EP3074468B1 - Process for metal coating of inorganic particles by means of electroless metal deposition - Google Patents

Process for metal coating of inorganic particles by means of electroless metal deposition Download PDF

Info

Publication number
EP3074468B1
EP3074468B1 EP14803142.0A EP14803142A EP3074468B1 EP 3074468 B1 EP3074468 B1 EP 3074468B1 EP 14803142 A EP14803142 A EP 14803142A EP 3074468 B1 EP3074468 B1 EP 3074468B1
Authority
EP
European Patent Office
Prior art keywords
metal
particles
inorganic particles
functionalization
functionalized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14803142.0A
Other languages
German (de)
French (fr)
Other versions
EP3074468A1 (en
Inventor
Giovanni MONDIN
Florian WISSER
Susanne DÖRFLER
Stefan KASKEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Dresden
Original Assignee
Technische Universitaet Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Dresden filed Critical Technische Universitaet Dresden
Publication of EP3074468A1 publication Critical patent/EP3074468A1/en
Application granted granted Critical
Publication of EP3074468B1 publication Critical patent/EP3074468B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3045Treatment with inorganic compounds
    • C09C1/3054Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3063Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the invention describes metal-coated inorganic particles, and a method for their production by means of electroless metal deposition.
  • the metal-coated inorganic particles can be introduced into metal matrices through their improved surface properties.
  • US 2002/0132045 A1 and US 2003/0164064 A1 disclose methods of making a metal nanoshell on specially functionalized SiO 2 nanoparticles.
  • US 2003/0118657 discloses the use of such functionalized nanoparticles to reduce or prevent the rebuilding of blood vessels (vascularization).
  • EP 1 936 378 A1 discloses multilayer nanoparticles having a magnetic core surrounding a SiO 2 layer, which in turn is surrounded by a gold layer and possibly additional metal layers.
  • biosensor molecules such as aptamers
  • the production of the metal layer takes place in the documents in each case, in which the silicate surface is first functionalized with an aminosilane linker and then gold-colloid particles are bound. Subsequently, other metals can be deposited reductively on the surface modified in this way.
  • WO 2012/072658 A2 discloses a method of metal coating nanoparticles by electroless deposition techniques.
  • the homogeneously metal-coated nanoparticles are particularly suitable for use as fillers in metal-matrix composites, wherein the deposited metal layer acts as a dispersion mediator between non-metallic nanoparticles and metal matrix.
  • the process for preparing nanoparticles for electroless metal deposition comprises the steps of: a) thiol functionalization of the surface of the nanoparticles, b) contacting the nanoparticles with an aqueous metal salt solution, c) adding a reducing agent which reduces the metal salt solution, thereby causing metal deposition on the nanoparticles comes.
  • the thiol functionalization takes place in the case of oxidic particles, carbides and other ceramic particles by means of a mercaptoorganylsilane, or in the case of carbon particles by a dithiol, phosphorus pentasulfide, mercaptoorganylsilane, H 2 S or CS 2 .
  • a disadvantage of the process for metal coating of nanoparticles by means of electroless deposition techniques is the functionalization of the surface by means of various mercaptoorganylsilanes.
  • these compounds are not commercially available and must be prepared by complex syntheses themselves. On the other hand, they tend to self-condensation and thus produce on the surface of the nanoparticles no pure monolayers.
  • the formation of several layers is disadvantageous, since during a later processing of the particles (eg in hot melts) only as few organic constituents as possible should be contained, since these are less stable against heat / mechanical stress or the like. and gas bubbles or inhomogeneities in the metal matrix comes.
  • organylsilanes or the oligomers formed by the self-condensation do not bind chemically to the surface of transition metal carbides, as could be detected by infrared spectroscopic measurements.
  • Mondin et al. show that modified SiO 2 and Al 2 O 3 particles, which were subsequently coated with, for example, copper, do not have pure monolayers with mercaptosilanes, such as (3-mercaptopropyl) triethoxysilane (MPTES) [ G. Mondin et al. Electrochimica Acta 114, 2013, 521-526 ].
  • MPTES (3-mercaptopropyl) triethoxysilane
  • Si et al. and Zhou et al. describe Fe 3 O 4 nanoparticles coated with polydopamine.
  • Li et. al. describe Fe 3 O 4 particles which are coated with polydopamine and additionally coated with silver.
  • Mondin et al. describe a process for electroless metal deposition on polydopamine-functionalized nano- and micro-particles.
  • both WC micro-particles (0.1 - 100 ⁇ m particle diameter) and Al 2 O 3 - nanoparticles (0.1 - 100 nm particle diameter) were functionalized with polydopamine.
  • silver or copper could be deposited successfully.
  • the polydopamine-functionalized Al 2 O 3 particles were successfully coated with copper.
  • Mohapatra, S., et al. discloses the coating of iron oxide nanoparticles with various phosphonic acids.
  • section 2.1.3. can be taken that the nanoparticles are dissolved in water and the phosphonic acid added in 2.5-fold excess and treated at 37 ° C for 20 min with ultrasound.
  • the particles thus obtained have an inhomogeneous coating [ Mohapatra, S., et al, Colloids and Surfaces. A, Physicachemical and Engineering Aspects, Elsevier, Vol. 339, No. 1-3, (2009-05-01), pp. 35-42 ].
  • Tudisco, C., et al . Discloses a process for functionalizing iron oxide nanoparticles with cyclodextrins.
  • a functionalization of the nanoparticles with phosphonic acid derivatives According to Scheme 2, attachment is via the formation of PO-Fe bonds.
  • the free amino groups are the amino functionalities to which the cyclodextrins are subsequently attached [ Tudisco, C., et al., European Journal of Inorganic Chemistry, 2012, 32 (7), pp. 5323-5331 ].
  • Metal-coated inorganic particles are important for use in metal-matrix composites.
  • the metal-coated inorganic particles can be used to improve the properties of the metal matrix, depending on the area of application.
  • Uncoated inorganic particles have completely different surface properties than the metal matrix into which they are to be incorporated.
  • the agglomeration of the inorganic particles or the formation of air bubbles and other inhomogeneities in the matrix usually occurs.
  • metal-coated inorganic particles have surface energies that are more similar to those of the metal matrix, which makes them easier to incorporate into them.
  • the object of the invention is to provide a process for the amine functionalization of surfaces of inorganic particles, which can then be provided with a metal layer by means of electroless deposition techniques.
  • the organic intermediate layer should be applied as monolayer as possible.
  • the particles are amine functionalized to favor the deposition of various metals on the surface.
  • the inorganic particles are preferred for functionalization with an aminophosphonic acid, an aminocarboxylic acid (also called amino acid) and / or an aminoalcohol phosphoric acid ester having a 2 to 1000-fold excess, particularly preferably a 4 to 100-fold excess, very particularly preferably a 5 to 10-fold excess, based on the amount of substance required for the formation of a monolayer treated.
  • the amount of substance required for a monolayer can be calculated from the space requirement of the functional group (phosphate) which binds to the surface at about 4.2 nm 2 / molecule and the specific surface of the particles are calculated.
  • Preferred aminophosphonic acids are aminophosphonic acids of the general empirical formula H 2 PO 3 - (CR 2 ) n-NH 2 with n being at least 1, where the radicals R are selected independently of one another preferably from a hydrogen atom or an alkyl chain of any length which contains further (amine) ) May contain functionalities.
  • any length of the alkyl chain means that these are preferably from 1 to 10 C atoms, more preferably 2 to 5 C atoms, and very particularly preferably - CH 2 -CH 2 -, -CH 2 CH 2 -CH 2 -, - CH 2 -CH 2 -CH 2 -CH 2 - exists.
  • the aminophosphonic acid can also be selected from the group of aminobisphosphonic acids.
  • Preferred aminocarboxylic acids are aminocarboxylic acids of the general structure HOOC- (CR 2 ) n -NH 2 with n equal to at least 1, where the radicals R are selected independently of one another preferably from a hydrogen atom or an alkyl chain of any length which contain further (amine) functionalities can.
  • any length of the alkyl chain means that these are preferably from 1 to 10 C atoms, more preferably 2 to 5 C atoms, and very particularly preferably -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, - CH 2 CH 2 -CH 2 -CH 2 - exists.
  • any length of the alkyl chain means that these are preferably from 1 to 10 C atoms, more preferably 2 to 5 C atoms, and very particularly preferably -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -CH 2 -consists.
  • x is 0 to 2, more preferably 0 to 1, and most preferably x is 0.
  • a monolayer forms on the particle surface, which is particularly advantageous for a later application of the inorganic particles.
  • Monolayers according to the invention designate the presence of a layer of molecules on the surface, wherein the layer thickness does not exceed one molecule.
  • monolayers of aminophosphonic acids, aminocarboxylic acids and / or aminoalcohol phosphoric acid esters are formed on the inorganic particles out. The layer thickness of the monolayers of aminophosphonic acids, aminocarboxylic acids and / or aminoalcohol phosphoric acid esters does not exceed one molecule length.
  • the inorganic particles are preferably selected from ceramics or carbon particles, more preferably from oxidic or carbide particles, most preferably from WC, Al 2 O 3 , SiO 2 .
  • the inorganic particles can assume approximately spherical to spherical forms, including agglomerated inorganic particles and nanorods are included.
  • the carbon particles may be in the form of nanotubes, fullerenes or graphenes, for example.
  • the inorganic particles preferably have a size of 0.1 nm (nano-particles) to 100 ⁇ m (micro-particles).
  • the nano-particles preferably have a size of from 1 to 50 nm, very particularly preferably from 10 to 20 nm.
  • the micro-particles have a size of 1 to 50 microns, most preferably from 1 to 5 microns.
  • hydroxide groups are generated on the particle surface by means of an activating reagent.
  • Non-oxidic particle surfaces are preferably treated before the amine functionalization by means of an activating reagent.
  • the activating reagent is preferably selected from acids, more preferably from mineral acids, most preferably from HCl, HBr, HI, HF, H 2 SO 4 and HNO 3 . Preference is given to using molecular oxygen or ozone as the activating reagent.
  • the functionalization of the inorganic particles preferably takes place according to method step a at temperatures of 10 to 40 ° C, more preferably from 15 to 30 ° C, most preferably from 20 to 25 ° C, even more preferably at room temperature.
  • the aqueous metal salt solution containing metal ions contains at least one metal salt of a metal selected from Ni, Cu, Co or metals of Groups 5, 6, 7, 8, 13, 14, 15 of the Periodic Table of the Elements.
  • the coating of the amine-functionalized particle surfaces preferably takes place by means of reduction of one metal of the metal salts or of several metals of the metal salts from aqueous solution and subsequent deposition of the metal or metals on the amine-functionalized particle surface.
  • the metal salt solution contains mixtures of different metal salts with different metals, which preferably have a similar redox potential. A similar redox potential means according to the invention that the different metals in the metal salt solution can be reduced with the same reducing agent.
  • complexing agents are additionally preferably used.
  • the complexing agent is preferably selected from ethylenediaminetetraacetic acid (EDTA), citric acid and its salts, sodium ethylenediaminetetraacetate, trienethylenediamine or ethylenediamine.
  • EDTA ethylenediaminetetraacetic acid
  • citric acid and its salts sodium ethylenediaminetetraacetate
  • trienethylenediamine or ethylenediamine ethylenediamine.
  • the reagent for amine functionalization and the type of metal salt solution the person skilled in the art will select the suitable complexing agent.
  • the use of the complexing agents promotes deposition of the metal on the particle surface, preventing pure metal from being precipitated from the metal salt.
  • the reducing agent is selected from hydrazine, sodium borohydride, hypophosphite or hydrogen.
  • the reducing agent is used with an excess of 5 times to 100 times the amount of metal to be reduced metal salt, more preferably with an excess of 10 times to 50 times the amount of metal to be reduced metal salt.
  • Reduction agents are preferably used for reduction whose redox potential is negative enough to reduce the metal cation from the respective metal complex.
  • Reduction reducing agent having a redox potential of -1.57 to -1.11 V
  • Cu preferably having a redox potential of -1.20 to -1.10 V, particularly preferably hydrazine, in Ni, Co, Cr, Sn, Pb, Sb, Bi, Zn, Cu, Fe, Al or mixtures thereof, preferably with a redox potential of -1.57 to -1.24 V, more preferably sodium borohydride or a mixture of sodium borohydride with a reducing agent having a redox potential of -1.57 to -1.11V used.
  • the electroless deposition of the respective metals is preferably carried out by means of the particular reducing agents, complexing agents and temperatures listed in the table, but should not be restricted to these: coating metal reducing agent complexing temperature Copper (Cu) Hydrazine (N 2 H 2 ) EDTA room temperature Nickel (Ni) Sodium borohydride (NaBH 4 ) hypophosphite EDTA room temperature Cobalt (Co) Sodium borohydride (NaBH 4 ), sodium hypophosphite Na (H 2 PO 2 ) sodium citrate 60 ° C Silver (Ag) Potassium sodium tartrate (KNaC 4 H 4 O 6 ) ethylenediamine room temperature
  • the metal-coated inorganic particles are particularly suitable in metal-matrix composites due to the modified surface properties.
  • metal-matrix composites designate metal composite materials which consist of a matrix comprising at least one metal and the metal-coated non-metallic particles according to the invention.
  • the process described in the invention makes it possible to form monolayers exclusively in the amine functionalization of the particle surface, which is particularly advantageous for later application of the inorganic particles.
  • the inventive use of aminophosphonic acids, aminocarboxylic acids and / or Amino alcohol phosphoric acid esters for the formation of monolayers particularly advantageous compared to previously known ways to functionalize the surface for the electroless metal deposition, such as the functionalization of the particles by means of silane-based thiols ( WO 2012/072658 A2 ) or polydopamine.
  • aminophosphonic acids, aminocarboxylic acids and / or aminoalcoholphosphoric acid esters are substantially longer shelf life.
  • the in WO 2012/072658 A2 Mercaptoorganylsilane described for the functionalization of the particles are not storage-stable, since they tend to self-condensation.
  • the deposition of the metals can preferably be carried out at room temperature, while the functionalization using mercaptoorganylsilanes takes place only at elevated temperatures.
  • Tungsten carbide particles (WC, 1 ⁇ m) were dispersed in hydrochloric acid and at room temperature for 1 h touched. After activation, an excess of 3-aminopropylphosphonic acid 3-APP (5.10 -3 M) was added to 20 g / L tungsten carbide particles in deionized water and stirred for 24 h. Excess 3-APP was centrifuged off and the functionalized particles were washed several times with water and ethanol and again centrifuged off. The resulting particles were dried at 40 ° C in vacuo.
  • Fig. 1 shows TEM images (transelectron microscopy) of nano-WC particles without amine functionalization ( Fig.
  • Fig. 2 shows the IR spectra of 3-aminopropylphosphonic acid (3-APP) as reference and uncoated micro-WC particles (WC) compared to micro-WC particles treated with 3-aminopropylphosphonic acid (3-APP @ WC) which clearly shows that 3-APP is applied to the WC particles.
  • the electroless deposition of copper on the 3-APP coated WC particles was carried out from aqueous solution containing 7.5 g / L copper sulfate pentahydrate, 5.5 g / L sodium ethylenediaminetetraacetate and 10 g / L WC particles.
  • the particles were dispersed by sonicating (5 min) and then adding 18.5 mL / L hydrazine hydrate solution ( ⁇ 80%). After about 2 h (end of gas evolution), the excess hydrazine was deactivated with hydrogen peroxide, the particles were first decanted, then centrifuged and washed with water and ethanol and centrifuged until the wash water was colorless. The resulting particles were dried at 40 ° C in vacuo.
  • Fig. 3a shows a WC particle which is not amine-functionalized and uncoated
  • Fig. 3b a WC particle after copper deposition.
  • the metal coating is detected morphologically.
  • the electroless deposition of nickel on the 3-APP coated WC particles was carried out from aqueous solution containing nickel (II) chloride hexahydrate 10 g / L and WC particles 10 g / L.
  • the particles were dispersed by sonication (5 minutes) and then 3.4 grams / liter of sodium borohydride was added. After coating, the particles were first decanted, then centrifuged and washed with water and ethanol and centrifuged until the wash water was colorless. The resulting particles were dried at 40 ° C in vacuo.
  • the particles thus coated contained 42% by mass of nickel.
  • Fig. 3a shows a WC particle which is not amine-functionalized and uncoated
  • Fig. 3c a WC particle after nickel deposition.
  • the metal coating is detected morphologically.
  • the electroless deposition of nickel on the 3-APP coated WC particles was carried out from aqueous solution containing nickel (II) chloride hexahydrate, 16 g / L sodium ethylenediaminetetraacetate, sodium borohydride and WC particles.
  • the particles were dispersed by sonication for 5 minutes. After coating, the particles were first decanted, then centrifuged and washed with water and ethanol and centrifuged until the wash water was colorless. The resulting particles were dried at 40 ° C in vacuo.
  • the thus-coated particles contained 20% by mass of nickel.
  • the nickel-coated particles can be investigated analogously to Example 3 by means of SEM. Nickel deposition is also morphologically detectable in these particles.
  • the metal-coated inorganic particles can be visually evaluated for color. While the untreated inorganic particles are from white to anthracite to brown, they have a black color after metal deposition (Co, Ni).

Description

Die Erfindung beschreibt metallbeschichtete anorganische Partikel, und ein Verfahren zu deren Herstellung mittels stromloser Metallabscheidung. Die metallbeschichteten anorganischen Partikel können durch ihre verbesserten Oberflächeneigenschaften in Metallmatrizen eingebracht werden.The invention describes metal-coated inorganic particles, and a method for their production by means of electroless metal deposition. The metal-coated inorganic particles can be introduced into metal matrices through their improved surface properties.

Gängige Methoden zur Abscheidung von Metallen auf der Oberfläche von Partikeln sind neben den teuren und komplizierten physikalischen Abscheidungsmethoden, wie z. B. PVD (physical vapour deposition) und Sputtering auch chemische Methoden, wie z. B. stromlose Abscheidung. Diese sind günstiger, einfacher und es können homogene/konformale Metallschichten erzeugt werden. Die bisherigen nasschemischen Methoden beruhen auf der so genannten Edelmetallpartikelbekeimung, bei der teure Precusoren eingesetzt werden und schwermetallhaltiger Abfall (z. B. Sn und Pd-Abfall) entsteht. Zusätzlich muss die Oberfläche der zu beschichtenden Spezies vorher aktiviert werden, damit das Metall, welches auf die Oberfläche gebracht werden soll, nicht parallel zu den Partikeln als eigenständige Metallpartikel ausfällt. Nachteilig ist außerdem, dass mit Hilfe dieser Methode keine homogene/konformale Metallschicht auf den Nanopartikeln nach der Metallabscheidung erzeugt wird, sondern lediglich partikuläre Morphologien erhalten werden. Die auf diesem Weg erhaltenen Oberflächeneigenschaften der Partikel sind entsprechend nicht ähnlich genug der der Matrix, so dass es beim Einbringen in die Metallmatrix mit höherer Wahrscheinlichkeit zur Entmischung oder Agglomeration der Partikel kommt. [S.S. Djokic, Electroless deposition of metalls and alloys, in B.E. Conway, R.E. White (Eds.), Modern Aspects of Electrochemistry, Vol. 35, Springer, US 2002, pp. 51-133 ; Z. Deng et al., J. Phys. chem. C2007, 111, 11692 ; R.L. Cohen et al., J. Electrochem. Soc. 1973, 120, 502 ]Common methods for the deposition of metals on the surface of particles are in addition to the expensive and complicated physical deposition methods, such. As PVD ( physical vapor deposition ) and sputtering and chemical methods such. B. electroless deposition. These are cheaper, easier and homogeneous / conformal metal layers can be produced. The previous wet-chemical methods are based on the so-called noble metal particle germination, in which expensive precursors are used and heavy metal-containing waste (eg Sn and Pd waste) is produced. In addition, the surface of the species to be coated must be activated beforehand so that the metal to be brought onto the surface does not precipitate parallel to the particles as discrete metal particles. Another disadvantage is that with the help of this method, no homogeneous / conformal metal layer is produced on the nanoparticles after the metal deposition, but only particulate morphologies are obtained. Accordingly, the surface properties of the particles obtained in this way are not similar enough to those of the matrix, so that it is more likely to cause segregation or agglomeration of the particles when introduced into the metal matrix. [SS Djokic, Electroless deposition of metals and alloys, in BE Conway, RE White (Eds.), Modern Aspects of Electrochemistry, Vol. 35, Springer, US 2002, pp. 51-133 ; Z. Deng et al., J. Phys. chem. C2007, 111, 11692 ; RL Cohen et al., J. Electrochem. Soc. 1973, 120, 502 ]

J. Samuel et al. beschreiben ein Verfahren zur Herstellung von Metallclustern auf SiO2-Nanopartikeln durch Autoreduktion. Die Metallclusterabscheidung fand nur statt, wenn die SiO2-Nanopartikel sowohl mit Aminogruppen als auch mit Thiolgruppen modifiziert war. [ Mater. Res Soc. Symp. Proc. 1207: 103-108 ]J. Samuel et al. describe a process for the preparation of metal clusters on SiO 2 nanoparticles by autoreduction. Metal cluster deposition only took place when the SiO 2 nanoparticles were modified with both amino groups and thiol groups. [ Mater. Res Soc. Symp. Proc. 1207: 103-108 ]

US 2002/0132045 A1 und US 2003/0164064 A1 offenbaren Verfahren zur Herstellung einer Metall-Nanohülle auf speziell funktionalisierten SiO2-Nanopartikeln. US 2003/0118657 offenbart die Verwendung von derart funktionalisierten Nanopartikeln zur Reduzierung oder Verhinderung der Neubildung von Blutgefässen (Vaskularisierung). EP 1 936 378 A1 offenbart mehrschichtige Nanopartikel mit einem magnetischen Kern, den eine SiO2-Schicht umgibt, welche wiederum durch eine Goldschicht und ggf. zusätzliche Metallschichten umgeben ist. Als äußere Schicht sind auf den Nanopartikel Biosensormoleküle (wie z. B. Aptamere) immobilisiert. Die Herstellung der Metallschicht erfolgt in den Schriften jeweils, in dem die Silikat-Oberfläche zunächst mit einem Aminosilanlinker funktionalisiert wird und anschließend Gold-Kolloidpartikel gebunden werden. An die so modifizierte Oberfläche können anschließend andere Metalle reduktiv abgeschieden werden. US 2002/0132045 A1 and US 2003/0164064 A1 disclose methods of making a metal nanoshell on specially functionalized SiO 2 nanoparticles. US 2003/0118657 discloses the use of such functionalized nanoparticles to reduce or prevent the rebuilding of blood vessels (vascularization). EP 1 936 378 A1 discloses multilayer nanoparticles having a magnetic core surrounding a SiO 2 layer, which in turn is surrounded by a gold layer and possibly additional metal layers. As an outer layer, biosensor molecules (such as aptamers) are immobilized on the nanoparticle. The production of the metal layer takes place in the documents in each case, in which the silicate surface is first functionalized with an aminosilane linker and then gold-colloid particles are bound. Subsequently, other metals can be deposited reductively on the surface modified in this way.

WO 2012/072658 A2 offenbart ein Verfahren zur Metallbeschichtung von Nanopartikeln mittels stromloser Abscheidetechniken. Die homogen metallbeschichteten Nanopartikel eignen sich insbesondere für die Verwendung als Füllstoffe in Metall-Matrix-Kompositen, wobei die abgeschiedene Metallschicht als Dispersionsvermittler zwischen nichtmetallischen Nanopartikeln und Metallmatrix fungiert. WO 2012/072658 A2 discloses a method of metal coating nanoparticles by electroless deposition techniques. The homogeneously metal-coated nanoparticles are particularly suitable for use as fillers in metal-matrix composites, wherein the deposited metal layer acts as a dispersion mediator between non-metallic nanoparticles and metal matrix.

Das Verfahren zur Herstellung von Nanopartikeln zur stromlosen Metallabscheidung umfasst die Schritte: a) Thiolfunktionalisierung der Oberfläche der Nanopartikel, b) Inkontaktbringen der Nanopartikel mit einer wässrigen Metallsalzlösung, c) Zugabe eines Reduktionsmittels, welches die Metallsalzlösung reduziert, wodurch es zu einer Metallabscheidung auf den Nanopartikeln kommt.The process for preparing nanoparticles for electroless metal deposition comprises the steps of: a) thiol functionalization of the surface of the nanoparticles, b) contacting the nanoparticles with an aqueous metal salt solution, c) adding a reducing agent which reduces the metal salt solution, thereby causing metal deposition on the nanoparticles comes.

Die Thiolfunktionalisierung erfolgt dabei bei oxidischen Partikeln, Karbiden und anderen keramischen Partikeln durch ein Mercaptoorganylsilan, oder bei Kohlenstoffpartikeln durch ein Dithiol, Phosphorpentasulfid, Mercaptoorganylsilan, H2S oder CS2.The thiol functionalization takes place in the case of oxidic particles, carbides and other ceramic particles by means of a mercaptoorganylsilane, or in the case of carbon particles by a dithiol, phosphorus pentasulfide, mercaptoorganylsilane, H 2 S or CS 2 .

Nachteilig an dem Verfahren zur Metallbeschichtung von Nanopartikeln mittels stromloser Abscheidetechniken ist die Funktionalisierung der Oberfläche mittels verschiedener Mercaptoorganylsilane. Zum einen sind diese Verbindungen nicht kommerziell erhältlich und müssen über aufwendige Synthesen selbst hergestellt werden. Zum anderen neigen sie zur Eigenkondensation und erzeugen so auf der Oberfläche der Nanopartikel keine reinen Monolagen. Die Ausbildung von mehreren Lagen ist nachteilig, da bei einer späteren Verarbeitung der Partikel (z. B. in heißen Schmelzen) nur so wenig wie möglich organische Bestandteile enthalten sein sollten, da diese weniger stabil gegen Hitze/mechanische Belastung o.ä. sind und Gasblasen bzw. Inhomogenitäten in der Metallmatrix kommt.A disadvantage of the process for metal coating of nanoparticles by means of electroless deposition techniques is the functionalization of the surface by means of various mercaptoorganylsilanes. First, these compounds are not commercially available and must be prepared by complex syntheses themselves. On the other hand, they tend to self-condensation and thus produce on the surface of the nanoparticles no pure monolayers. The formation of several layers is disadvantageous, since during a later processing of the particles (eg in hot melts) only as few organic constituents as possible should be contained, since these are less stable against heat / mechanical stress or the like. and gas bubbles or inhomogeneities in the metal matrix comes.

Außerdem binden Organylsilane bzw. die durch die Eigenkondensation entstandenen Oligomere nicht chemisch an die Oberfläche von Übergangsmetallcarbiden, wie durch infrarotsprektroskopische Messungen nachgewiesen werden konnte.In addition, organylsilanes or the oligomers formed by the self-condensation do not bind chemically to the surface of transition metal carbides, as could be detected by infrared spectroscopic measurements.

Des Weiteren ist bei dieser Erfindung nachteilig, dass nur die Funktionalisierung von Partikeln im Nanogrößenbereich beschrieben wird. Außerdem kann nicht ausgeschlossen werden, dass Ormocere (Organicaly modified Ceramic) und andere oligomere Spezies des Organylsilanes unvollständig abgetrennt werden und daher ebenfalls mit Metall beschichtet werden. Diese metallbeschichteten Ormocere weisen ebefalls einen hohen organischen Anteil auf, was sich negativ auf das Einbringen in die Metallschmelze auswirken kann.Furthermore, it is disadvantageous in this invention that only the functionalization of nanosized particles is described. In addition, it can not be ruled out that Ormocere (Organicaly modified Ceramic) and other oligomeric species of Organylsilanes be incompletely separated and therefore also coated with metal. These metal-coated ormocers also have a high organic content, which can adversely affect their incorporation into the molten metal.

Mondin et al. belegen, dass mit Mercaptosilanen, wie beispielsweise (3-Mercaptopropyl)triethoxysilan (MPTES), modifizierte SiO2- und Al2O3-Partikel, die anschließend mit beispielsweise Kupfer beschichtet wurden, keine reinen Monolagen aufweisen [ G. Mondin et al. Electrochimica Acta 114, 2013, 521-526 ].Mondin et al. show that modified SiO 2 and Al 2 O 3 particles, which were subsequently coated with, for example, copper, do not have pure monolayers with mercaptosilanes, such as (3-mercaptopropyl) triethoxysilane (MPTES) [ G. Mondin et al. Electrochimica Acta 114, 2013, 521-526 ].

Da Phosphonate, Phosphorsäureester bzw. Carbonsäuren in verdünnten wässrigen Systemen nicht zur Eigenkondensation neigen, kann überschüssiges Phosphonat, Phosphorsäureester bzw. Carbonsäure einfach entfernt und gegeben Falls wieder recycelt werden.Since phosphonates, phosphoric acid esters or carboxylic acids are not prone to self-condensation in dilute aqueous systems, excess phosphonate, phosphoric acid ester or carboxylic acid can simply be removed and, if present, recycled.

Si et al. und Zhou et al. beschreiben Fe3O4 Nanopartikel, die mit Polydopamin beschichtet wurden. [ J. Si, H. Yang, Mater. Chem. Phys. 128 (2011) 519 , W.-H. Zhou, C.-H. Lu, X.-C. Guo, F.-R. Chen, H.-H. Yang, X.-R. Wang, J. Mater. Chem. 20 (2010) 880 .]Si et al. and Zhou et al. describe Fe 3 O 4 nanoparticles coated with polydopamine. [ J. Si, H. Yang, Mater. Chem. Phys. 128 (2011) 519 . W.-H. Zhou, C.-H. Lu, X.-C. Guo, F.-R. Chen, H.-H. Yang, X.-R. Wang, J. Mater. Chem. 20 (2010) 880 .]

Li et. al. beschreiben Fe3O4 Partikel, die mit Polydopamin beschichtet sind und zusätzlich mit Silber überzogen wurden. [ Q. Li, M. Tian, L. Liu, H. Zou, L. Zhang, W.C. Wang, Electrochim. Acta 91 (2013) 114 ]Li et. al. describe Fe 3 O 4 particles which are coated with polydopamine and additionally coated with silver. [ Q. Li, M. Tian, L. Liu, H. Zou, L. Zhang, WC Wang, Electrochim. Acta 91 (2013) 114 ]

Wang et al. beschreiben die Beschichtung von 25 µm großen Siliziumdioxidartikeln mit Polydopamin und Silber. [ W. Wang, Y. Jiang, Y. Liao, M. Tian, H. Zou, L. Zhang, J. Colloid Interface Sci. 358 (2011) 567 ]Wang et al. describe the coating of 25 μm silicon dioxide articles with polydopamine and silver. [ W. Wang, Y. Jiang, Y. Liao, M. Tian, H. Zou, L. Zhang, J. Colloid Interface Sci. 358 (2011) 567 ]

Mondin et al. beschreiben ein Verfahren zur stromlosen Metallabscheidung auf polydopamin-funktionalisierten nano- und mikro-Partikeln. Zunächst wurden sowohl WC mikro-Partikel (0,1 - 100 µm Partikeldurchmesser) als auch Al2O3- nano-Partikel (0,1 - 100 nm Partikeldurchmesser) mit Polydopamin funktionalisiert. Auf den polydopaminfunktionalisierten WC Partikeln konnten erfolgreich Silber oder Kupfer abgeschieden werden. Die polydopaminfunktionalisierten Al2O3-Partikel konnten erfolgreich mit Kupfer beschichtet werden. [ G. Mondin et al., J. Colloid Interface Sci. 411 (2013) 187 ]Mondin et al. describe a process for electroless metal deposition on polydopamine-functionalized nano- and micro-particles. First, both WC micro-particles (0.1 - 100 μm particle diameter) and Al 2 O 3 - nanoparticles (0.1 - 100 nm particle diameter) were functionalized with polydopamine. On the polydopamine-functionalized WC particles, silver or copper could be deposited successfully. The polydopamine-functionalized Al 2 O 3 particles were successfully coated with copper. [ G. Mondin et al., J. Colloid Interface Sci. 411 (2013) 187 ]

Auch bei der Funktionalisierung der Partikel mittels Polydopamin ist es nachteilig, dass keine Monolage erhalten werden kann. Die Ausbildung von mehreren Lagen und damit vergleichsweise vieler organischer Bestandteile auf der Partikeloberfläche, ist wiederum nachteilig für eine spätere Verarbeitung (z. B. in heißen Schmelzen). Je höher der Anteil organischer Bestandteile ist, desto mehr gasförmige Abbauprodukte können beim Einbringen in die Schmelze entstehen, was zum Abplatzen der Metallbeschichtung führen kann.Also in the functionalization of the particles by means of polydopamine, it is disadvantageous that no monolayer can be obtained. The formation of several layers and thus comparatively many organic constituents on the particle surface is in turn disadvantageous for later processing (eg in hot melts). The higher the proportion of organic constituents, the more gaseous decomposition products can be formed when introduced into the melt, which can lead to the metal coating flaking off.

Weiterhin offenbart Mohapatra, S., et.al. offenbart die Beschichtung von Eisenoxid-Nanopartikeln mit verschiedenen Phosphonsäuren. Dabei kann im Abschnitt 2.1.3. entnommen werden, dass die Nanopartikel in Wasser gelöst werden und die Phosphonsäure im 2,5-fachen Überschuss zugegeben und bei 37°C für 20 min mit Ultraschall behandelt werden. Die so erhaltenen Partikel weisen jedoch eine inhomogene Beschichtung auf [ Mohapatra, S., et.al., Colloids and Surfaces. A, Physicachemical and Engineering Aspects, Elsevier, Bd. 339, Nr. 1-3, (2009-05-01), S. 35-42 ].Furthermore, Mohapatra, S., et al. discloses the coating of iron oxide nanoparticles with various phosphonic acids. In section 2.1.3. can be taken that the nanoparticles are dissolved in water and the phosphonic acid added in 2.5-fold excess and treated at 37 ° C for 20 min with ultrasound. However, the particles thus obtained have an inhomogeneous coating [ Mohapatra, S., et al, Colloids and Surfaces. A, Physicachemical and Engineering Aspects, Elsevier, Vol. 339, No. 1-3, (2009-05-01), pp. 35-42 ].

Schließlich offenbart Tudisco, C., et al ein Verfahren zur Funktionalisierung von Eisenoxid-Nanopartikeln mit Cyclodextrinen. Dabei erfolgt eine Funktionalisierung der Nanopartikel mit Phosphonsäurederivaten. Gemäß dem Schema 2 erfolgt die Anbindung über die Ausbildung von P-O-Fe-Bindungen. Als freie Gruppen verbleiben mithin die Aminofunktionalitäten, an denen nachfolgend die Cyclodextrine angebunden werden [ Tudisco, C., et al., European Journal of Inorganic Cehmistry, 2012, 32 (7), S. 5323-5331 ].Finally, Tudisco, C., et al ., Discloses a process for functionalizing iron oxide nanoparticles with cyclodextrins. In this case, a functionalization of the nanoparticles with phosphonic acid derivatives. According to Scheme 2, attachment is via the formation of PO-Fe bonds. The free amino groups are the amino functionalities to which the cyclodextrins are subsequently attached [ Tudisco, C., et al., European Journal of Inorganic Chemistry, 2012, 32 (7), pp. 5323-5331 ].

Metallbeschichtete anorganische Partikel sind für den Einsatz in Metall-Matrix-Kompositen von Bedeutung. Mit Hilfe der metallbeschichteten anorganischen Partikel können die Eigenschaften der Metallmatrix, gezielt je nach Anwendungsbereich, verbessert werden.Metal-coated inorganic particles are important for use in metal-matrix composites. The metal-coated inorganic particles can be used to improve the properties of the metal matrix, depending on the area of application.

Unbeschichtete anorganische Partikel besitzen völlig andere Oberflächeneigenschaften als die Metallmatrix, in die sie inkorporiert werden sollen. Beim Einbringen der unbeschichteten anorganischen Partikel in die Metallmatrix kommt es meist zur Agglomeration der anorganischen Partikel bzw. zur Bildung von Luftblasen und anderen Inhomogenitäten in der Matrix.Uncoated inorganic particles have completely different surface properties than the metal matrix into which they are to be incorporated. When introducing the uncoated inorganic particles into the metal matrix, the agglomeration of the inorganic particles or the formation of air bubbles and other inhomogeneities in the matrix usually occurs.

Metallbeschichtete anorganische Partikel hingegen weisen andere Oberflächenenergien auf, die ähnlicher der der Metallmatrix sind, weshalb sie sich besser in diese inkorporieren lassen.In contrast, metal-coated inorganic particles have surface energies that are more similar to those of the metal matrix, which makes them easier to incorporate into them.

Die Funktionalisierung von anorganischen Partikeln, besonders in karbidischer Form, für die stromlose Metallbeschichtung ist sehr herausfordernd, da sie chemisch inert sind.The functionalization of inorganic particles, especially in carbide form, for electroless metal plating is very challenging because they are chemically inert.

Die Aufgabe der Erfindung ist es, ein Verfahren zur Aminfunktionalisierung von Oberflächen anorganischer Partikel bereit zu stellen, welche dann mittels stromloser Abscheidetechniken mit einer Metallschicht versehen werden können. Um die organischen Anteile in den metallbeschichteten Partikeln möglichst gering zu halten, sollte die organische Zwischenschicht möglichst als Monolage aufgebracht werden.The object of the invention is to provide a process for the amine functionalization of surfaces of inorganic particles, which can then be provided with a metal layer by means of electroless deposition techniques. In order to keep the organic content in the metal-coated particles as low as possible, the organic intermediate layer should be applied as monolayer as possible.

Die Aufgabe wird gelöst durch ein Verfahren zur Herstellung metallbeschichteter anorganischer Partikel mittels stromloser Abscheidetechnik, mit den Verfahrensschritten

  1. a) Funktionalisierung anorganischer Partikel,
  2. b) Eingeben der funktionalisierten anorganischen Partikel in eine wässrige Metallsalzlösung, enthaltend Metallionen,
  3. c) Zugeben eines Reduktionmittels zur wässrigen Metallsalzmischung, enthaltend die funktionalisierten Partikel, zur Reduktion der Metallionen und Abscheidung eines Metalls auf den funktionalisierten Partikeln,
wobei die Funktionalisierung der Partikel nach Verfahrensschritt a) mit einer Aminophosphonsäure, einer Aminocarbonsäure und/oder einem Aminoalkoholphosphorsäureester derart erfolgt und wobei die Aminophosphonsäure, die Aminocarbonsäure und/oder der Aminoalkoholphosphorsäureester auf der Oberfläche der anorganischen Partikel eine Monolage ausbilden.The object is achieved by a method for producing metal-coated inorganic particles by means of electroless deposition, with the method steps
  1. a) functionalization of inorganic particles,
  2. b) introducing the functionalized inorganic particles into an aqueous metal salt solution containing metal ions,
  3. c) adding a reducing agent to the aqueous metal salt mixture containing the functionalized particles, for reducing the metal ions and depositing a metal on the functionalized particles,
wherein the functionalization of the particles according to process step a) is carried out with an aminophosphonic acid, an aminocarboxylic acid and / or a Aminoalkoholphosphorsäureester and wherein the aminophosphonic acid, the aminocarboxylic acid and / or Aminoalkoholphosphorsäureester form a monolayer on the surface of the inorganic particles.

Die Partikel werden aminfunktionalisiert, um das Abscheiden verschiedener Metalle auf der Oberfläche zu begünstigen.The particles are amine functionalized to favor the deposition of various metals on the surface.

Bevorzugt werden die anorganischen Partikel zur Funktionalisierung mit einer Aminophosphonsäure, einer Aminocarbonsäure (auch Aminosäure genannt) und/oder einem Aminoalkoholphosphorsäureester mit einem 2- bis 1000-fachen Überschuss, besonders bevorzugt mit einem 4 bis 100-fachen Überschuss, ganz besonders bevorzugt mit einem 5 bis 10-fachen Überschuss, bezogen auf die für die Ausbildung einer Monolage benötigte Stoffmenge, behandelt.The inorganic particles are preferred for functionalization with an aminophosphonic acid, an aminocarboxylic acid (also called amino acid) and / or an aminoalcohol phosphoric acid ester having a 2 to 1000-fold excess, particularly preferably a 4 to 100-fold excess, very particularly preferably a 5 to 10-fold excess, based on the amount of substance required for the formation of a monolayer treated.

Die für eine Monolage benötigte Stoffmenge kann aus dem Platzbedarf der funktionellen Gruppe (Phosphat) die auf die Oberfläche bindet mit etwa 4,2 nm2/Molekül und der spezifischen Oberfläche der Partikel berechnet werden. [ C. J. Lomoschitz et al., Langmuir 27 (2011)3534 ]The amount of substance required for a monolayer can be calculated from the space requirement of the functional group (phosphate) which binds to the surface at about 4.2 nm 2 / molecule and the specific surface of the particles are calculated. [ CJ Lomoschitz et al., Langmuir 27 (2011) 3534 ]

Bevorzugt werden als Aminophosohonsäuren Aminophosphonsäure der allgemeinen Summenformel H2PO3-(CR2)n-NH2 mit n gleich mindestens 1, wobei die Reste R unabhängig voneinander ausgewählt sind aus bevorzugt einem Wasserstoffatom oder einer Alkylkette beliebiger Länge, welche weitere (Amin-)Funktionalitäten enthalten kann. Erfindungsgemäß bedeutet eine beliebige Länge der Alkylkette, dass diese aus bevorzugt 1 bis 10 C-Atomen, besonders bevorzugt 2 bis 5 C-Atomen und ganz besonders bevorzugt - CH2-CH2-, -CH2CH2-CH2-, -CH2-CH2-CH2-CH2- besteht. Bevorzugt kann die Aminophosphonsäure auch aus der Gruppe der Aminobisphosphonsäuren ausgewählt werden.Preferred aminophosphonic acids are aminophosphonic acids of the general empirical formula H 2 PO 3 - (CR 2 ) n-NH 2 with n being at least 1, where the radicals R are selected independently of one another preferably from a hydrogen atom or an alkyl chain of any length which contains further (amine) ) May contain functionalities. According to the invention, any length of the alkyl chain means that these are preferably from 1 to 10 C atoms, more preferably 2 to 5 C atoms, and very particularly preferably - CH 2 -CH 2 -, -CH 2 CH 2 -CH 2 -, - CH 2 -CH 2 -CH 2 -CH 2 - exists. Preferably, the aminophosphonic acid can also be selected from the group of aminobisphosphonic acids.

Bevorzugt werden als Aminocarbonsäuren Aminocarbonsäuren der allgemeinen Struktur HOOC-(CR2)n-NH2 mit n gleich mindestens 1, wobei die Reste R unabhängig voneinander ausgewählt sind aus bevorzugt einem Wasserstoffatom oder einer Alkylkette beliebiger Länge, welche weitere (Amin-)Funktionalitäten enthalten kann. Erfindungsgemäß bedeutet eine beliebige Länge der Alkylkette, dass diese aus bevorzugt 1 bis 10 C-Atomen, besonders bevorzugt 2 bis 5 C-Atomen und ganz besonders bevorzugt -CH2-CH2-, -CH2-CH2-CH2-, - CH2CH2-CH2-CH2- besteht.Preferred aminocarboxylic acids are aminocarboxylic acids of the general structure HOOC- (CR 2 ) n -NH 2 with n equal to at least 1, where the radicals R are selected independently of one another preferably from a hydrogen atom or an alkyl chain of any length which contain further (amine) functionalities can. According to the invention, any length of the alkyl chain means that these are preferably from 1 to 10 C atoms, more preferably 2 to 5 C atoms, and very particularly preferably -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, - CH 2 CH 2 -CH 2 -CH 2 - exists.

Bevorzugt werden als Aminoalkoholphosphorsäureester Aminoalkoholphosphorsäureester der allgemeine Struktur H2-xPO3-x-(O(CR2)nNH2)x+1 mit n gleich mindestens 1, wobei die Reste R unabhängig voneinander ausgewählt sind, aus bevorzugt einem Wasserstoffatom oder einer Alkylkette beliebiger Länge, welche weitere (Amin-)Funktionalitäten enthalten kann. Erfindungsgemäß bedeutet eine beliebige Länge der Alkylkette, dass diese aus bevorzugt 1 bis 10 C-Atomen, besonders bevorzugt 2 bis 5 C-Atomen und ganz besonders bevorzugt -CH2-CH2-, -CH2-CH2-CH2-, -CH2-CH2-CH2-CH2-besteht. Bevorzugt ist x 0 bis 2, besonders bevorzugt 0 bis 1 und ganz besonders bevorzugt ist x gleich 0.Preferred amino alcohol phosphoric acid esters of amino alcohol phosphoric acid esters of the general structure H 2-x PO 3-x - (O (CR 2 ) n NH 2 ) x + 1 with n equal to at least 1, wherein the radicals R are independently selected, preferably a hydrogen atom or an alkyl chain of any length, which may contain other (amine) functionalities. According to the invention, any length of the alkyl chain means that these are preferably from 1 to 10 C atoms, more preferably 2 to 5 C atoms, and very particularly preferably -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -CH 2 -consists. Preferably, x is 0 to 2, more preferably 0 to 1, and most preferably x is 0.

Überraschenderweise bilden sich bei der Funktionalisierung mit Aminophosphonsäuren, Aminocarbonsäuren und/oder Aminoalkoholphosphorsäureestern eine Monolage auf der Partikeloberfläche aus, was besonders vorteilhaft für eine spätere Anwendung der anorganischen Partikel ist. Monolagen bezeichnet erfindungsgemäß das Vorhandensein einer Schicht von Molekülen auf der Oberfläche, wobei die Schichtdicke ein Molekül nicht überschreitet. Erfindungsgemäß bilden sich auf den anorganischen Partikeln Monolagen aus Aminophosphonsäuren, Aminocarbonsäuren und/oder Aminoalkoholphosphorsäureestern aus. Die Schichtdicke der Monolagen aus Aminophosphonsäuren, Aminocarbonsäuren und/oder Aminoalkoholphosphorsäureester überschreitet eine Moleküllänge nicht. Bei der Verarbeitung der metallbeschichteten anorganischen Partikel in z. B. heißen Schmelzen ist es vorteilhaft, wenn so wenig wie möglich organische Bestandteile auf den anorganischen Partikeln enthalten sind, da diese gegen hohe Temperaturen und mechanische Belastung weniger stabil sind. Vorteilhaft kommt es beim Einsatz von Phosphonsäuren, Carbonsäuren und Phosphonsäureestern nicht zur Eigenkondensation der einzelnen Moleküle untereinander, was zur Folge hätte, dass sich auf den Partikeln eine Schicht mit unregelmäßiger Schichtdicke bilden würde, wie es beispielsweise aus dem Stand der Technik bei der Funktionalisierung mit Silanen bekannt ist.Surprisingly, in the functionalization with aminophosphonic acids, aminocarboxylic acids and / or aminoalcoholphosphoric acid esters, a monolayer forms on the particle surface, which is particularly advantageous for a later application of the inorganic particles. Monolayers according to the invention designate the presence of a layer of molecules on the surface, wherein the layer thickness does not exceed one molecule. According to the invention, monolayers of aminophosphonic acids, aminocarboxylic acids and / or aminoalcohol phosphoric acid esters are formed on the inorganic particles out. The layer thickness of the monolayers of aminophosphonic acids, aminocarboxylic acids and / or aminoalcohol phosphoric acid esters does not exceed one molecule length. In the processing of metal-coated inorganic particles in z. As hot melts, it is advantageous if as little as possible organic constituents are contained on the inorganic particles, since they are less stable against high temperatures and mechanical stress. It is advantageous when using phosphonic acids, carboxylic acids and phosphonic acid esters not for self-condensation of the individual molecules with each other, which would result in the formation of a layer with irregular layer thickness on the particles, as for example from the prior art in the functionalization with silanes is known.

Bevorzugt werden die anorganischen Partikel aus Keramiken oder Kohlenstoffpartikeln, besonders bevorzugt aus oxidischen oder karbidischen Partikeln, ganz besonders bevorzugt aus WC, Al2O3, SiO2 ausgewählt. Die anorganischen Partikel können dabei annähernd kugelförmige bis sphärische Formen annehmen, auch agglomerierte anorganische Partikel und Nanorods sind eingeschlossen. Die Kohlenstoffpartikel können beispielsweise in Form von Nanotubes, Fullerenen oder Graphenen vorliegen.The inorganic particles are preferably selected from ceramics or carbon particles, more preferably from oxidic or carbide particles, most preferably from WC, Al 2 O 3 , SiO 2 . The inorganic particles can assume approximately spherical to spherical forms, including agglomerated inorganic particles and nanorods are included. The carbon particles may be in the form of nanotubes, fullerenes or graphenes, for example.

Bevorzugt weisen die anorganischen Partikel eine Größe von 0,1 nm (nano-Partikel) bis 100 µm (mikro-Partikel) auf.The inorganic particles preferably have a size of 0.1 nm (nano-particles) to 100 μm (micro-particles).

Bevorzugt weisen die nano-Partikel eine Größe von 1 bis 50 nm, ganz besonders bevorzugt von 10 bis 20 nm auf.The nano-particles preferably have a size of from 1 to 50 nm, very particularly preferably from 10 to 20 nm.

Bevorzugt weisen die mikro-Partikel eine Größe von 1 bis 50 µm, ganz besonders bevorzugt von 1 bis 5 µm auf.Preferably, the micro-particles have a size of 1 to 50 microns, most preferably from 1 to 5 microns.

Bevorzugt werden vor der Funktionalisierung der anorganischen Partikel (Verfahrensschritt a) auf der Partikeloberfläche Hydroxidgruppen mittels eines Aktivierungsreagenz generiert. Bevorzugt werden nicht oxidische Partikeloberflächen vor der Aminfunktionalisierung mittels eines Aktivierungsreagenzes behandelt. Bevorzugt ist das Aktivierungsreagenz ausgewählt aus Säuren, besonders bevorzugt aus Mineralsäuren, ganz besonders bevorzugt aus HCl, HBr, HI, HF, H2SO4 und HNO3. Bevorzugt kann als Aktivierungsreagenz molekularer Sauerstoff oder Ozon eingesetzt werden.Preferably, prior to the functionalization of the inorganic particles (process step a), hydroxide groups are generated on the particle surface by means of an activating reagent. Non-oxidic particle surfaces are preferably treated before the amine functionalization by means of an activating reagent. The activating reagent is preferably selected from acids, more preferably from mineral acids, most preferably from HCl, HBr, HI, HF, H 2 SO 4 and HNO 3 . Preference is given to using molecular oxygen or ozone as the activating reagent.

Bevorzugt erfolgt die Funktionalisierung der anorganischen Partikel nach Verfahrensschritt a bei Temperaturen von 10 bis 40°C, besonders bevorzugt von 15 bis 30°C, ganz besonders bevorzugt von 20 bis 25°C, noch mehr bevorzugt bei Raumtemperatur.The functionalization of the inorganic particles preferably takes place according to method step a at temperatures of 10 to 40 ° C, more preferably from 15 to 30 ° C, most preferably from 20 to 25 ° C, even more preferably at room temperature.

Bevorzugt enthält die wässrige Metallsalzlösung, enthaltend Metallionen, mindestens ein Metallsalz eines Metalls ausgewählt aus Ni, Cu, Co oder Metallen der Gruppen 5, 6, 7, 8, 13, 14, 15 des Periodensystems der Elemente. Bevorzugt erfolgt die Beschichtung der aminfunktionalisierten Partikeloberflächen mittels Reduktion eines Metalls der Metallsalze oder mehrerer Metalle der Metallsalze aus wässriger Lösung und anschließender Abscheidung des Metalls oder der Metalle auf der aminfunktionalisierten Partikeloberfläche. Bevorzugt enthält die Metallsalzlösung Mischungen verschiedener Metallsalze mit verschiedenen Metallen, die bevorzugt ein ähnliches Redoxpotential aufweisen. Ein ähnliches Redoxpotential bedeutet erfindungsgemäß, dass die verschiedenen Metalle in der Metallsalzlösung mit dem gleichen Reduktionsmittel reduziert werden können.Preferably, the aqueous metal salt solution containing metal ions contains at least one metal salt of a metal selected from Ni, Cu, Co or metals of Groups 5, 6, 7, 8, 13, 14, 15 of the Periodic Table of the Elements. The coating of the amine-functionalized particle surfaces preferably takes place by means of reduction of one metal of the metal salts or of several metals of the metal salts from aqueous solution and subsequent deposition of the metal or metals on the amine-functionalized particle surface. Preferably, the metal salt solution contains mixtures of different metal salts with different metals, which preferably have a similar redox potential. A similar redox potential means according to the invention that the different metals in the metal salt solution can be reduced with the same reducing agent.

Bevorzugt werden beim Einbringen der funktionalisierten anorganischen Partikel in eine wässrige Metallsalzlösung nach Verfahrensschritt b zusätzlich Komplexbildner einsetzt. Bevorzugt ist der Komplexbildner ausgewählt aus Ethylendiamintetraessigsäure (EDTA), Zitronensäure und deren Salze, Natriumethylendiamintetraacetat, Trieethylendiamin oder Ethylendiamin. In Abhängigkeit der eingesetzten anorganischen Partikel, des Reagenzes zur Aminfunktionalisierung und der Art der Metallsalzlösung wird der Fachmann den geeigneten Komplexbildner auswählen. Der Einsatz der Komplexbildner begünstigt das Abscheiden des Metalls auf der Partikeloberfläche, wobei verhindert wird, dass reines Metall aus dem Metallsalz abgeschieden wird.When introducing the functionalized inorganic particles into an aqueous metal salt solution, after step b, complexing agents are additionally preferably used. The complexing agent is preferably selected from ethylenediaminetetraacetic acid (EDTA), citric acid and its salts, sodium ethylenediaminetetraacetate, trienethylenediamine or ethylenediamine. Depending on the inorganic particles used, the reagent for amine functionalization and the type of metal salt solution, the person skilled in the art will select the suitable complexing agent. The use of the complexing agents promotes deposition of the metal on the particle surface, preventing pure metal from being precipitated from the metal salt.

Bevorzugt wird das Reduktionsmittel ausgewählt aus Hydrazin, Natriumborhydrid, Hypophosphit oder Wasserstoff.Preferably, the reducing agent is selected from hydrazine, sodium borohydride, hypophosphite or hydrogen.

Bevorzugt wird das Reduktionsmittel mit einem Überschuss der 5-fachen bis 100fachen Stoffmenge an zu reduzierendem Metallsalz, besonders bevorzugt mit einem Überschuss der 10-fachen bis 50-fachen Stoffmenge an zu reduzierendem Metallsalz eingesetzt. Bevorzugt wird dabei 90 % der Metallsalzlösung, besonders bevorzugt mehr als 99 % der Metallsalzlösung, ganz besonders bevorzugt die gesamte Metallsalzlösung reduziert.Preferably, the reducing agent is used with an excess of 5 times to 100 times the amount of metal to be reduced metal salt, more preferably with an excess of 10 times to 50 times the amount of metal to be reduced metal salt. Preference is given to 90% of the metal salt solution, more preferably more than 99% of the metal salt solution, most preferably the entire metal salt solution is reduced.

Durch die Wahl eines geeigneten Komplexbildners werden Metallkomplexe gebildet. Auf diese Art kann das Redoxpotential sehr genau eingestellt werden. Zur Reduktion werden bevorzugt Reduktionsmittel eingesetzt deren Redoxpotential negativ genug ist, um das Metallkation aus dem jeweiligen Metallkomplex zu reduzieren. Vorzugsweise werden zur Reduktion Reduktionsmittel mit einem Redoxpotential von -1,57 bis -1,11 V, bei Cu vorzugsweise mit einem Redoxpotential von -1,20 bis -1,10 V, besonders bevorzugt Hydrazin, bei Ni, Co, Cr, Sn, Pb, Sb, Bi, Zn, Cu, Fe, Al oder Mischungen dieser vorzugsweise mit einem Redoxpotential von -1,57 bis -1,24 V, besonders bevorzugt Natriumborhydrid oder eine Mischung von Natriumborhydrid mit einem Reduktionsmittel mit einem Redoxpotential von -1,57 bis -1,11 V verwendet.By choosing a suitable complexing agent, metal complexes are formed. In this way, the redox potential can be set very accurately. Reduction agents are preferably used for reduction whose redox potential is negative enough to reduce the metal cation from the respective metal complex. Preferably to be Reduction reducing agent having a redox potential of -1.57 to -1.11 V, in the case of Cu preferably having a redox potential of -1.20 to -1.10 V, particularly preferably hydrazine, in Ni, Co, Cr, Sn, Pb, Sb, Bi, Zn, Cu, Fe, Al or mixtures thereof, preferably with a redox potential of -1.57 to -1.24 V, more preferably sodium borohydride or a mixture of sodium borohydride with a reducing agent having a redox potential of -1.57 to -1.11V used.

Die stromlose Abscheidung der jeweiligen Metalle erfolgt bevorzugt mittels den in der Tabelle zusammengestellten jeweiligen Reduktionsmittel, Komplexbildner und Temperaturen, soll aber nicht auf diese beschränkt werden: Beschichtungsmetall Reduktionsmittel Komplexbildner Temperatur Kupfer (Cu) Hydrazin (N2H2) EDTA Raumtemperatur Nickel (Ni) Natriumborhydrid (NaBH4) Hypophosphit EDTA Raumtemperatur Cobalt (Co) Natriumborhydrid (NaBH4), Natriumhypophosphit Na(H2PO2) Natriumzitrat 60°C Silber (Ag) Kaliumnatriumtartrat (KNaC4H4O6) Ethylendiamin Raumtemperatur The electroless deposition of the respective metals is preferably carried out by means of the particular reducing agents, complexing agents and temperatures listed in the table, but should not be restricted to these: coating metal reducing agent complexing temperature Copper (Cu) Hydrazine (N 2 H 2 ) EDTA room temperature Nickel (Ni) Sodium borohydride (NaBH 4 ) hypophosphite EDTA room temperature Cobalt (Co) Sodium borohydride (NaBH 4 ), sodium hypophosphite Na (H 2 PO 2 ) sodium citrate 60 ° C Silver (Ag) Potassium sodium tartrate (KNaC 4 H 4 O 6 ) ethylenediamine room temperature

Die metallbeschichteten anorganischen Partikel eigenen sich aufgrund der modifizierten Oberflächeneigenschaften besonders in Metall-Matrix Kompositen.The metal-coated inorganic particles are particularly suitable in metal-matrix composites due to the modified surface properties.

Erfindungsgemäß bezeichnen Metall-Matrix Komposite metallische Verbundwerkstoffe, die aus einer aus mindestens einem Metall bestehenden Matrix und den erfindungsgemäßen metallbeschichteten nichtmetallischen Partikeln bestehen.According to the invention, metal-matrix composites designate metal composite materials which consist of a matrix comprising at least one metal and the metal-coated non-metallic particles according to the invention.

Das in der Erfindung beschriebene Verfahren ermöglicht bei der Aminfunktionalisierung der Partikeloberfläche die ausschließliche Bildung von Monolagen, was besonders vorteilhaft für eine spätere Anwendung der anorganischen Partikel ist. Bei der Verarbeitung der metallbeschichteten anorganischen Partikel in z. B. heißen Schmelzen ist es vorteilhaft, wenn so wenig wie möglich organische Bestandteile auf den anorganischen Partikeln enthalten sind, da diese gegen hohe Temperaturen und mechanische Belastung weniger stabil sind. Somit ist der erfindungsgemäße Einsatz von Aminophosphonsäuren, Aminocarbonsäuren und/oder Aminoalkoholphosphorsäureestern zur Bildung von Monolagen besonders vorteilhaft, im Vergleich zu bisher bekannten Möglichkeiten die Oberfläche für die stromlose Metallabscheidung zu funktionalisieren, wie zum Beispiel die Funktionalisierung der Partikel mittels Silan-basierten Thiolen ( WO 2012/072658 A2 ) oder Polydopamin. [ G. Mondin et al., J. Colloid Interface Sci. 411 (2013) 187 ]The process described in the invention makes it possible to form monolayers exclusively in the amine functionalization of the particle surface, which is particularly advantageous for later application of the inorganic particles. In the processing of metal-coated inorganic particles in z. As hot melts, it is advantageous if as little as possible organic constituents are contained on the inorganic particles, since they are less stable against high temperatures and mechanical stress. Thus, the inventive use of aminophosphonic acids, aminocarboxylic acids and / or Amino alcohol phosphoric acid esters for the formation of monolayers particularly advantageous compared to previously known ways to functionalize the surface for the electroless metal deposition, such as the functionalization of the particles by means of silane-based thiols ( WO 2012/072658 A2 ) or polydopamine. [ G. Mondin et al., J. Colloid Interface Sci. 411 (2013) 187 ]

Vorteilhaft ist außerdem, dass die Aminophosphonsäuren, Aminocarbonsäuren und/oder Aminoalkoholphosphorsäureestern wesentlich länger lagerstabil sind. Im Vergleich dazu sind die in WO 2012/072658 A2 beschriebenen Mercaptoorganylsilane zur Funktionalisierung der Partikel nicht lagerstabil, da sie zur Eigenkondensation neigen.It is also advantageous that the aminophosphonic acids, aminocarboxylic acids and / or aminoalcoholphosphoric acid esters are substantially longer shelf life. In comparison, the in WO 2012/072658 A2 Mercaptoorganylsilane described for the functionalization of the particles are not storage-stable, since they tend to self-condensation.

Vorteilhaft ist zudem, dass die Abscheidung der Metalle bevorzugt bei Raumtemperatur erfolgen kann, während die Funktionalisierung mittels Mercaptoorganylsilanen nur bei erhöhten Temperaturen stattfindet.It is also advantageous that the deposition of the metals can preferably be carried out at room temperature, while the functionalization using mercaptoorganylsilanes takes place only at elevated temperatures.

Ausführungsbeispieleembodiments

Anhand der aufgeführten Darstellungen und Ausführungsbeispiele soll die Erfindung näher erläutert werden ohne sie auf diese zu beschränken. Dabei zeigen

Fig.1:
TEM-Aufnahmen (Transelektronenmikroskopie) von nano-WC Partikel ohne Aminfunktionalisierung (Fig. 1a) und mit 3-Aminopropylphosphonsäure (3-APP) funktionalisierte nano-WC Partikel (Fig. 1b).
Fig.2:
IR-Spektren von 3-Aminopropylphosphonsäure (3-APP), unbeschichteten mikro-WC Partikeln und mikro-WC Partikel, die mit 3-Aminopropylphosphonsäure (3-APP@WC) behandelt wurden.
Fig.3:
REM-Aufnahmen (Rasterelektronenmikroskopie) von unbehandelten und unbeschichteten WC-Partikeln, von WC-Partikeln nach der Kupferabscheidung und ein WC-Partikel nach der Nickelabscheidung.
Based on the listed representations and embodiments, the invention will be explained in more detail without limiting it to these. Show
Fig.1:
TEM images (transelectron microscopy) of nano-WC particles without amine functionalization ( Fig. 1a ) and 3-aminopropylphosphonic acid (3-APP) functionalized nano-WC particles ( Fig. 1b ).
Figure 2:
IR spectra of 3-aminopropylphosphonic acid (3-APP), uncoated micro-WC particles and micro-WC particles treated with 3-aminopropylphosphonic acid (3-APP @ WC).
Figure 3:
SEM images (scanning electron microscopy) of untreated and uncoated WC particles, WC particles after copper deposition and a WC particle after nickel deposition.

1) Funktionalisierung von WC-Partikeln mittels 3-Aminopropylphosphonsäure (3-APP): 1) Functionalization of Toilet Particles Using 3-Aminopropylphosphonic Acid (3-APP):

Wolframkarbid-Partikel (WC, 1µm) wurden in Salzsäure dispergiert und 1 h bei Raumtemperatur gerührt. Nach der erfolgten Aktivierung wurde ein Überschuss von 3-Aminopropylphosphonsäure 3-APP (5.10-3 M) zu 20 g/L Wolframkarbid-Partikel in deionisiertem Wasser gegeben und für 24 h gerührt. Überschüssiges 3-APP wurde abzentrifugiert und die funktionalisierten Partikel mehrmals mit Wasser und Ethanol gewaschen und wieder abzentrifugiert. Die erhaltenen Partikel wurden bei 40°C im Vakuum getrocknet. Fig. 1 zeigt TEM-Aufnahmen (Transelektronenmikroskopie) von nano-WC Partikel ohne Aminfunktionalisierung (Fig. 1a) und mit 3-Aminopropylphosphonsäure (3-APP) funktionalisierte nano-WC Partikel (Fig. 1b). Mit Hilfe dieser Methode kann die Aminfunktionalisierung der Partikeloberfläche untersucht werden. In Fig. 1b ist deutlich zu erkennen, dass eine Monolage aus 3-APP durch die Funktionalisierung mittels 3-APP auf der nano-WC-Partikeloberfläche gebildet wurde.Tungsten carbide particles (WC, 1 μm) were dispersed in hydrochloric acid and at room temperature for 1 h touched. After activation, an excess of 3-aminopropylphosphonic acid 3-APP (5.10 -3 M) was added to 20 g / L tungsten carbide particles in deionized water and stirred for 24 h. Excess 3-APP was centrifuged off and the functionalized particles were washed several times with water and ethanol and again centrifuged off. The resulting particles were dried at 40 ° C in vacuo. Fig. 1 shows TEM images (transelectron microscopy) of nano-WC particles without amine functionalization ( Fig. 1a ) and 3-aminopropylphosphonic acid (3-APP) functionalized nano-WC particles ( Fig. 1b ). Using this method, the amine functionalization of the particle surface can be investigated. In Fig. 1b It can be clearly seen that a monolayer of 3-APP was formed by the functionalization by means of 3-APP on the nano-WC particle surface.

Des Weiteren kann mittels IR-Messung (Infrarotspektroskopie) nachgewiesen werden, dass die 3-Aminopropylphosphonsäure zur Aminfunktionalisierung tatsächlich an der Partikeloberfläche bindet. Fig. 2 zeigt dabei die IR-Spektren von 3-Aminopropylphosphonsäure (3-APP) als Referenz und unbeschichteten mikro-WC Partikeln (WC) im Vergleich zu mikro-WC Partikeln, die mit 3-Aminopropylphosphonsäure behandelt wurden (3-APP@WC), bei denen deutlich zu erkennen ist, dass 3-APP auf den WC-Partikeln aufgebracht ist.Furthermore, it can be demonstrated by means of IR measurement (infrared spectroscopy) that the 3-aminopropylphosphonic acid actually binds to the particle surface for amine functionalization. Fig. 2 shows the IR spectra of 3-aminopropylphosphonic acid (3-APP) as reference and uncoated micro-WC particles (WC) compared to micro-WC particles treated with 3-aminopropylphosphonic acid (3-APP @ WC) which clearly shows that 3-APP is applied to the WC particles.

2) Kupferabscheidung auf 3-APP-funktionalisierten WC-Partikeln 2) Copper deposition on 3-APP functionalized WC particles

Die stromlose Abscheidung von Kupfer auf den mit 3-APP beschichteten WC-Partikeln erfolgte aus wässriger Lösung, die 7,5 g/L Kupfersulfat Pentahydrat, 5,5 g/L Natriumethylendiamintetraacetat und 10 g/L WC-Partikel enthielt. Die Partikel wurden durch Ultraschallbehandlung (5 min) dispergiert und dann 18,5 mL/L Hydrazinhydrat-Lösung (∼ 80 %) zugegeben. Nach etwa 2 h (Ende der Gasentwicklung) wurde das überschüssige Hydrazin mit Wasserstoffperoxid desaktiviert, die Partikel zunächst dekantiert, dann zentrifugiert und so lange mit Wasser und Ethanol gewaschen und zentrifugiert, bis das Waschwasser farblos war. Die erhaltenen Partikel wurden bei 40°C im Vakuum getrocknet. Die anorganischen Partikel, auf denen Kupfer abgeschieden wurde, können mittels REM (Rasterelektronenmikroskopie) untersucht werden. Fig. 3a zeigt ein WC-Partikel, welches nicht aminfunktionalisiert und nicht beschichtet ist, Fig. 3b ein WC-Partikel nach der Kupferabscheidung. Bei den kupferbeschichteten Partikeln wird die Metallbeschichtung morphologisch nachgewiesen.The electroless deposition of copper on the 3-APP coated WC particles was carried out from aqueous solution containing 7.5 g / L copper sulfate pentahydrate, 5.5 g / L sodium ethylenediaminetetraacetate and 10 g / L WC particles. The particles were dispersed by sonicating (5 min) and then adding 18.5 mL / L hydrazine hydrate solution (~ 80%). After about 2 h (end of gas evolution), the excess hydrazine was deactivated with hydrogen peroxide, the particles were first decanted, then centrifuged and washed with water and ethanol and centrifuged until the wash water was colorless. The resulting particles were dried at 40 ° C in vacuo. The inorganic particles on which copper has been deposited can be examined by SEM (Scanning Electron Microscopy). Fig. 3a shows a WC particle which is not amine-functionalized and uncoated, Fig. 3b a WC particle after copper deposition. For the copper-coated particles, the metal coating is detected morphologically.

3) Nickelabscheidung auf 3-APP-funktionalisierten WC-Partikeln 3) Nickel deposition on 3-APP functionalized WC particles

Die stromlose Abscheidung von Nickel auf den mit 3-APP beschichteten WC-Partikeln erfolgte aus wässriger Lösung, die Nickel(II)chlorid Hexahydrat 10 g/L und WC-Partikel 10 g/L enthielt. Die Partikel wurden durch Ultraschallbehandlung (5 min) dispergiert und dann 3,4 g/L Natriumborhydrid zugegeben. Nach erfolgter Beschichtung wurden die Partikel zunächst dekantiert, dann zentrifugiert und so lange mit Wasser und Ethanol gewaschen und zentrifugiert, bis das Waschwasser farblos war. Die erhaltenen Partikel wurden bei 40°C im Vakuum getrocknet.
Die so beschichteten Partikel enthielten 42 Massen-% Nickel.
The electroless deposition of nickel on the 3-APP coated WC particles was carried out from aqueous solution containing nickel (II) chloride hexahydrate 10 g / L and WC particles 10 g / L. The particles were dispersed by sonication (5 minutes) and then 3.4 grams / liter of sodium borohydride was added. After coating, the particles were first decanted, then centrifuged and washed with water and ethanol and centrifuged until the wash water was colorless. The resulting particles were dried at 40 ° C in vacuo.
The particles thus coated contained 42% by mass of nickel.

Die anorganischen Partikel, auf denen Nickel abgeschieden wurde, können mittels REM (Rasterelektronenmikroskopie) untersucht werden. Fig. 3a zeigt ein WC-Partikel, welches nicht aminfunktionalisiert und nicht beschichtet ist, Fig. 3c ein WC-Partikel nach der Nickelabscheidung. Bei den nickelbeschichteten Partikeln wird die Metallbeschichtung morphologisch nachgewiesen.The inorganic particles on which nickel has been deposited can be examined by SEM (Scanning Electron Microscopy). Fig. 3a shows a WC particle which is not amine-functionalized and uncoated, Fig. 3c a WC particle after nickel deposition. For the nickel-coated particles, the metal coating is detected morphologically.

4) Alternative Nickelabscheidung auf 3-APP-funktionalisierten WC-Partikeln 4) Alternative nickel deposition on 3-APP functionalized WC particles

Die stromlose Abscheidung von Nickel auf den mit 3-APP beschichteten WC-Partikeln erfolgte aus wässriger Lösung, die Nickel(II)chlorid-Hexahydrat, 16 g/L Natriumethylendiamintetraacetat, Natriumborhydrid und WC-Partikel enthielt. Die Partikel wurden durch Ultraschallbehandlung 5 min dispergiert. Nach erfolgter Beschichtung wurden die Partikel zunächst dekantiert, dann zentrifugiert und so lange mit Wasser und Ethanol gewaschen und zentrifugiert, bis das Waschwasser farblos war. Die erhaltenen Partikel wurden bei 40°C im Vakuum getrocknet.
Die so beschichteten Partikel enthielten 20 Massen-% Nickel.
The electroless deposition of nickel on the 3-APP coated WC particles was carried out from aqueous solution containing nickel (II) chloride hexahydrate, 16 g / L sodium ethylenediaminetetraacetate, sodium borohydride and WC particles. The particles were dispersed by sonication for 5 minutes. After coating, the particles were first decanted, then centrifuged and washed with water and ethanol and centrifuged until the wash water was colorless. The resulting particles were dried at 40 ° C in vacuo.
The thus-coated particles contained 20% by mass of nickel.

Die nickelbeschichteten Partikel können analog Beispiel 3 mittels REM untersucht werden. Eine Nickelabscheidung ist auch bei diesen Partikeln morphologisch nachweisbar.The nickel-coated particles can be investigated analogously to Example 3 by means of SEM. Nickel deposition is also morphologically detectable in these particles.

Die metallbeschichteten anorganischen Partikel können optisch, hinsichtlich der Farbe beurteilt werden. Während die unbehandelten anorganischen Partikel von weiß, über anthrazit bis braun sind, weisen sie nach der Metallabscheidung (Co, Ni) eine schwarze Farbe auf.The metal-coated inorganic particles can be visually evaluated for color. While the untreated inorganic particles are from white to anthracite to brown, they have a black color after metal deposition (Co, Ni).

Claims (10)

  1. A process for producing metal-coated inorganic particles by means of currentless deposition technique with the following process steps:
    a) functionalization of the inorganic particles,
    b) introducing the functionalized particles into an aqueous metal-salt solution containing metal ions,
    c) adding a reducing agent to the aqueous metal-salt mixture containing the functionalized particles for reduction of the metal ions and deposition of a metal on the functionalized particles,
    characterized in that the functionalization of the particles according to process step a) takes place with an aminophosphonic acid, an aminocarboxylic acid and/or an aminoalcohol phosphoric acid ester, wherein the aminophosphonic acid, the aminocarboxylic acid and/or the aminoalcohol phosphoric acid ester form(s) a monolayer on the surface of the inorganic particles.
  2. The process according to Claim 1, characterized in that the inorganic particles are selected from ceramics or carbon particles.
  3. The process according to any one of Claims 1 or 2, characterized in that the inorganic particles are from 0.1 to 100 µm in size.
  4. The process according to any one of Claims 1 to 3, characterized in that hydroxide groups are generated by means of an activating reagent before functionalization of the inorganic particles on the particle surface.
  5. The process according to any one of Claims 1 to 4, characterized in that the functionalization of the inorganic particles takes place at temperatures in the range of 10 to 40°C.
  6. The process according to any one of Claims 1 to 5, characterized in that the aqueous metal-salt solution contains at least one metal salt of a metal selected from Ni, Cu, Co or metals of the groups 5, 6, 7, 8, 13, 14, 15 of the periodic system of elements.
  7. The process according to any one of Claims 1 to 6, characterized in that a complexing agent is also used in introducing the functionalized inorganic particles into an aqueous metal-salt solution.
  8. The process according to any one of Claims 1 to 7, characterized in that the reducing agent is selected from hydrazine, sodium borohydride, hypophosphite or hydrogen.
  9. Metal-coated inorganic particles, wherein the metal layer is deposited on a monolayer of an aminophosphonic acid, an aminocarboxylic acid and/or an aminoalcohol phosphoric acid ester.
  10. The use of the metal-coated inorganic particles produced according to any process of Claims 1 to 8 or according to Claim 9 in metal-matrix composites.
EP14803142.0A 2013-11-29 2014-11-27 Process for metal coating of inorganic particles by means of electroless metal deposition Active EP3074468B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013224577.7A DE102013224577A1 (en) 2013-11-29 2013-11-29 Process for the metal coating of inorganic particles by electroless metal deposition
PCT/EP2014/075843 WO2015078983A1 (en) 2013-11-29 2014-11-27 Process for metal coating of inorganic particles by means of electroless metal deposition

Publications (2)

Publication Number Publication Date
EP3074468A1 EP3074468A1 (en) 2016-10-05
EP3074468B1 true EP3074468B1 (en) 2019-05-08

Family

ID=51987158

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14803142.0A Active EP3074468B1 (en) 2013-11-29 2014-11-27 Process for metal coating of inorganic particles by means of electroless metal deposition

Country Status (4)

Country Link
US (1) US20160297718A1 (en)
EP (1) EP3074468B1 (en)
DE (1) DE102013224577A1 (en)
WO (1) WO2015078983A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020132045A1 (en) 2000-09-27 2002-09-19 Halas Nancy J. Method of making nanoshells
AU2002365603A1 (en) 2001-12-04 2003-06-17 Nanospectra Biosciences, Inc. Treatment of angiogenesis disorders using targeted nanoparticles
US6908496B2 (en) 2002-01-02 2005-06-21 William Marsh Rice University Method for scalable production of nanoshells using salt assisted purification of intermediate colloid-seeded nanoparticles
ES2301296B1 (en) 2005-09-16 2009-05-29 Consejo Superior Investig. Cientificas BIOSENSOR MANOPARTICULA, ELABORATION PROCEDURE AND ITS APPLICATIONS.
DE102010062184B3 (en) * 2010-11-30 2012-04-19 Technische Universität Dresden Process for the metal coating of nanoparticles by means of electroless deposition techniques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2015078983A1 (en) 2015-06-04
US20160297718A1 (en) 2016-10-13
EP3074468A1 (en) 2016-10-05
DE102013224577A1 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
EP3466570B1 (en) Method for manufacturing silver-coated copper nanowire having core-shell structure by using chemical reduction method
JP6379228B2 (en) Silver-coated copper nanowire and method for producing the same
JP5785532B2 (en) Silver-coated copper powder and method for producing the same
JP5415708B2 (en) Silver powder manufacturing method
CN105612272B (en) Pretreatment liquid and method for non-electric plating for electroless-plating
US8084140B2 (en) Silver platelets comprising palladium
Stando et al. Copper recovery from industrial wastewater-Synergistic electrodeposition onto nanocarbon materials
Yokoyama et al. Aqueous electrophoretic deposition of citric-acid-stabilized copper nanoparticles
Liang et al. Polymer-assisted self-assembly of silver nanoparticles into interconnected morphology and enhanced surface electric conductivity
KR101233447B1 (en) A method for preparing silver nanoparticles using ionic liquid
WO2014051061A1 (en) Substrate processing method for supporting a catalyst particle for plating process
KR102326994B1 (en) Method for coating of carbon nanomaterials
EP3074468B1 (en) Process for metal coating of inorganic particles by means of electroless metal deposition
Dai et al. Synthesis of silver nanoparticles on functional multi-walled carbon nanotubes
JP6549924B2 (en) Silver-coated copper powder and method for producing the same
EP2646598B1 (en) Process for coating nanoparticles with metal by means of electroless deposition techniques
JP6309758B2 (en) Silver-coated copper powder and method for producing the same
Kheawhom et al. Synthesis and characterization of copper-silver core-shell nanoparticles by polyol successive reduction process
JP2020031196A (en) Copper nano ink, substrate for printed wiring board, and method of manufacturing copper nano ink
KR20160099513A (en) Method of Preapring Silver Coated Copper Nanowire
TWI763637B (en) Metal composite powder and method for producing same
Zhang et al. A one-dimensional network from the self-assembly of gold nanoparticles by a necklace-like polyelectrolyte template mediated by metallic ion coordination
COPRECIPITATION ARTICLE 1: A COMPARATIVE PHYSICOCHEMICAL, MORPHOLOGICAL AND MAGNETIC STUDY OF SILANE-FUNCTIONALIZED SUPERPARAMAGNETIC IRON OXIDE NANOPARTICLES PREPARED BY ALKALINE COPRECIPITATION.
DE102018124344A1 (en) Conductive textiles
Zhao et al. Decorating silver nanoparticles onto multiwall carbon nanotube sheets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DOERFLER, SUSANNE

Inventor name: WISSER, FLORIAN

Inventor name: KASKEL, STEFAN,

Inventor name: MONDIN, GIOVANNI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DOERFLER, SUSANNE

Inventor name: WISSER, FLORIAN

Inventor name: MONDIN, GIOVANNI

Inventor name: KASKEL, STEFAN,

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180803

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 18/34 20060101ALI20181029BHEP

Ipc: C09C 3/00 20060101ALI20181029BHEP

Ipc: C04B 41/88 20060101ALI20181029BHEP

Ipc: C04B 41/82 20060101ALI20181029BHEP

Ipc: C09C 1/30 20060101AFI20181029BHEP

Ipc: C09C 3/06 20060101ALI20181029BHEP

Ipc: C22C 30/00 20060101ALI20181029BHEP

Ipc: B01J 13/02 20060101ALI20181029BHEP

Ipc: C09C 3/08 20060101ALI20181029BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181211

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1130080

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014011683

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190508

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014011683

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190809

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014011683

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

26N No opposition filed

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191127

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1130080

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221123

Year of fee payment: 9

Ref country code: FR

Payment date: 20221118

Year of fee payment: 9

Ref country code: DE

Payment date: 20221121

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524