EP3077750B1 - Heat exchanger with collection channelfor the extraction of a liquid phase - Google Patents

Heat exchanger with collection channelfor the extraction of a liquid phase Download PDF

Info

Publication number
EP3077750B1
EP3077750B1 EP14806185.6A EP14806185A EP3077750B1 EP 3077750 B1 EP3077750 B1 EP 3077750B1 EP 14806185 A EP14806185 A EP 14806185A EP 3077750 B1 EP3077750 B1 EP 3077750B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
collecting channel
medium
shell
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14806185.6A
Other languages
German (de)
French (fr)
Other versions
EP3077750A1 (en
Inventor
Stefan Kayser
Steffen Brenner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP14806185.6A priority Critical patent/EP3077750B1/en
Publication of EP3077750A1 publication Critical patent/EP3077750A1/en
Application granted granted Critical
Publication of EP3077750B1 publication Critical patent/EP3077750B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0017Flooded core heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0006Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/005Other auxiliary members within casings, e.g. internal filling means or sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Definitions

  • the invention relates to a heat exchanger such as in " The standards of the brazed aluminum plate-fin heat exchanger manufacturer's association (ALPEMA) ", third edition, 2010, page 67 shown in Figure 9-1. It has a shell, which encloses a jacket space, and at least one plate heat exchanger ("core”) arranged in the shell space.
  • core plate heat exchanger
  • Such a design of a heat exchanger is also called “core-in-shell” or “block-in-shell” heat exchanger.
  • a first medium which forms a bath surrounding the plate heat exchanger during operation of the heat exchanger and rises from bottom to top in the plate heat exchanger (along the vertical) (so-called thermosiphon effect), can be converted into indirect heat transfer with a second heat transfer medium Medium are brought (for example, to be liquefied gaseous phase or a liquid phase to be cooled), which is preferably performed in countercurrent or cross flow to the first medium in the plate heat exchanger.
  • a resulting gaseous phase of the first medium collects in the shell space above the plate heat exchanger and can be deducted from there.
  • at least part of the liquid phase of the first medium can be withdrawn from the jacket space via an associated outlet nozzle.
  • the liquid phase emerging at the upper end of the plate heat exchanger together with the resulting gaseous phase is returned to the bath surrounding the at least one plate heat exchanger.
  • the entire quantity of liquid of the first medium is usually introduced into the jacket space through at least one inlet connection. A portion of this liquid flows in a vertical direction down, then enters from below into the at least one plate heat exchanger and is partially evaporated there.
  • the other part namely the liquid phase of the first medium to be withdrawn from the shell space (it is preferably a process-related, controlled and largely continuous withdrawal of Liquid from the core-in-shell heat exchanger and preferably not a withdrawal of liquid from the heat exchanger for emptying the jacket space), flows in a predominantly horizontal direction to the outlet nozzle for the liquid phase of the first medium.
  • the maximum volume flow of this cross flow occurs in the region of the outlet nozzle for the liquid phase of the first medium.
  • the horizontal and the vertical flow can influence each other negatively.
  • relatively high flow velocities may occur, which may adversely affect the operation of the core-in-shell heat exchanger.
  • the required overpressure to overcome the respective element is a function of the volume flow.
  • the rule is that the higher the volume flow, the higher the overpressure must be.
  • the present invention is therefore based on the object to provide an improved heat exchanger of the type mentioned. This problem is solved by a heat exchanger with the features of claim 1.
  • a collecting duct arranged in the jacket space which has a wall which defines an interior of the collecting channel and extends longitudinally in the jacket space along a horizontal extension direction.
  • a plurality of plate heat exchangers which are used e.g. can be operated in parallel or in series.
  • Such plate heat exchangers generally have a plurality of mutually parallel plates or plates, which form a plurality of heat transfer passages for participating in the heat transfer media.
  • a preferred embodiment of a plate heat exchanger has a plurality of corrugated or folded sheets (so-called fins), which are each arranged between two parallel separator plates or plates of the plate heat exchanger, wherein the two outermost layers of the plate heat exchanger are formed by cover plates.
  • fins corrugated or folded sheets
  • cover plates cover plates
  • first heat transfer passages are open upwards and downwards along the vertical and in particular not closed by end strips so that the liquid phase of the first medium can enter the first heat transfer passages from below and exit the first heat transfer passages as a liquid or gaseous phase at the top of the plate heat exchanger can.
  • cover plates, separator plates, fins and side bars are preferably made of aluminum and are used e.g. soldered together in an oven. Via corresponding headers with nozzles media such as e.g. the second medium are introduced into or removed from the associated heat transfer passages.
  • the jacket of the heat exchanger may, in particular, have a circumferential (circular) cylindrical wall, which is preferably oriented in the case of a heat exchanger arranged as intended, so that the longitudinal axis (cylinder axis) of the wall or of the jacket extends along the horizontal.
  • the jacket preferably has mutually opposite walls connected to that wall, which extend transversely to the horizontal or longitudinal axis.
  • the collecting channel (with respect to a heat exchanger arranged as intended) is arranged in a lower region of the jacket space, for example, on an inner side of the jacket facing the inner space.
  • the collecting channel between the shell, in particular the circumferential wall of the shell, and the at least one plate heat exchanger is arranged.
  • the collecting channel is arranged along the vertical below the at least one plate heat exchanger.
  • the plate heat exchanger along the horizontal can also be arranged next to the plate heat exchanger.
  • the collecting channel is preferably along the vertical below the liquid level of the liquid phase of the first medium in the shell space arranged so that the liquid phase of the first medium is correspondingly removable with the collecting channel from the shell space.
  • the at least one plate heat exchanger is designed to cool the second medium guided in the second heat transfer passages against the first medium guided in the adjacent first heat transfer passages and / or at least partially to liquefy, so that forms a gaseous phase of the first medium, wherein the jacket space is formed for collecting the gaseous phase.
  • the at least one plate heat exchanger is formed so that the first medium rises during operation of the heat exchanger in the at least one plate heat exchanger, namely in designated first or second heat transfer passages of the at least one plate heat exchanger, in particular the at least one plate heat exchanger to is formed to lead the second medium in the second heat transfer passages in countercurrent or in cross flow to the first medium.
  • the collection channel for withdrawing the liquid phase of the first medium is flow-connected to an outlet nozzle, which is arranged in particular on an underside of the jacket, so that the liquid phase of the first medium can be withdrawn via those outlet nozzle from the collection channel.
  • the collecting channel can also be connected in a flow-conducting manner with a plurality of, for example two or three, outlet nozzles, which are preferably distributed over the length of the collecting channel.
  • the collection channel extends along an extension direction which is aligned parallel to the longitudinal axis (cylinder axis) of the shell or along the horizontal, and thereby preferably transversely to said extension direction (longitudinal axis) an eg tubular (in particular circular) or, for example, has an angular, in particular rectangular cross-section.
  • the collecting duct extends at least over 60%, 70%, 80% or 90% of the length of the heat exchanger along the extension direction, preferably over the entire length of the jacket space of the heat exchanger along the extension direction.
  • the collecting channel further comprises a wall which encloses an interior of the collecting channel, in which the liquid phase can flow to said outlet nozzle.
  • that portion of that wall of the collecting channel which points towards an underside of the heat exchanger or points downwards along the vertical is referred to as the lower side of the collecting channel, and the opposite region of the wall of the collecting channel facing the upper side of the heat exchanger accordingly provides
  • the top and bottom of the collecting channel are preferably interconnected by along the longitudinal axis of the shell extending side walls of the collecting channel.
  • the front side of the collecting channel is preferably limited by opposing end faces, each connecting the top, the bottom and the side walls together.
  • the front side of the collecting channel can also be designed open.
  • a variant of the invention further provides that one or more of the aforementioned areas of the wall of the collecting channel are formed by the jacket of the heat exchanger.
  • the underside of the collecting channel or the underside of the wall of the collecting channel is formed by the jacket of the heat exchanger.
  • the side walls and end faces are therefore attached to the jacket corresponding to the jacket space.
  • the collecting channel preferably has at least one inlet opening, particularly preferably a plurality of inlet openings, which is or are formed in particular on the upper side of the collecting channel and possibly on the opposite side walls of the collecting channel.
  • the inlet openings formed on the upper side of the collecting channel are preferably slit-shaped, whereas inlet openings provided on the side walls preferably have a circular contour (for example bores).
  • the distances of adjacent inlet openings in particular the distances of the top or on the side walls provided inlet openings, to remove the respective end face of the collecting channel. That is, the two adjacent entrance openings, which are located closer to one of the end faces of the collecting channel, preferably have a smaller distance from each other along the direction of extension of the collecting channel than two adjacent inlet openings, which are arranged towards the center of the collecting channel (with respect to the extension direction).
  • the number, distribution, size and / or shape of the inlet openings are selected so that the velocity field of the liquid phase of the first medium in the collecting channel is preferably uniform. In particular, so that the flow in the adjacent shell space should be influenced as little negative.
  • the cross-sectional area (and optionally contour) of the collecting channel in a plane perpendicular to the extension direction of the collecting channel is selected such that sets a preferably uniform velocity field of the liquid phase of the first medium in the collecting channel. In particular, so that the flow in the adjacent shell space should be influenced as little negative.
  • This is preferably supported by an enlargement / enlargement of the cross section of the collecting channel towards the outlet nozzle and / or by a defined arrangement, shape and size of the inlet openings on the collecting channel.
  • the outlet nozzle opens centrally into the collecting channel or interior of the collecting channel.
  • the heat exchanger may have a plurality of arranged in the shell space, inventive collecting channels, which are in flow communication with the outlet nozzle or in each case with one or more outlet nozzle.
  • the positions, dimensions and orientations of these collection channels are preferably chosen so that the velocity field of the liquid phase of the first medium in the respective collection channel is preferably uniform.
  • the sheath can of course also have a plurality of outlet stubs, which may be connected to a collecting channel as described above or possibly to a plurality of collecting channels of the type described above.
  • the inlet openings in particular the inlet openings on the side walls of the collecting channel have a defined distance along the vertical to the inside of the jacket on the underside of the jacket. This allows the limitation of the liquid withdrawal, e.g. in the event of a plant standstill or interruption of the inlet flow (i.e., a defined residual quantity remains in the shell space).
  • liquid withdrawal can also be achieved by a corresponding arrangement of the collecting channel in the jacket space, for example by the collecting channel is arranged at a defined height above the underside of the shell.
  • each inlet opening can be provided with vortex breakers, which prevent the formation or intensification of vertebrae.
  • each inlet opening can be configured individually.
  • the velocity field in the core-in-shell heat exchanger can be better controlled by the solution according to the invention.
  • the neutrraum or shell space is better utilized in its overall size.
  • smaller jacket sizes can be achieved.
  • the deducted Liquid can be selectively removed from areas of the original or shell space in which little liquid flows for the purpose of partial evaporation in the plate heat exchanger in the vertical direction downwards. This prevents in particular that the currents influence each other negatively.
  • the collecting duct is a non-pressure-bearing component and must therefore meet only low requirements for wall thickness, material and manufacturing.
  • its cross-sectional shape can be freely designed without affecting its strength.
  • the positions of the liquid nozzles of the core-in-shell heat exchanger are more variable.
  • the outlet nozzle can be arranged on the underside of the jacket in the middle or at the edge. As a result, the construction of the surrounding components is less restricted.
  • FIG. 1 shows in connection with the Figures 2 and 3 a heat exchanger 1, which has a transverse, (circular) cylindrical shell 2, which has a jacket space 3 of the heat exchanger 1 limited.
  • the jacket 2 in this case has a circumferential, cylindrical wall 14, which is delimited by two opposing walls 15 frontally.
  • a plate heat exchanger 4 is arranged, which has a plurality of parallel heat transfer passages.
  • the plate heat exchanger 4 has a plurality of e.g. corrugated or folded sheets (so-called fins), which are each arranged between two flat partition plates or plates of the plate heat exchanger 4.
  • fins e.g. corrugated or folded sheets
  • the two outermost layers are formed by cover plates of the plate heat exchanger 4; towards the sides are provided between each two adjacent partition plates or separating and cover plates.
  • the shell space 3 is filled during operation of the heat exchanger 1 via a provided on an upper side 8 of the shell 2 inlet nozzle 60 with a first medium F1.
  • This inlet flow into the heat exchanger 1 is usually two-phase, but can only be liquid.
  • the liquid phase L1 of the first medium F1 then forms a bath surrounding the plate heat exchanger 4, the gaseous phase G1 of the first medium F1 accumulating above the liquid phase L1 in an upper region 34 of the jacket space 3.
  • the liquid phase L1 of the first medium F1 can ascend in associated first heat transfer passages of the plate heat exchanger 4 and is partly through indirect heat transfer by a second medium to be cooled F2, which is performed in cross flow to the first medium F1 in associated second heat transfer passages of the plate heat exchanger evaporated.
  • the resulting gaseous phase G1 of the first medium F1 can emerge at an upper end of the plate heat exchanger 4 and rises in the shell space 3 of the heat exchanger 1, from where it can be withdrawn via corresponding outlet nozzle 40 on the top 8 of the shell 2.
  • a part of the liquid phase L1 circulates in the shell space 3, wherein that part is conveyed in the plate heat exchanger 4 in the first heat transfer passages from bottom to top and then flows outside the plate heat exchanger 4 in the shell space 3 back down.
  • the second medium F2 is passed through a suitable inlet port O in the plate heat exchanger 4 and after passing through the associated second heat transfer passages via an outlet port O 'cooled or liquefied withdrawn from the plate heat exchanger 4.
  • a box-shaped collecting channel 5 is arranged on an inner side 2 a of the jacket 2 facing the jacket space 3, which extends along an extension direction 7.
  • the collecting channel 5 is designed, in particular, longitudinally extended and accordingly has a greater extent along the direction of extent 7 than transversely to that direction of extent 7.
  • the collecting channel 5 has a wall W which delimits an interior I of the collecting channel 5, through which the liquid phase L1 of the first medium F1 is withdrawn from the jacket space 3.
  • the wall W has in detail an upper side 9 and two side walls 11 extending therefrom, which extend along the extension direction 7 and are connected to one another via a bottom 9 (bottom side) 10 of the collecting channel 5 which is formed by the jacket 2 ,
  • the collecting channel 5 or its wall W has two end faces 11a, 11b, which lie opposite one another along the extension direction 7.
  • the collecting channel 5 is further connected to an outlet nozzle 6 of the jacket 2, which opens at the bottom 10 of the collecting channel 5 into the collecting channel 5, so that the liquid via the inlet openings 12, 13 into the interior I of the collecting channel 5 liquid phase L1 of the first Medium F1 can be withdrawn from the collection channel 5 via the outlet nozzle 6.
  • the outlet nozzle 6 is preferably arranged centrally along the direction of extent 7 on the collecting channel 5, the upper side 9 of the collecting channel 5 preferably having two outlet sections 6 towards the rising portions 9a, 9b, which preferably meet above the outlet nozzle 6.
  • the cross-section of the collecting channel 5 preferably widens (widens) in each case from the end faces 11a, 11b of the collecting channel 5, starting in the direction of the outlet nozzle 6 in order to obtain in the collecting channel 5 as homogeneous as possible a velocity field of the liquid phase L1 of the first medium F1.
  • the flow of the liquid phase L1 in the adjacent shell space 3 should thus be influenced as negatively as possible.

Description

Die Erfindung betrifft einen Wärmeübertrager wie beispielsweise in " The standards of the brazed aluminium plate-fin heat exchanger manufacturer's association (ALPEMA)", dritte Ausgabe, 2010, Seite 67 in Figur 9-1 gezeigt. Er weist einen Mantel ("shell") auf, der einen Mantelraum umschließt, sowie mindestens einen im Mantelraum angeordneten Plattenwärmeübertrager ("core"). Eine solche Ausführung eines Wärmeübertragers nennt man auch "core-in-shell"- oder "block-in-shell"-Wärmeübertrager.The invention relates to a heat exchanger such as in " The standards of the brazed aluminum plate-fin heat exchanger manufacturer's association (ALPEMA) ", third edition, 2010, page 67 shown in Figure 9-1. It has a shell, which encloses a jacket space, and at least one plate heat exchanger ("core") arranged in the shell space. Such a design of a heat exchanger is also called "core-in-shell" or "block-in-shell" heat exchanger.

Mit einem solchen Wärmeübertrager kann insbesondere ein erstes Medium, das beim Betrieb des Wärmeübertragers ein den Plattenwärmeübertrager umgebendes Bad ausbildet und in dem Plattenwärmeübertrager (entlang der Vertikalen) von unten nach oben aufsteigt (so genannter Thermosiphon-Effekt), in eine indirekte Wärmeübertragung mit einem zweiten Medium gebracht werden (z.B. eine zu verflüssigende gasförmige Phase oder eine zu kühlende flüssige Phase), das bevorzugt im Gegenstrom oder Kreuzstrom zum ersten Medium im Plattenwärmeübertrager geführt wird. Eine hierbei entstehende gasförmige Phase des ersten Mediums sammelt sich im Mantelraum oberhalb des Plattenwärmeübertragers und kann von dort abgezogen werden. Weiterhin kann zumindest ein Teil der flüssigen Phase des ersten Mediums über einen zugeordneten Austrittsstutzen aus dem Mantelraum abgezogen werden. Vorzugsweise wird die am oberen Ende des Plattenwärmeübertragers zusammen mit der entstehenden gasförmigen Phase austretende flüssige Phase in das den mindestens einen Plattenwärmeübertrager umgebende Bad zurückgeführt.In particular, a first medium, which forms a bath surrounding the plate heat exchanger during operation of the heat exchanger and rises from bottom to top in the plate heat exchanger (along the vertical) (so-called thermosiphon effect), can be converted into indirect heat transfer with a second heat transfer medium Medium are brought (for example, to be liquefied gaseous phase or a liquid phase to be cooled), which is preferably performed in countercurrent or cross flow to the first medium in the plate heat exchanger. A resulting gaseous phase of the first medium collects in the shell space above the plate heat exchanger and can be deducted from there. Furthermore, at least part of the liquid phase of the first medium can be withdrawn from the jacket space via an associated outlet nozzle. Preferably, the liquid phase emerging at the upper end of the plate heat exchanger together with the resulting gaseous phase is returned to the bath surrounding the at least one plate heat exchanger.

Bei einem Wärmeübertrager der vorgenannten Art wird für gewöhnlich die gesamte Flüssigkeitsmenge des ersten Mediums durch zumindest einen Eintrittsstutzen in den Mantelraum eingebracht. Ein Teil dieser Flüssigkeit strömt in vertikaler Richtung nach unten, tritt dann von unten in den mindestens einen Plattenwärmeübertrager ein und wird dort teilweise verdampft. Der andere Teil, nämlich die aus dem Mantelraum abzuziehende flüssige Phase des ersten Mediums (es handelt sich vorzugsweise um einen prozessbedingten, kontrollierten und weitestgehend kontinuierlichen Abzug von Flüssigkeit aus dem Core-In-Shell-Wärmeübertrager sowie bevorzugt nicht um einen Abzug von Flüssigkeit aus dem Wärmeübertrager zur Entleerung des Mantelraumes), strömt in überwiegend horizontaler Richtung zu dem Austrittsstutzen für die flüssige Phase des ersten Mediums. Der maximale Volumenstrom dieser Querströmung tritt dabei im Bereich des Austrittsstutzens für die flüssige Phase des ersten Mediums auf. Je nachdem, wo die Flüssigkeit durch den mindestens einen Eintrittsstutzen in den Mantelraum eingebracht wird und welche hydraulischen Verhältnisse im Mantelraum vorliegen, können sich die horizontale und die vertikale Strömung gegenseitig negativ beeinflussen. Weiterhin können, insbesondere an Engstellen in der Nähe des Austrittsstutzens für die flüssige Phase des ersten Mediums, relativ hohe Strömungsgeschwindigkeiten auftreten, welche den Betrieb des Core-In-Shell-Wärmeübertragers negativ beeinflussen können.In a heat exchanger of the aforementioned type, the entire quantity of liquid of the first medium is usually introduced into the jacket space through at least one inlet connection. A portion of this liquid flows in a vertical direction down, then enters from below into the at least one plate heat exchanger and is partially evaporated there. The other part, namely the liquid phase of the first medium to be withdrawn from the shell space (it is preferably a process-related, controlled and largely continuous withdrawal of Liquid from the core-in-shell heat exchanger and preferably not a withdrawal of liquid from the heat exchanger for emptying the jacket space), flows in a predominantly horizontal direction to the outlet nozzle for the liquid phase of the first medium. The maximum volume flow of this cross flow occurs in the region of the outlet nozzle for the liquid phase of the first medium. Depending on where the liquid is introduced through the at least one inlet nozzle into the shell space and which hydraulic conditions are present in the shell space, the horizontal and the vertical flow can influence each other negatively. Furthermore, in particular at bottlenecks in the vicinity of the outlet nozzle for the liquid phase of the first medium, relatively high flow velocities may occur, which may adversely affect the operation of the core-in-shell heat exchanger.

Beim Abzug der flüssigen Phase des ersten Mediums aus dem Mantelraum ist weiterhin darauf zu achten, dass weder Wirbel entstehen noch Gasblasen mit der Flüssigkeitsströmung mitgerissen werden. Weiterhin sind relativ hohe (insbesondere lokale) Strömungsgeschwindigkeiten zu vermeiden, da ansonsten die Gefahr der Gasblasenbildung besteht. Häufig wird deshalb die Vorgabe gemacht, dass im Bereich des Austrittstutzens für die flüssige Phase des ersten Mediums keine Einbauten die Strömung beeinflussen dürfen und auch keine Flüssigkeit in diesem Bereich in den Mantelraum eingebracht werden darf. Dies führt zu einer größeren erforderlichen Mantellänge, welche höhere Kosten und ein Mehrgewicht zur Folge hat.When withdrawing the liquid phase of the first medium from the mantle space, care must be taken to ensure that neither swirls nor gas bubbles are entrained with the liquid flow. Furthermore, relatively high (in particular local) flow velocities are to be avoided since otherwise the risk of gas bubble formation exists. Often, therefore, the requirement is made that in the area of the outlet nozzle for the liquid phase of the first medium, no internals may influence the flow and no liquid may be introduced into the jacket space in this area. This leads to a larger required shell length, which results in higher costs and additional weight.

Um einen minimalen Flüssigkeitsstand im Mantelraum zu gewährleisten, wird in der US5651270A vorgeschlagen, ein Wehr innerhalb des Mantelraums anzuordnen. Dieses Wehr unterteilt den Mantelraum in einen Wärmetauschbereich und einen Ablaufbereich. Auch diese Lösung führt zu einer größeren erforderlichen Mantellänge, welche höhere Kosten und ein Mehrgewicht zur Folge hat.In order to ensure a minimal liquid level in the shell space, is in the US5651270A proposed to arrange a weir within the shell space. This weir divides the shell space into a heat exchange area and a drain area. Also, this solution leads to a larger required shell length, which has higher costs and an extra weight.

Durch den Einbau weiterer Widerstandselemente (z.B. Wehre) wird darüber hinaus die Strömung in horizontaler Richtung zum Teil massiv gestört. Zur Überwindung eines jeden Elements der vorgenannten Art ist ein Überdruck erforderlich, der durch einen erhöhten Flüssigkeitsstand vor dem Element erzeugt wird. Dies hat zur Folge, dass die Räume zwischen den Elementen einen unterschiedlichen Flüssigkeitsstand aufweisen, was den Betrieb des Core-In-Shell-Wärmeübertragers negativ beeinflussen kann.Due to the installation of additional resistance elements (eg weirs), the flow in the horizontal direction is disturbed in some cases massively. To overcome any element of the aforementioned type, an overpressure is required, which is generated by an increased liquid level in front of the element. This has the consequence that the spaces between the elements have a different liquid level, which can adversely affect the operation of the core-in-shell heat exchanger.

Dieser Effekt wird insofern noch verstärkt, als dass der benötigte Überdruck zur Überwindung des jeweiligen Elements eine Funktion des Volumenstromes ist. Dabei gilt, dass der Überdruck umso höher sein muss, je größer der Volumenstrom ist.This effect is further enhanced in that the required overpressure to overcome the respective element is a function of the volume flow. The rule is that the higher the volume flow, the higher the overpressure must be.

Hiervon ausgehend liegt daher der vorliegenden Erfindung die Aufgabe zugrunde, einen verbesserten Wärmeübertrager der eingangs genannten Art bereitzustellen. Dieses Problem wird durch einen Wärmeübertrager mit den Merkmalen des Anspruchs 1 gelöst.On this basis, the present invention is therefore based on the object to provide an improved heat exchanger of the type mentioned. This problem is solved by a heat exchanger with the features of claim 1.

Danach ist zum Abziehen zumindest eines Teils der flüssigen Phase des ersten Mediums aus dem Mantelraum ein im Mantelraum angeordneter Sammelkanal vorgesehen, der eine Wandung aufweist, die einen Innenraum des Sammelkanals definiert und die entlang einer horizontalen Erstreckungsrichtung längserstreckt im Mantelraum verläuft.Thereafter, for extracting at least a portion of the liquid phase of the first medium from the jacket space a collecting duct arranged in the jacket space is provided, which has a wall which defines an interior of the collecting channel and extends longitudinally in the jacket space along a horizontal extension direction.

Gemäß einer Ausgestaltung der Erfindung können im Mantelraum auch mehrere Plattenwärmeübertrager vorgesehen sein, die z.B. parallel oder in Serie betrieben werden können.According to one embodiment of the invention, a plurality of plate heat exchangers, which are used e.g. can be operated in parallel or in series.

Derartige Plattenwärmeübertrager weisen in der Regel eine Mehrzahl an parallel zueinander angeordneten Platten bzw. Blechen auf, die eine Vielzahl von Wärmeübertragungspassagen für an der Wärmeübertragung beteiligte Medien bilden. Eine bevorzugte Ausführungsform eines Plattenwärmeübertragers weist eine Mehrzahl an gewellten bzw. gefalteten Blechen auf (sogenannte Fins), die jeweils zwischen zwei parallelen Trennplatten bzw. -blechen des Plattenwärmeübertragers angeordnet sind, wobei die beiden äußersten Lagen des Plattenwärmeübertragers durch Deckplatten gebildet sind. Auf diese Weise werden zwischen je zwei Trennplatten bzw. zwischen einer Trennplatte und einer Deckplatte aufgrund des jeweils dazwischen angeordneten Fins eine Vielzahl an parallelen Kanälen bzw. eine Wärmeübertragungspassage gebildet, durch die ein Medium strömen kann. Zwischen den in benachbarten Wärmeübertragungspassagen strömenden Medien kann daher eine Wärmeübertragung stattfinden, wobei die dem ersten Medium zugeordneten Wärmeübertragungspassagen als erste Wärmeübertragungspassagen und die dem zweiten Medium zugeordneten Wärmeübertragungspassagen entsprechend als zweite Wärmeübertragungspassagen bezeichnet werden.Such plate heat exchangers generally have a plurality of mutually parallel plates or plates, which form a plurality of heat transfer passages for participating in the heat transfer media. A preferred embodiment of a plate heat exchanger has a plurality of corrugated or folded sheets (so-called fins), which are each arranged between two parallel separator plates or plates of the plate heat exchanger, wherein the two outermost layers of the plate heat exchanger are formed by cover plates. In this way, a plurality of parallel channels or a heat transfer passage are formed between each two partition plates or between a partition plate and a cover plate due to the respective interposed fin, through which a medium can flow. Heat transfer may therefore take place between the media flowing in adjacent heat transfer passages, the heat transfer passages associated with the first medium being referred to as first heat transfer passages and the heat transfer passages associated with the second medium correspondingly being referred to as second heat transfer passages.

Zu den Seiten hin sind zwischen je zwei benachbarten Trennplatten bzw. zwischen einer Deckplatte und der benachbarten Trennplatte vorzugsweise Abschlussleisten (so genannte Side Bars) zum Verschließen der jeweiligen Wärmeübertragungspassage vorgesehen. Die ersten Wärmeübertragungspassagen sind entlang der Vertikalen nach oben und unten hin offen und insbesondere nicht durch Abschlussleisten verschlossen, so dass die flüssige Phase des ersten Mediums von unten in die ersten Wärmeübertragungspassagen gelangen kann und oben am Plattenwärmeübertrager aus den ersten Wärmeübertragungspassagen als flüssige oder gasförmige Phase austreten kann.To the sides are provided between each two adjacent partition plates or between a cover plate and the adjacent partition plate preferably end strips (so-called side bars) for closing the respective heat transfer passage. The first heat transfer passages are open upwards and downwards along the vertical and in particular not closed by end strips so that the liquid phase of the first medium can enter the first heat transfer passages from below and exit the first heat transfer passages as a liquid or gaseous phase at the top of the plate heat exchanger can.

Die Deckplatten, Trennplatten, Fins und Side Bars sind vorzugsweise aus Aluminium gefertigt und werden z.B. in einem Ofen miteinander verlötet. Über entsprechende Header mit Stutzen können Medien, wie z.B. das zweite Medium, in die zugeordneten Wärmeübertragungspassagen eingeleitet bzw. aus diesen abgezogen werden.The cover plates, separator plates, fins and side bars are preferably made of aluminum and are used e.g. soldered together in an oven. Via corresponding headers with nozzles media such as e.g. the second medium are introduced into or removed from the associated heat transfer passages.

Der Mantel des Wärmeübertragers kann insbesondere eine umlaufende, (kreis)zylindrische Wandung aufweisen, die bei einem bestimmungsgemäß angeordneten Wärmeübertrager vorzugsweise so ausgerichtet ist, dass sich die Längsachse (Zylinderachse) der Wandung bzw. des Mantels entlang der Horizontalen erstreckt. Stirnseitig weist der Mantel bevorzugt einander gegenüberliegende, mit jener Wandung verbundene Wände auf, die sich quer zur Horizontalen bzw. Längsachse erstrecken.The jacket of the heat exchanger may, in particular, have a circumferential (circular) cylindrical wall, which is preferably oriented in the case of a heat exchanger arranged as intended, so that the longitudinal axis (cylinder axis) of the wall or of the jacket extends along the horizontal. At the front, the jacket preferably has mutually opposite walls connected to that wall, which extend transversely to the horizontal or longitudinal axis.

Vorzugsweise ist vorgesehen, dass der Sammelkanal (bezogen auf einen bestimmungsgemäß angeordneten Wärmeübertrager) in einem unteren Bereich des Mantelraumes z.B. an einer dem Innenraum zugewandten Innenseite des Mantels angeordnet ist. Vorzugsweise ist der Sammelkanal zwischen dem Mantel, insbesondere der umlaufenden Wandung des Mantels, und dem mindestens einem Plattenwärmeübertrager angeordnet. Weiterhin ist bevorzugt vorgesehen, dass der Sammelkanal entlang der Vertikalen unterhalb des mindestens einen Plattenwärmeübertragers angeordnet ist. Weiterhin kann der Plattenwärmeübertrager entlang der Horizontalen auch neben dem Plattenwärmeübertrager angeordnet sein. Der Sammelkanal ist dabei bevorzugt entlang der Vertikalen unterhalb des Flüssigkeitsspiegels der flüssigen Phase des ersten Mediums im Mantelraum angeordnet, so dass die flüssige Phase des ersten Mediums entsprechend mit dem Sammelkanal aus dem Mantelraum abziehbar ist.It is preferably provided that the collecting channel (with respect to a heat exchanger arranged as intended) is arranged in a lower region of the jacket space, for example, on an inner side of the jacket facing the inner space. Preferably, the collecting channel between the shell, in particular the circumferential wall of the shell, and the at least one plate heat exchanger is arranged. Furthermore, it is preferably provided that the collecting channel is arranged along the vertical below the at least one plate heat exchanger. Furthermore, the plate heat exchanger along the horizontal can also be arranged next to the plate heat exchanger. The collecting channel is preferably along the vertical below the liquid level of the liquid phase of the first medium in the shell space arranged so that the liquid phase of the first medium is correspondingly removable with the collecting channel from the shell space.

Im Hinblick auf die Betriebsweise des Wärmeübertragers ist, wie eingangs bereits dargelegt, bevorzugt vorgesehen, dass der mindestens eine Plattenwärmeübertrager dazu ausgebildet ist, das in den zweiten Wärmeübertragungspassagen geführte zweite Medium gegen das in den benachbarten ersten Wärmeübertragungspassagen geführte erste Mediums abzukühlen und/oder zumindest teilweise zu verflüssigen, so dass sich eine gasförmige Phase des ersten Mediums bildet, wobei der Mantelraum zum Sammeln der gasförmigen Phase ausgebildet ist.With regard to the mode of operation of the heat exchanger, as already explained, it is preferably provided that the at least one plate heat exchanger is designed to cool the second medium guided in the second heat transfer passages against the first medium guided in the adjacent first heat transfer passages and / or at least partially to liquefy, so that forms a gaseous phase of the first medium, wherein the jacket space is formed for collecting the gaseous phase.

Bevorzugt ist weiterhin vorgesehen, dass der mindestens eine Plattenwärmeübertrager so ausgebildet ist, dass das erste Medium beim Betrieb des Wärmeübertragers in dem mindestens einen Plattenwärmeübertrager aufsteigt, nämlich in dafür vorgesehenen ersten bzw. zweiten Wärmeübertragungspassagen des mindestens einen Plattenwärmeübertragers, wobei insbesondere der mindestens eine Plattenwärmeübertrager dazu ausgebildet ist, das zweite Medium in den zweiten Wärmeübertragungspassagen im Gegenstrom oder im Kreuzstrom zum ersten Medium zu führen.Preferably, it is further provided that the at least one plate heat exchanger is formed so that the first medium rises during operation of the heat exchanger in the at least one plate heat exchanger, namely in designated first or second heat transfer passages of the at least one plate heat exchanger, in particular the at least one plate heat exchanger to is formed to lead the second medium in the second heat transfer passages in countercurrent or in cross flow to the first medium.

Bevorzugt ist der Sammelkanal zum Abziehen der flüssigen Phase des ersten Mediums mit einem Austrittsstutzen strömungsleitend verbunden, der insbesondere an einer Unterseite des Mantels angeordnet ist, so dass die flüssige Phase des ersten Mediums über jenen Austrittsstutzen aus dem Sammelkanal abgezogen werden kann. Der Sammelkanal kann auch mit mehreren, beispielsweise zwei oder drei Austrittsstutzen strömungsleitend verbunden sein, die vorzugsweise über die Länge des Sammelkanals verteilt angeordnet sind.Preferably, the collection channel for withdrawing the liquid phase of the first medium is flow-connected to an outlet nozzle, which is arranged in particular on an underside of the jacket, so that the liquid phase of the first medium can be withdrawn via those outlet nozzle from the collection channel. The collecting channel can also be connected in a flow-conducting manner with a plurality of, for example two or three, outlet nozzles, which are preferably distributed over the length of the collecting channel.

In einer Ausführungsform der Erfindung ist weiterhin vorgesehen, dass sich der Sammelkanal entlang einer Erstreckungsrichtung erstreckt, die parallel zur Längsachse (Zylinderachse) des Mantels bzw. entlang der Horizontalen ausgerichtet ist, und dabei bevorzugt quer zur besagten Erstreckungsrichtung (Längsachse) einen z.B. rohrförmigen (insbesondere kreisförmigen) oder z.B. einen eckigen, insbesondere rechteckförmigen Querschnitt aufweist. Vorzugsweise erstreckt sich der Sammelkanal zumindest über 60%, 70%, 80% oder 90% der Länge des Wärmeübertragers entlang der Erstreckungsrichtung, vorzugsweise über die gesamte Länge des Mantelraumes des Wärmeübertragers entlang der Erstreckungsrichtung.In one embodiment of the invention it is further provided that the collection channel extends along an extension direction which is aligned parallel to the longitudinal axis (cylinder axis) of the shell or along the horizontal, and thereby preferably transversely to said extension direction (longitudinal axis) an eg tubular (in particular circular) or, for example, has an angular, in particular rectangular cross-section. Preferably, the collecting duct extends at least over 60%, 70%, 80% or 90% of the length of the heat exchanger along the extension direction, preferably over the entire length of the jacket space of the heat exchanger along the extension direction.

Der Sammelkanal weist des Weiteren eine Wandung auf, die einen Innenraum des Sammelkanals umschließt, in dem die flüssige Phase zu dem besagten Austrittstutzen strömen kann. Dabei wird derjenige Bereich jener Wandung des Sammelkanals, der zu einer Unterseite des Wärmeübertragers weist bzw. entlang der Vertikalen nach unten weist, als Unterseite des Sammelkanals bezeichnet, und der gegenüberliegende Bereich der Wandung des Sammelkanals, der zur Oberseite des Wärmeübertragers weist, stellt entsprechend die Oberseite des Sammelkanals dar. Die Ober- und Unterseite des Sammelkanals werden bevorzugt durch entlang der Längsachse des Mantels erstreckte Seitenwände des Sammelkanals miteinander verbunden. Stirnseitig wird der Sammelkanal bevorzugt durch einander gegenüberliegende Stirnseiten begrenzt, die jeweils die Ober-, die Unterseite und die Seitenwände miteinander verbinden. Stirnseitig kann der Sammelkanal auch offen ausgestaltet sein.The collecting channel further comprises a wall which encloses an interior of the collecting channel, in which the liquid phase can flow to said outlet nozzle. In this case, that portion of that wall of the collecting channel which points towards an underside of the heat exchanger or points downwards along the vertical is referred to as the lower side of the collecting channel, and the opposite region of the wall of the collecting channel facing the upper side of the heat exchanger accordingly provides The top and bottom of the collecting channel are preferably interconnected by along the longitudinal axis of the shell extending side walls of the collecting channel. The front side of the collecting channel is preferably limited by opposing end faces, each connecting the top, the bottom and the side walls together. The front side of the collecting channel can also be designed open.

Eine Variante der Erfindung sieht weiterhin vor, dass eine oder mehrere der vorgenannten Bereiche der Wandung des Sammelkanals durch den Mantel des Wärmeübertragers ausgebildet werden. Bevorzugt wird die Unterseite des Sammelkanals bzw. die Unterseite der Wandung des Sammelkanals durch den Mantel des Wärmeübertragers gebildet. Die Seitenwände und Stirnseiten sind also entsprechend vom Mantelraum her an den Mantel angesetzt.A variant of the invention further provides that one or more of the aforementioned areas of the wall of the collecting channel are formed by the jacket of the heat exchanger. Preferably, the underside of the collecting channel or the underside of the wall of the collecting channel is formed by the jacket of the heat exchanger. The side walls and end faces are therefore attached to the jacket corresponding to the jacket space.

Zum Abziehen der flüssigen Phase weist der Sammelkanal vorzugsweise mindestens eine Eintrittsöffnung, besonders bevorzugt eine Mehrzahl an Eintrittsöffnungen auf, die insbesondere an der Oberseite des Sammelkanals sowie ggf. an den einander gegenüberliegenden Seitenwänden des Sammelkanals ausgebildet ist bzw. sind. Dabei sind die an der Oberseite des Sammelkanals ausgebildeten Eintrittsöffnungen vorzugsweise schlitzförmig ausgebildet, wohingegen an den Seitenwänden vorgesehene Eintrittsöffnungen vorzugsweise eine kreisförmige Kontur aufweisen (z.B. Bohrungen).For drawing off the liquid phase, the collecting channel preferably has at least one inlet opening, particularly preferably a plurality of inlet openings, which is or are formed in particular on the upper side of the collecting channel and possibly on the opposite side walls of the collecting channel. In this case, the inlet openings formed on the upper side of the collecting channel are preferably slit-shaped, whereas inlet openings provided on the side walls preferably have a circular contour (for example bores).

Bevorzugt ist vorgesehen, dass die Abstände benachbarter Eintrittsöffnungen, und zwar insbesondere die Abstände der an der Oberseite oder an den Seitenwänden vorgesehenen Eintrittsöffnungen, zur jeweiligen Stirnseite des Sammelkanals hin abnehmen. D.h., das zwei benachbarte Eintrittsöffnungen, die näher an einer der Stirnseiten des Sammelkanals gelegen sind, vorzugsweise einen geringeren Abstand zueinander entlang der Erstreckungsrichtung des Sammelkanals aufweisen als zwei benachbarte Eintrittsöffnungen, die eher zur Mitte des Sammelkanals hin (bezogen auf die Erstreckungsrichtung) angeordnet sind.It is preferably provided that the distances of adjacent inlet openings, in particular the distances of the top or on the side walls provided inlet openings, to remove the respective end face of the collecting channel. That is, the two adjacent entrance openings, which are located closer to one of the end faces of the collecting channel, preferably have a smaller distance from each other along the direction of extension of the collecting channel than two adjacent inlet openings, which are arranged towards the center of the collecting channel (with respect to the extension direction).

Bevorzugt sind die Anzahl, Verteilung, Größe und/oder Form der Eintrittsöffnungen so gewählt, dass das Geschwindigkeitsfeld der flüssigen Phase des ersten Mediums im Sammelkanal vorzugsweise gleichförmig ist. Insbesondere soll damit auch die Strömung im angrenzenden Mantelraum möglichst wenig negativ beeinflusst werden.Preferably, the number, distribution, size and / or shape of the inlet openings are selected so that the velocity field of the liquid phase of the first medium in the collecting channel is preferably uniform. In particular, so that the flow in the adjacent shell space should be influenced as little negative.

Weiterhin ist gemäß einem Aspekt der Erfindung die Querschnittsfläche (und ggf. Kontur) des Sammelkanals in einer Ebene senkrecht zur Erstreckungsrichtung des Sammelkanals derart gewählt, dass sich im Sammelkanal ein vorzugsweise gleichförmiges Geschwindigkeitsfeld der flüssigen Phase des ersten Mediums einstellt. Insbesondere soll damit auch die Strömung im angrenzenden Mantelraum möglichst wenig negativ beeinflusst werden.Furthermore, according to one aspect of the invention, the cross-sectional area (and optionally contour) of the collecting channel in a plane perpendicular to the extension direction of the collecting channel is selected such that sets a preferably uniform velocity field of the liquid phase of the first medium in the collecting channel. In particular, so that the flow in the adjacent shell space should be influenced as little negative.

Bevorzugt wird dies durch eine Erweiterung / Vergrößerung des Querschnitts des Sammelkanals hin zum Austrittsstutzen und/oder durch eine definierte Anordnung, Form und Größe der Eintrittsöffnungen am Sammelkanal unterstützt.This is preferably supported by an enlargement / enlargement of the cross section of the collecting channel towards the outlet nozzle and / or by a defined arrangement, shape and size of the inlet openings on the collecting channel.

Bevorzugt mündet der Austrittsstutzen mittig in den Sammelkanal bzw. Innenraum des Sammelkanals.Preferably, the outlet nozzle opens centrally into the collecting channel or interior of the collecting channel.

Weiterhin kann der Wärmeübertrager eine Mehrzahl an im Mantelraum angeordneten, erfindungsgemäßen Sammelkanälen aufweisen, die mit dem Austrittsstutzen oder jeweils mit einem oder mehreren Austrittsstutzen in Strömungsverbindung stehen.Furthermore, the heat exchanger may have a plurality of arranged in the shell space, inventive collecting channels, which are in flow communication with the outlet nozzle or in each case with one or more outlet nozzle.

Die Positionen, Dimensionen und Ausrichtungen dieser Sammelkanäle werden dabei vorzugsweise so gewählt, dass das Geschwindigkeitsfeld der flüssigen Phase des ersten Mediums in dem jeweiligen Sammelkanal vorzugsweise gleichförmig ist.The positions, dimensions and orientations of these collection channels are preferably chosen so that the velocity field of the liquid phase of the first medium in the respective collection channel is preferably uniform.

Weiterhin kann der Mantel natürlich auch eine Mehrzahl an Austrittsstutzen aufweisen, die mit einem wie vorstehend beschriebenen Sammelkanal oder gegebenenfalls mit mehreren Sammelkanälen der vorstehend beschriebenen Art verbunden sein können.Furthermore, the sheath can of course also have a plurality of outlet stubs, which may be connected to a collecting channel as described above or possibly to a plurality of collecting channels of the type described above.

Schließlich kann gemäß einer weiteren Ausführungsform der Erfindung vorgesehen sein, dass die Eintrittsöffnungen, insbesondere die Eintrittsöffnungen an den Seitenwänden des Sammelkanals einen definierten Abstand entlang der Vertikalen zur Innenseite des Mantels an der Unterseite des Mantels aufweisen. Dies ermöglicht die Begrenzung des Flüssigkeitsabzuges, z.B. bei Anlagenstillstand oder Unterbrechung des Eintrittsstromes (d.h., es bleibt eine definierte Restmenge im Mantelraum).Finally, it can be provided according to a further embodiment of the invention that the inlet openings, in particular the inlet openings on the side walls of the collecting channel have a defined distance along the vertical to the inside of the jacket on the underside of the jacket. This allows the limitation of the liquid withdrawal, e.g. in the event of a plant standstill or interruption of the inlet flow (i.e., a defined residual quantity remains in the shell space).

Weiterhin kann eine Begrenzung des Flüssigkeitsabzugs auch durch eine entsprechende Anordnung des Sammelkanals im Mantelraum erreicht werden, etwa indem der Sammelkanal auf einer definierten Höhe über der Unterseite des Mantels angeordnet wird.Furthermore, a limitation of the liquid withdrawal can also be achieved by a corresponding arrangement of the collecting channel in the jacket space, for example by the collecting channel is arranged at a defined height above the underside of the shell.

Weiterhin können einzelne oder alle Eintrittsöffnungen mit Wirbelbrechern versehen werden, die die Entstehung oder Intensivierung von Wirbeln verhindern. Grundsätzlich kann jede Eintrittsöffnung individuell ausgestaltet werden.Furthermore, individual or all inlet openings can be provided with vortex breakers, which prevent the formation or intensification of vertebrae. In principle, each inlet opening can be configured individually.

Durch die erfindungsgemäße Lösung kann insbesondere das Geschwindigkeitsfeld im Core-In-Shell-Wärmeübertrager besser kontrolliert werden. Dadurch wird der Vorlageraum bzw. Mantelraum in seiner Gesamtgröße besser ausgenutzt. In Abhängigkeit von den speziellen Betriebsanforderungen sind insbesondere geringere Mantelgrößen erzielbar.In particular, the velocity field in the core-in-shell heat exchanger can be better controlled by the solution according to the invention. As a result, the Vorlageraum or shell space is better utilized in its overall size. Depending on the specific operating requirements, in particular smaller jacket sizes can be achieved.

Weiterhin kann durch eine geeignete Lage des Sammelkanals (z.B. unterhalb des Plattenwärmeübertragers) und die Ausgestaltung der Eintrittsöffnungen verhindert werden, dass Wirbel entstehen oder Gas mit der Flüssigkeitsströmung mitgerissen wird.Furthermore, by means of a suitable position of the collecting channel (for example below the plate heat exchanger) and the design of the inlet openings, swirls can be prevented or gas can be entrained with the liquid flow.

Weiterhin sind relativ hohe (lokale) Strömungsgeschwindigkeiten durch die erfindungsgemäße Ausgestaltung des Sammelkanals vermeidbar.Furthermore, relatively high (local) flow velocities can be avoided by the inventive design of the collecting channel.

Durch eine geeignete Lage der Eintrittsöffnungen kann des Weiteren die abzuziehende Flüssigkeit gezielt aus Bereichen des Vorlage- bzw. Mantelraumes entnommen werden, in denen wenig Flüssigkeit zum Zwecke der Teilverdampfung im Plattenwärmeübertrager in vertikaler Richtung nach unten strömt. Damit wird insbesondere verhindert, dass sich die Strömungen gegenseitig negativ beeinflussen.By a suitable position of the inlet openings, the deducted Liquid can be selectively removed from areas of the original or shell space in which little liquid flows for the purpose of partial evaporation in the plate heat exchanger in the vertical direction downwards. This prevents in particular that the currents influence each other negatively.

Durch eine kleinere realisierbare Mantelgröße verringern sich mit Vorteil die Gesamtkosten des erfindungsgemäßen Wärmeübertragers bezüglich Material, Fertigung und Unterhaltung. Auch der Isolierungsaufwand ist geringer.By a smaller shell size feasible reduce the overall cost of the heat exchanger according to the invention with respect to material, manufacturing and entertainment with advantage. The insulation effort is lower.

Weiterhin ist der Sammelkanal ist ein nicht Druck tragendes Bauteil und muss daher nur geringe Anforderungen an Wandstärke, Werkstoff und Fertigung genügen. Außerdem kann seine Querschnittsform ohne Einfluss auf seine Festigkeit frei gestaltet werden.
Ferner sind die Positionen der Flüssigkeitsstutzen des Core-In-Shell-Wärmeübertragers variabler. Beispielsweise kann der Austrittstutzen an der Unterseite des Mantels mittig oder am Rand angeordnet werden. Dadurch wird die Konstruktion der umgebenden Bauteile weniger eingeschränkt.
Furthermore, the collecting duct is a non-pressure-bearing component and must therefore meet only low requirements for wall thickness, material and manufacturing. In addition, its cross-sectional shape can be freely designed without affecting its strength.
Furthermore, the positions of the liquid nozzles of the core-in-shell heat exchanger are more variable. For example, the outlet nozzle can be arranged on the underside of the jacket in the middle or at the edge. As a result, the construction of the surrounding components is less restricted.

Weitere Einzelheiten und Vorteile der Erfindung sollen durch die nachfolgenden Figurenbeschreibungen eines Ausführungsbeispiels anhand der Figuren erläutert werden. Vorteilhafte Ausführungsformen der Erfindung sind außerdem in den Unteransprüchen angegeben.Further details and advantages of the invention will be explained by the following description of an exemplary embodiment with reference to the figures. Advantageous embodiments of the invention are also specified in the subclaims.

Es zeigen:

Fig. 1
eine Schnittansicht eines erfindungsgemäßen Wärmeübertragers,
Fig. 2
eine weitere Schnittansicht des Wärmeübertragers entlang der Linie II-II der Figur 1; und
Fig. 3
eine Draufsicht auf einen erfindungsgemäßen Sammelkanal des Wärmeübertragers gemäß Figuren 1 und 2.
Show it:
Fig. 1
a sectional view of a heat exchanger according to the invention,
Fig. 2
a further sectional view of the heat exchanger along the line II-II of FIG. 1 ; and
Fig. 3
a plan view of a collecting channel according to the invention of the heat exchanger according to Figures 1 and 2 ,

Figur 1 zeigt im Zusammenhang mit den Figuren 2 und 3 einen Wärmeübertrager 1, der einen querliegenden, (kreis)zylindrischen Mantel 2 aufweist, der einen Mantelraum 3 des Wärmeübertragers 1 begrenzt. Der Mantel 2 weist dabei eine umlaufende, zylindrische Wandung 14 auf, die stirnseitig durch zwei einander gegenüberliegende Wände 15 begrenzt wird. FIG. 1 shows in connection with the Figures 2 and 3 a heat exchanger 1, which has a transverse, (circular) cylindrical shell 2, which has a jacket space 3 of the heat exchanger 1 limited. The jacket 2 in this case has a circumferential, cylindrical wall 14, which is delimited by two opposing walls 15 frontally.

In dem vom Mantel 2 umschlossenen Mantelraum 3 ist ein Plattenwärmeübertrager 4 angeordnet, der mehrere parallele Wärmeübertragungspassagen aufweist.In the shell space 3 enclosed by the jacket 2, a plate heat exchanger 4 is arranged, which has a plurality of parallel heat transfer passages.

Der Plattenwärmeübertrager 4 weist dabei eine Mehrzahl an z.B. gewellten bzw. gefalteten Blechen auf (sogenannte Fins), die jeweils zwischen zwei ebenen Trennplatten bzw. -blechen des Plattenwärmeübertragers 4 angeordnet sind. Auf diese Weise werden zwischen je zwei Trennplatten (bzw. eine Trennplatte und einer Deckplatte, siehe unten) eine Vielzahl an parallelen Kanälen bzw. eine Wärmeübertragungspassage gebildet, durch die das jeweilige Medium F1, F2 strömen kann. Die beiden äußersten Lagen werden durch Deckplatten des Plattenwärmeübertragers 4 gebildet; zu den Seiten hin sind zwischen je zwei benachbarten Trennplatten bzw. Trenn- und Deckplatten vorgesehen.The plate heat exchanger 4 has a plurality of e.g. corrugated or folded sheets (so-called fins), which are each arranged between two flat partition plates or plates of the plate heat exchanger 4. In this way, between each two partition plates (or a partition plate and a cover plate, see below) formed a plurality of parallel channels or a heat transfer passage through which the respective medium F1, F2 can flow. The two outermost layers are formed by cover plates of the plate heat exchanger 4; towards the sides are provided between each two adjacent partition plates or separating and cover plates.

Der Mantelraum 3 wird während eines Betriebes des Wärmeübertragers 1 über einen an einer Oberseite 8 des Mantels 2 vorgesehenen Eintrittsstutzen 60 mit einem ersten Medium F1 befüllt. Dieser Eintrittsstrom in den Wärmeübertrager 1 ist
üblicherweise zweiphasig, kann aber auch nur flüssig sein. Die flüssige Phase L1 des ersten Mediums F1 bildet dann ein den Plattenwärmeübertrager 4 umgebendes Bad aus, wobei sich die gasförmige Phase G1 des ersten Mediums F1 oberhalb der flüssigen Phase L1 in einem oberen Bereich 34 des Mantelraumes 3 ansammelt.
The shell space 3 is filled during operation of the heat exchanger 1 via a provided on an upper side 8 of the shell 2 inlet nozzle 60 with a first medium F1. This inlet flow into the heat exchanger 1 is
usually two-phase, but can only be liquid. The liquid phase L1 of the first medium F1 then forms a bath surrounding the plate heat exchanger 4, the gaseous phase G1 of the first medium F1 accumulating above the liquid phase L1 in an upper region 34 of the jacket space 3.

Die flüssige Phase L1 des ersten Mediums F1 kann in zugeordneten ersten Wärmeübertragungspassagen des Plattenwärmeübertragers 4 aufsteigen und wird dabei durch ein zu kühlendes zweites Medium F2, das z.B. im Kreuzstrom zum ersten Medium F1 in zugeordneten zweiten Wärmeübertragungspassagen des Plattenwärmeübertragers 4 geführt wird, durch indirekte Wärmeübertragung teilweise verdampft. Die hierbei entstehende gasförmige Phase G1 des ersten Mediums F1 kann an einem oberen Ende des Plattenwärmeübertragers 4 austreten und steigt im Mantelraum 3 des Wärmeübertragers 1 auf, von wo sie über entsprechende Austrittstutzen 40 an der Oberseite 8 des Mantels 2 abgezogen werden kann. Weiterhin zirkuliert ein Teil der flüssigen Phase L1 im Mantelraum 3, wobei jener Teil im Plattenwärmeübertrager 4 in den ersten Wärmeübertragungspassagen von unten nach oben gefördert wird und dann außerhalb des Plattenwärmeübertragers 4 im Mantelraum 3 wieder nach unten strömt.The liquid phase L1 of the first medium F1 can ascend in associated first heat transfer passages of the plate heat exchanger 4 and is partly through indirect heat transfer by a second medium to be cooled F2, which is performed in cross flow to the first medium F1 in associated second heat transfer passages of the plate heat exchanger evaporated. The resulting gaseous phase G1 of the first medium F1 can emerge at an upper end of the plate heat exchanger 4 and rises in the shell space 3 of the heat exchanger 1, from where it can be withdrawn via corresponding outlet nozzle 40 on the top 8 of the shell 2. Furthermore, a part of the liquid phase L1 circulates in the shell space 3, wherein that part is conveyed in the plate heat exchanger 4 in the first heat transfer passages from bottom to top and then flows outside the plate heat exchanger 4 in the shell space 3 back down.

Das zweite Medium F2 wird über einen geeigneten Eintrittsstutzen O in den Plattenwärmeübertrager 4 geleitet und nach einem Durchlaufen der zugeordneten zweiten Wärmeübertragungspassagen über einen Austrittstutzen O' gekühlt bzw. verflüssigt aus dem Plattenwärmeübertrager 4 abgezogen.The second medium F2 is passed through a suitable inlet port O in the plate heat exchanger 4 and after passing through the associated second heat transfer passages via an outlet port O 'cooled or liquefied withdrawn from the plate heat exchanger 4.

An der Unterseite 16 des Wärmeübertragers 1 ist an einer dem Mantelraum 3 zugewandten Innenseite 2a des Mantels 2 ein kastenförmiger Sammelkanal 5 angeordnet, der sich entlang einer Erstreckungsrichtung 7 erstreckt. Der Sammelkanal 5 ist dabei insbesondere längserstreckt ausgebildet und weist entsprechend entlang der Erstreckungsrichtung 7 eine größere Ausdehnung auf, als quer zu jener Erstreckungsrichtung 7.On the underside 16 of the heat exchanger 1, a box-shaped collecting channel 5 is arranged on an inner side 2 a of the jacket 2 facing the jacket space 3, which extends along an extension direction 7. In this case, the collecting channel 5 is designed, in particular, longitudinally extended and accordingly has a greater extent along the direction of extent 7 than transversely to that direction of extent 7.

Der Sammelkanal 5 weist des Weiteren eine Wandung W auf, die einen Innenraum I des Sammelkanals 5 begrenzt, durch den hindurch die flüssige Phase L1 des ersten Mediums F1 aus dem Mantelraum 3 abgezogen wird. Die Wandung W weist im Einzelnen eine Oberseite 9 auf sowie zwei davon abgehende Seitenwände 11, die sich entlang der Erstreckungsrichtung 7 erstrecken und über einen der Oberseite 9 gegenüberliegenden Boden (Unterseite) 10 des Sammelkanals 5 miteinander verbunden sind, der durch den Mantel 2 gebildet wird. Des Weiteren weist der Sammelkanal 5 bzw. dessen Wandung W zwei Stirnseiten 11a, 11b auf, die einander entlang der Erstreckungsrichtung 7 gegenüberliegen.Furthermore, the collecting channel 5 has a wall W which delimits an interior I of the collecting channel 5, through which the liquid phase L1 of the first medium F1 is withdrawn from the jacket space 3. The wall W has in detail an upper side 9 and two side walls 11 extending therefrom, which extend along the extension direction 7 and are connected to one another via a bottom 9 (bottom side) 10 of the collecting channel 5 which is formed by the jacket 2 , Furthermore, the collecting channel 5 or its wall W has two end faces 11a, 11b, which lie opposite one another along the extension direction 7.

Zum insbesondere kontinuierlichen Abziehen der flüssigen Phase L1 des ersten Mediums F1 aus dem Mantelraum 3 beim Betrieb des Wärmeübertragers 1 sind nun an den Seitenwänden 11 vorzugsweise kreisförmige Eintrittsöffnungen 13 und/oder an der Oberseite 9 des Sammelkanals 5 vorzugsweise schlitzförmige Eintrittsöffnungen 12 vorgesehen, durch die hindurch die flüssige Phase L1 in den Sammelkanal 5 eintreten kann. Die Eintrittsöffnungen 12, 13 sind dabei entlang der Erstreckungsrichtung 7 nebeneinander angeordnet, wobei der Abstand zwischen benachbarten Eintrittsöffnungen 12, 13 entlang der Erstreckungsrichtung 7 ausgehend vom Austrittsstutzen 6 zu den beiden Stirnseiten 11a, 11b des Sammelkanals 5 hin jeweils bevorzugt abnimmt. Die Längsachsen der schlitzförmigen Eintrittsöffnungen 12 verlaufen dabei jeweils quer zur Erstreckungsrichtung 7 des Sammelkanals 5.For particular continuous removal of the liquid phase L1 of the first medium F1 from the shell space 3 during operation of the heat exchanger 1 are now preferably on the side walls 11 circular inlet openings 13 and / or on the top 9 of the collecting channel 5 slit-shaped inlet openings 12 are provided through which the liquid phase L1 can enter the collecting channel 5. The inlet openings 12, 13 are arranged side by side along the extension direction 7, wherein the distance between adjacent inlet openings 12, 13 along the extension direction 7, starting from the outlet nozzle 6 to the two end faces 11a, 11b of the collecting channel 5 respectively preferably decreases. The longitudinal axes of the slot-shaped inlet openings 12 in each case extend transversely to the extension direction 7 of the collecting channel 5.

Der Sammelkanal 5 ist ferner mit einem Austrittstutzen 6 des Mantels 2 verbunden, der an der Unterseite 10 des Sammelkanals 5 in den Sammelkanal 5 einmündet, so dass die über die Eintrittsöffnungen 12, 13 in den Innenraum I des Sammelkanals 5 gelangte flüssige Phase L1 des ersten Mediums F1 aus dem Sammelkanal 5 über den Austrittstutzen 6 abgezogen werden kann.The collecting channel 5 is further connected to an outlet nozzle 6 of the jacket 2, which opens at the bottom 10 of the collecting channel 5 into the collecting channel 5, so that the liquid via the inlet openings 12, 13 into the interior I of the collecting channel 5 liquid phase L1 of the first Medium F1 can be withdrawn from the collection channel 5 via the outlet nozzle 6.

Der Austrittstutzen 6 ist entlang der Erstreckungsrichtung 7 vorzugsweise mittig am Sammelkanal 5 angeordnet, wobei die Oberseite 9 des Sammelkanals 5 bevorzugt zwei zum Austrittsstutzen 6 hin ansteigende Abschnitte 9a, 9b aufweist, die sich vorzugsweise oberhalb des Austrittsstutzens 6 treffen.The outlet nozzle 6 is preferably arranged centrally along the direction of extent 7 on the collecting channel 5, the upper side 9 of the collecting channel 5 preferably having two outlet sections 6 towards the rising portions 9a, 9b, which preferably meet above the outlet nozzle 6.

Der Querschnitt des Sammelkanals 5 vergrößert (verbreitert) sich vorzugsweise jeweils von den Stirnseiten 11a, 11b des Sammelkanales 5 ausgehend in Richtung auf den Austrittsstutzen 6, um im Sammelkanal 5 ein möglichst homogenes Geschwindigkeitsfeld der flüssigen Phase L1 des ersten Mediums F1 zu erhalten. Insbesondere soll damit auch die Strömung der flüssigen Phase L1 im angrenzenden Mantelraum 3 möglichst wenig negativ beeinflusst werden. Bezugszeichenliste 1 Wärmeübertrager 2 Mantel 2a Innenseite 3 Mantelraum 4 Plattenwärmeübertrager 5 Sammelkanal 6 Austrittsstutzen 7 Erstreckungsrichtung 8 Oberseite des Mantels 9 Oberseite des Sammelkanals 9a, 9b Abschnitte Oberseite 10 Unterseite des Sammelkanals 11 Seitenwände des Sammelkanals 11a, 11b Stirnseiten 12 Schlitzförmige Eintrittsöffnungen 13 kreisförmige Eintrittsöffnungen 14 Umlaufende Wandung des Mantels 15 Stirnseitige Wände des Mantels 16 Unterseite des Mantels 33 Unterer Bereich des Mantelraumes 34 Oberer Bereich des Mantelraumes 40 Austrittstutzen für gasförmige Phase 60 Eintrittsstutzen F1 Erstes Medium L1 Flüssige Phase des ersten Mediums G1 Gasförmige Phase des ersten Mediums F2 Zweites Medium I Innenraum des Sammelkanals O Eintrittsstutzen für zweites Medium O' Austrittsstutzen für zweites Medium V Geschwindigkeitsfeld der flüssige Phase L1 W Umlaufende Wandung des Sammelkanals The cross-section of the collecting channel 5 preferably widens (widens) in each case from the end faces 11a, 11b of the collecting channel 5, starting in the direction of the outlet nozzle 6 in order to obtain in the collecting channel 5 as homogeneous as possible a velocity field of the liquid phase L1 of the first medium F1. In particular, the flow of the liquid phase L1 in the adjacent shell space 3 should thus be influenced as negatively as possible. <B> LIST OF REFERENCES </ b> 1 Heat exchanger 2 coat 2a inside 3 shell space 4 Plate heat exchangers 5 collecting duct 6 outlet connection 7 extension direction 8th Top of the coat 9 Top of the collection channel 9a, 9b Sections topside 10 Bottom of the collection channel 11 Side walls of the collecting channel 11a, 11b front sides 12 Slot-shaped inlet openings 13 circular inlet openings 14 Surrounding wall of the coat 15 Front walls of the jacket 16 Bottom of the coat 33 Lower area of the mantle area 34 Upper area of the mantle area 40 Outlet nozzle for gaseous phase 60 inlet connection F1 First medium L1 Liquid phase of the first medium G1 Gaseous phase of the first medium F2 Second medium I Interior of the collecting channel O Inlet for second medium O' Outlet nozzle for second medium V Velocity field of the liquid phase L1 W Circumferential wall of the collecting channel

Claims (15)

  1. Heat exchanger (1) for the indirect exchange of heat between a first medium (F1) and a second medium (F2), with:
    - a shell (2) which has a shell space (3) for receiving a liquid phase (L1) of the first medium (F1), and
    - at least one plate heat exchanger (4) which has first heat exchange passages for receiving the first medium (F1) and second heat exchange passages for receiving the second medium (F2), such that heat can be exchanged indirectly between the two media (F1, F2), wherein the plate heat exchanger (4) is arranged in the shell space (3) such that it can be surrounded by a liquid phase (L1) of the first medium (F1) in the shell space (3),
    characterized in that,
    for removing the liquid phase (L1) of the first medium (F1) from the shell space (3), a collecting channel (5) arranged in the shell space (3) is provided, wherein the collecting channel (5) has a wall (W) that defines an interior space (I) of the collecting channel (5) and runs, extending longitudinally in the shell space (3), along a horizontal direction of extent (7).
  2. Heat exchanger according to Claim 1, characterized in that the collecting channel (5) is arranged in a lower region (33) of the shell space (3).
  3. Heat exchanger according to Claim 1 or 2, characterized in that the collecting channel (5) is arranged below the at least one plate heat exchanger (4) or next to the at least one plate heat exchanger (4), in particular between the shell (2) and the at least one plate heat exchanger (4).
  4. Heat exchanger according to one of the preceding claims, characterized in that the shell space (3), in particular an upper region (34) of the shell space (3), is designed to collect a gaseous phase (G1) of the first medium (F1), which is produced in particular during the indirect exchange of heat between the two media (F1, F2).
  5. Heat exchanger according to one of the preceding claims, characterized in that the at least one plate heat exchanger (4) is designed such that, during operation of the heat exchanger (1), the first medium (F1) rises in the at least one plate heat exchanger (4), wherein in particular the at least one plate heat exchanger (4) is designed to convey the second medium (F2) in counterflow or crossflow to the first medium (F1) in the at least one plate heat exchanger (4).
  6. Heat exchanger according to one of the preceding claims, characterized in that a multiplicity of plate heat exchangers (4) is arranged in the shell space (3).
  7. Heat exchanger according to one of the preceding claims, characterized in that the collecting channel (5), in particular the interior space (I) of the collecting channel (5), is connected to an outlet connector (6) provided on the shell (2) such that the collecting channel (5) can discharge the liquid phase (L1) of the first medium (F1) from the shell space (3) via the outlet connector (6).
  8. Heat exchanger according to one of the preceding claims, characterized in that the wall (W) of the collecting channel (5) runs along a lower side (16) of the shell (2).
  9. Heat exchanger according to Claims 7 and 8, characterized in that the outlet connector (6) opens centrally, with respect to the direction of extent (7), into the interior space (I) of the collecting channel (5).
  10. Heat exchanger according to Claim 7 and according to Claim 8 or 9, characterized in that the interior space (I) of the collecting channel (5) has a cross section, perpendicular to the direction of extent (7), which increases toward the outlet connector (6), such that in particular a velocity field (v) of the liquid phase (L1) of the first medium (F1) in the collecting channel (5) is as uniform as possible and in particular also the flow of the liquid phase (L1) of the first medium (F1) in the adjoining shell space (3) is negatively influenced as little as possible.
  11. Heat exchanger according to one of Claims 1 to 10, characterized in that the wall (W) of the collecting channel (5) has an upper side (9) and an opposite lower side (10), wherein the upper side (9) and the lower side (10) are connected to one another via mutually opposite side walls (11) of the wall (W) of the collecting channel (5).
  12. Heat exchanger according to one of Claims 1 to 11, characterized in that a region of the wall (W) of the collecting channel (5), in particular a lower side (10) of the wall (W), is formed by the shell (2).
  13. Heat exchanger according to one of the preceding claims, characterized in that the collecting channel (5) has at least one inlet opening, in particular a plurality of inlet openings (12, 13), which is or are designed to allow the liquid phase (L1) of the first medium (F1) to flow into the collecting channel (5), wherein in particular the inlet opening or the plurality of inlet openings (12, 13) is or are created in the wall (W), in particular in the upper side (9) and/or in the side walls (11) of the collecting channel (5), and wherein in particular the number, distribution, size and/or shape of the inlet openings (12, 13) on the collecting channel (5) is or are chosen such that the velocity field (v) of the liquid phase (L1) of the first medium (F1) in the collecting channel (5) is as uniform as possible and in particular also the flow of the liquid phase (L1) of the first medium (F1) in the adjoining shell space (3) is negatively influenced as little as possible.
  14. Heat exchanger according to one of the preceding claims, characterized in that the shell (2) has a cylindrical wall (14), running circumferentially transverse to the direction of extent (7), which connects two end-face walls (15) of the shell (2) to one another.
  15. Heat exchanger according to Claims 7 and 14, characterized in that the outlet connector (6) is arranged on the circumferential wall (14) of the shell (2), in particular in a lower region (16) of the wall (14) of the shell (2).
EP14806185.6A 2013-12-05 2014-12-02 Heat exchanger with collection channelfor the extraction of a liquid phase Active EP3077750B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14806185.6A EP3077750B1 (en) 2013-12-05 2014-12-02 Heat exchanger with collection channelfor the extraction of a liquid phase

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13005656 2013-12-05
EP14806185.6A EP3077750B1 (en) 2013-12-05 2014-12-02 Heat exchanger with collection channelfor the extraction of a liquid phase
PCT/EP2014/003208 WO2015082061A1 (en) 2013-12-05 2014-12-02 Heat exchanger with collecting channel for discharging a liquid phase

Publications (2)

Publication Number Publication Date
EP3077750A1 EP3077750A1 (en) 2016-10-12
EP3077750B1 true EP3077750B1 (en) 2018-02-21

Family

ID=49766838

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14806185.6A Active EP3077750B1 (en) 2013-12-05 2014-12-02 Heat exchanger with collection channelfor the extraction of a liquid phase

Country Status (12)

Country Link
US (1) US10443947B2 (en)
EP (1) EP3077750B1 (en)
JP (1) JP6509223B2 (en)
KR (1) KR102232165B1 (en)
CN (1) CN105980803A (en)
AU (1) AU2014359786B2 (en)
CA (1) CA2931254C (en)
ES (1) ES2666137T3 (en)
MX (1) MX2016006814A (en)
RU (1) RU2669991C1 (en)
TR (1) TR201807001T4 (en)
WO (1) WO2015082061A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101969581B1 (en) 2016-11-17 2019-08-13 주식회사 엘지화학 Recovery appartus of olefin-based monomer
EP4058714B1 (en) 2019-11-15 2024-01-03 Linde GmbH Transition component with insulation

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU476436A1 (en) * 1973-04-02 1975-07-05 Предприятие П/Я А-3605 Heat exchanger for air separation unit
US4415024A (en) * 1980-11-05 1983-11-15 Joy Manufacturing Company Heat exchanger assembly
DE3424916A1 (en) * 1984-07-06 1986-01-16 Bbc York Kaelte Klima Refrigerating installation
JPS60221603A (en) * 1985-03-27 1985-11-06 株式会社日立製作所 Cold-heat power generating facility
BG44654A1 (en) * 1985-11-10 1989-01-16 Mikhail V Mikhajjlov
JP3360343B2 (en) * 1993-03-23 2002-12-24 ダイキン工業株式会社 Liquid-filled evaporator
US5651270A (en) 1996-07-17 1997-07-29 Phillips Petroleum Company Core-in-shell heat exchangers for multistage compressors
CN1116566C (en) * 1996-07-19 2003-07-30 美国标准公司 Evaporator refrigerant distributor
FR2797942B1 (en) 1999-08-24 2001-11-09 Air Liquide VAPORIZER-CONDENSER AND CORRESPONDING AIR DISTILLATION SYSTEM
US6293112B1 (en) * 1999-12-17 2001-09-25 American Standard International Inc. Falling film evaporator for a vapor compression refrigeration chiller
FR2807826B1 (en) 2000-04-13 2002-06-14 Air Liquide BATH TYPE CONDENSER VAPORIZER
JP4192413B2 (en) * 2000-09-06 2008-12-10 株式会社Ihi Ice cooler supercooler
DK1466133T3 (en) * 2002-01-17 2007-05-14 Johnson Controls Denmark Aps Submersible evaporator with integrated heat exchanger (integrated)
SE525354C2 (en) * 2003-06-18 2005-02-08 Alfa Laval Corp Ab Heat exchanger device and plate package
US7266976B2 (en) * 2004-10-25 2007-09-11 Conocophillips Company Vertical heat exchanger configuration for LNG facility
CN201209980Y (en) * 2008-05-13 2009-03-18 上海环球制冷设备有限公司 Energy-conserving type full liquid type evaporator
CN101424464B (en) * 2008-12-11 2010-12-08 杭州杭氧股份有限公司 Horizontal reversed flow condensation evaporator
US20100319877A1 (en) * 2009-06-23 2010-12-23 Conocophillips Company Removable Flow Diversion Baffles for Liquefied Natural Gas Heat Exchangers
CN201443997U (en) * 2009-06-23 2010-04-28 山东鲁润热能科技有限公司 Heater for expansion heating network
JP5690532B2 (en) * 2010-09-10 2015-03-25 株式会社前川製作所 Shell and plate heat exchanger
DE102011013340A1 (en) * 2010-12-30 2012-07-05 Linde Aktiengesellschaft Distributor and heat exchanger device
US20140034275A1 (en) * 2011-04-21 2014-02-06 Carrier Corporation Condenser/Accumulator and Systems and Operation Methods

Also Published As

Publication number Publication date
MX2016006814A (en) 2016-09-07
ES2666137T3 (en) 2018-05-03
KR20160094422A (en) 2016-08-09
EP3077750A1 (en) 2016-10-12
JP6509223B2 (en) 2019-05-08
JP2016539308A (en) 2016-12-15
AU2014359786A1 (en) 2016-06-09
CN105980803A (en) 2016-09-28
US20160290731A1 (en) 2016-10-06
TR201807001T4 (en) 2018-06-21
WO2015082061A1 (en) 2015-06-11
AU2014359786B2 (en) 2019-02-28
RU2669991C1 (en) 2018-10-17
US10443947B2 (en) 2019-10-15
CA2931254A1 (en) 2015-06-11
CA2931254C (en) 2022-01-04
KR102232165B1 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
EP2859295B1 (en) Heat exchanger
DE60214968T2 (en) HEAT TRANSFER PLATE; PLATE PACK AND PLATE HEAT EXCHANGER
DE19519633C2 (en) Intercooler
DE2248273A1 (en) HEAT EXCHANGER AND METHOD OF USING IT
DE2952736C2 (en)
EP1306638A2 (en) Plate-like heat exchanger without casing
DE3606253A1 (en) Heat exchanger
DE60110328T2 (en) Heat exchanger with multiple heat exchange blocks with Flüssigkeitsendkammer with uniform distribution and evaporator-condenser with the same
EP3077750B1 (en) Heat exchanger with collection channelfor the extraction of a liquid phase
DE3419734A1 (en) AIR COOLED SURFACE CAPACITOR
DE102019113603A1 (en) COOLING PLATE FOR A BATTERY FOR A MOTOR VEHICLE AND BATTERY FOR A MOTOR VEHICLE WITH A COOLING PLATE
EP1477761B1 (en) Plate heat exchanger
EP1890099A1 (en) Dephlegmator
EP3143352B1 (en) Heat exchanger with channels for damping movements of liquids
EP3159648B1 (en) Plate heat exchanger capacitor evaporator and method for cryogenic decomposition of air
DE10049890B4 (en) Stacked-plate heat exchanger
EP3237825B1 (en) Heat exchanger, in particular block-in-shell heater with a separating unit for separating a gaseous phase from a liquid phase and for distributing the liquid phase
DE19707648A1 (en) Parallel flow heat exchanger with stack structure of perforated plates e.g. in microstructures
DE3011011A1 (en) Plate heat exchange for air separation - having channels through plate for one medium and rectangular grooves on surface which form channels when placed with other plates
EP1890100B1 (en) Dephlegmator
DE19639114B4 (en) Heat exchanger with plate stack construction
DE102018002450A1 (en) Liquid distribution device and mass transfer column
DE3407104A1 (en) Desublimator
EP1788339B1 (en) Plate heat exchanger
WO2016102046A1 (en) Conducting device for controlling the flow of liquid when feeding two-phase flows in block-in-shell heat exchangers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170830

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 972221

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014007368

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2666137

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180503

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180221

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180521

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180521

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180522

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014007368

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180221

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014007368

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180621

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 972221

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230119

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231123

Year of fee payment: 10

Ref country code: RO

Payment date: 20231122

Year of fee payment: 10

Ref country code: FR

Payment date: 20231219

Year of fee payment: 10

Ref country code: DE

Payment date: 20231214

Year of fee payment: 10

Ref country code: CZ

Payment date: 20231120

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 10