the macroscopical flow velocity of the compressed gas lies within a determined range of values along the entirety of the heat exchanger (6a, 6b, 6c, 6d).
  2. Combustion engine (1) according to claim 1, wherein the compressed gas flows through the heat exchanger (6a, 6b, 6c, 6d) counter-currently in relation to the exhaust gas in the exhaust system (3).
  3. Combustion engine (1) according to claim 1 or 2, wherein the compressor device (4) additionally supplies the combustion engine (1) with compressed gas, in particular air.
  4. Combustion engine (1) according to one of the preceding claims further comprising an electric machine (7) which is also coupled to the shaft (5).
  5. Combustion engine (1) according to one of the preceding claims, wherein the heat exchanger (6a, 6b, 6c, 6d) is thermally coupled to a first part of the exhaust system (3), which is arranged downstream of the turbine device (2) in relation to the exhaust gas, with a second part of the exhaust system (3), which is arranged upstream of the turbine device (2) and/or with at least one exhaust train (8a, 8b, 8c) of a cylinder (9a, 9b, 9c).
  6. Combustion engine (1) according to one of the preceding claims, wherein the compressed gas is conveyed to the first turbine wheel of the turbine device (2).
  7. Combustion engine (1) according to one of the preceding claims, wherein the turbine device (2) comprises a second turbine wheel, which is coupleable with the shaft (5), wherein the exhaust gas of the combustion engine (1) drives the first turbine wheel and the compressed gas drives the second turbine wheel.
  8. Combustion engine (1) according to one of the preceding claims, wherein the compressor device (4) comprises a second compressor wheel, which is coupleable with the shaft (5), wherein the first compressor wheel conveys compressed gas to the turbine device (4) via the heat exchanger (6a, 6b, 6c, 6d) and the second compressor wheel conveys compressed gas to the combustion engine (1).
  9. Vehicle (10) with a combustion engine (1) according to one of the preceding claims.
  10. Vehicle (10) with a combustion engine (1) according to one of claims 7 or 8, wherein expended gas is conveyed to a diffusor (11) of the vehicle (10) from the second turbine wheel.
  11. Vehicle (10) according to claim 10, wherein the heat exchanger (6a, 6b, 6c, 6d) is thermally coupled to gas path (12a) between the second turbine device (2) and the diffusor (11).
  12. Vehicle (10) according to claim 11, wherein the compressed gas flows through the heat exchanger (6a, 6b, 6c, 6d) counter-currently in relation to the expended gas in the gas path.
  13. Method for operating a combustion engine (1) according to one of claims 1 to 11 using transformation of thermal exhaust energy into mechanical power by means of an open gas turbine process comprising the following steps:
    compressing of gas, in particular air, by means of an exhaust gas turbo charger device (2, 4);
    conferring of exhaust heat of the exhaust gas of the combustion engine (1) to the compressed gas, wherein the macroscopical flow velocity of the compressed gas lies within a determined value range while conferring the exhaust heat; and
    conveying of the warmed, compressed gas to the exhaust gas turbo charger device (2, 4).
  14. Method according to claim 13 further comprising the following step: conferring of exhaust heat of the expended gas leaving the exhaust gas turbo charger device (2, 4) to the compressed gas.
  15. Method according to claim 13 or 14 further comprising the following step: converting at least part of the mechanical energy generated by the exhaust gas turbo charger device (2, 4) into electrical energy.
  16. Method according to claim 13 or 14, further comprising the following step: converting of electrical energy into mechanical energy at the exhaust gas turbo charger device (2, 4).
EP16162625.4A 2015-03-30 2016-03-29 Combustion engine with exhaust gas energy recovery and method for operation of such a combustion engine Active EP3078824B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015205737.2A DE102015205737A1 (en) 2015-03-30 2015-03-30 Internal combustion engine with exhaust gas energy use and method for operating such an internal combustion engine

Publications (2)

Publication Number Publication Date
EP3078824A1 EP3078824A1 (en) 2016-10-12
EP3078824B1 true EP3078824B1 (en) 2020-07-01

Family

ID=55661255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16162625.4A Active EP3078824B1 (en) 2015-03-30 2016-03-29 Combustion engine with exhaust gas energy recovery and method for operation of such a combustion engine

Country Status (2)

Country Link
EP (1) EP3078824B1 (en)
DE (1) DE102015205737A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2536214B (en) * 2015-03-05 2020-05-27 Elogab O Engine system and method of generating electricity from an internal combustion engine
AT522942A2 (en) * 2019-12-16 2021-03-15 Avl List Gmbh COMBUSTION ENGINE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH598551A5 (en) * 1976-01-21 1978-04-28 Ladislav Sipek Radiator with room air channel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2038810A1 (en) * 1970-08-05 1972-02-10 Bayerische Motoren Werke Ag Internal combustion engine with a charging fan, in particular an exhaust gas turbocharger
FR2478736A1 (en) * 1980-03-21 1981-09-25 Semt METHOD AND SYSTEM FOR POWER GENERATION BY SUPERIOR INTERNAL COMBUSTION ENGINE
DE3818230A1 (en) * 1988-05-28 1989-12-07 Johann Wimmer Unit for increasing the charge pressure on supercharged internal combustion engines in the partial load and lower engine speed range
JP2001164907A (en) 1999-12-10 2001-06-19 Honda Motor Co Ltd Exhaust heat recovery system of multicylinder internal combustion engine
DE102004018037A1 (en) * 2004-04-08 2005-10-27 Behr Gmbh & Co. Kg Method for cooling exhaust gas of an internal combustion engine of a vehicle and heat exchangers
WO2010000285A1 (en) 2008-07-03 2010-01-07 Fev Motorentechnik Gmbh Exhaust-gas energy utilization by means of an open gas turbine process
AT512639B1 (en) 2012-05-11 2013-10-15 Avl List Gmbh vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH598551A5 (en) * 1976-01-21 1978-04-28 Ladislav Sipek Radiator with room air channel

Also Published As

Publication number Publication date
DE102015205737A1 (en) 2016-10-06
EP3078824A1 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
EP2180171B1 (en) System with a Rankine cycle
EP3026237A1 (en) Method and device for operating an electrically assisted turbocharger of a vehicle
DE102013103906B4 (en) Turbo device using a waste heat recovery system for a vehicle
DE2243996A1 (en) DEVICE AND METHOD FOR MULTI-STAGE GAS COMPRESSION
WO2010000284A2 (en) Exhaust gas energy recovery by means of a closed steam power process
DE102015215518A1 (en) System for recovering energy from the exhaust gas of an internal combustion engine
EP3078824B1 (en) Combustion engine with exhaust gas energy recovery and method for operation of such a combustion engine
EP2924259B1 (en) Powertrain system
DE69812811T2 (en) Method and arrangement for combined cycle power plants
EP3049274B1 (en) Operating method for a fuel cell system
DE102011100650A1 (en) Drive train for driving e.g. drive wheels of road vehicle, has additional heat exchanger of steam circuit positioned upstream of exhaust gas after-treatment system in exhaust gas flow to transfer heat to working medium
EP2638254B1 (en) Vehicle, especially racing vehicle
DE102016218764A1 (en) Internal combustion engine of a motor vehicle with a waste heat utilization device
AT512808B1 (en) vehicle
EP2393708B1 (en) Internal combustion engine system having exhaust gas energy recapture for floating devices
WO2015007527A2 (en) Expansion machine
DE102010054505A1 (en) Pressure wave supercharger arrangement for internal combustion engine of motor vehicle, has guide element which is arranged in channel for sucking fresh air and/or channel for supplying exhaust gas
DE102010028200B4 (en) Engine assembly
DE19882242B4 (en) Gas and steam turbine power plant
WO2019110578A1 (en) Internal combustion engine, motor vehicle comprising same, and method for operating an internal combustion engine
DE102018215334A1 (en) Commercial vehicle with heat recovery device
AT512073B1 (en) Internal combustion engine
AT512807B1 (en) Vehicle, in particular racing vehicle
AT512639B1 (en) vehicle
AT507700B1 (en) DEVICE FOR OBTAINING ELECTRIC POWER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170412

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1286388

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010356

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201002

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201102

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010356

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016010356

Country of ref document: DE

Representative=s name: WALLINGER RICKER SCHLOTTER TOSTMANN PATENT- UN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016010356

Country of ref document: DE

Representative=s name: PAUSTIAN & PARTNER PATENTANWAELTE MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210322

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210323

Year of fee payment: 6

Ref country code: GB

Payment date: 20210324

Year of fee payment: 6

26N No opposition filed

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016010356

Country of ref document: DE

Representative=s name: WALLINGER RICKER SCHLOTTER TOSTMANN PATENT- UN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210329

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210329

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1286388

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210329

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016010356

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220329

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701