EP3071537A1 - Produit pyrotechnique composite a liant non reticule et son procede de preparation - Google Patents

Produit pyrotechnique composite a liant non reticule et son procede de preparation

Info

Publication number
EP3071537A1
EP3071537A1 EP14809915.3A EP14809915A EP3071537A1 EP 3071537 A1 EP3071537 A1 EP 3071537A1 EP 14809915 A EP14809915 A EP 14809915A EP 3071537 A1 EP3071537 A1 EP 3071537A1
Authority
EP
European Patent Office
Prior art keywords
charges
polyurethane
gum
composite
composite pyrotechnic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14809915.3A
Other languages
German (de)
English (en)
Other versions
EP3071537B1 (fr
Inventor
Nancy Desgardin
Philippe Ragon
Mathieu W. Werschine
Caroline CARAYON
Jean-Louis Paulin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eurenco SA
ArianeGroup SAS
Original Assignee
Eurenco SA
Eurenco France SA
Herakles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurenco SA, Eurenco France SA, Herakles SA filed Critical Eurenco SA
Priority to PL14809915T priority Critical patent/PL3071537T3/pl
Publication of EP3071537A1 publication Critical patent/EP3071537A1/fr
Application granted granted Critical
Publication of EP3071537B1 publication Critical patent/EP3071537B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0008Compounding the ingredient
    • C06B21/0025Compounding the ingredient the ingredient being a polymer bonded explosive or thermic component

Definitions

  • the present invention relates to composite pyrotechnic products, particularly suitable as propellant powders for tube weapons (more particularly for tank artillery). These are composite pyrotechnic products, which contain a high level of energetic charges in a binder. These products are particularly interesting, especially in terms of strength (of energy power), vulnerability (see below a reminder on this concept, familiar to the skilled person), and scope of application as to the nature of loads that they can contain. They can opportunely be optimized in terms of erosivity.
  • the present invention also relates to a process for preparing said composite pyrotechnic products. Said method is particularly easy to implement.
  • propellant powders consisting of one or more gelatinized energy bases having a homogeneous appearance (hence their name).
  • homogeneous propellant powders mention may be made of "smoke-free" powders based on nitrocellulose alone or based on a nitrocellulose-nitroglycerine mixture.
  • organic (powdery) energy charges In order to improve the energy performance of these "homogeneous" powders, it has been sought to incorporate organic (powdery) energy charges. These charged powders no longer have a homogeneous appearance, but a heterogeneous appearance in which we distinguish on the one hand, the energy binder and on the other hand, the charges.
  • Such charged powders are called “composite” or “heterogeneous”.
  • Such charged powders are for example described in the French patent application FR 2,488,246.
  • nitrocellulose energy binder has the disadvantage of making these powders vulnerable.
  • Vulnerability is defined as the property that powders can be able to ignite and deflag under the effect of a physical, random, undesired phenomenon, such as the impact of a projectile. Vulnerability is a major defect for powders intended to be loaded on board battle tanks The development of modern combat gear has therefore led the skilled person to search for propellant powders that are not very vulnerable.
  • inert binder composite powders consisting mainly of organic energy charges in a synthetic resin.
  • Such powders are much less vulnerable than homogeneous powders or composites with energy binders (nitrocellulose).
  • energy binders nitrocellulose.
  • these powders must, in order to deliver the necessary energy during firing, contain very high levels of charges, often close to 80% of the total mass of the powder.
  • the inert binder composite powders thus have the characteristic of containing very little binder with respect to their powdery filler.
  • the precursor mixtures of these powders must, however, be able to be worked (in particular being able to be calendered or spun through a die of relatively small diameter, most often including pins intended to create the channels present in the final strand of powder), and the powders must keep their geometric shape in time. It is particularly with reference to obtaining these composite propellant powders with inert binder for tube weapons that the skilled person has encountered and still faces serious difficulties.
  • thermoplastic binders of synthetic origin, that can be used in the preparation of composite pyrotechnic products and present in their composition, exist to date as thermoplastic binders and as thermosetting binders (obtained from oligomers).
  • thermoplastic binders allow, in theory, temperature, a mechanical work of the product to give it the desired geometry. It should, however, of course, that the working temperature (to which the binder is deformable) is compatible with the stability of the present charges and, with reference to this unavoidable requirement, it is often necessary to involve a solvent. The intervention of such a solvent increases the implementation of the process.
  • the patent application EP 0 036 481 describes a process for manufacturing composite explosives with a thermoplastic binder.
  • the patent application IN 498 / DEL / 2001 discloses a method of preparing propellant containing hexogen (RDX) fillers in a thermoplastic binder.
  • RDX hexogen
  • thermosetting binders obtained from oligomers
  • polyurethane binders crosslinkable
  • thermosetting binders
  • thermosetting binders To operate without solvent, with thermosetting binders, said skilled in the art has made extensive use of the so-called “casting” or “global” technique, which consists in simultaneously mixing in a kneader the liquid elemental constituents of the resin and the energy charges and to cast, before polymerization, the mixture thus obtained in a mold to conduct the polymerization itself.
  • This technique which has been widely described, for example in the French patent applications FR 2 109 102, FR 2 196 998, FR 2 478 623 and FR 2 491 455, may be suitable for the manufacture of solid composite propellants for rocket engines, rockets, or the manufacture of composite explosives for gear heads, which are most often used in the form of large diameter products, but is totally unsuitable for the industrial manufacture of large, medium-sized composite powders and small calibres and more generally to that of certain composite pyrotechnic products;
  • thermosetting inert binder especially small diameters
  • the first which consists in mixing in a kneader the constituents of the resin with the energetic charges, to initiate the crosslinking of the resin and, during crosslinking, to perform, in a very short time, the shaping of the product, as described for example in the French patent applications FR 1 409 203 and FR 2 159 826.
  • This technique requires a sharp adjustment of the kinetics of crosslinking to allow the dough to work and because of this, it is difficult to manage at industrial scale;
  • the composite pyrotechnic products obtained by this second technique mainly consist, on the one hand, of a polymeric binder (for example polyurethane) obtained by reaction of a polyhydroxylated prepolymer (having a number-average molecular weight of between 2000 and 5000 and an average functionality of hydroxyl groups (OH greater than 2 and less than 3) (PBHT, polyether) , polyester, for example) with a crosslinking agent (diisocyanate), and secondly, by an energetic charge, preferably octogen (HMX) or hexogen (RDX), at a rate of about 80% by weight.
  • a polymeric binder for example polyurethane
  • a first step mixing said polyhydroxy prepolymer with said energetic charge and with a quantity of diisocyanate of between 50% and 90% by weight of the stoichiometric quantity necessary for the complete polymerization (reaction) of all the hydroxyl groups (OH) said prepolymer and performing the condensation reaction of the isocyanate groups (NCO) on the hydroxyl groups (OH) so as to obtain a partially polymerized (crosslinked) paste; + in a second step, to mix with said pulp partially polymerized (crosslinked) thus obtained the complement of diisocyanate necessary to reach said stoichiometric quantity necessary for the complete polymerization (crosslinking) and to extrude the pasty mixture thus obtained; then,
  • the technique in question thus comprises two polymerization or crosslinking steps, more specifically a first pre-crosslinking step (or first crosslinking step) with an amount of isocyanate allowing a partially polymerized (crosslinked) paste to be obtained, exhibiting adequate mechanical strength and cohesion for the implementation of the continuation of the process (in particular extrusion) and a second crosslinking step leading to the final product with the desired crosslinked binder.
  • said technique overcomes the two types of difficulties mentioned above (difficulty due to the lack of mechanical strength and cohesion of the product to be extruded and the problem of the "pot life").
  • the dosages of the crosslinking agent (diisocyanate) for the implementation of the pre-crosslinking are delicate. They require great precision.
  • the field of application of said technique is limited, in view of the nature of the intervening crosslinking agent (of isocyanate type, to react with hydroxyl functions), as to the nature of the energy charges present, in the as some energy charges (having intrinsic acidity) are likely to react, in a parasitic reaction, with said crosslinking agent (isocyanate type) present.
  • the presence of such fillers (EDNA, nitropyrazoles, for example) is therefore problematic for managing the steps of pre-crosslinking and complementary crosslinking.
  • composite pyrotechnic products particularly suitable as propellant powders for tube weapons, of a new type.
  • These (new) composite pyrotechnic products contain a high level of filler in a binder of a new type (this binder is neither a thermoplastic binder nor a thermoset binder).
  • the present invention thus relates to new composite pyrotechnic products. Characteristically, their compositions, expressed in percentages by weight, contain:
  • a polymeric gum chosen from polyurethane-polyester gums, polyurethane-polyether gums and mixtures thereof, the number-average molecular mass of which is greater than 20,000 g / mol and the Mooney viscosity of which is between 20 and 70 ML (5 +4) at 100 ° C.
  • the composite pyrotechnic products of the invention therefore contain a high level of organic energy charges in a binder of a new type: a binder, gum type ("raw rubber"), uncrosslinked. It is seen further that said binder is likely to contain a plasticizer.
  • the composite pyrotechnic products of the invention therefore contain a high level of organic energy charges: from 78 to 90% by weight, advantageously from 80 to 86% by weight.
  • organic charges of any type (not selected, as in the context of heat-crosslinkable binders, taking into account the crosslinking reaction to be implemented later), the mineral fillers being discarded insofar as they generate solid particles) are not per se original.
  • organic energy charges known per se and, for the most part, already packaged according to the prior art in a conventional organic polymeric binder (such as PBHT), in particular crosslinked.
  • RDX hexogen
  • HMX octogen
  • NGU nitroguanidine
  • EDNA ethylene dinitramine
  • GUDN dinitramide N-guanylurea
  • 1,1-diamino-2,2-dinitroethylene FOX 7 (DADE)
  • TAGZT bis (triaminoguanidinium) 5'-azotetrazolate
  • DHDZT dihydrazinium 5,5'-azotetrazolate
  • HBT bis (2,2-dinitropropyl) nitramine
  • BDNPN 2,2-dinitropropyl) nitramine
  • organic energetic charges of EDNA particularly preferably, there is a mixture of EDNA feeds and RDX feeds. It is by no means excluded to find only RDX loads or EDNA loads, but as noted above, mixes of EDNA loads and RDX loads can achieve an optimum in reference to the strength tradeoff. / erosivity. It is understood that the more these mixtures contain RDX, the more they are energetic but the more they are erosive.
  • the energy charges are in the form of solid grains, distributed homogeneously within the binder. These solid grains suitably have, in a known Persian manner, several particle size distributions.
  • the organic energy charges are therefore within an original binder.
  • Said original binder is based on an eraser of the type specified. According to a variant, it consists essentially of said gum (at least one additive being present in a small amount), or it consists of said gum. According to another variant, it consists essentially of said gum and at least one plasticizer (at least one additive being present in a small amount), or it consists of said gum and at least one plasticizer.
  • Said eraser is chosen from polyurethane-polyester gums (ie of the polyurethane type with flexible segments of polyester type), polyurethane-polyether gums (ie polyurethane-type polyurethane-type hoses) and their mixtures,
  • Such a rubber is perfectly suitable for the purposes of the invention, insofar as, in the proportions indicated (only 10 to 22%, it is recalled that high load products are involved), 1) it allows to work mechanically mixing (charges + gum) at low temperature, ie at a temperature below 120 ° C, or even below 100 ° C (fully compatible with the stability of the present charges), and without the use of solvent; and 2) it gives the final product the mechanical and cohesive strength required.
  • Said gum generally consists of a polyurethane-polyester gum or a polyurethane-polyether, but mixtures of at least two gums (at least two polyurethane-polyester gums, at least two polyurethane-polyether gums or at least one polyurethane-polyester gum and at least one polyurethane-polyether gum, such gum mixtures (gums within the meaning of the invention) constituting a gum within the meaning of the invention) having the required properties (mentioned above) may be used.
  • Said gum advantageously consists of a polyurethane-polyester gum.
  • composition of the composite pyrotechnic products of the invention is therefore likely to contain at least one plasticizer.
  • at least one plasticizer (energetic or non-energetic), present, is generally at a level of 2 to 8% by weight (of the total composition).
  • Such at least one plasticizer advantageously consists, with reference to the strength of the product, in at least one energetic plasticizer.
  • composition of the composite pyrotechnic products of the invention therefore advantageously contains at least one energetic plasticizer (an energetic plasticizer, at least two energetic plasticizers, or at least one energetic plasticizer and at least one non-energetic plasticizer), very advantageously it contains a plasticizer energy.
  • the energy plasticizer (s) in question is (are) advantageously of the nitrate and / or nitramine type.
  • the energy plasticizer (s) in question is (are) very advantageously chosen from diethylene glycol dinitrate. (DEGDN), triethylene glycine dinitrate (TEGDN), butanetriol trinitrate (BTTN), trimethylolethane trinitrate (TMETN), a mixture of 2,4-dinitro-2,4-diaza-pentane, 2,4 -dinitro-2,4-diaza-hexane and 3,5-dinitro-3,5-diaza-heptane (and especially DNDA 5.7), the nitrato ethy!
  • DEGDN diethylene glycol dinitrate
  • TAGDN triethylene glycine dinitrate
  • BTTN butanetriol trinitrate
  • TMETN trimethylolethane trinitrate
  • 2,4-dinitro-2,4-diaza-pentane 2,4 -dinitro-2,4-diaza-hexane
  • nitramines especially methyl-2-nitratoethyl-nitramine (methylNENA) and ethyl-2-nitratoethyl-nitramine (ethylNENA) and mixtures thereof.
  • methylNENA methyl-2-nitratoethyl-nitramine
  • ethylNENA ethyl-2-nitratoethyl-nitramine
  • processing agent candellila wax and / or paraffin, for example
  • the composite pyrotechnic products of the invention are perfectly suitable as propellant powder for tube weapons. Said composite pyrotechnic products of the invention therefore advantageously consist of such powders.
  • the composite pyrotechnic products of the invention, as described above, are also suitable, in particular, as tactical propellant, explosive composition and gas generator.
  • Said method constitutes the second object of the present invention. He understands :
  • polymeric gum chosen from polyurethane-polyester gums, polyurethane-polyether gums and mixtures thereof, the number-average molecular mass of which is greater than 20,000 g / mol and the Mooney viscosity of which is between 20 and 70 ML ( 5 +4) at 100 ° C;
  • a pasty mixture is thus produced, the precursor of the final product aimed at.
  • a pasty mixture is advantageously made by twin-screw (extrusion) or bi-cylinder, depending on the amounts to implement. It is usually done at a temperature between 60 ° C and 120 ° C (end values included). It is often carried out at a temperature of 80 ° C. It is understood that this mixing temperature is a function of the nature of the gum and the presence or absence of at least one plasticizer.
  • the product is prepared in the desired form (n products are generally prepared). Said third step is therefore analyzed as a step of shaping the dough.
  • This formatting can include spinning or calendering.
  • the spun product is generally cut into strands (to the desired length).
  • Such strands suitable as propellant powders for tube weapons, generally have a length of 2 to 20 mm, for a diameter of 1 to 20 mm (more generally for a diameter of 2 to 15 mm).
  • the calendered product in the form of a plate (such a plate generally has a thickness of 10 to 20 mm), is generally cut into platelets.
  • steps b and c of said method may comprise:
  • UREPAN ® G 641 sold by RheinChemie company (polyaddition product of diphenylmethane diisocyanate and a polyester). It has the following characteristics:
  • UREPAN ® G 643 sold by RheinChemie company (polyaddition product of diphenylmethane diisocyanate and a polyester). It has the following characteristics:
  • EDNA ethylene dinitramine
  • DNEU wet dinitroethylene urea
  • the medium was stirred for 30 minutes at room temperature.
  • the mixture was poured on a bath of cold water at about 5 ° C. with stirring.
  • the solid was then separated from the mother liquors by filtration, and washed several times with distilled water to neutral pH and then filtered off. It was then taken up, wet, for the synthesis of EDNA.
  • the decarboxylation step was carried out by adding the
  • the reaction medium was then cooled so that the EDNA precipitated.
  • the suspension was then filtered and dried. A return of
  • the obtaining of EDNA has been confirmed by infra-red.
  • Trioxyethylene glycol dinitrate (TEGDN) was obtained by nitration in a sulfonitrile medium of trioxyethylene glycol.
  • Composite pyrotechnic products of the invention of three types were prepared and tested. Their mass composition and their force (measured or calculated) are respectively given in Tables 1, 2 and 3 below. Below each of said tables 1, 2 and 3 are specified other characteristics of said products.
  • Step b of the process of the invention the pasty mixtures were obtained with a twin cylinder, in a known Persian manner.
  • the gum was first introduced between the rolls of the bi-roll (rolling mill), brought to a temperature of 65 ° C. It has been softened. Then, a mixture + plasticizer charges (previously made in a container) was added. To the resulting mixture was then added candelilla wax.
  • Step c of the process of the invention the pasty mixtures obtained were introduced into a press pot heated to 80 ° C to effect spinning at a pressure of between 280 and 320 bar. After cutting, we obtained strands of powder (diameter: 10 mm, length: 11 mm).
  • Em 1.4% (maximum crush before rupture).
  • Em 29.7% (maximum crush before rupture).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention a pour objet des produits pyrotechniques composites, notamment des poudres propulsives pour armes ô tube, dont la composition, exprimée en pourcentages massiques, renferme : - de 78 ô 90 %, avantageusement de 80 ô 86 %, de charges énergétiques organiques, et - de 10 ô 22 % d'une gomme polymérique, choisie parmi les gommes polyuréthanne-polyester, les gommes polyuréthanne-polyéther et leurs mélanges, dont la masse moléculaire moyenne en nombre est supérieure ô 20 000 g/mol et dont la viscosité Mooney est comprise entre 20 et 70 ML (5 +4) ô 100°C. Elle concerne également l'obtention desdits produits. Lesdits produits sont particulièrement intéressants de par leurs propriétés et la simplicité de leur obtention.

Description

PRODUIT PYROTECHNIQUE COMPOSITE A LIANT NON RETICULE ET SON PROCEDE DE PREPARATION
La présente invention concerne des produits pyrotechniques composites, convenant notamment comme poudres propulsives pour armes à tube (plus particulièrement pour l'artillerie de chars). Il s'agit de produits pyrotechniques composites, renfermant un fort taux de charges énergétiques dans un liant. Lesdits produits sont particulièrement intéressants, notamment en termes de force (de pouvoir énergétique), de vulnérabilité (voir ci-après un rappel sur cette notion, familière à l'homme du métier), et de champ d'application quant à la nature des charges qu'ils peuvent renfermer. Ils peuvent opportunément être optimisés en terme d'érosivité.
La présente invention a également pour objet un procédé de préparation desdits produits pyrotechniques composites. Ledit procédé est d'une mise en œuvre particulièrement aisée.
On connaît les poudres propulsives dites « homogènes » constituées par une ou plusieurs bases énergétiques gélatinisées présentant un aspect homogène (d'où leur nom). Parmi les poudres propulsives homogènes les plus connues, on peut citer les poudres « sans fumées » à base de nitrocellulose seule ou à base d'un mélange nitrocellulose-nitroglycérine. En vue d'améliorer les performances énergétiques de ces poudres « homogènes », on a cherché à y incorporer des charges énergétiques organiques (pulvérulentes). Ces poudres chargées ne présentent plus un aspect homogène, mais un aspect hétérogène dans lequel on distingue d'une part, le liant énergétique et d'autre part, les charges. De telles poudres chargées sont dites « composites » ou « hétérogènes ». De telles poudres chargées sont par exemple décrites dans la demande de brevet français FR 2 488 246. L'emploi du liant énergétique nitrocellulose présente cependant l'inconvénient de rendre ces poudres vulnérables. On entend par vulnérabilité la propriété que présentent des poudres de pouvoir s'allumer et déflagrer sous l'effet d'un phénomène physique, aléatoire, non désiré, comme par exemple l'impact d'un projectile. La vulnérabilité est un défaut majeur pour les poudres destinées à être embarquées à bord des chars de combat Le développement des engins modernes de combat a donc amené l'homme du métier à rechercher des poudres propulsives peu vulnérables.
Dans cet esprit, il a été proposé des poudres composites à liant inerte (constituées principalement de charges énergétiques organiques dans une résine synthétique). De telles poudres sont nettement moins vulnérables que les poudres homogènes ou composites à liant énergétique (nitrocellulose). Mais, du fait qu'elles contiennent un liant inerte, ces poudres doivent, pour délivrer lors de la mise à feu l'énergie nécessaire, renfermer des taux de charges très élevés, souvent voisins de 80 % de la masse totale de la poudre. Les poudres composites à liant inerte présentent ainsi la caractéristique de contenir très peu de liant par rapport à leur charge pulvérulente. Les mélanges précurseurs de ces poudres doivent toutefois pouvoir être travaillés (notamment pouvoir être calandrés ou filés à travers une filière de diamètre relativement petit, comportant le plus souvent des broches destinées à créer les canaux présents dans le brin de poudre final), et les poudres doivent conserver leur forme géométrique dans le temps. C'est particulièrement en référence à l'obtention de ces poudres propulsives composites à liant inerte pour armes à tube que l'homme de métier a rencontré et rencontre encore de sérieuses difficultés.
Les liants inertes, d'origine synthétique, utilisables dans la préparation des produits pyrotechniques composites et présents dans leur composition, existent à ce jour en tant que liants thermoplastiques et en tant que liants thermodurcissables (obtenus à partir d'oligomères).
C'est tout d'abord vers l'emploi de liants inertes thermoplastiques que s'est orienté l'homme du métier. En effet, de tels liants thermoplastiques permettent, en théorie, en température, un travail mécanique du produit pour lui conférer la géométrie voulue. Il convient toutefois, bien évidemment, que la température de travail (à laquelle le liant est déformable) soit compatible avec la stabilité des charges présentes et, en référence à cette exigence incontournable, il est souvent nécessaire de faire intervenir un solvant. L'intervention d'un tel solvant alourdit la mise en œuvre du procédé. La demande de brevet EP 0 036 481 décrit un procédé de fabrication d'explosifs composites à liant thermoplastique. La demande de brevet IN 498/DEL/2001 décrit un procédé de préparation de propergol renfermant des charges d'hexogène (RDX) dans un liant thermoplastique. Les produits composites à liant thermoplastique ne donnent pas, en général, entière satisfaction, dans la mesure où leurs propriétés mécaniques sont trop sensibles aux variations thermiques.
L'homme du métier s'est alors orienté vers l'emploi de liants inertes thermodurcissables (obtenus à partir d'oligomères), comme les liants polyuréthannes (réticulables), permettant, après réticulation, de constituer un réseau tridimensionnel (dans lequel on trouve enrobées les charges), i.e. de figer définitivement la géométrie du grain de poudre (obtenu finalement). La fabrication à l'échelle industrielle de poudres (produits pyrotechniques composites en général) à liant inerte réticulé (essentiellement constituées donc d'un fort taux de charges dans une quantité minimale de liant) reste très difficile du fait d'une part des tenue mécanique et cohésion minimales requises du produit avant réticulation (pour sa mise en forme) et d'autre part de la durée de "vie de pot" limitée des résines thermodurcissables (on entend par "vie de pot" la période de démarrage de réticulation de la résine durant laquelle cette dernière peut être travaillée comme une matière plastique). De plus, bien évidemment, la température de réticulation doit être compatible avec la stabilité des charges et l'agent de réticulation utilisé doit lui aussi être compatible avec lesdites charges.
Confronté à ces difficultés, dans le cadre de l'emploi de liants thermodurcissables :
- l'homme du métier a proposé de travailler en présence de solvants. Un procédé avec solvant a notamment été décrit dans la demande de brevet français FR 2 268 770. De tels procédés sont cependant d'une mise en œuvre complexe et coûteuse, qui ne donne pas satisfaction à l'échelle industrielle ;
- pour opérer sans solvant, avec des liants thermodurcissables, ledit homme du métier a eu largement recours à la technique dite "de coulée" ou encore "globale", qui consiste à mélanger simultanément dans un malaxeur les constituants élémentaires liquides de la résine et les charges énergétiques et à couler, avant polymérisation, le mélange ainsi obtenu dans un moule pour y conduire la polymérisation proprement dite. Cette technique qui a été largement décrite, par exemple dans les demandes de brevet français FR 2 109 102, FR 2 196 998, FR 2 478 623 et FR 2 491 455, peut convenir à la fabrication de propergols solides composites pour moteurs de fusées, ou de roquettes, ou encore à la fabrication d'explosifs composites pour les têtes d'engins, qui sont le plus souvent utilisés sous forme de produits de gros diamètre, mais se révèle totalement inadaptée à la fabrication industrielle de poudres composites de gros, moyens et petits calibres et plus généralement à celle de certains produits pyrotechniques composites ;
- pour fabriquer sans solvant des produits pyrotechniques composites à liant inerte thermodurcissable, notamment de petits diamètres, ledit homme du métier ne dispose en fait, à l'heure actuelle, que des deux techniques ci-après :
a) la première qui consiste à mélanger dans un malaxeur les constituants de la résine avec les charges énergétiques, à amorcer la réticulation de la résine et, en cours de réticulation, à effectuer, en un laps de temps très court, la mise en forme du produit, comme décrit par exemple dans les demandes de brevet français FR 1 409 203 et FR 2 159 826. Cette technique nécessite un réglage pointu de la cinétique de réticulation pour permettre de travailler la pâte et de ce fait, elle est difficilement gérable à l'échelle industrielle ;
b) la seconde, beaucoup plus performante, y compris à l'échelle industrielle, décrite dans la demande de brevet EP 0 194 180. Les produits pyrotechniques composites obtenus par cette seconde technique sont constitués principalement, d'une part, par un liant polymère (par exemple polyuréthanne) obtenu par réaction d'un prépolymère (polymère) polyhydroxylé (présentant une masse moléculaire moyenne en nombre comprise entre 2000 et 5000 et une fonctionnalité moyenne en groupes hydroxyles (OH supérieure à 2 et inférieure à 3) (PBHT, polyéther, polyester, par exemple) avec un agent de réticulation (diisocyanate), et d'autre part, par une charge énergétique, préférentiellement d'octogène (HMX) ou d'hexogène (RDX), à un taux d'environ 80 % en masse. Ladite seconde technique consiste :
+ dans une première étape, à mélanger ledit prépolymère polyhydroxylé avec ladite charge énergétique et avec une quantité de diisocyanate comprise entre 50 % et 90 % en masse de la quantité stœchiométrique nécessaire à la polymérisation (réaction) complète de tous les groupes hydroxyles (OH) dudit prépolymère et à effectuer la réaction de condensation des groupes isocyanates (NCO) sur les groupes hydroxyles (OH) de manière à obtenir une pâte partiellement polymérisée (réticulée) ; + dans une seconde étape, à mélanger à ladite pâte partiellement polymérisée (réticulée) ainsi obtenue le complément de diisocyanate nécessaire pour atteindre ladite quantité stcechiométrique nécessaire à la polymérisation (réticulation) complète et à extruder le mélange pâteux ainsi obtenu ; puis,
+ dans une troisième étape, à achever par cuisson à chaud la réaction de condensation des groupes isocyanates (NCO) ajoutés au cours de la deuxième étape sur les groupes hydroxyles (OH) encore libres.
La technique en cause comprend donc deux étapes de polymérisation ou réticulation, plus précisément une première étape de pré-réticulation (ou première phase de réticulation) avec une quantité d'isocyanate permettant l'obtention d'une pâte partiellement polymérisée (réticulée), présentant tenue mécanique et cohésion adéquates pour la mise en œuvre de la suite du procédé (notamment de l'extrusion) et une seconde étape de réticulation conduisant au produit final avec liant réticulé souhaité. En cela, ladite technique surmonte les deux types de difficultés énoncées ci- dessus (difficulté due au manque de tenue mécanique et cohésion du produit à extruder et problème de la « vie de pot »).
En référence à cette seconde technique, on doit toutefois noter que les dosages de l'agent de réticulation (diisocyanate) pour la mise en œuvre de la pré-réticulation sont délicats. Ils nécessitent une grande précision. Par ailleurs, le champ d'application de ladite technique est limité, au vu de la nature de l'agent de réticulation intervenant (de type isocyanate, pour réagir avec des fonctions hydroxyles), quant à la nature des charges énergétiques présentes, dans la mesure où certaines charges énergétiques (possédant une acidité intrinsèque) sont susceptibles de réagir, selon une réaction parasite, avec ledit agent de réticulation (de type isocyanate) présent. La présence de telles charges (EDNA, nitropyrazoles, par exemple) pose donc problème pour gérer les étapes de pré-réticulation et réticulation complémentaire. Or, cette présence est loin d'être anecdotique, dans le cadre de la présente invention, celui des produits pyrotechniques composites, notamment des poudres propulsives pour armes à tube. En effet, dans ce cadre, on vise à utiliser de fort taux de charges énergétiques (voir ci-dessus), notamment de fort taux de charges de type RDX. Or, l'homme du métier connaît l'impact négatif d'un fort taux de telles charges sur l'érosivité de la poudre le contenant. Le remplacement d'au moins une partie du RDX par d'autres charges énergétiques (telles que l'EDNA), moins érosives, est donc souhaitable. Il serait donc vivement opportun de disposer d'un nouveau type de liant, ne nécessitant pas l'emploi d'agents de réticulation de type isocyanate.
Dans un tel contexte, les inventeurs proposent des produits pyrotechniques composites, convenant notamment comme poudres propulsives pour armes à tube, d'un type nouveau. Ces (nouveaux) produits pyrotechniques composites renferment un fort taux de charges dans un liant d'un type nouveau (ce liant n'est ni un liant thermoplastique, ni un liant thermodurci (thermoréticulé)). Ces (nouveaux) produits pyrotechniques composites sont particulièrement intéressants en termes de force (ils renferment un fort taux de charges énergétiques), de vulnérabilité (ils ne renferment pas de nitroeellulose et peuvent avantageusement renfermer des charges énergétiques peu vulnérables), de procédé d'obtention (leur procédé d'obtention est d'une mise en œuvre particulièrement aisée (il ne comprend notamment pas d'étape de réticulation et donc n'implique pas l'utilisation d'agent(s) de réticulation)) et ils peuvent aussi être optimisés en terme d'érosivité (ils peuvent avantageusement renfermer des charges d'EDNA en substitution totale ou partielle de charges de RDX). Ils sont en fait susceptibles de renfermer tout type de charge énergétique organique (voir le large champ d'application des produits de l'invention quant à la nature des charges mentionné dessus) dans la mesure où, en l'absence d'agent de réticulation, il n'y a pas à craindre de réaction parasite (charges/agent(s) de réticulation). Selon son premier objet, la présente invention concerne donc de nouveaux produits pyrotechniques composites. De façon caractéristique, leurs compositions, exprimées en pourcentages massiques, renferment :
- de 78 à 90 %, avantageusement de 80 à 86 %, de charges énergétiques organiques, et
- de 10 à 22 % d'une gomme polymérique, choisie parmi les gommes polyuréthanne-polyester, les gommes polyuréthanne-polyéther et leurs mélanges, dont la masse moléculaire moyenne en nombre est supérieure à 20 000 g/mol et dont la viscosité Mooney est comprise entre 20 et 70 ML (5 +4) à 100°C.
Comme indiqué ci-dessus, les produits pyrotechniques composites de l'invention renferment donc un fort taux de charges énergétiques organiques dans un liant d'un type nouveau : un liant, de type gomme (« caoutchouc cru »), non réticulé. On voit plus loin que ledit liant est susceptible de renfermer un plastifiant.
Les produits pyrotechniques composites de l'invention renferment donc un fort taux de charges énergétiques organiques : de 78 à 90 % en masse, avantageusement de 80 à 86 % en masse.
Les charges en cause (charges organiques de tout type (non sélectionnées, comme dans le contexte des liants thermoréticulables, en tenant compte de la réaction de réticulation à mettre en œuvre ultérieurement) ; les charges minérales ayant été écartées dans la mesure où elles génèrent des particules solides) ne sont pas per se originales. Il s'agit de charges énergétiques organiques connues per se et, pour la plupart, déjà conditionnées selon l'art antérieur dans un liant polymérique organique conventionnel (tel le PBHT), notamment réticulé. Il s'agit avantageusement de charges d'hexogène (RDX), d'octogène (HMX), de nitroguanidine (NGU), d'éthylène dinitramine (EDNA), de dinitramide de N-guanylurée (FOX 12 (GUDN)), de l,l-diamino-2, 2-dinitro éthylène (FOX 7 (DADE)), de 5,5'-azotétrazolate de bis(triaminoguanidinium) (TAGZT), de 5,5'-azotétrazolate de dihydrazinium (DHDZT), de 5,5'- bis(tétrazolyl)hydrazine (HBT), de bis(2,2-dinitropropyl) nitramine (BDNPN), d'un nitropyrazole ou d'un mélange de ces charges énergétiques
Au sein des produits pyrotechniques composites de l'invention, on trouve donc un type de charges énergétiques, avantageusement choisi parmi la liste ci-dessus, ou un mélange d'au moins deux types de charges énergétiques, avantageusement choisis parmi la liste ci-dessus. De façon préféré, on y trouve des charges énergétiques organiques d'EDNA. De - façon particulièrement préférée, on y trouve un mélange de charges d'EDNA et de charges de RDX. Il est nullement exclu de ne trouver que des charges de RDX ou que des charges d'EDNA, mais comme indiqué ci-dessus, des mélanges de charges d'EDNA et de charges de RDX permettent d'atteindre un optimum en référence au compromis force/érosivité. On a compris que plus lesdits mélanges renferment de RDX, plus ils sont énergétiques mais plus ils sont érosifs.
Les charges énergétiques se présentent sous la forme de grains solides, répartis de façon homogène au sein du liant. Ces grains solides présentent opportunément, de façon connue perse, plusieurs distributions granulométriques.
Les charges énergétiques organiques se trouvent donc au sein d'un liant original. Ledit liant original est à base d'une gomme du type précisé. Selon une variante, il consiste essentiellement en ladite gomme (au moins un additif étant présent en faible quantité), voire il consiste en ladite gomme. Selon une autre variante, il consiste essentiellement en ladite gomme et au moins un plastifiant (au moins un additif étant présent en faible quantité), voire il consiste en ladite gomme et au moins un plastifiant.
Ladite gomme : - est choisie parmi les gommes polyuréthanne-polyester (i.e. de nature polyuréthanne à segments souples de type polyester), les gommes polyuréthanne-polyéther (i.e. de nature polyuréthanne à segments souples de type polyéther) et leurs mélanges,
- elle présente une masse moléculaire moyenne en nombre supérieure à 20 000 g/mol (avantageusement supérieure à 50 000 g/mol, très avantageusement supérieure à 75 000 g/mol (tout particulièrement en référence à la résistance au vieillissement du produit final)), et
- elle présente une viscosité Mooney comprise entre 20 et 70 ML (5 + 4) à 100°C. Ce paramètre est très utilisé dans l'industrie du caoutchouc. « x ML (5 + 4) à 100°C » se lit « x M égal à la viscosité en unités (ou points) Mooney ; L ou S (ici L) correspondant à la taille du rotor, 5 indiquant le temps de préchauffage du produit et 4, le temps en minutes après le démarrage du moteur auquel lecture est prise, 100°C étant la température de la mesure ». La valeur « x » est généralement donnée à « +/- y » ; c'est ladite valeur « x » qui doit, selon l'invention, être dans la plage 20-70 (valeurs d'extrémités comprises).
Une telle gomme convient parfaitement aux fins de l'invention, dans la mesure où, en les proportions indiquées (de 10 à 22 % seulement, on rappelle que des produits à fort taux de charge sont en cause), 1) elle permet de travailler mécaniquement le mélange (charges + gomme) à basse température, i.e. à une température inférieure à 120°C, voire même inférieure à 100°C (tout à fait compatible avec la stabilité des charges présentes), et ce, sans utilisation de solvant ; et 2) elle confère au produit final les tenue mécanique et cohésion requises.
Il est du mérite des inventeurs d'avoir identifié (sélectionné) ce type de gomme, convenant parfaitement aux fins de l'invention. D'autres types de gomme ont été testés et n'ont pas donné de résultats satisfaisants (quant à la possibilité de travailler le mélange à basse température et/ou quant aux propriétés du produit final). L'homme du métier a d'ores et déjà compris qu'en référence à la première des deux stipulations du cahier des charges rappelées ci-dessus, le résultat peut encore être amélioré par l'intervention d'au moins un plastifiant.
Ladite gomme consiste généralement en une gomme polyuréthanne-polyester ou une polyuréthanne-polyéther, mais des mélanges d'au moins deux gommes (au moins deux gommes polyuréthanne-polyester, au moins deux gommes polyuréthanne-polyéther ou au moins une gomme polyuréthanne-polyester et au moins une gomme polyuréthanne-polyéther ; de tels mélanges de gommes (gommes au sens de l'invention) constituant une gomme au sens de l'invention) présentant les propriétés requises (rappelées ci-dessus) peuvent être utilisés. Ladite gomme consiste avantageusement en une gomme polyuréthanne-polyester.
La composition des produits pyrotechniques composites de l'invention est donc susceptible de renfermer au moins un plastifiant. Un tel au moins un plastifiant (énergétique ou non énergétique), présent, l'est généralement à raison de 2 à 8 % en masse (de la composition totale). Un tel au moins un plastifiant consiste avantageusement, en référence à la force du produit, en au moins un plastifiant énergétique.
La composition des produits pyrotechniques composites de l'invention renferme donc avantageusement au moins un plastifiant énergétique (un plastifiant énergétique, au moins deux plastifiants énergétiques, ou au moins un plastifiant énergétique et au moins un plastifiant non énergétique), très avantageusement elle renferme un plastifiant énergétique.
Le(s) plastifiant(s) énergétique(s) en cause est(sont) avantageusement de type nitrate et/ou nitramine.
Le(s) plastifiant(s) énergétique(s) en cause est(sont) très avantageusement choisi(s) parmi le dinitrate de diéthylène glycol (DEGDN), le dinitrate de triéthylène glycôl (TEGDN), le trinitrate de butanetriol (BTTN), le trinitrate de triméthyloléthane (TMETN), un mélange de 2,4-dinitro-2,4-diaza-pentane, de 2,4-dinitro-2,4-diaza-hexane et de 3,5-dinitro-3,5-diaza-heptane (et tout particulièrement le DNDA 5,7), les nitrato éthy! nitramines (notamment le méthyl-2-nitratoéthyi nitramine (méthylNENA) et l'éthyl-2-nitratoéthyl nitramine (éthylNENA)) et leurs mélanges.
La composition des produits pyrotechniques composites de l'invention est donc essentiellement constituée, voire constituée, des charges énergétiques et du liant, à base de ladite gomme (liant = ladite gomme ou liant = ladite gomme + au moins un plastifiant). Elle peut être constituée à 100 % en masse desdites charges énergétiques et dudit liant. Elle l'est généralement à au moins 95 % en masse, plus généralement à au moins 98 % en masse. Il ne saurait en effet être exclu qu'elle renferme en sus au moins un additif. Un tel au moins un additif, lorsqu'il est présent, l'est généralement à raison de 0,1 à 2 % en masse. Il peut notamment s'agir d'au moins un agent de mise en œuvre (cire de candellila et/ou paraffine, par exemple) et/ou d'au moins un stabilisant.
Les produits pyrotechniques composites de l'invention, tels que décrits ci-dessus, conviennent parfaitement comme poudre propulsive pour armes à tube. Lesdits produits pyrotechniques composites de l'invention consistent donc avantageusement en de telles poudres. Les produits pyrotechniques composites de l'invention, tels que décrits ci- dessus, conviennent, également, notamment, comme propergol tactique, composition explosive et générateur de gaz.
Le grand intérêt des produits de l'invention ressort à l'évidence des propos ci-dessus. Les produits sont intéressants perse ( en termes de force, de vulnérabilité, de large champ d'application en référence à la nature des charges) et dans la mesure où ils peuvent être obtenus par un procédé simple à mettre en œuvre (beaucoup plus simple à mettre en œuvre que les procédés de l'art antérieur).
Ledit procédé constitue le deuxième objet de la présente invention. Il comprend :
a) la mise à disposition des ingrédients ci-après :
- des charges énergétiques organiques,
- une gomme polymérique, choisie parmi les gommes polyuréthanne- polyester, les gommes polyuréthanne-polyéther et leurs mélanges, dont la masse moléculaire moyenne en nombre est supérieure à 20 000 g/mol et dont la viscosité Mooney est comprise entre 20 et 70 ML (5 +4) à 100°C ;
b) le mélange de ceux-ci, en les proportions adéquates en référence à la composition souhaitée du produit final, pour l'obtention d'un mélange pâteux ;
c) l'obtention, à partir dudit mélange pâteux, du(des) produit(s) pyrotechnique(s) composite(s) à la forme souhaitée.
Il comprend donc la mise à disposition des ingrédients constitutifs essentiels des produits pyrotechniques composites recherchés : les charges + la gomme. En sus desdits ingrédients essentiels, on a vu que sont susceptibles d'être utilisés au moins un plastifiant et au moins un additif (notamment de type agent de mise en œuvre et/ou stabilisant).
En référence à chacun des ingrédients utilisés pour la mise en œuvre du procédé, on peut se référer à la première partie du texte relative au produit.
Dans un premier temps, à partir des ingrédients identifiés ci-dessus (charges + gomme + éventuellement, au moins un plastifiant + éventuellement, au moins un additif), on réalise donc un mélange pâteux, précurseur du produit final visé. Un tel mélange pâteux est avantageusement réalisé à la bi-vis (par extrusion) ou au bi-cylindre, suivant les quantités à mettre en œuvre. Il est généralement réalisé à une température comprise entre 60°C et 120°C (valeurs d'extrémité comprises). Il est souvent réalisé à une température de 80°C. On comprend que cette température de mélange est fonction de la nature de la gomme et de la présence ou non d'au moins un plastifiant.
A partir dudit mélange pâteux, on prépare, dans la troisième étape du procédé de l'invention, le produit à la forme souhaitée (on prépare ainsi généralement n produits). Ladite troisième étape s'analyse donc comme une étape de mise en forme de la pâte. Cette mise en forme peut notamment comprendre un filage ou un calandrage. A l'issue d'un tel filage (mis en oeuvre dans un pot de presse, présentant un orifice de sortie de diamètre plus ou moins conséquent), le produit filé est généralement découpé en brins (à la longueur souhaitée). De tels brins, convenant comme poudres propulsives pour armes à tube, présentent, généralement, une longueur de 2 à 20 mm, pour un diamètre de 1 à 20 mm (plus généralement pour un diamètre de 2 à 15 mm). A l'issue d'un tel calandrage, le produit calandré, sous la forme d'une plaque (une telle plaque présente généralement une épaisseur de 10 à 20 mm), est généralement découpé en plaquettes.
Selon des variantes de mise en œuvre du procédé de l'invention, les étapes b et c dudit procédé peuvent comprendre :
- malaxage à la bi-vis (ou extrusion) et filage,
- malaxage au bi-cylindre et filage, ou
- malaxage (à la bi-vis ou au bi-cylindre) et calandrage. On se propose maintenant d'illustrer l'invention, de façon nullement limitative, sous ces aspects de produit et de procédé, par les exemples ci-après. 1) Matières premières utilisées a) Commerciales
. Gommes : Millathane®76, commercialisée par la société TSE Industries (produit de polyaddition d'un uréthanne et d'un polyester). Elle présente les caractéristiques ci-après :
Masse moléculaire moyenne en nombre : 40 000 g/mol
Viscosité Mooney : 35 (+/-10) ML (1 +4) à 100°C ;
UREPAN® 641 G : commercialisée par la société RheinChemie (produit de polyaddition du diphényl-méthane diisocyanate et d'un polyester). Elle présente les caractéristiques ci-après :
Masse moléculaire moyenne en nombre : 80 000 g/mol
Viscosité Mooney : 45 (+/-10) ML (5 +4) à 100°C ;
UREPAN® 643 G : commercialisée par la société RheinChemie (produit de polyaddition du diphényl-méthane diisocyanate et d'un polyester). Elle présente les caractéristiques ci-après :
Masse moléculaire moyenne en nombre : 80 000 g/mol
Viscosité Mooney : 40 (+/-10) ML (5 +4) à 100°C. a) Préparées
. Charges : EDNA
La synthèse de l'éthylène dinitramine (EDNA) a été réalisée en deux temps via l'isolement d'un intermédiaire : la dinitroéthylène urée (DNEU), humide, qui a ensuite été transformée en EDNA. Dans un réacteur double enveloppe de 50 cm3, on a introduit l'acide nitrique concentré. Le bain nitrant a ensuite été refroidi à une température réactionnelle à 0°C. Dès que le bain a atteint à 0°C, on a commencé l'introduction d'imidazolidone. On a introduit lentement ce réactif pour ne pas dépasser 20°C. La DNEU a précipité, dès que sa concentration dans le milieu a été supérieure à 23 % en masse. On a poursuivi l'introduction d'imidazolidone dans le milieu hétérogène (bain nitrant + DNEU solide).
Après la fin de l'introduction de l'imidazolidone, le milieu a été laissé sous agitation pendant 30 minutes à température ambiante.
En fin de réaction, le mélange a été coulé sur un bain d'eau froide à environ 5°C sous agitation. Le solide a alors été séparé des eaux mères par filtration, et lavé plusieurs fois à l'eau distillée jusqu'à pH neutre puis essoré. Il a ensuite été repris, humide, pour la synthèse de l'EDNA.
L'étape de décarboxylation a été réalisée par addition de la
DNEU sur une solution aqueuse tamponnée par de l'acétate de sodium à chaud. Un dégagement gazeux (de CO2) a été observé, ce qui nécessite une introduction fractionnée de la poudre.
Une fois l'introduction de la DNEU terminée, un palier à 95°C est réalisé pour terminer la formation de l'EDNA.
Le milieu réactionnel a ensuite été refroidi pour que l'EDNA précipite. La suspension a alors été filtrée puis séchée. Un rendement de
85 % a été obtenu.
L'obtention d'EDNA a été confirmée par infra-rouge.
IR : 2936 cm-1 CH aliphatique, 1593 cm-1 NO2, 1448 cm-1 N=N,
1360 cm-1 C-H.
Les cristaux d'EDNA obtenus sont de gros cristaux (ils présentent un D50 supérieur ou égal à 100 μιτι (D50 = diamètre pour lequel le pourcentage volumique cumulé est de 50 %)). Pour leur utilisation, ils sont broyés dans un broyeur de type SWECO®' A l'issue dudit broyage, ils présente un D50 de 30 μηι.
. Plastifiant : TEGDN
Le trioxyéthylène glycol dinitrate (TEGDN) a été obtenu par nitration en milieu sulfonitrique du trioxyéthylène glycol.
2) Procédé de préparation de produits pyrotechniques composites de l'invention
Des produits pyrotechniques composites de l'invention de trois types (exemples 1, 2 et 3) ont été préparés et testés. Leur composition massique et leur force (mesurée ou calculée) sont respectivement données dans les tableaux 1, 2 et 3 ci-après. En dessous de chacun desdits tableaux 1, 2 et 3, on a précisé d'autres caractéristiques desdits produits.
Ces produits pyrotechniques composites de l'invention ont été obtenus à partir des matières premières identifiées ci-dessus.
Etape b du procédé de l'invention : les mélanges pâteux ont été obtenus au bi-cylindre, de façon connue perse. La gomme a tout d'abord été introduite entre les rouleaux du bi-cylindre (laminoir), portés à une température de 65°C. Elle a ainsi été ramollie. Ensuite, un mélange charges + plastifiant (préalablement réalisé dans un récipient) a été ajouté. Au mélange résultant, on a alors ensuite additionné la cire de candelilla.
Etape c du procédé de l'invention : les mélanges pâteux obtenus ont été introduits dans un pot de presse chauffé à 80°C pour réaliser le filage sous une pression comprise entre 280 et 320 bars. Après découpe, on a obtenu des brins de poudre (diamètre : 10 mm, longueur : 11 mm).
Exemple 1
Tableau 1
Des caractéristiques du produit obtenu (après mélange au bi- cylindre et filage) sont indiquées ci-après.
Propriétés mécaniques à 20°C en compression (10 mm/min) :
Sm = 0,9 MPa (contrainte maximum à la rupture)
E = 10, 2 MPa (module d'élasticité)
Em = 14,2 % (écrasement maximum avant rupture). Exemple 2
Tableau 2
Des caractéristiques du produit obtenu (après mélange au bi- cylindre et filage) sont indiquées ci-après.
Propriétés mécaniques à 20°C en compression (10 mm/min) : Sm = 13,7 MPa (contrainte maximum à la rupture)
E = 14,6 MPa (module d'élasticité)
Em = 1,4 % (écrasement maximum avant rupture).
Exemple 3
% massique
Liant UREPAN® 643 G 15,1 18
TRENO 2,6
Cire de candelilla 0,3
Charge EDNA 82,0 82
100
F calculée (MJ/kg) 1,008 Des caractéristiques du produit obtenu (après mélange au bi- cylindre et filage) sont indiquées ci-après.
Propriétés mécaniques à 20°C en compression (10 mm/min) : Sm = 7,9 MPa (contrainte maximum à la rupture)
E = 40,6 MPa (module d'élasticité)
Em = 29,7 % (écrasement maximum avant rupture).

Claims

REVENDICATIONS
1. Produit pyrotechnique composite dont la composition, exprimée en pourcentages massiques, renferme :
- de 78 à 90 %, avantageusement de 80 à 86 %, de charges énergétiques organiques, et
- de 10 à 22 % d'une gomme polymérique, choisie parmi les gommes polyuréthanne-polyester, les gommes polyuréthanne-polyéther et leurs mélanges, dont la masse moléculaire moyenne en nombre est supérieure à 20 000 g/mol et dont la viscosité Mooney est comprise entre 20 et 70 ML (5 +4) à 100°C.
2. Produit pyrotechnique composite selon la revendication 1, caractérisé en ce que lesdites charges énergétiques organiques consistent en des charges d'hexogène, d'octogène, de nitroguanidine, d'éthylène dinitramine, de dinitramide de N-guanylurée, de l,l-diamino-2,2-dinitro éthylène, de 5,5'-azotétrazolate de bis(triaminoguanidinium), de 5,5'- azotétrazolate de dihydrazinium, de 5,5'-bis(tétrazolyl)hydrazine, de bis(2,2-dinitropropyl) nitramine, d'un nitropyrazole ou en un mélange de telles charges.
3. Produit pyrotechnique composite selon la revendication 1 ou 2, caractérisé en ce que lesdites charges énergétiques organiques renferment des charges d'éthylène dinitramine, avantageusement des charges d'hexogène et des charges d'éthylène dinitramine.
4. Produit pyrotechnique composite selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite gomme polymérique présente une masse moléculaire moyenne en nombre supérieure à 50 000 g/mol, très avantageusement supérieure à 75 000 g/mol.
5. Produit pyrotechnique composite selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ladite gomme est une gomme polyuréthanne-polyester ou une gomme polyuréthanne-polyéther, avantageusement une gomme polyuréthanne-polyester.
6. Produit pyrotechnique composite selon l'une quelconque des revendications 1 à 5, caractérisé en ce que sa composition renferme, en outre, au moins un plastifiant, énergétique ou non, avantageusement énergétique ; ledit plastifiant représentant de 2 à 8 % en masse de la composition dudit produit pyrotechnique.
7. Produit pyrotechnique composite selon la revendication 6, caractérisé en ce que ledit au moins un plastifiant est un plastifiant énergétique de type nitrate et/ou nitramine.
8. Produit pyrotechnique composite selon la revendication 7, caractérisé en ce que ledit au moins un plastifiant est choisi parmi le dinitrate de diéthylène glycol, le dinitrate de triéthylène glycol, le trinitrate de butanetriol, le trinitrate de triméthyloléthane, un mélange de 2,4- dinitro-2,4-diaza-pentane, de 2,4-dinitro-2,4-diaza-hexane et de 3,5- dinitro-3,5-diaza-heptane, les nitrato éthyl nitramines et leurs mélanges.
9. Produit pyrotechnique composite selon l'une quelconque des revendications 1 à 8, caractérisé en ce que sa composition renferme, en outre, de 0,1 à 2 % en masse, d'au moins un additif, notamment choisi parmi les agents de mise en œuvre et les stabilisants.
10. Produit pyrotechnique composite selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il consiste en une poudre propulsive pour armes à tube.
11. Procédé pour la préparation d'au moins un produit pyrotechnique composite selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comprend :
a) la mise à disposition des ingrédients ci-après :
- des charges énergétiques organiques,
- une gomme polymérique, choisie parmi les gommes polyuréthanne- polyester, les gommes polyuréthanne-polyéther et leurs mélanges, dont la masse moléculaire moyenne en nombre est supérieure à 20 000 g/mol et dont la viscosité Mooney est comprise entre 20 et 70 ML (5 +4) à 100°C ;
b) le mélange de ceux-ci, en les proportions adéquates en référence à la composition souhaitée du produit final, pour l'obtention d'un mélange pâteux ;
c) l'obtention, à partir dudit mélange pâteux, dudit au moins un produit pyrotechnique composite à la forme souhaitée.
12. Procédé selon la revendication 11, caractérisé en ce qu'il comprend en outre la mise à disposition d'au moins un plastifiant, énergétique ou non, avantageusement énergétique, et/ou d'au moins un additif et le mélange desdites charges et gomme avec ledit au moins un plastifiant et/ou ledit au moins un additif pour l'obtention d'un mélange pâteux.
13. Procédé selon la revendication 11 ou 12, caractérisé en ce que ledit mélange est réalisé à la bi-vis ou au bi-cylindre.
14. Procédé selon l'une quelconque des revendications 11 à 13, caractérisé en ce que ledit mélange est réalisé à une température comprise entre 60°C et 120°C.
15. Procédé selon l'une quelconque des revendications 11 à 14, caractérisé en ce que iedit au moins un produit pyrotechnique composite est obtenu via un filage ou un calandrage.
EP14809915.3A 2013-11-22 2014-11-21 Produit pyrotechnique composite a liant non reticule et son procede de preparation Active EP3071537B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14809915T PL3071537T3 (pl) 2013-11-22 2014-11-21 Kompozytowy wyrób pirotechniczny z nieusieciowanym lepiszczem i sposób jego wytwarzania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1302707A FR3013705B1 (fr) 2013-11-22 2013-11-22 Produit pyrotechnique composite a liant non reticule et son procede de preparation
PCT/FR2014/000250 WO2015075327A1 (fr) 2013-11-22 2014-11-21 Produit pyrotechnique composite a liant non reticule et son procede de preparation

Publications (2)

Publication Number Publication Date
EP3071537A1 true EP3071537A1 (fr) 2016-09-28
EP3071537B1 EP3071537B1 (fr) 2017-08-16

Family

ID=50478442

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14809915.3A Active EP3071537B1 (fr) 2013-11-22 2014-11-21 Produit pyrotechnique composite a liant non reticule et son procede de preparation

Country Status (6)

Country Link
US (1) US20160289133A1 (fr)
EP (1) EP3071537B1 (fr)
CA (1) CA2930486A1 (fr)
FR (1) FR3013705B1 (fr)
PL (1) PL3071537T3 (fr)
WO (1) WO2015075327A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3028853B1 (fr) * 2014-11-21 2016-12-30 Pyroalliance Cordeaux detonants de decoupe et leur preparation
FR3028852B1 (fr) * 2014-11-21 2017-01-06 Herakles Produits explosifs composites de faible epaisseur et leur preparation

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3151010A (en) * 1955-02-11 1964-09-29 Phillips Petroleum Co Method of preparing a solid composite propellant
US3026672A (en) * 1959-06-29 1962-03-27 Phillips Petroleum Co Composite propellant containing burning rate depressant and method of use
FR1409203A (fr) 1961-01-10 1965-08-27 Aerojet General Co Mélanges propulsifs à base de polyuréthanes
US3577289A (en) * 1968-02-12 1971-05-04 Jacque C Morrell Composite high energy solid rocket propellants and process for same
GB1316692A (en) 1970-05-04 1973-05-09 North American Rockwell Monomers polymerisable to form binders for explosive and propellant compositions and polymers and compositions formed therefrom
FR2109102A5 (en) 1970-10-01 1972-05-26 France Etat Resin bound explosive - contg rounded particles of explosive
FR2159826A5 (en) 1971-11-12 1973-06-22 Voith Gmbh Extruding thermosetting resins - eg polyesters with fibrous fillers to give stable profiles
FR2268770A1 (en) 1974-04-24 1975-11-21 Commissariat Energie Atomique Resin coated explosive compsn - prepd by liquid phase prodn of granules which are then compressed and crosslinked by heating
DE3010052C2 (de) 1980-03-15 1982-09-09 Friedrich-Ulf 8899 Rettenbach Deisenroth Verfahren zur Herstellung von kunststoffgebundenen Explosivstoffen
JPS56160395A (en) 1980-03-20 1981-12-10 Hercules Inc Crosslinked propellant
US4381958A (en) 1980-08-07 1983-05-03 Hercules Incorporated Triaminoguanidine nitrate-containing propellants
JPS609996B2 (ja) 1980-10-07 1985-03-14 日本油脂株式会社 ニトラミン系コンポジツト推進薬組成物
US4335231A (en) * 1981-04-03 1982-06-15 Uniroyal, Inc. Sulfur curable millable polyurethane gum
FR2577919B1 (fr) 1985-02-27 1987-02-20 Poudres & Explosifs Ste Nale Procede de fabrication sans solvant de produits pyrotechniques composites a liant thermodurcissable et produits ainsi obtenus, notamment poudres propulsives composites
US5500060A (en) * 1986-07-04 1996-03-19 Royal Ordnance Plc Energetic plasticized propellant
US4919737A (en) * 1988-08-05 1990-04-24 Morton Thiokol Inc. Thermoplastic elastomer-based low vulnerability ammunition gun propellants
US5248731A (en) * 1989-03-20 1993-09-28 Reeves Bros. Inc. Calenderable thermoplastic compositions containing millable linear polyurethanes
DE69905398T2 (de) * 1998-11-12 2003-06-12 Alliant Techsystems Inc Herstellung von energetischen thermoplastischen elastomeren die oligomere urethanbindungen enthalten
US20050267245A1 (en) * 2003-03-18 2005-12-01 Sandusky Donald A Alloy blends of polyurethane and rubber
US8501390B2 (en) * 2006-06-27 2013-08-06 Xiper Innovations, Inc. Laser engravable flexographic printing articles based on millable polyurethanes, and method

Also Published As

Publication number Publication date
FR3013705B1 (fr) 2016-07-01
WO2015075327A1 (fr) 2015-05-28
FR3013705A1 (fr) 2015-05-29
CA2930486A1 (fr) 2015-05-28
US20160289133A1 (en) 2016-10-06
PL3071537T3 (pl) 2018-02-28
EP3071537B1 (fr) 2017-08-16

Similar Documents

Publication Publication Date Title
EP0194180B1 (fr) Procédé de fabrication sans solvants de produits pyrotechniques composites à liant thermodurcissable
EP0210881B1 (fr) Utilisation du 5-oxo 3-nitro 1,2,4-triazole comme explosif secondaire et compositions pyrotechniques contenant du 5-oxo 3-nitro 1,2,4-triazole
EP2516356B1 (fr) Explosif solide malleable et son obtention
EP1790626B1 (fr) Procédé bicomposant semi-continu perfectionné d'obtention d'un chargement explosif composite à matrice polyuréthanne
CA2418319C (fr) Procede bicomposant semi-continu d'obtention d'un chargement explosif composite a matrice polyurethanne
FR2724925A1 (fr) Liant energetique et agents de propulsion thermoplastiques a base d'elastomere pour armes a feu a munition de faible vulnerabilite avec proprietes mecaniques ameliorees
EP3212593B1 (fr) Produit pyrotechnique composite avec charges d'adn et de rdx dans un liant de type pag et sa preparation
EP3071537B1 (fr) Produit pyrotechnique composite a liant non reticule et son procede de preparation
EP3212594B1 (fr) Produit pyrotechnique composite performant sans plomb dans sa composition et sa preparation
FR2854889A1 (fr) Matiere energetique a liant thermoplastique
EP3071536B1 (fr) Produit pyrotechnique composite a liant réticule et son procédé de préparation
EP3753916B1 (fr) Produit pyrotechnique composite
EP3656753B1 (fr) Procédé de préparation de produits pyrotechniques composites
FR2490628A1 (en) Smokeless crosslinked double-base propellant - comprising nitrocellulose, energetic plasticiser, polyester-di:isocyanate prepolymer, lead salt and carbon black
EP3221283B1 (fr) Produits explosifs composites de faible epaisseur et leur preparation
FR3028853A1 (fr) Cordeaux detonants de decoupe et leur preparation
FR2915196A1 (fr) Nouveaux azidoalkylformals. procede de synthese. utilisation comme plastifiant dans les compositions solides pyrotechniques et nouvelles compositions solides pyrotechniques.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DESGARDIN, NANCY

Inventor name: PAULIN, JEAN-LOUIS

Inventor name: WERSCHINE, MATHIEU W.

Inventor name: CARAYON, CAROLINE

Inventor name: RAGON, PHILIPPE

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170324

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CARAYON, CAROLINE

Inventor name: RAGON, PHILIPPE

Inventor name: DESGARDIN, NANCY

Inventor name: PAULIN, JEAN-LOUIS

Inventor name: WERSCHINE, MATHIEU W.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 918867

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014013322

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170816

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 918867

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171216

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUEA

Owner name: EURENCO, FR

Free format text: FORMER OWNER: HERAKLES, FR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EURENCO

Owner name: SAFRAN CERAMICS

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ARIANEGROUP SAS

Owner name: EURENCO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014013322

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

26N No opposition filed

Effective date: 20180517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171121

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181219

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014013322

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231120

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 10

Ref country code: FI

Payment date: 20231020

Year of fee payment: 10

Ref country code: DE

Payment date: 20231107

Year of fee payment: 10

Ref country code: CZ

Payment date: 20231012

Year of fee payment: 10

Ref country code: CH

Payment date: 20231202

Year of fee payment: 10