EP3069735A1 - Duocarmycin adcs showing improved in vivo antitumor activity - Google Patents

Duocarmycin adcs showing improved in vivo antitumor activity Download PDF

Info

Publication number
EP3069735A1
EP3069735A1 EP16160637.1A EP16160637A EP3069735A1 EP 3069735 A1 EP3069735 A1 EP 3069735A1 EP 16160637 A EP16160637 A EP 16160637A EP 3069735 A1 EP3069735 A1 EP 3069735A1
Authority
EP
European Patent Office
Prior art keywords
her2
cancer
treatment
compound
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16160637.1A
Other languages
German (de)
French (fr)
Other versions
EP3069735B1 (en
Inventor
Willem DOKTER
Peter Johannes GOEDINGS
Gijsbertus Franciscus Maria Verheijden
Patrick Henry Beusker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Byondis BV
Original Assignee
Synthon Biopharmaceuticals BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synthon Biopharmaceuticals BV filed Critical Synthon Biopharmaceuticals BV
Priority to PL16160637T priority Critical patent/PL3069735T3/en
Priority to EP16160637.1A priority patent/EP3069735B1/en
Priority to NO16160637A priority patent/NO3069735T3/no
Publication of EP3069735A1 publication Critical patent/EP3069735A1/en
Application granted granted Critical
Publication of EP3069735B1 publication Critical patent/EP3069735B1/en
Priority to CY20181100573T priority patent/CY1120288T1/en
Priority to HRP20180876TT priority patent/HRP20180876T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/05Dipeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6807Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug or compound being a sugar, nucleoside, nucleotide, nucleic acid, e.g. RNA antisense
    • A61K47/6809Antibiotics, e.g. antitumor antibiotics anthracyclins, adriamycin, doxorubicin or daunomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6855Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from breast cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6863Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from stomach or intestines cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6871Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting an enzyme
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6889Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention relates to duocarmycin-containing antibody-drug conjugates (ADCs) for use in the treatment of human solid tumours and haematological malignancies expressing human epidermal growth factor receptor 2 (HER2), in particular breast cancer, gastric cancer, bladder cancer, ovarian cancer, lung cancer, prostate cancer, pancreatic cancer, colorectal cancer, head and neck squamous cell cancer, osteosarcoma, and acute lymphoblastic leukaemia.
  • ADCs duocarmycin-containing antibody-drug conjugates
  • Antibodies have been conjugated to a variety of cytotoxic drugs, including small molecules that alkylate or crosslink DNA (e.g. duocarmycins and calicheamicins or pyrrolo-benzodiazepine dimers, respectively), or disrupt microtubules (e.g. maytansinoids and auri-statins) or bind DNA (e.g. anthracyclines).
  • cytotoxic drugs including small molecules that alkylate or crosslink DNA (e.g. duocarmycins and calicheamicins or pyrrolo-benzodiazepine dimers, respectively), or disrupt microtubules (e.g. maytansinoids and auri-statins) or bind DNA (e.g. anthracyclines).
  • ADC comprising a humanized anti-CD33 antibody conjugated to calicheamicin - MylotargTM (gemtuzumab ozogamicin, Wyeth) - was approved in 2000 for acute myeloid le
  • AdcetrisTM (brentuximab vedotin, Seattle Genetics)
  • AdcetrisTM (brentuximab vedotin, Seattle Genetics)
  • MMAE monomethyl auristatin E
  • Duocarmycins first isolated from a culture broth of Streptomyces species, are members of a family of antitumor antibiotics that include duocarmycin A, duocarmycin SA, and CC-1065. These extremely potent agents allegedly derive their biological activity from an ability to sequence-selectively alkylate DNA at the N3 position of adenine in the minor groove, which initiates a cascade of events leading to tumour cell death.
  • WO2011/133039A discloses a series of novel analogues of the DNA-alkylating agent CC-1065 and HER2-targeting ADCs thereof.
  • Example 15 a number of trastuzumab-duocarmycin conjugates were tested against N87 (i.e. HER2 IHC (immunohistochemistry) 3+ gastric tumour) xenografts in nude mice. The results are shown in Figures 4A, 4B and 4C . After treatment with a single dose of 12 mg/kg i.v., all six ADCs reduced the tumour volume and improved survival compared to the antibody trastuzumab itself and control vehicle, without negatively affecting body weight.
  • Breast cancer remains the most common malignancy among women worldwide.
  • Breast cancer is a heterogeneous disease, which exhibits a wide range of clinical behaviours and prognoses.
  • Breast cancer is an abnormal malignant growth of epithelial cells of the milk lobules or ducts of the mammary gland.
  • the cancer tissue can be exclusively located on the place of origin (cancer in situ) or can have invaded through the basement membrane into the surrounding tissue (invasive cancer). Metastatic cancer occurs as soon as the cancer cells have spread by way of lymph and blood vessels to other organs. Histological differentiation and characterization of the breast cancer cells is performed with use of biomarkers.
  • breast cancer for therapeutic decisions mainly consists of the assessment of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression status. This implies that globally three types of breast cancer can be discerned: (1) breast cancer tissue with expression of hormone receptor (ER or PR) without over-expression of HER2, (2) breast cancer tissue with over-expression of HER2, with or without expression of hormone receptor (HR), and (3) breast cancer tissue that has no therapeutically relevant hormone receptor or HER2 receptor expression, so-called triple negative breast cancer (TNBC).
  • ER estrogen receptor
  • PR progesterone receptor
  • HER2 human epidermal growth factor receptor 2
  • HerceptinTM (trastuzumab), a recombinant humanized IgG1 monoclonal antibody against HER2, was approved in the US by the FDA in 1998 for adjuvant treatment of HER2 over-expressing breast cancer and for the treatment of metastatic HER2 over-expressing breast cancer and gastric cancer, i.e. HER2 IHC 3+ or HER2 IHC 2+/FISH positive. The drug was approved in Europe by the EMA in 2000.
  • HER2 membrane expression is biologically a continuum from low to high over-expression
  • approved IHC tests like the HercepTestTM (Dako, Glostrup, Denmark), categorize HER2 status on a semiquantitative scale ranging from 0 to 3+. An IHC score of 3+ is assigned if there is a strong circumferential membrane staining in >10% of the cancer cells.
  • FISH positive gene amplification is assigned if the amplification rate relative to the centromere is ⁇ 2.0. It identifies patients who might have a benefit of treatment with trastuzumab or other HER2 targeting agents.
  • a review of 6,556 breast cancers revealed that about 92% of tumours with a HER2 score of 3+ had FISH positive gene amplification.
  • HER2 amplification was observed at lower rates in tumours with scores of 2+ (23.3%), 1+ (7.4%), and 0 (4.1%).
  • the current algorithm calls for FISH testing of tumours with a HER2 IHC score of 2+.
  • Ado-trastuzumab emtansine or trastuzumab emtansine is an ADC in which trastuzumab is conjugated to the cytotoxic maytansine anti-tubulin agent DM1.
  • T-DM1 has antitumor activity in tumour xenograft models that are not responding to therapy with trastuzumab as single agent.
  • patients with HER2 positive advanced breast cancer, previously treated with trastuzumab and a taxane were randomly assigned to receive T-DM1 or lapatinib plus capecitabine. T-DM1 treatment effectuated significantly longer progression-free and overall survival time in comparison to the treatment of the control group.
  • KadcylaTM (T-DM1) was approved in the US by the FDA in February 2013 for the treatment of patients with HER2-positive metastatic breast cancer who received prior treatment with trastuzumab and a taxane.
  • the drug was approved in Japan by the MHLW (Ministry of Health, Labour and Welfare) in September 2013 and in Europe by the EMA in November 2013.
  • the currently approved regimen comprises a dosage of 3.6 mg/kg body weight i.v. every three weeks.
  • T-DM1 a combination of T-DM1 and capecitabine for the 2 nd line treatment of patients with breast cancer or gastric cancer
  • Phase III study to investigate T-DM1 against a taxane as 2 nd line treatment of patients with gastric cancer.
  • a Phase III study is also ongoing for the combination of T-DM1 with pertuzumab for the treatment of patients with HER2 positive, locally advanced, or metastatic breast cancer.
  • trastuzumab Despite the improvement that the introduction of T-DM1 in clinical practice brought over trastuzumab for the treatment of HER2-positive metastatic breast cancer, the use of T-DM1 is associated with a number of serious side-effects, most importantly thrombocytopenia, hepatotoxicity, and neuropathy (irreversible axonal degeneration). Furthermore, neither trastuzumab nor T-DM1 are authorized for the treatment of human solid tumours and haematological malignancies with moderate or low HER2 expression, i.e. IHC 2+ or 1+ and/or FISH negative HER2 amplification status of the cancer tissue.
  • HER2 expression indicates a poor prognosis for patients with ovarian cancer ( A. Berchuck et al., 1990, Cancer Res., 50, 4087-4091 ; H. Meden and W. Kuhn, 1997, Eur. J. Obstet. & Gynecol. Reprod. Biol., 71, 173-179 ).
  • SKOV3 cells are derived from the ascites fluid of a patient with ovarian adenocarcinoma. This cell line is over-expressing HER2 and is frequently used for in vitro and in vivo explorative investigation of HER2 targeting agents. Trastuzumab and pertuzumab have several anti-cancer effects in this cell line ( N.
  • trastuzumab additive to a regimen of paclitaxel and carboplatin as first line therapy of HER2 positive advanced bladder cancer showed an overall response rate of 70% and an overall survival time of 14.1 months in a Phase II study ( M.H.A. Hussain et al., 2007, J. Clin. Oncol., 25:16, 2218-24 ).
  • a patient with a tumor relapse after standard chemotherapy responded to the combination of trastuzumab, paclitaxel and carboplatin ( D. Amsellem-Ouazana et al., 2004, Ann. Oncol., 15, 3, 538 ).
  • HER2 mutation and amplification are related with unfavorable outcome ( M. Suzuki et al., 2014, Lung Cancer, http://dx.doi.org/10.1016/j.lungca.2014.10.014 ).
  • a disease control rate of 93% could be effectuated with trastuzumab-based therapies ( J. Mazieres et al., 2013, J. Clin. Oncol., 31:16, 1997-2004 ).
  • Chemo-resistance of lung cancer often is associated with enhanced HER2 expression ( C.-M. Tsai et al., 1993, J. Natl.
  • Pancreatic cancer is among the most lethal human solid tumors due to its insidious onset and resistance to therapy.
  • Gemcitabine or the combination of 5-FU, leucovorin, irinotecan, and oxaliplatin can help prolong life in patients with advanced disease ( H. Burris and A.M. Storniolo, 1997, Eur. J. Cancer 33(1):S18-522 ; T. Conroy et al., 2011, N. Engl. J. Med. 364(19):1817-25 ). More recently, it was reported that HER2 expression is also prevalent in pancreatic cancer with an equal proportion of 10% designated as HER2 2+ and 3+.
  • HER2-targeted treatment comprising trastuzumab is considered as a viable option in this patient population based on effects observed in pre-clinical models [ C. Larbouret et al., 2012, Neoplasia 14(2), 121-130 ).
  • HER2 was observed in approximately 6% of colorectal cancer (CRC) patients ( A.N. Seo et al., 2014, PLoS ONE, 9(5): e98528 ). Based on this, HER2-targeting treatment may be effective in this subset of CRC patients.
  • Two clinical trials have investigated the benefit of trastuzumab-containing combination therapy in advanced or metastatic CRC and clinical responses were observed in these trials providing evidence of treatment efficacy ( R.K. Ramanathan et al., 2004, Cancer Invest. 22(6): 858-865 ; J. Clark et al., 2003, Proc. Am. Soc. Clin. Oncol. 22: abstr 3584 ).
  • trastuzumab therapy was included as part of treatment regimens for (anti-EGFR monoclonal antibody) cetuximab-resistant CRC patients ( A. Bertotti et al., 2011, Cancer Discov. 1(6): 508-523 ).
  • HNSCC head and neck squamous cell cancer or carcinoma
  • HER2 over-expression is seen in approximately one-third of acute lymphoblastic leukaemia (ALL) patients, even more frequent in the presence of the Philadelphia translocation. Inhibition of HER2 induces apoptosis of the leukemia cells in vitro ( M.E. Irwin et al., 2013, PLoS ONE, 8:8, e70608 ).
  • trastuzumab treatment of refractory or relapsing adult B-ALL patients with HER2 over-expression in malignant B-cells resulted in an overall response rate of 13%, which shows the response of this disease to a HER2 targeting agent ( P. Chevalier et al" Blood, 2012, DOI 10.1182/blood-2011-11-390781 ).
  • HER2-targeted therapies notably for treating patients with tumours and malignancies that have (i) a moderate or low IHC status, and/or (ii) a negative FISH status, and/or (iii) a hormone receptor (HR) negative status of the cancer tissue.
  • new regulatory approved therapies are needed for the targeted treatment of triple negative breast cancer (TNBC).
  • the present invention relates to duocarmycin-containing antibody-drug conjugates (ADCs) for use in the treatment of human solid tumours and haematological malignancies expressing HER2, in particular breast cancer, gastric cancer, bladder cancer, ovarian cancer, lung cancer, prostate cancer, pancreatic cancer, colorectal cancer, head and neck squamous cell cancer, osteosarcoma, and acute lymphoblastic leukaemia.
  • ADCs duocarmycin-containing antibody-drug conjugates
  • the present invention relates to duocarmycin-containing ADCs for use in the treatment of human solid tumours and haematological malignancies expressing HER2.
  • the present invention provides a compound of formula (I) wherein
  • the present invention relates to a compound of formula (I), wherein anti-HER2 Ab is an anti-HER2 antibody or antibody fragment, n is 0-1, m represents an average DAR of from 1 to 4, preferably from 2 to 3, R 1 is selected from y is 1-16, preferably 1-4, and R 2 is selected from
  • the present invention relates to a compound of formula (I), wherein the anti-HER2 Ab is an anti-HER2 monoclonal antibody, n is 0-1, m represents an average DAR of from 2 to 3, preferably from 2.5 to 2.9, R 1 is selected from y is 1-4, and R 2 is selected from
  • the present invention relates to a compound of formula (I), wherein the anti-HER2 Ab is trastuzumab or a biosimilar thereof, n is 0-1, m represents an average DAR of from 2 to 3, preferably 2.5 to 2.9, R 1 is selected from y is 1-4, and R 2 is selected from
  • the present invention relates to a compound of formula (II), comprising trastuzumab or a biosimilar thereof
  • SYD985 The compound of formula (II) that is referred to as SYD985 in the present specification has an average DAR of from 2.6 to 2.9.
  • SYD983 of formula (II) has an average DAR of 2.0.
  • n represent an integer from 0 to 3
  • m represents an average drug-to-antibody ratio (DAR) of from 1 to 4.
  • DAR drug-to-antibody ratio
  • the DAR and drug load distribution can be determined, for example, by using hydrophobic interaction chromatography (HIC) or reversed phase high-performance liquid chromatography (RP-HPLC). HIC is particularly suitable for determining the average DAR.
  • human solid tumours which can be treated in accordance with the present invention are breast cancer, gastric cancer, bladder cancer, ovarian cancer, lung cancer, prostate cancer, pancreatic cancer, colorectal cancer, head and neck squamous cell cancer, and osteosarcoma, particularly breast cancer, gastric cancer, bladder cancer, ovarian cancer, lung cancer, and prostate cancer, more particularly breast cancer, gastric cancer, and bladder cancer (see also S. Scholl et al., 2001, Ann. Oncol., 12(1): S81-S87 ).
  • An example of a haematological malignancy which can be treated in accordance with the present invention is acute lymphoblastic leukaemia (ALL).
  • ALL acute lymphoblastic leukaemia
  • the present invention provides a compound of formula (I) or (II) for use in the treatment of breast cancer, gastric cancer or bladder cancer, particularly breast cancer or gastric cancer, especially breast cancer.
  • Said breast cancer either is hormone receptor (ER and/or PR) positive or negative, advantageously ER and PR negative.
  • the present invention provides a compound of formula (I) or (II) for use in the treatment of human solid tumours showing moderate or low expression of HER2 (i.e. HER2 IHC 2+ or 1+).
  • the present invention provides a compound of formula (I) or (II) for use in the treatment of human solid tumours without HER2 gene amplification (i.e. HER2 FISH negative).
  • the duocarmycin-containing ADC compounds of the present invention particularly can be used for the treatment of human solid tumours, especially breast cancer and gastric cancer, with a moderate or low expression of HER2 (i.e. HER2 IHC 2+ or 1+) and/or without HER2 gene amplification (i.e. HER2 FISH negative).
  • trastuzumab nor T-DM1 obtained marketing approval for the treatment of patients having such tumours.
  • T-DM1 lacks efficacy in such tumours.
  • the duocarmycin-containing ADC compounds of the present invention can be used for the treatment of patient groups for which there is no current HER2-targeted therapy available.
  • duocarmycin-containing ADC compounds that were tested in mice bearing an N87 (i.e. HER2 IHC 3+ gastric tumour) xenograft in Example 15 of WO2011/133039A indeed showed efficacy after a single i.v. dose of 12 mg/kg.
  • HER2 IHC 3+ gastric tumour i.e. HER2 IHC 3+ gastric tumour
  • HER2 FISH negative HER2 gene amplification
  • duocarmycin-containing ADC compounds of formula (I) or (II) show an improved in vivo antitumor activity in animal tumour models as compared to T-DM1 (see Examples and Figures) and trastuzumab when administered at the same dose.
  • the improvement was the highest in tumour models with the lowest grade of HER2 expression (i.e. IHC HER2 1+), in particular in (triple negative) breast cancer and gastric cancer.
  • the human solid tumour is breast cancer or gastric cancer showing moderate or low HER2 expression (i.e. HER2 IHC 2+ or 1+) without HER2 gene amplification (i.e. HER2 FISH negative).
  • the human solid tumour is triple negative breast cancer (i.e. HER2 IHC 2+ or 1+, HER2 FISH negative, and ER and PR negative).
  • the antitumor activity is evaluated first in (human) tumour cell lines in vitro followed by evaluation in vivo.
  • the antitumor activity of the ADCs falling within the scope of the present invention advantageously is evaluated in animal models, typically immunodeficient mice bearing a subcutaneous xenograft.
  • the xenograft can either be a (human) tumour cell line or a patient-derived (primary) tumour.
  • the animal model is a patient-derived tumour xenograft (PDX) model.
  • PDX models Human tumours in PDX models retain the biological characteristics of the original tumour as assessed by microscopic examination.
  • PDX models are routinely used now in many academic institutions and are offered commercially by a number of Contract Research Organizations (CROs) including Jackson Lab (USA), Oncotest (Germany), Molecular Response (USA), Charles River (USA), Oncodesign (France), XenTech (France), graduates Oncology (USA), and Start (USA). Many have shown the retention of characteristic morphologic and immunohistochemical features of the original human tumour in the xenograft. Besides the close relationship with regards to biological characteristics, PDX models have a very good predictive value for therapeutic clinical outcome.
  • CROs Contract Research Organizations
  • the anti-HER2 antibody or antibody fragment can be any antibody or antibody fragment able to bind HER2, e.g. an IgG1 antibody having the complementary determining regions (CDRs) of trastuzumab or an antibody that shows competitive binding with trastuzumab.
  • a preferred antibody is a monoclonal anti-HER2 antibody.
  • a particularly preferred monoclonal antibody is trastuzumab or a biosimilar thereof.
  • Antibody-drug conjugate (ADC) compounds of formula (I) and (II) in accordance with the present invention have the linker-drug conjugated to the antibody through the S-atom of a cysteine residue, i.e. they are cysteine-linked antibody-drug conjugates.
  • the cysteine residue can either be a natural cysteine residue which is present in the heavy and/or light chain of the antibody (Ab) and forms inter-chain disulfide bonds, or an engineered cysteine residue which is introduced into the Ab at one or more suitable positions in the heavy and/or light chain.
  • the present invention is particularly drawn to ADC compounds wherein the linker-drug is conjugated through inter-chain disulfide bonds of Abs, more particularly monoclonal Abs (mAbs).
  • Antibodies of different antibody classes contain different numbers of interchain disulfide bonds.
  • IgG1 antibodies typically have four inter-chain disulfide bonds, all four located in the hinge region, and after (partial) reduction of the disulfide bonds the linker-drug is randomly attached to free thiol groups.
  • IHC and FISH status of the tumour tissue are determined using known tests, procedures and equipment.
  • HER2 gene amplication can be measured using either fluorescence (FISH) or chromogenic (CISH) or any other in situ hybridization test.
  • FISH fluorescence
  • CISH chromogenic
  • Suitable tests for determination of the HER2 membrane expression status of the tumour tissue like the HercepTestTM (Dako Denmark) are commercially available.
  • Further HER2 IHC tests are marketed by Ventana Medical Systems (PATHWAY anti-HER2/neu), Biogenex Laboratories (InSiteTM HER2/neu), and Leica Biosystems (Bond OracleTM HER2 IHC).
  • FISH/CISH tests can be obtained from Abbott Molecular (PathVysion HER2 DNA Probe Kit), Life Technologies (SPOT-Light® HER2 CISH Kit), Dako Denmark (HER2 CISH PharmDxTM Kit), Dako Denmark (HER2 FISH PharmDxTM Kit), and Ventana Medical Systems (INFORM HER2 Dual ISH DNA Probe Cocktail).
  • FISH positive means a FISH amplification ratio ⁇ 2.0 (e.g. by using Dako HER2 FISH PharmDXTM test kit).
  • FISH negative means a FISH amplification ratio ⁇ 2.0.
  • HER2 expressing tumours which can be advantageously treated in accordance with the present invention are breast cancer and gastric cancer, particularly breast cancer, most particularly triple negative breast cancer.
  • the present inventors have found that the ADC compounds in accordance with the present invention notably were effective in breast cancer PDX models which are HER2 IHC 2+ or 1+ and FISH negative, in triple negative breast cancer PDX models, and in gastric cancer PDX models which are HER2 IHC 2+ or 1+ and FISH negative, as shown in the Examples and Figures herein below.
  • these findings particularly offer a new HER2-targeted treatment option for breast and gastric cancers for which there is currently no such approved treatment option available.
  • the present invention also relates to the use of a compound of formula (I) or (II) for the treatment of patients having human solid tumours or haematological malignancies expressing HER2, in particular of human solid tumours which are HER2 IHC 2+ or 1+ and/or which are HER2 FISH negative as described herein above.
  • the present invention further relates to the use of a combination of a compound of formula (I) or (II) with a therapeutic antibody and/or a chemotherapeutic agent, for the treatment of human solid tumours and haematological malignancies expressing HER2, in particular human solid tumours, most particularly for the treatment of triple negative breast cancer.
  • the therapeutic antibody is pertuzumab, bevacizumab, ramucirumab or trastuzumab and the chemotherapeutic agent is i) a taxane, particularly docetaxel, paclitaxel, nab-paclitaxel, or cabazitaxel, ii) a mitotic inhibitor, particularly eribulin, vinorelbine or vinblastine, iii) a DNA damaging agent, particularly 5-fluoro-uracil, capecitabine, gemcitabine, temozolomide, cisplatin, carboplatin, oxaliplain, cyclophosphamide or ifosfamide, iv) an anti-folate, particularly pemetrexed or methotrexate, v) an anthracycline, particularly mitoxantrone, doxorubicin, liposomal doxorubicin, epirubicin, daunorubic
  • the therapeutic antibody is pertuzumab and the chemotherapeutic agent is a taxane, particularly docetaxel or paclitaxel, or an anthracycline, particularly doxorubicin, epirubicin, daunorubicin or valrubicin, more particularly doxorubicin.
  • a taxane particularly docetaxel or paclitaxel
  • an anthracycline particularly doxorubicin, epirubicin, daunorubicin or valrubicin, more particularly doxorubicin.
  • the present invention further relates to the use of a combination of a compound of formula (I) or (II) with another ADC, such as for example T-DM1, for the treatment of human solid tumours and haematological malignancies expressing HER2, in particular human solid tumours expressing HER2.
  • ADC such as for example T-DM1
  • the present invention further relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula (I) or (II) or a combination with a therapeutic antibody and/or a chemotherapeutic agent thereof as described herein above, and one or more pharmaceutically acceptable excipients.
  • Typical pharmaceutical formulations of therapeutic proteins such as monoclonal antibodies and (monoclonal) antibody-drug conjugates take the form of lyophilized powders or cakes, which require (aqueous) dissolution (i.e. reconstitution) before intravenous infusion, or frozen (aqueous) solutions, which require thawing before use.
  • the pharmaceutical composition is provided in the form of a lyophilized cake.
  • Suitable pharmaceutically acceptable excipients for inclusion into the pharmaceutical composition (before freeze-drying) in accordance with the present invention include buffer solutions (e.g. citrate, histidine or succinate containing salts in water), lyo protectants (e.g. sucrose, trehalose), tonicity modifiers (e.g. sodium chloride), surfactants (e.g. polysorbate), and bulking agents (e.g. mannitol, glycine).
  • buffer solutions e.g. citrate, histidine or succinate containing salts in water
  • lyo protectants e.g. sucrose, trehalose
  • tonicity modifiers e.g. sodium chloride
  • surfactants e.g. polysorbate
  • bulking agents e.g. mannitol, glycine
  • the sterile, lyophilized powder multi-dose formulation of HerceptinTM contains 440 mg trastuzumab, 400 mg ⁇ , ⁇ -trehalose dihydrate, 9.9 mg L-histidine.HCl, 6.4 mg L-histidine, and 1.8 mg polysorbate 20, USP. Reconstitution with 20 ml of Bacteriostatic or Sterile Water for Injection (BWFI or SWFI) yields a multi-dose solution containing 21 mg/ml trastuzumab at a pH of approximately 6.
  • BWFI or SWFI Bacteriostatic or Sterile Water for Injection
  • the sterile, lyophilized powder single-use formulation of KadcylaTM contains upon reconstitution 20 mg/ml ado-trastuzumab emtansine, 0.02% w/v polysorbate 20, 10 mM sodium succinate, and 6% w/v sucrose with a pH of 5.0.
  • a therapeutically effective amount of the compound of formula (I) or (II) for use in accordance with the present invention lies in the range of about 0.01 to about 15 mg/kg body weight, particularly in the range of about 0.1 to about 10 mg/kg, more particularly in the range of about 0.3 to about 10 mg/kg body weight. This latter range corresponds roughly to a flat dose in the range of 20 to 800 mg of the ADC compound.
  • the compound of the present invention is administered weekly, bi-weekly, three-weekly or monthly, for example weekly for the first 12 weeks and then every three weeks until disease progression.
  • Alternative treatment regimens may be used depending upon the severity of the disease, the age of the patient, the compound being administered, and such other factors as would be considered appropriate by the treating physician.
  • HER2 in situ hybridization
  • HER2 was bound by using a suitable Ab, for instance a polyclonal rabbit antihuman HER2 (DAKO Cat# A0485) antibody and detected by a suitable secondary Ab, for instance biotinylated goat anti-rabbit IgG (JacksonImmuno research, Cat# 111-065-04) and a Biozol (Cat # VEC-PK-4000) ABC kit. Staining was evaluated semi-quantitatively on a suitable microscope, for instance using a Zeiss Axiovert 35 microscope. Staining was interpreted as immunoreactivity, based on the number of stained tumour cells as well as the completeness and intensity of the membrane staining.
  • HER2 positive (IHC 3+) and HER2 negative (IHC 0) control tumour slides were included in every HER2 staining procedure.
  • mice Female immunodeficient nu/nu mice (4-6 weeks of age) or SCID mice from a professional animal breeder like Harlan or Charles River were used and randomization was performed according to the detailed protocols of the respective CROs, as described for instance by Fiebig et al. in Cancer Genomics & Proteomics 4: 197-210, 1997 .
  • mice were treated with vehicle or 10 mg/kg SYD985 in the bladder PDX model ( Figure 11 ) and with vehicle or 15 mg/kg SYD983 in the cell line-derived ovarian xenograft model ( Figure 12 ). All treatments were conducted at day 0 by a single dose, i.v. injection into the tail vein. Data, depicted as mean tumour volume ⁇ S.D., consists of 6-8 animals per experimental group. Body weight and tumour size were measured twice weekly. The tumour volume was determined by a two-dimensional measurement with callipers. Termination criteria included among others a tumour volume >2000 mm 3 or a body weight loss >30%. Tumour size of individual animals was processed using GraphPad Prism. The results are shown in Figures 1 to 12 .
  • Part I is the dose-escalation part in which a low dose of SYD985 is given to three cancer patients (females or males having solid tumours of any origin). If it is well tolerated, a higher dose of SYD985 will be given to three other cancer patients. This will continue until it is not safe anymore to increase the dose further.

Abstract

The present invention relates to duocarmycin-containing antibody-drug conjugates (ADCs) for use in the treatment of human solid tumours and haematological malignancies expressing HER2, in particular breast cancer, gastric cancer, bladder cancer, ovarian cancer, lung cancer, prostate cancer, pancreatic cancer, colorectal cancer, head and neck squamous cell cancer or osteosarcoma, and acute lymphoblastic leukaemia. In particular, the present invention relates to duocarmycin-containing ADCs for use in the treatment of human solid tumours with HER2 IHC 2+ or 1+ and HER2 FISH negative tissue status. Advantageously, the present invention relates to duocarmycin-containing ADCs for use in the treatment of triple negative breast cancer (TNBC).

Description

    FIELD OF THE INVENTION
  • The present invention relates to duocarmycin-containing antibody-drug conjugates (ADCs) for use in the treatment of human solid tumours and haematological malignancies expressing human epidermal growth factor receptor 2 (HER2), in particular breast cancer, gastric cancer, bladder cancer, ovarian cancer, lung cancer, prostate cancer, pancreatic cancer, colorectal cancer, head and neck squamous cell cancer, osteosarcoma, and acute lymphoblastic leukaemia.
  • BACKGROUND OF THE PRESENT INVENTION
  • Antibodies have been conjugated to a variety of cytotoxic drugs, including small molecules that alkylate or crosslink DNA (e.g. duocarmycins and calicheamicins or pyrrolo-benzodiazepine dimers, respectively), or disrupt microtubules (e.g. maytansinoids and auri-statins) or bind DNA (e.g. anthracyclines). One such ADC comprising a humanized anti-CD33 antibody conjugated to calicheamicin - Mylotarg™ (gemtuzumab ozogamicin, Wyeth) - was approved in 2000 for acute myeloid leukaemia. In 2011, the US Food and Drug Administration (FDA) approved Adcetris™ (brentuximab vedotin, Seattle Genetics), an ADC comprising a chimeric antibody to CD30 conjugated to monomethyl auristatin E (MMAE) for treatment of Hodgkin's lymphoma and anaplastic large cell lymphoma.
  • Duocarmycins, first isolated from a culture broth of Streptomyces species, are members of a family of antitumor antibiotics that include duocarmycin A, duocarmycin SA, and CC-1065. These extremely potent agents allegedly derive their biological activity from an ability to sequence-selectively alkylate DNA at the N3 position of adenine in the minor groove, which initiates a cascade of events leading to tumour cell death.
  • WO2011/133039A discloses a series of novel analogues of the DNA-alkylating agent CC-1065 and HER2-targeting ADCs thereof. In Example 15, a number of trastuzumab-duocarmycin conjugates were tested against N87 (i.e. HER2 IHC (immunohistochemistry) 3+ gastric tumour) xenografts in nude mice. The results are shown in Figures 4A, 4B and 4C. After treatment with a single dose of 12 mg/kg i.v., all six ADCs reduced the tumour volume and improved survival compared to the antibody trastuzumab itself and control vehicle, without negatively affecting body weight. It was concluded that conjugates that contain a relatively short linker have a better (antitumor) efficacy than the corresponding conjugate with a relatively long linker, and that both the nature of the linker and the nature of the drug were demonstrated to have an effect on efficacy as well.
  • Breast cancer remains the most common malignancy among women worldwide. Breast cancer is a heterogeneous disease, which exhibits a wide range of clinical behaviours and prognoses. Breast cancer is an abnormal malignant growth of epithelial cells of the milk lobules or ducts of the mammary gland. The cancer tissue can be exclusively located on the place of origin (cancer in situ) or can have invaded through the basement membrane into the surrounding tissue (invasive cancer). Metastatic cancer occurs as soon as the cancer cells have spread by way of lymph and blood vessels to other organs. Histological differentiation and characterization of the breast cancer cells is performed with use of biomarkers.
  • Molecular classification of breast cancer for therapeutic decisions mainly consists of the assessment of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression status. This implies that globally three types of breast cancer can be discerned: (1) breast cancer tissue with expression of hormone receptor (ER or PR) without over-expression of HER2, (2) breast cancer tissue with over-expression of HER2, with or without expression of hormone receptor (HR), and (3) breast cancer tissue that has no therapeutically relevant hormone receptor or HER2 receptor expression, so-called triple negative breast cancer (TNBC).
  • Breast cancer patients with hormone receptor (HR) positive cancer tissue status (ca. 60-70% of all breast cancer patients) have a better prognosis than those without or with minimal hormone receptor status. On the contrary, patients whose tumour has an IHC 3+ or IHC 2+/FISH (fluorescence in situ hybridization) positive status (occurring in about 20% of all breast cancer cases) have a worse prognosis in comparison with breast cancer patients whose tumour has a lower grade of HER2 membrane expression or a FISH negative amplification rate. Now that patients with hormone receptor positive and HER2 over-expressing breast cancer tissue have the option of targeting therapy, triple negative breast cancer implies the worst prognosis, as only chemotherapy with limited efficacy is available for these patients whose tumour is ER, PR and HER2 negative.
  • Herceptin™ (trastuzumab), a recombinant humanized IgG1 monoclonal antibody against HER2, was approved in the US by the FDA in 1998 for adjuvant treatment of HER2 over-expressing breast cancer and for the treatment of metastatic HER2 over-expressing breast cancer and gastric cancer, i.e. HER2 IHC 3+ or HER2 IHC 2+/FISH positive. The drug was approved in Europe by the EMA in 2000.
  • Clinical studies with patients who have metastatic breast cancer disease have demonstrated, that there is only clinical relevant efficacy of trastuzumab treatment if the patient has a tumour with HER2 IHC over-expression or FISH positive gene amplification. For this reason, current HER2 testing algorithms are aimed at identifying those patients most likely to achieve a significant benefit from HER2 targeting. Whereas HER2 membrane expression is biologically a continuum from low to high over-expression, approved IHC tests, like the HercepTest™ (Dako, Glostrup, Denmark), categorize HER2 status on a semiquantitative scale ranging from 0 to 3+. An IHC score of 3+ is assigned if there is a strong circumferential membrane staining in >10% of the cancer cells. FISH positive gene amplification is assigned if the amplification rate relative to the centromere is ≥2.0. It identifies patients who might have a benefit of treatment with trastuzumab or other HER2 targeting agents. A review of 6,556 breast cancers revealed that about 92% of tumours with a HER2 score of 3+ had FISH positive gene amplification. Conversely, HER2 amplification was observed at lower rates in tumours with scores of 2+ (23.3%), 1+ (7.4%), and 0 (4.1%). With HER2 amplification as an established predictor of response to HER2 targeting agents, the current algorithm calls for FISH testing of tumours with a HER2 IHC score of 2+.
  • Ado-trastuzumab emtansine or trastuzumab emtansine (Kadcyla™, T-DM1) is an ADC in which trastuzumab is conjugated to the cytotoxic maytansine anti-tubulin agent DM1. T-DM1 has antitumor activity in tumour xenograft models that are not responding to therapy with trastuzumab as single agent. In the Phase 3 EMILIA trial, patients with HER2 positive advanced breast cancer, previously treated with trastuzumab and a taxane, were randomly assigned to receive T-DM1 or lapatinib plus capecitabine. T-DM1 treatment effectuated significantly longer progression-free and overall survival time in comparison to the treatment of the control group.
  • Kadcyla™ (T-DM1) was approved in the US by the FDA in February 2013 for the treatment of patients with HER2-positive metastatic breast cancer who received prior treatment with trastuzumab and a taxane. The drug was approved in Japan by the MHLW (Ministry of Health, Labour and Welfare) in September 2013 and in Europe by the EMA in November 2013. The currently approved regimen comprises a dosage of 3.6 mg/kg body weight i.v. every three weeks. A dosage of 2.4 mg/kg body weight i.v. weekly is investigated in an ongoing Phase II study with a combination of T-DM1 and capecitabine for the 2nd line treatment of patients with breast cancer or gastric cancer and in an ongoing Phase III study to investigate T-DM1 against a taxane as 2nd line treatment of patients with gastric cancer. A Phase III study is also ongoing for the combination of T-DM1 with pertuzumab for the treatment of patients with HER2 positive, locally advanced, or metastatic breast cancer.
  • Despite the improvement that the introduction of T-DM1 in clinical practice brought over trastuzumab for the treatment of HER2-positive metastatic breast cancer, the use of T-DM1 is associated with a number of serious side-effects, most importantly thrombocytopenia, hepatotoxicity, and neuropathy (irreversible axonal degeneration). Furthermore, neither trastuzumab nor T-DM1 are authorized for the treatment of human solid tumours and haematological malignancies with moderate or low HER2 expression, i.e. IHC 2+ or 1+ and/or FISH negative HER2 amplification status of the cancer tissue.
  • In analogy to breast cancer, HER2 expression indicates a poor prognosis for patients with ovarian cancer (A. Berchuck et al., 1990, Cancer Res., 50, 4087-4091; H. Meden and W. Kuhn, 1997, Eur. J. Obstet. & Gynecol. Reprod. Biol., 71, 173-179). SKOV3 cells are derived from the ascites fluid of a patient with ovarian adenocarcinoma. This cell line is over-expressing HER2 and is frequently used for in vitro and in vivo explorative investigation of HER2 targeting agents. Trastuzumab and pertuzumab have several anti-cancer effects in this cell line (N. Gaborit et al., 2011, J. Biol. Chem., 286, 13, 11337-11345). Monotherapy with the anti-HER2 antibodies trastuzumab and pertuzumab thus far had modest efficacy (G.M. Mantia-Smaldone et al., 2011, Cancer Management Res. 3, 25-38; S.P. Langdon et al., 2010, Expert Opin. Biol. Ther. 10:7, 1113-1120). The antitumor effect is markedly increased if a HER2 targeting antibody is combined with chemotherapy (S. Makhija et al., 2010, J. Clin. Oncol., 28:7, 1215-1223; I. Ray-Coquard et al., 2008, Clin. Ovarian Cancer, 1:1, 54-59).
  • Further, a high medical need exists for the treatment of late stage bladder cancer disease. Chemotherapy, e.g. the combination of cisplatin and gemcitabine for advanced or metastatic bladder cancer, has limited efficacy as it effectuates in the mean a response rate under 50%, whereas patients have an overall survival time of 6 to 12 months. In case of resistance to chemotherapy there is no standard therapy option at all. HER2 positivity was significantly associated with reduced complete response rates (50% versus 81%, p=0.026) after chemo-radiation (A. Chakravarti et al., 2005, Int. J. Radiation Oncology Biol. Phys., 62:2, 309-317). Addition of trastuzumab to a regimen of paclitaxel and carboplatin as first line therapy of HER2 positive advanced bladder cancer showed an overall response rate of 70% and an overall survival time of 14.1 months in a Phase II study (M.H.A. Hussain et al., 2007, J. Clin. Oncol., 25:16, 2218-24). In a casuistic application, a patient with a tumor relapse after standard chemotherapy responded to the combination of trastuzumab, paclitaxel and carboplatin (D. Amsellem-Ouazana et al., 2004, Ann. Oncol., 15, 3, 538).
  • In case of invasive non-small-cell lung cancer adenocarcinoma, HER2 mutation and amplification are related with unfavorable outcome (M. Suzuki et al., 2014, Lung Cancer, http://dx.doi.org/10.1016/j.lungca.2014.10.014). In lung cancer patients with HER2 mutation, a disease control rate of 93% could be effectuated with trastuzumab-based therapies (J. Mazieres et al., 2013, J. Clin. Oncol., 31:16, 1997-2004). Chemo-resistance of lung cancer often is associated with enhanced HER2 expression (C.-M. Tsai et al., 1993, J. Natl. Cancer Inst., 85:11, 897-901; Z. Calikusu et al., 2009, J. Exp. Clin. Cancer Res., 28:97) and resistance to tyrosine kinase inhibitors is correlated with enhanced HER2 amplification (K. Takezawa et al., 2012, Cancer Discov. 2(10), 922-33).
  • Patients with early or advanced prostate cancer mostly receive an androgen receptor targeting therapy. There is a cross-talk in the signaling functions of the androgen receptor and HER2 (F.-N. Hsu et al., 2011, Am. J. Physiol. Endocrinol. Metab., 300:E902-E908; L. Chen et al., 2011, Clin. Cancer Res., 17(19), 6218-28). HER2 activation suppresses the expression of the androgen receptor (C. Cai et al., 2009, Cancer Res., 69(12), 5202-5209), increased HER2 expression is associated with PSA progression, rapid proliferation and poor prognosis (S. Minner et al., 2010, Clin. Cancer Res., 16(5), 1553-60; S.F. Shariat et al., 2007, Clin. Cancer Res., 13(18), 5377-84). Increased expression of HER2 seems to be involved in progression to androgen independence in about a quarter of prostate cancer cases (J.M.S. Bartlett et al., 2005, J. Pathol., 205, 522-529).
  • Pancreatic cancer is among the most lethal human solid tumors due to its insidious onset and resistance to therapy. Gemcitabine or the combination of 5-FU, leucovorin, irinotecan, and oxaliplatin can help prolong life in patients with advanced disease (H. Burris and A.M. Storniolo, 1997, Eur. J. Cancer 33(1):S18-522; T. Conroy et al., 2011, N. Engl. J. Med. 364(19):1817-25). More recently, it was reported that HER2 expression is also prevalent in pancreatic cancer with an equal proportion of 10% designated as HER2 2+ and 3+. Based on this fact, HER2-targeted treatment comprising trastuzumab is considered as a viable option in this patient population based on effects observed in pre-clinical models [C. Larbouret et al., 2012, Neoplasia 14(2), 121-130).
  • Using accepted staining and scoring methods, over-expression of HER2 was observed in approximately 6% of colorectal cancer (CRC) patients (A.N. Seo et al., 2014, PLoS ONE, 9(5): e98528). Based on this, HER2-targeting treatment may be effective in this subset of CRC patients. Two clinical trials have investigated the benefit of trastuzumab-containing combination therapy in advanced or metastatic CRC and clinical responses were observed in these trials providing evidence of treatment efficacy (R.K. Ramanathan et al., 2004, Cancer Invest. 22(6): 858-865; J. Clark et al., 2003, Proc. Am. Soc. Clin. Oncol. 22: abstr 3584). Moreover, one study suggested the inclusion of trastuzumab therapy as part of treatment regimens for (anti-EGFR monoclonal antibody) cetuximab-resistant CRC patients (A. Bertotti et al., 2011, Cancer Discov. 1(6): 508-523).
  • The management of advanced head and neck squamous cell cancer or carcinoma (HNSCC) consists of multiple-modality therapy with surgery, radiation, and chemotherapy. Beckhardt et al. reported high HER2 over-expression in 16% of cell line samples, and moderate and low HER2 expression in 31% and 35% of samples, respectively (R.N. Beckhardt et al., 1995, Arch. Otolaryngol. Head Neck Surg. 121:1265-1270). This illustrates the potential therapeutic potential of trastuzumab treatment in HNSCC.
  • In 1999, Gorlick et al. reported over-expression of HER2 in 20 of 47 osteosarcoma samples, and showed that these patients had a poor response to therapy and a decreased rate of survival compared with patients whose tumors did not over-express this antigen (R. Gorlick et al., 1999, J. Clin. Oncol. 17:2781-8). Hence, HER2 emerged as a promising candidate for targeted biologic therapy in this indication. Recent findings from clinical investigation using trastuzumab indicate that anti-HER2 treatment can be safely delivered in combination with anthracycline-based chemotherapy and dexrazoxane (D. Ebb et al., 2012, J. Clin. Oncol. 30(20), 2545-2551).
  • Further, HER2 over-expression is seen in approximately one-third of acute lymphoblastic leukaemia (ALL) patients, even more frequent in the presence of the Philadelphia translocation. Inhibition of HER2 induces apoptosis of the leukemia cells in vitro (M.E. Irwin et al., 2013, PLoS ONE, 8:8, e70608). In a Phase II study, it was demonstrated that trastuzumab treatment of refractory or relapsing adult B-ALL patients with HER2 over-expression in malignant B-cells resulted in an overall response rate of 13%, which shows the response of this disease to a HER2 targeting agent (P. Chevalier et al" Blood, 2012, DOI 10.1182/blood-2011-11-390781).
  • Hence, there is a need for new HER2-targeted therapies, notably for treating patients with tumours and malignancies that have (i) a moderate or low IHC status, and/or (ii) a negative FISH status, and/or (iii) a hormone receptor (HR) negative status of the cancer tissue. Particularly, new regulatory approved therapies are needed for the targeted treatment of triple negative breast cancer (TNBC).
  • BRIEF DESCRIPTION OF THE PRESENT INVENTION
  • The present invention relates to duocarmycin-containing antibody-drug conjugates (ADCs) for use in the treatment of human solid tumours and haematological malignancies expressing HER2, in particular breast cancer, gastric cancer, bladder cancer, ovarian cancer, lung cancer, prostate cancer, pancreatic cancer, colorectal cancer, head and neck squamous cell cancer, osteosarcoma, and acute lymphoblastic leukaemia.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • Figure 1. Antitumor activity of SYD985 compared to T-DM1 in MAXF-1162 PDX model (breast cancer, adenocarcinoma, HER2 IHC 3+, HER2 FISH positive) (CRO: Oncotest).
    • Figure 2. Antitumor activity of SYD985 compared to T-DM1 in HBCx-34 PDX model (breast cancer, ductal carcinoma, HER2 IHC 2+, HER2 FISH negative, ER and PR positive) (CRO: XenTech).
    • Figure 3. Antitumor activity of SYD985 compared to T-DM1 in MAXF 449 PDX model (breast cancer, invasive ductal carcinoma, HER2 IHC 1+, HER2 FISH negative, ER and PR negative, i.e. triple negative breast cancer) (CRO: Oncotest).
    • Figure 4. Antitumor activity of SYD985 compared to T-DM1 in HBCx-10 PDX model (breast cancer, ductal adenocarcinoma, HER2 IHC 1+, HER2 FISH negative, ER and PR negative, i.e. triple negative breast cancer) (CRO: XenTech).
    • Figure 5. Antitumor activity of SYD985 compared to T-DM1 in MAXF-MX1 PDX model (breast cancer, invasive ductal carcinoma, HER2 IHC 1+, HER2 FISH negative, ER and PR negative, i.e. triple negative breast cancer) (CRO: Oncotest).
    • Figure 6. Antitumor activity of SYD985 compared to T-DM1 in ST313 PDX model (breast cancer, HER2 IHC 2+, HER2 FISH negative, ER and PR positive) (CRO: Start).
    • Figure 7. Antitumor activity of SYD985 compared to T-DM1 in GXA3057 PDX model (gastric cancer, HER2 IHC 1+, HER2 FISH negative) (CRO: Oncotest).
    • Figure 8. Antitumor activity of SYD985 compared to T-DM1 in GXA3067 PDX model (gastric cancer, HER2 IHC 2+, HER2 FISH positive) (CRO: Oncotest).
    • Figure 9. Antitumor activity of SYD985 compared to T-DM1 in GXA3054 PDX model (gastric cancer, HER2 IHC 3+, HER2 FISH positive) (CRO: Oncotest).
    • Figure 10. Antitumor activity of SYD985 compared to T-DM1 in GXA3038 PDX model (gastric cancer, HER2 IHC 2+, HER2 FISH negative) (CRO: Oncotest).
    • Figure 11. Antitumor activity of SYD985 in BXF439 PDX model (bladder cancer, HER2 IHC 3+, HER2 FISH positive) (CRO: Oncotest).
    • Figure 12. Antitumor activity of SYD983 in SKOV3 cell line-derived xenograft model (ovarian cancer, HER2 IHC 2+, HER2 FISH positive) (CRO: Piedmont).
    DETAILED DESCRIPTION OF THE PRESENT INVENTION
  • The present invention relates to duocarmycin-containing ADCs for use in the treatment of human solid tumours and haematological malignancies expressing HER2.
  • In one embodiment, the present invention provides a compound of formula (I)
    Figure imgb0001
    wherein
    • anti-HER2 Ab is an anti-HER2 antibody or antibody fragment, n is 0-3, preferably 0-1,
    • m represents an average DAR (drug-to-antibody ratio) of from 1 to 4,
    • R1 is selected from
      Figure imgb0002
      Figure imgb0003
    y is 1-16, and
    R2 is selected from
    Figure imgb0004
    for use in the treatment of human solid tumours and haematological malignancies expressing HER2, in particular for use in the treatment of human solid tumours.
  • In another embodiment, the present invention relates to a compound of formula (I), wherein anti-HER2 Ab is an anti-HER2 antibody or antibody fragment, n is 0-1, m represents an average DAR of from 1 to 4, preferably from 2 to 3, R1 is selected from
    Figure imgb0005
    y is 1-16, preferably 1-4, and R2 is selected from
    Figure imgb0006
  • In a further embodiment, the present invention relates to a compound of formula (I), wherein the anti-HER2 Ab is an anti-HER2 monoclonal antibody, n is 0-1, m represents an average DAR of from 2 to 3, preferably from 2.5 to 2.9, R1 is selected from
    Figure imgb0007
    y is 1-4, and R2 is selected from
    Figure imgb0008
  • In yet another embodiment, the present invention relates to a compound of formula (I), wherein the anti-HER2 Ab is trastuzumab or a biosimilar thereof, n is 0-1, m represents an average DAR of from 2 to 3, preferably 2.5 to 2.9, R1 is selected from
    Figure imgb0009
    y is 1-4, and R2 is selected from
    Figure imgb0010
  • In a preferred embodiment, the present invention relates to a compound of formula (II), comprising trastuzumab or a biosimilar thereof
    Figure imgb0011
  • The compound of formula (II) that is referred to as SYD985 in the present specification has an average DAR of from 2.6 to 2.9. SYD983 of formula (II) has an average DAR of 2.0.
  • In the structural formulae shown in the present specification, n represent an integer from 0 to 3, while m represents an average drug-to-antibody ratio (DAR) of from 1 to 4. As is well-known in the art, the DAR and drug load distribution can be determined, for example, by using hydrophobic interaction chromatography (HIC) or reversed phase high-performance liquid chromatography (RP-HPLC). HIC is particularly suitable for determining the average DAR.
  • Examples of human solid tumours which can be treated in accordance with the present invention are breast cancer, gastric cancer, bladder cancer, ovarian cancer, lung cancer, prostate cancer, pancreatic cancer, colorectal cancer, head and neck squamous cell cancer, and osteosarcoma, particularly breast cancer, gastric cancer, bladder cancer, ovarian cancer, lung cancer, and prostate cancer, more particularly breast cancer, gastric cancer, and bladder cancer (see also S. Scholl et al., 2001, Ann. Oncol., 12(1): S81-S87). An example of a haematological malignancy which can be treated in accordance with the present invention is acute lymphoblastic leukaemia (ALL). The scope of the present invention however is not restricted to these specific examples.
  • In one embodiment, the present invention provides a compound of formula (I) or (II) for use in the treatment of breast cancer, gastric cancer or bladder cancer, particularly breast cancer or gastric cancer, especially breast cancer. Said breast cancer either is hormone receptor (ER and/or PR) positive or negative, advantageously ER and PR negative.
  • In another embodiment, the present invention provides a compound of formula (I) or (II) for use in the treatment of human solid tumours showing moderate or low expression of HER2 (i.e. HER2 IHC 2+ or 1+).
  • In yet another embodiment, the present invention provides a compound of formula (I) or (II) for use in the treatment of human solid tumours without HER2 gene amplification (i.e. HER2 FISH negative).
  • Unexpectedly, the present inventors have found that the duocarmycin-containing ADC compounds of the present invention particularly can be used for the treatment of human solid tumours, especially breast cancer and gastric cancer, with a moderate or low expression of HER2 (i.e. HER2 IHC 2+ or 1+) and/or without HER2 gene amplification (i.e. HER2 FISH negative). Neither trastuzumab nor T-DM1 obtained marketing approval for the treatment of patients having such tumours. Furthermore, as shown in the Examples and Figures herein below, T-DM1 lacks efficacy in such tumours. Hence, the duocarmycin-containing ADC compounds of the present invention can be used for the treatment of patient groups for which there is no current HER2-targeted therapy available. The duocarmycin-containing ADC compounds that were tested in mice bearing an N87 (i.e. HER2 IHC 3+ gastric tumour) xenograft in Example 15 of WO2011/133039A indeed showed efficacy after a single i.v. dose of 12 mg/kg. However, there is nothing in this document suggesting the person skilled in the art to test - let alone expect to find efficacy - in lower grade HER2-expressing tumours (i.e. HER2 IHC 2+ or 1+) and/or without HER2 gene amplification (i.e. HER2 FISH negative), already at a dose of 3 mg/kg.
  • The present inventors surprisingly further found that the duocarmycin-containing ADC compounds of formula (I) or (II) show an improved in vivo antitumor activity in animal tumour models as compared to T-DM1 (see Examples and Figures) and trastuzumab when administered at the same dose. Notably, it was found that the improvement was the highest in tumour models with the lowest grade of HER2 expression (i.e. IHC HER2 1+), in particular in (triple negative) breast cancer and gastric cancer.
  • In an advantageous embodiment of the present invention the human solid tumour is breast cancer or gastric cancer showing moderate or low HER2 expression (i.e. HER2 IHC 2+ or 1+) without HER2 gene amplification (i.e. HER2 FISH negative).
  • In a particularly advantageous embodiment of the present invention, the human solid tumour is triple negative breast cancer (i.e. HER2 IHC 2+ or 1+, HER2 FISH negative, and ER and PR negative).
  • Typically, the antitumor activity is evaluated first in (human) tumour cell lines in vitro followed by evaluation in vivo. The antitumor activity of the ADCs falling within the scope of the present invention advantageously is evaluated in animal models, typically immunodeficient mice bearing a subcutaneous xenograft. The xenograft can either be a (human) tumour cell line or a patient-derived (primary) tumour. Preferably, the animal model is a patient-derived tumour xenograft (PDX) model.
  • Human tumours in PDX models retain the biological characteristics of the original tumour as assessed by microscopic examination. PDX models are routinely used now in many academic institutions and are offered commercially by a number of Contract Research Organizations (CROs) including Jackson Lab (USA), Oncotest (Germany), Molecular Response (USA), Charles River (USA), Oncodesign (France), XenTech (France), Champions Oncology (USA), and Start (USA). Many have shown the retention of characteristic morphologic and immunohistochemical features of the original human tumour in the xenograft. Besides the close relationship with regards to biological characteristics, PDX models have a very good predictive value for therapeutic clinical outcome. In general, one could state that reports from different sources indicate at least 90% correct replication of the response to therapy in the PDX compared to that in the patient, both in terms of sensitivity and resistance of the tumour to therapy (Website Champions Oncology, http://www.championsoncology.com/translational-oncology-solutions/predictive-value; Fiebig et al., 1984, Behring Inst. Mitt. 74:343-352; Hidalgo et al., 2011, Mol. Cancer Ther. 10:1311-1316).
  • In accordance with the present invention, the anti-HER2 antibody or antibody fragment can be any antibody or antibody fragment able to bind HER2, e.g. an IgG1 antibody having the complementary determining regions (CDRs) of trastuzumab or an antibody that shows competitive binding with trastuzumab. A preferred antibody is a monoclonal anti-HER2 antibody. A particularly preferred monoclonal antibody is trastuzumab or a biosimilar thereof.
  • Antibody-drug conjugate (ADC) compounds of formula (I) and (II) in accordance with the present invention have the linker-drug conjugated to the antibody through the S-atom of a cysteine residue, i.e. they are cysteine-linked antibody-drug conjugates. The cysteine residue can either be a natural cysteine residue which is present in the heavy and/or light chain of the antibody (Ab) and forms inter-chain disulfide bonds, or an engineered cysteine residue which is introduced into the Ab at one or more suitable positions in the heavy and/or light chain. The present invention is particularly drawn to ADC compounds wherein the linker-drug is conjugated through inter-chain disulfide bonds of Abs, more particularly monoclonal Abs (mAbs). Antibodies of different antibody classes contain different numbers of interchain disulfide bonds. For example, IgG1 antibodies typically have four inter-chain disulfide bonds, all four located in the hinge region, and after (partial) reduction of the disulfide bonds the linker-drug is randomly attached to free thiol groups.
  • Compounds of formula (I) and (II) for use in accordance with the present invention can be obtained according to methods and procedures that are well known to a person skilled in the art. Conjugation through inter-chain disulfide bonds can occur after complete or partial reduction of said disulfide bonds. Suitable methods for preparing such compounds can be found in the description and examples of Applicant's WO2011/133039A . In particular, Example 15 of WO2011/133039 describes the partial reduction of trastuzumab to generate 2 free thiol groups per mAb and conjugation with a number of linker-drugs to ADCs having an average DAR of approx. 2. It is easily understood by those skilled in the art how to obtain ADCs having an average DAR of from 1 to 4. Examples 7 and 8 of WO2005/084390A describe partial reduction, partial reduction/partial re-oxidation, and complete reduction strategies for (partial) loading of antibodies with the linker-drug vcMMAE.
  • IHC and FISH status of the tumour tissue are determined using known tests, procedures and equipment. In accordance with the present invention HER2 gene amplication can be measured using either fluorescence (FISH) or chromogenic (CISH) or any other in situ hybridization test. Suitable tests for determination of the HER2 membrane expression status of the tumour tissue like the HercepTest™ (Dako Denmark) are commercially available. Further HER2 IHC tests are marketed by Ventana Medical Systems (PATHWAY anti-HER2/neu), Biogenex Laboratories (InSite™ HER2/neu), and Leica Biosystems (Bond Oracle™ HER2 IHC). FISH/CISH tests can be obtained from Abbott Molecular (PathVysion HER2 DNA Probe Kit), Life Technologies (SPOT-Light® HER2 CISH Kit), Dako Denmark (HER2 CISH PharmDx™ Kit), Dako Denmark (HER2 FISH PharmDx™ Kit), and Ventana Medical Systems (INFORM HER2 Dual ISH DNA Probe Cocktail). FISH positive means a FISH amplification ratio ≥2.0 (e.g. by using Dako HER2 FISH PharmDX™ test kit). FISH negative means a FISH amplification ratio <2.0.
  • HER2 expressing tumours which can be advantageously treated in accordance with the present invention are breast cancer and gastric cancer, particularly breast cancer, most particularly triple negative breast cancer. Unexpectedly, the present inventors have found that the ADC compounds in accordance with the present invention notably were effective in breast cancer PDX models which are HER2 IHC 2+ or 1+ and FISH negative, in triple negative breast cancer PDX models, and in gastric cancer PDX models which are HER2 IHC 2+ or 1+ and FISH negative, as shown in the Examples and Figures herein below. In view of the fact that PDX models have a very good predictive value for therapeutic clinical outcome, these findings particularly offer a new HER2-targeted treatment option for breast and gastric cancers for which there is currently no such approved treatment option available.
  • The present invention also relates to the use of a compound of formula (I) or (II) for the treatment of patients having human solid tumours or haematological malignancies expressing HER2, in particular of human solid tumours which are HER2 IHC 2+ or 1+ and/or which are HER2 FISH negative as described herein above.
  • The present invention further relates to the use of a combination of a compound of formula (I) or (II) with a therapeutic antibody and/or a chemotherapeutic agent, for the treatment of human solid tumours and haematological malignancies expressing HER2, in particular human solid tumours, most particularly for the treatment of triple negative breast cancer.
  • In one embodiment of the present invention, the therapeutic antibody is pertuzumab, bevacizumab, ramucirumab or trastuzumab and the chemotherapeutic agent is i) a taxane, particularly docetaxel, paclitaxel, nab-paclitaxel, or cabazitaxel, ii) a mitotic inhibitor, particularly eribulin, vinorelbine or vinblastine, iii) a DNA damaging agent, particularly 5-fluoro-uracil, capecitabine, gemcitabine, temozolomide, cisplatin, carboplatin, oxaliplain, cyclophosphamide or ifosfamide, iv) an anti-folate, particularly pemetrexed or methotrexate, v) an anthracycline, particularly mitoxantrone, doxorubicin, liposomal doxorubicin, epirubicin, daunorubicin or valrubicin, more particularly doxorubicin, vi) an mTOR (mammalian target of rapamycin) inhibitor, particularly temsirolimus or everolimus, vii) a topo-isomerase inhibitor, particularly irinotecan or topotecan, viii) a tyrosine kinase inhibitor, particularly gefitinib, erlotinib, pazopanib, crizotinib, lapatinib or afatinib, ix) an androgen receptor modulating agent, particularly enzalutamide or abiraterone acetate, x) a steroid hormone, particularly prednisone, xi) a hormonal therapeutic agent, particularly tamoxifen, xii) an aromatase inhibiting or steroid modifying agent, particularly anastrozole, letrozole, fulvestrant or exemestane, or xiii) a PARP inhibitor, particularly olaparib. The person skilled in the art will have no difficulty in selecting suitable combination therapies for use in the treatment of human solid tumours and haematological malignancies expressing HER2.
  • In another embodiment of the present invention, the therapeutic antibody is pertuzumab and the chemotherapeutic agent is a taxane, particularly docetaxel or paclitaxel, or an anthracycline, particularly doxorubicin, epirubicin, daunorubicin or valrubicin, more particularly doxorubicin.
  • The present invention further relates to the use of a combination of a compound of formula (I) or (II) with another ADC, such as for example T-DM1, for the treatment of human solid tumours and haematological malignancies expressing HER2, in particular human solid tumours expressing HER2.
  • The present invention further relates to a pharmaceutical composition comprising a compound of formula (I) or (II) or a combination with a therapeutic antibody and/or a chemotherapeutic agent thereof as described herein above, and one or more pharmaceutically acceptable excipients.
  • Typical pharmaceutical formulations of therapeutic proteins such as monoclonal antibodies and (monoclonal) antibody-drug conjugates take the form of lyophilized powders or cakes, which require (aqueous) dissolution (i.e. reconstitution) before intravenous infusion, or frozen (aqueous) solutions, which require thawing before use. Particularly, in accordance with the present invention the pharmaceutical composition is provided in the form of a lyophilized cake.
  • Suitable pharmaceutically acceptable excipients for inclusion into the pharmaceutical composition (before freeze-drying) in accordance with the present invention include buffer solutions (e.g. citrate, histidine or succinate containing salts in water), lyo protectants (e.g. sucrose, trehalose), tonicity modifiers (e.g. sodium chloride), surfactants (e.g. polysorbate), and bulking agents (e.g. mannitol, glycine). Excipients used for freeze-dried protein formulations are selected for their ability to prevent protein denaturation during the freeze-drying process as well as during storage.
  • The sterile, lyophilized powder multi-dose formulation of Herceptin™ contains 440 mg trastuzumab, 400 mg α,α-trehalose dihydrate, 9.9 mg L-histidine.HCl, 6.4 mg L-histidine, and 1.8 mg polysorbate 20, USP. Reconstitution with 20 ml of Bacteriostatic or Sterile Water for Injection (BWFI or SWFI) yields a multi-dose solution containing 21 mg/ml trastuzumab at a pH of approximately 6. The sterile, lyophilized powder single-use formulation of Kadcyla™ contains upon reconstitution 20 mg/ml ado-trastuzumab emtansine, 0.02% w/ v polysorbate 20, 10 mM sodium succinate, and 6% w/v sucrose with a pH of 5.0.
  • A therapeutically effective amount of the compound of formula (I) or (II) for use in accordance with the present invention lies in the range of about 0.01 to about 15 mg/kg body weight, particularly in the range of about 0.1 to about 10 mg/kg, more particularly in the range of about 0.3 to about 10 mg/kg body weight. This latter range corresponds roughly to a flat dose in the range of 20 to 800 mg of the ADC compound. The compound of the present invention is administered weekly, bi-weekly, three-weekly or monthly, for example weekly for the first 12 weeks and then every three weeks until disease progression. Alternative treatment regimens may be used depending upon the severity of the disease, the age of the patient, the compound being administered, and such other factors as would be considered appropriate by the treating physician.
  • EXAMPLES PDX HER2 gene amplification testing
  • Amplification of the HER2 gene was determined by in situ hybridization (ISH) in formalin-fixed, paraffin-embedded human breast cancer tissue specimens using FDA approved tests from Ventana Medical Systems (INFORM HER2 Dual ISH DNA Probe Cocktail) or Abbott Molecular (PathVysion HER2 DNA Probe Kit). Protocols used were as detailed by the suppliers of the tests.
  • PDX HER2 IHC staining
  • Tissue sections of formalin-fixed, paraffin-embedded tumour xenograft samples were prepared. HER2 was bound by using a suitable Ab, for instance a polyclonal rabbit antihuman HER2 (DAKO Cat# A0485) antibody and detected by a suitable secondary Ab, for instance biotinylated goat anti-rabbit IgG (JacksonImmuno research, Cat# 111-065-04) and a Biozol (Cat # VEC-PK-4000) ABC kit. Staining was evaluated semi-quantitatively on a suitable microscope, for instance using a Zeiss Axiovert 35 microscope. Staining was interpreted as immunoreactivity, based on the number of stained tumour cells as well as the completeness and intensity of the membrane staining.
    • 0 : <10% of the tumour cells exhibit membranous stain.
    • 1 : >10% of the tumour cells exhibit membranous stain, but incomplete stain of surface.
    • 2 : >10% of the tumour cells exhibit weak or moderate membranous stain distributed all over the surface.
    • 3 : >30% of the tumour cells exhibit strong membranous stain distributed all over the surface.
  • Known HER2 positive (IHC 3+) and HER2 negative (IHC 0) control tumour slides were included in every HER2 staining procedure.
  • PDX and cell line-derived xenograft animal studies
  • All animal studies were approved by local animal ethical committees and were performed according to local ethical guidelines of animal experimentation. Female immunodeficient nu/nu mice (4-6 weeks of age) or SCID mice from a professional animal breeder like Harlan or Charles River were used and randomization was performed according to the detailed protocols of the respective CROs, as described for instance by Fiebig et al. in Cancer Genomics & Proteomics 4: 197-210, 1997.
  • All breast and gastric PDX studies were performed testing SYD985 head-to-head to T-DM1, since the latter ADC was approved for treatment of patients with HER2-positive metastatic breast cancer and approval for T-DM1 in HER2-positive gastric cancer is currently being pursued. Studies in other indications (bladder and ovarian) were done using SYD985 only, since T-DM1 is not an approved drug in those indications. Mice were treated with either vehicle, 3 mg/kg SYD985 or 3 mg/kg T-DM1 in all breast PDX models (Figures 1-6) and with vehicle, 10 mg/kg SYD985 or 10 mg/kg T-DM1 in all gastric PDX models (Figures 7-10). Mice were treated with vehicle or 10 mg/kg SYD985 in the bladder PDX model (Figure 11) and with vehicle or 15 mg/kg SYD983 in the cell line-derived ovarian xenograft model (Figure 12). All treatments were conducted at day 0 by a single dose, i.v. injection into the tail vein. Data, depicted as mean tumour volume ± S.D., consists of 6-8 animals per experimental group. Body weight and tumour size were measured twice weekly. The tumour volume was determined by a two-dimensional measurement with callipers. Termination criteria included among others a tumour volume >2000 mm3 or a body weight loss >30%. Tumour size of individual animals was processed using GraphPad Prism. The results are shown in Figures 1 to 12.
  • First-in-human clinical study
  • A two-part first-in-human phase I study (with expanded cohorts) with the antibody-drug conjugate SYD985 (trastuzumab vc-seco-DUBA) is being performed to evaluate the safety, pharmacokinetics and efficacy in patients with locally advanced or metastatic solid tumours (i.e. NCT02277717). Part I is the dose-escalation part in which a low dose of SYD985 is given to three cancer patients (females or males having solid tumours of any origin). If it is well tolerated, a higher dose of SYD985 will be given to three other cancer patients. This will continue until it is not safe anymore to increase the dose further. In part II of the study, several groups of patients with a specific type of cancer (including breast and gastric tumours) will receive the SYD985 dose selected for further development. All patients from both parts of the study (it is estimated that a total of 76 patients will be enrolled) will receive SYD985 (intravenous) infusions every three weeks until progression of the cancer or unacceptable toxicity develops.
  • EMBODIMENTS
    1. 1. A compound of formula (I)
      Figure imgb0012
      wherein
      • anti-HER2 Ab is an anti-HER2 antibody or antibody fragment,
      • n is 0-3,
      • m represents an average DAR of from 1 to 4,
      • R1 is selected from
        Figure imgb0013
        Figure imgb0014
      • y is 1-16, and
      • R2 is selected from
        Figure imgb0015
      for use in the treatment of human solid tumours and haematological malignancies expressing HER2.
    2. 2. A compound for use according to embodiment 1, wherein
      anti-HER2 Ab is an anti-HER2 antibody or antibody fragment, n is 0-1,
      m represents an average DAR of from 1 to 4,
      R1 is selected from
      Figure imgb0016
      y is 1-16, and
      R2 is selected from
      Figure imgb0017
    3. 3. A compound for use according to embodiment 1 or 2 of formula (II)
      Figure imgb0018
    4. 4. A compound for use according to any one of embodiments 1 to 3, for use in the treatment of human solid tumours.
    5. 5. A compound for use according to any one of embodiments 1 to 4, wherein the HER2 expressing human solid tumour is breast cancer, gastric cancer, bladder cancer, ovarian cancer, lung cancer, prostate cancer, pancreatic cancer, colorectal cancer, head and neck squamous cell cancer or osteosarcoma, and the haematological malignancy is acute lymphoblastic leukaemia.
    6. 6. A compound for use according to any one of embodiments 1 to 5, wherein the HER2 expressing human solid tumour is breast cancer or gastric cancer.
    7. 7. A compound for use according to any one of embodiments 1 to 6, wherein the breast cancer is hormone receptor positive or negative.
    8. 8. A compound for use according to any one of embodiments 1 to 7, wherein the human solid tumour is HER2 IHC 2+ or 1+.
    9. 9. A compound for use according to any one of embodiments 1 to 8, wherein the human solid tumour is HER2 FISH negative.
    10. 10. A compound for use according to any one of embodiments 1 to 9, wherein the human solid tumour is triple negative breast cancer.
    11. 11. A combination of a compound for use according to any one of embodiments 1 to 10 with a therapeutic antibody and/or a chemotherapeutic agent, for use in the treatment of human solid tumours and haematological malignancies expressing HER2.
    12. 12. A combination for use according to embodiment 11, for use in the treatment of breast cancer, particularly triple negative breast cancer.
    13. 13. A combination for use according to embodiment 11 or 12, wherein the therapeutic antibody is pertuzumab and the chemotherapeutic agent is a taxane, particularly docetaxel or paclitaxel, or an anthracycline, particularly doxorubicin, epirubicin, daunorubicin or valrubicin.
    14. 14. A pharmaceutical composition comprising a compound for use according to any one of embodiments 1 to 10 or a combination for use according to any one of embodiments 11 to 13, and one or more pharmaceutically acceptable excipients.
    15. 15. A pharmaceutical composition according to embodiment 14 in the form of a lyophilized powder or a frozen solution.

Claims (10)

  1. A compound of formula (I)
    Figure imgb0019
    wherein
    anti-HER2 Ab is an anti-HER2 antibody or antibody fragment, n is 0-3,
    m represents an average DAR of from 1 to 4,
    R1 is selected from
    Figure imgb0020
    Figure imgb0021
    y is 1-16, and
    R2 is selected from
    Figure imgb0022
    for use in the treatment of human solid tumours expressing HER2, wherein the human solid tumour expressing HER2 is bladder cancer.
  2. A compound for use according to claim 1, wherein
    anti-HER2 Ab is an anti-HER2 antibody or antibody fragment, n is 0-1,
    m represents an average DAR of from 1 to 4,
    R1 is selected from
    Figure imgb0023
    y is 1-16, and
    R2 is selected from
    Figure imgb0024
  3. A compound for use according to claim 1 or 2 of formula (II)
    Figure imgb0025
  4. A compound for use according to claim 3 of formula (II) having an average DAR of from 2.6 to 2.9.
  5. A compound for use according to any one of claims 1 to 4, wherein the bladder cancer is HER2 IHC 2+ or 1+.
  6. A compound for use according to any one of claims 1 to 5, wherein the bladder cancer is HER2 FISH negative.
  7. A combination of a compound for use according to any one of claims 1 to 6 with a therapeutic antibody and/or a chemotherapeutic agent, for use in the treatment of bladder cancer.
  8. A combination for use according to claim 7, wherein the therapeutic antibody is pertuzumab and the chemotherapeutic agent is a taxane, an anthracycline, or a tyrosine kinase inhibitor.
  9. A pharmaceutical composition comprising a compound for use according to any one of claims 1 to 6 or a combination for use according to claim 7 or 8, and one or more pharmaceutically acceptable excipients.
  10. A pharmaceutical composition according to claim 9 in the form of a lyophilized powder or a frozen solution.
EP16160637.1A 2014-01-10 2015-01-09 Duocarmycin adcs for use in the treatment of bladder cancer Active EP3069735B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL16160637T PL3069735T3 (en) 2014-01-10 2015-01-09 Duocarmycin adcs for use in the treatment of bladder cancer
EP16160637.1A EP3069735B1 (en) 2014-01-10 2015-01-09 Duocarmycin adcs for use in the treatment of bladder cancer
NO16160637A NO3069735T3 (en) 2014-01-10 2015-01-09
CY20181100573T CY1120288T1 (en) 2014-01-10 2018-05-25 ANTIBODY-MEDICINE CONTAINERS CONTAINING DUOCARMYCIN FOR USE IN TREATMENT OF CYSTIC CYSTER CANCER
HRP20180876TT HRP20180876T1 (en) 2014-01-10 2018-06-05 Duocarmycin adcs for use in the treatment of bladder cancer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP14150791 2014-01-10
EP14188450 2014-10-10
EP16160637.1A EP3069735B1 (en) 2014-01-10 2015-01-09 Duocarmycin adcs for use in the treatment of bladder cancer
EP15701106.5A EP2948184B1 (en) 2014-01-10 2015-01-09 Duocarmycin adcs showing improved in vivo antitumor activity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP15701106.5A Division EP2948184B1 (en) 2014-01-10 2015-01-09 Duocarmycin adcs showing improved in vivo antitumor activity

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP17202406.9 Division-Into 2017-11-17

Publications (2)

Publication Number Publication Date
EP3069735A1 true EP3069735A1 (en) 2016-09-21
EP3069735B1 EP3069735B1 (en) 2018-03-14

Family

ID=52396655

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16160637.1A Active EP3069735B1 (en) 2014-01-10 2015-01-09 Duocarmycin adcs for use in the treatment of bladder cancer
EP15701106.5A Active EP2948184B1 (en) 2014-01-10 2015-01-09 Duocarmycin adcs showing improved in vivo antitumor activity

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15701106.5A Active EP2948184B1 (en) 2014-01-10 2015-01-09 Duocarmycin adcs showing improved in vivo antitumor activity

Country Status (23)

Country Link
US (4) US9421278B2 (en)
EP (2) EP3069735B1 (en)
JP (2) JP6342517B2 (en)
KR (2) KR102344354B1 (en)
CN (1) CN105899236B (en)
AU (2) AU2015205509B2 (en)
BR (1) BR112016015848A2 (en)
CA (1) CA2935433C (en)
CL (1) CL2016001760A1 (en)
CY (2) CY1117687T1 (en)
DK (2) DK3069735T3 (en)
ES (2) ES2575508T3 (en)
HR (2) HRP20160697T1 (en)
HU (2) HUE029255T2 (en)
LT (1) LT3069735T (en)
MX (2) MX368396B (en)
NO (1) NO3069735T3 (en)
PL (2) PL3069735T3 (en)
PT (2) PT2948184T (en)
RU (2) RU2769700C2 (en)
SG (2) SG10201911860VA (en)
WO (1) WO2015104385A2 (en)
ZA (2) ZA201604535B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901567B2 (en) 2007-08-01 2018-02-27 Syntarga B.V. Substituted CC-1065 analogs and their conjugates
MX2011004625A (en) 2008-11-03 2011-07-20 Syntarga Bv Novel cc-1065 analogs and their conjugates.
PL2560645T3 (en) 2010-04-21 2017-01-31 Syntarga B.V. Conjugates of cc-1065 analogs and bifunctional linkers
SG11201504887TA (en) 2012-12-21 2015-07-30 Bioalliance Cv Hydrophilic self-immolative linkers and conjugates thereof
SG10201911860VA (en) 2014-01-10 2020-02-27 Synthon Biopharmaceuticals Bv Duocarmycin adcs showing improved in vivo antitumor activity
MX368234B (en) 2014-01-10 2019-09-25 Synthon Biopharmaceuticals Bv Duocarmycin adcs for use in treatment of endometrial cancer.
MY177390A (en) 2014-01-10 2020-09-14 Byondis Bv Method for purifying cys-linked antibody-drug conjugates
HRP20211710T1 (en) 2014-05-22 2022-02-04 Byondis B.V. Site-specific conjugation of linker drugs to antibodies and resulting adcs
TWI695011B (en) 2014-06-18 2020-06-01 美商梅爾莎納醫療公司 Monoclonal antibodies against her2 epitope and methods of use thereof
US9808528B2 (en) 2014-06-18 2017-11-07 Mersana Therapeutics, Inc. Protein-polymer-drug conjugates and methods of using same
CN106661124A (en) 2014-06-20 2017-05-10 荷商台医(有限合伙)公司 Anti-folate receptor aplha (FRA) antibody-drug conjugates and methods of using thereof
MX2016017117A (en) * 2014-06-20 2018-01-12 Abgenomics Int Inc Her2 antibody-drug conjugates.
WO2017009255A1 (en) 2015-07-10 2017-01-19 Synthon Biopharmaceuticals B.V. Compositions comprising antibody-duocarmycin drug conjugates
KR20180052761A (en) 2015-09-22 2018-05-18 신톤 바이오파머슈티칼즈 비.브이. Treatment of SYD985 in patients with T-DM1 refractory cancer
CN106729743B (en) * 2015-11-23 2021-09-21 四川科伦博泰生物医药股份有限公司 anti-ErbB 2 antibody-drug conjugate, and composition, preparation method and application thereof
RS65120B1 (en) * 2015-11-25 2024-02-29 Immunogen Inc Pharmaceutical formulations and methods of use thereof
EP3400239B1 (en) 2016-01-08 2021-06-02 AltruBio Inc. Tetravalent anti-psgl-1 antibodies and uses thereof
SG11201808979UA (en) * 2016-04-15 2018-11-29 Macrogenics Inc Novel b7-h3 binding molecules, antibody drug conjugates thereof and methods of use thereof
GB201708909D0 (en) * 2017-06-05 2017-07-19 Orthox Ltd Implantable tissue repair devices and methods for manufacturing the same
WO2020078905A1 (en) 2018-10-15 2020-04-23 Merck Patent Gmbh Combination therapy utilizing dna alkylating agents and atr inhibitors
DK3876997T3 (en) * 2018-11-09 2022-09-26 Byondis Bv FILTERABLE DUOCARMYCIN-CONTAINING ANTIBODY-DRUG CONJUGATE COMPOSITIONS AND RELATED METHODS
WO2021156289A1 (en) * 2020-02-06 2021-08-12 Byondis B.V. Combination containing a duocarmycin derivative-comprising antibody-drug conjugate and thiosulfate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002096910A1 (en) * 2001-05-31 2002-12-05 Medarex, Inc. Cytotoxins, prodrugs, linkers and stabilizers useful therefor
WO2003026577A2 (en) * 2001-09-24 2003-04-03 Seattle Genetics, Inc. P-amidobenzylethers in drug delivery agents
WO2004032828A2 (en) * 2002-07-31 2004-04-22 Seattle Genetics, Inc. Anti-cd20 antibody-drug conjugates for the treatment of cancer and immune disorders
WO2005084390A2 (en) 2004-03-02 2005-09-15 Seattle Genetics, Inc. Partially loaded antibodies and methods of their conjugation
EP2165710A1 (en) * 2008-09-19 2010-03-24 Institut Curie Tyrosine kinase receptor Tyro3 as a therapeutic target in the treatment of a bladder tumor
WO2010070117A1 (en) * 2008-12-18 2010-06-24 Universite Libre De Bruxelles Treatment method by the administration of anti-her2 targeted active compounds to patients with early breast cancer and her2-negative primary tumor
EP2380909A1 (en) * 2010-04-26 2011-10-26 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. PTK-7 protein involved in breast cancer
WO2011133039A2 (en) 2010-04-21 2011-10-27 Syntarga B.V. Novel conjugates of cc-1065 analogs and bifunctional linkers
WO2012143523A1 (en) * 2011-04-20 2012-10-26 Genmab A/S Bispecifc antibodies against her2

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1238907A (en) 1984-02-21 1988-07-05 Robert C. Kelly 1,2,8,8a-tetrahydrocyclopropa¬c|pyrrolo(3,2-e)- indol-4(5h)-ones and related compounds
US4771128A (en) 1986-10-10 1988-09-13 Cetus Corporation Method of purifying toxin conjugates using hydrophobic interaction chromatography
MX9203460A (en) 1988-09-12 1992-09-01 Upjohn Co NEW ANALOGS CC-1065 THAT HAVE TWO CPI SUBUNITS.
EP0527189A1 (en) 1990-04-25 1993-02-17 PHARMACIA &amp; UPJOHN COMPANY Novel cc-1065 analogs
JPH05268205A (en) 1992-03-19 1993-10-15 Fujitsu Ltd Clock change-over circuit
CA2076465C (en) 1992-03-25 2002-11-26 Ravi V. J. Chari Cell binding agent conjugates of analogues and derivatives of cc-1065
JP3514490B2 (en) 1992-08-21 2004-03-31 杏林製薬株式会社 Trifluoromethylpyrroloindole carboxylate derivative and method for producing the same
GB9307491D0 (en) 1993-04-08 1993-06-02 Sandoz Ltd Organic compounds
US5670492A (en) 1994-04-01 1997-09-23 Kyowa Hakko Kogyo Co., Ltd. DC-89 derivatives
US5502068A (en) 1995-01-31 1996-03-26 Synphar Laboratories, Inc. Cyclopropylpyrroloindole-oligopeptide anticancer agents
DE19503320A1 (en) 1995-02-02 1996-08-08 Boehringer Mannheim Gmbh New benzodiazepine conjugates
US5843937A (en) 1996-05-23 1998-12-01 Panorama Research, Inc. DNA-binding indole derivatives, their prodrugs and immunoconjugates as anticancer agents
JP4155598B2 (en) 1996-09-12 2008-09-24 オークランド ユニサーヴィシズ リミテッド Condensed N-acylindoles as anticancer agents
WO1998025900A1 (en) 1996-12-13 1998-06-18 Shionogi & Co., Ltd. Compounds having antitumor activity
US20030036629A1 (en) 1997-12-12 2003-02-20 Barry Foster Novel tgf-beta protein purification methods
EP1280771B1 (en) 2000-05-02 2004-10-13 Tietze, Lutz F., Prof. Dr. Novel prodrugs von 6-hydroxy-2,3-dihydro-1h-indoles, 5-hydroxy-1,2-dihydro-3h-pyrrolo 3,2-e]indoles and 5-hydroxy-1,2-dihydro-3h-benzo(e)indoles as well as of 6-hydroxy-1,2,3,4-tetrahydro-benzo f]quinoline derivatives for use in selective cancer therapy
EP1320522B8 (en) 2000-09-19 2006-02-01 Moses Lee Compositions and methods of the use thereof achiral analogues of cc-1065 and the duocarmycins
JP2004518678A (en) 2001-01-24 2004-06-24 オークランド ユニサーヴィスィズ リミテッド Complex of anticancer agent 2,3-dihydro-1H-pyrrolo [3,2-f] quinoline with cobalt and chromium
ATE327750T1 (en) 2001-02-22 2006-06-15 Univ London Pharmacy BENZ-INDOLE AND BENZO-QUINOLINE DERIVATIVES AS PRODRUGS FOR TUMOR TREATMENT
US7514078B2 (en) 2001-06-01 2009-04-07 Cornell Research Foundation, Inc. Methods of treating prostate cancer with anti-prostate specific membrane antigen antibodies
JP2005502703A (en) 2001-09-07 2005-01-27 ザ スクリプス リサーチ インスティテュート CC-1065 and CBI analogs of duocarmycin
US6756397B2 (en) 2002-04-05 2004-06-29 Immunogen, Inc. Prodrugs of CC-1065 analogs
AU2003228173A1 (en) 2002-05-17 2003-12-02 Auckland Uniservices Limited Processes for preparing 3-substituted 1-(chloromethyl)-1,2-dihydro-3h-(ring fused indol-5-yl(amine-derived)) compounds and analogues thereof, and to products obtained therefrom
AU2003282624A1 (en) 2002-11-14 2004-06-03 Syntarga B.V. Prodrugs built as multiple self-elimination-release spacers
NZ541846A (en) 2003-01-27 2008-12-24 Endocyte Inc Vitamin receptor binding drug delivery conjugates
US20070037739A1 (en) 2003-02-03 2007-02-15 Medlogics Device Corporation Compounds useful in coating stents to prevent and treat stenosis and restenosis
US7662387B2 (en) 2003-02-20 2010-02-16 Seattle Genetics Anti-cd70 antibody-drug conjugates and their use for the treatment of cancer and immune disorders
US20050026987A1 (en) 2003-05-13 2005-02-03 The Scripps Research Institute CBI analogues of the duocarmycins and CC-1065
WO2005032594A2 (en) 2003-10-03 2005-04-14 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Alkylators linked to polyamides as dna binding agents
CA2564076C (en) 2004-05-19 2014-02-18 Medarex, Inc. Chemical linkers and conjugates thereof
NZ580115A (en) 2004-09-23 2010-10-29 Genentech Inc Cysteine engineered antibody light chains and conjugates
CA2581930A1 (en) 2004-09-27 2006-04-06 Jane Trepel Modulating mxa expression
NZ536107A (en) 2004-10-22 2007-06-29 Auckland Uniservices Ltd Nitrobenzindoles and their use in cancer therapy
CA2598956A1 (en) 2005-02-24 2006-08-31 Pfizer Products Inc. Bicyclic heteroaromatic derivatives useful as anticancer agents
BRPI0617546A2 (en) 2005-09-26 2011-07-26 Medarex Inc drug-antibody conjugate, pharmaceutical formulation, method for killing a tumor cell, method for retarding or arresting tumor growth in a mammalian subject and compound
CA2627046C (en) 2005-10-26 2015-09-15 Medarex, Inc. Methods and compounds for preparing cc-1065 analogs
RU2489423C2 (en) 2006-02-02 2013-08-10 Синтарга Б.В. Water-soluble analogues cc-1065 and their conjugates
EP1832577A1 (en) 2006-03-07 2007-09-12 Sanofi-Aventis Improved prodrugs of CC-1065 analogs
CA2858359C (en) 2006-11-01 2018-04-03 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
MX2009006277A (en) 2006-12-14 2009-07-24 Medarex Inc Human antibodies that bind cd70 and uses thereof.
TW200900059A (en) 2007-02-21 2009-01-01 Medarex Inc Chemical linkers with single amino acids and conjugates thereof
EP2173739B1 (en) 2007-08-01 2013-07-31 Syntarga B.V. Substituted cc-1065 analogs and their conjugates
US9901567B2 (en) 2007-08-01 2018-02-27 Syntarga B.V. Substituted CC-1065 analogs and their conjugates
US8377981B2 (en) 2007-11-13 2013-02-19 The Scripps Research Institute CBI derivatives subject to reductive activation
US20090162372A1 (en) 2007-11-30 2009-06-25 Medarex, Inc. Fibronectin ed-b antibodies, conjugates thereof, and methods of use
NZ571028A (en) 2008-09-03 2011-01-28 Auckland Uniservices Ltd Nitrobenzindole compounds and their use in cancer treatment
CN102215844A (en) 2008-09-17 2011-10-12 恩多塞特公司 Folate receptor binding conjugates of antifolates
MX2011004625A (en) 2008-11-03 2011-07-20 Syntarga Bv Novel cc-1065 analogs and their conjugates.
WO2011022316A1 (en) * 2009-08-20 2011-02-24 The Regents Of The University Of Colorado, A Body Corporate Mirnas dysregulated in triple-negative breast cancer
EP2575880B1 (en) * 2010-05-27 2019-01-16 Genmab A/S Monoclonal antibodies against her2 epitope
WO2013049410A1 (en) 2011-09-29 2013-04-04 Seattle Genetics, Inc. Intact mass determination of protein conjugated agent compounds
HUE044352T2 (en) * 2011-10-14 2019-10-28 Hoffmann La Roche Pertuzumab, trastuzumab, docetaxel and carboplatin for the treatment of early-stage breast cancer
CA2859755C (en) 2011-12-23 2021-04-20 Pfizer Inc. Engineered antibody constant regions for site-specific conjugation and methods and uses therefor
WO2013121175A1 (en) 2012-02-16 2013-08-22 Ucl Business Plc Lysosome-cleavable linker
MX368234B (en) 2014-01-10 2019-09-25 Synthon Biopharmaceuticals Bv Duocarmycin adcs for use in treatment of endometrial cancer.
MY177390A (en) 2014-01-10 2020-09-14 Byondis Bv Method for purifying cys-linked antibody-drug conjugates
SG10201911860VA (en) 2014-01-10 2020-02-27 Synthon Biopharmaceuticals Bv Duocarmycin adcs showing improved in vivo antitumor activity
HRP20211710T1 (en) 2014-05-22 2022-02-04 Byondis B.V. Site-specific conjugation of linker drugs to antibodies and resulting adcs
CN106458892B (en) 2014-06-05 2019-10-18 斯索恩生物制药有限公司 It is used to prepare a times improved method for carcinomycin prodrug
WO2016046173A1 (en) 2014-09-22 2016-03-31 Synthon Biopharmaceuticals B.V. Pan-reactive antibodies to duocarmycins
WO2017009255A1 (en) 2015-07-10 2017-01-19 Synthon Biopharmaceuticals B.V. Compositions comprising antibody-duocarmycin drug conjugates

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002096910A1 (en) * 2001-05-31 2002-12-05 Medarex, Inc. Cytotoxins, prodrugs, linkers and stabilizers useful therefor
WO2003026577A2 (en) * 2001-09-24 2003-04-03 Seattle Genetics, Inc. P-amidobenzylethers in drug delivery agents
WO2004032828A2 (en) * 2002-07-31 2004-04-22 Seattle Genetics, Inc. Anti-cd20 antibody-drug conjugates for the treatment of cancer and immune disorders
WO2005084390A2 (en) 2004-03-02 2005-09-15 Seattle Genetics, Inc. Partially loaded antibodies and methods of their conjugation
EP2165710A1 (en) * 2008-09-19 2010-03-24 Institut Curie Tyrosine kinase receptor Tyro3 as a therapeutic target in the treatment of a bladder tumor
WO2010070117A1 (en) * 2008-12-18 2010-06-24 Universite Libre De Bruxelles Treatment method by the administration of anti-her2 targeted active compounds to patients with early breast cancer and her2-negative primary tumor
WO2011133039A2 (en) 2010-04-21 2011-10-27 Syntarga B.V. Novel conjugates of cc-1065 analogs and bifunctional linkers
EP2380909A1 (en) * 2010-04-26 2011-10-26 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. PTK-7 protein involved in breast cancer
WO2012143523A1 (en) * 2011-04-20 2012-10-26 Genmab A/S Bispecifc antibodies against her2

Non-Patent Citations (47)

* Cited by examiner, † Cited by third party
Title
1. RAY-COQUARD ET AL., CLIN. OVARIAN CANCER, vol. 1, no. 1, 2008, pages 54 - 59
A. BERCHUCK ET AL., CANCER RES., vol. 50, 1990, pages 4087 - 4091
A. BERTOTTI ET AL., CANCER DISCOV., vol. 1, no. 6, 2011, pages 508 - 523
A. CHAKRAVARTI ET AL., INT. J. RADIATION ONCOLOGY BIOL. PHYS., vol. 62, no. 2, 2005, pages 309 - 317
A.N. SEO ET AL., PLOS ONE, vol. 9, no. 5, 2014, pages E98528
C. CAI ET AL., CANCER RES., vol. 69, no. 12, 2009, pages 5202 - 5209
C.-M. TSAI ET AL., J. NATL. CANCER INST., vol. 85, no. 11, 1993, pages 897 - 901
D. AMSELLEM-OUAZANA ET AL., ANN. ONCOL., vol. 15, no. 3, 2004, pages 538
D. EBB ET AL., J. CLIN. ONCOL., vol. 30, no. 20, 2012, pages 2545 - 2551
DOKTER W ET AL: "Abstract 4329: Novel HER2 targeting antibody-drug conjugates based on DNA-interacting duocarmycin and an unique linker technology with great potential in breast cancer and NSCLC", 15 April 2013 (2013-04-15), XP002725434, Retrieved from the Internet <URL:http://cancerres.aacrjournals.org/cgi/content/meeting_abstract/73/8_MeetingAbstracts/4329?sid=79046d57-942d-4258-9aed-2238d480704d> [retrieved on 20140605] *
F.-N. HSU ET AL., AM. J. PHYSIOL. ENDOCRINOL. METAB., vol. 300, 2011, pages E902 - E908
FIEBIG ET AL., BEHRING INST. MITT., vol. 74, 1984, pages 343 - 352
FIEBIG ET AL., CANCER GENOMICS & PROTEOMICS, vol. 4, 1997, pages 197 - 210
G.M. MANTIA-SMALDONE ET AL., CANCER MANAGEMENT RES., vol. 3, 2011, pages 25 - 38
H. BURRIS; A.M. STORNIOLO, EUR. J. CANCER, vol. 33, no. L, 1997, pages S 18 - S22
H. MEDEN; W. KUHN, EUR. J. OBSTET. & GYNECOL. REPROD. BIOL., vol. 71, 1997, pages 173 - 179
HIDALGO ET AL., MOL. CANCER THER., vol. 10, 2011, pages 1311 - 1316
HIDEO SHIGEMATSU ET AL: "A case of HER-2-positive recurrent breast cancer showing a clinically complete response to trastuzumab-containing chemotherapy after primary treatment of triple-negative breast cancer", WORLD JOURNAL OF SURGICAL ONCOLOGY, BIOMED CENTRAL, LONDON, GB, vol. 9, no. 1, 7 November 2011 (2011-11-07), pages 146, XP021113554, ISSN: 1477-7819, DOI: 10.1186/1477-7819-9-146 *
J. CLARK ET AL., PROC. AM. SOC. CLIN. ONCOL., vol. 22, 2003
J. MAZIERES ET AL., J. CLIN. ONCOL., vol. 31, no. 16, 2013, pages 1997 - 2004
J.M.S. BARTLETT ET AL., J. PATHOL., vol. 205, 2005, pages 522 - 529
JOHN A. FLYGARE ET AL: "Antibody-Drug Conjugates for the Treatment of Cancer", CHEMICAL BIOLOGY & DRUG DESIGN, vol. 81, no. 1, 17 January 2013 (2013-01-17), pages 113 - 121, XP055121985, ISSN: 1747-0277, DOI: 10.1111/cbdd.12085 *
K. TAKEZAWA ET AL., CANCER DISCOV., vol. 2, no. 10, 2012, pages 922 - 33
L. CHEN ET AL., CLIN. CANCER RES., vol. 17, no. 19, 2011, pages 6218 - 28
LARBOURET ET AL., NEOPLASIA, vol. 14, no. 2, 2012, pages 121 - 130
M. SUZUKI ET AL., LUNG CANCER, 2014, Retrieved from the Internet <URL:http://dx.doi.org/10.1016/j.lungca.2014.10.014>
M.E. IRWIN ET AL., PLOS ONE, vol. 8, no. 8, 2013, pages E70608
M.H.A. HUSSAIN ET AL., J. CLIN. ONCOL., vol. 25, no. 16, 2007, pages 2218 - 24
N. GABORIT ET AL., J. BIOL. CHEM., vol. 286, no. 13, 2011, pages 11337 - 11345
NOLTING B: "Linker technologies for antibody-drug conjugates", METHODS IN MOLECULAR BIOLOGY - ANTIBODY-DRUG CONJUGATES 2013 HUMANA PRESS USA, vol. 1045, 2013, pages 71 - 100, XP008169796, ISSN: 1064-3745 *
P. CHEVALIER ET AL., BLOOD, 2012
R. GORLICK ET AL., J. CLIN. ONCOL., vol. 17, 1999, pages 2781 - 8
R.K. RAMANATHAN ET AL., CANCER INVEST., vol. 22, no. 6, 2004, pages 858 - 865
R.N. BECKHARDT ET AL., ARCH. OTOLARYNGOL. HEAD NECK SURG., vol. 121, 1995, pages 1265 - 1270
RAJALETCHUMY VELOO KUTTY ET AL: "Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers", BIOMATERIALS, vol. 34, no. 38, 1 December 2013 (2013-12-01), pages 10160 - 10171, XP055122815, ISSN: 0142-9612, DOI: 10.1016/j.biomaterials.2013.09.043 *
REBECCA K KELLY ET AL: "An antibodycytotoxic conjugate, BIIB015, is a new targeted therapy for Cripto positive tumours", EUROPEAN JOURNAL OF CANCER, PERGAMON PRESS, OXFORD, GB, vol. 47, no. 11, 28 February 2011 (2011-02-28), pages 1736 - 1746, XP028323640, ISSN: 0959-8049, [retrieved on 20110303], DOI: 10.1016/J.EJCA.2011.02.023 *
S. A. KAZANE ET AL: "Site-specific DNA-antibody conjugates for specific and sensitive immuno-PCR", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 109, no. 10, 6 March 2012 (2012-03-06), pages 3731 - 3736, XP055076255, ISSN: 0027-8424, DOI: 10.1073/pnas.1120682109 *
S. MAKHIJA ET AL., J. CLIN. ONCOL., vol. 28, no. 7, 2010, pages 1215 - 1223
S. MINNER ET AL., DIN. CANCER RES., vol. 16, no. 5, 2010, pages 1553 - 60
S. SCHOLL ET AL., ANN. ONCOL., vol. 12, no. 1, 2001, pages S81 - S87
S.F. SHARIAT ET AL., CLIN. CANCER RES., vol. 13, no. 18, 2007, pages 5377 - 84
S.P. LANGDON ET AL., EXPERT OPIN. BIOL. THER., vol. 10, no. 7, 2010, pages 1113 - 1120
SHEN B -Q ET AL: "Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates", NATURE BIOTECHNOLOGY 2012 NATURE PUBLISHING GROUP USA, vol. 30, no. 2, February 2012 (2012-02-01), pages 184 - 189, XP055123129, ISSN: 1087-0156 *
SYNTHON COMPANY: "Synthon Biopharmaceuticals reports positive early results with its second generation HER2-antibody-drug conjugate", 22 January 2013 (2013-01-22), XP002725428, Retrieved from the Internet <URL:http://www.synthon.com/Corporate/News/PressReleases/Synthon-reports-positive-early-results-with-its-second-generation-HER2-antibody-drug-conjugate> [retrieved on 20140605] *
T. CONROY ET AL., N. ENGL. J. MED., vol. 364, no. 19, 2011, pages 1817 - 25
TRAIL P A: "Antibody drug conjugates as cancer therapeutics", ANTIBODIES 20130227 MDPI AG CHE, vol. 2, no. 1, 27 February 2013 (2013-02-27), pages 113 - 129, XP002725437 *
Z. CALIKUSU ET AL., J. EXP. CLIN. CANCER RES., vol. 28, 2009, pages 97

Also Published As

Publication number Publication date
US20190314513A1 (en) 2019-10-17
US20170014525A1 (en) 2017-01-19
US10603387B2 (en) 2020-03-31
BR112016015848A2 (en) 2017-08-08
SG10201911860VA (en) 2020-02-27
KR20210130826A (en) 2021-11-01
DK2948184T3 (en) 2016-06-27
KR102344354B1 (en) 2021-12-28
AU2019264575A1 (en) 2019-12-05
RU2769700C2 (en) 2022-04-05
EP2948184A2 (en) 2015-12-02
PL3069735T3 (en) 2018-08-31
ZA201604535B (en) 2018-11-28
AU2015205509A1 (en) 2016-07-07
KR20160106693A (en) 2016-09-12
HUE029255T2 (en) 2017-02-28
KR102323302B1 (en) 2021-11-09
LT3069735T (en) 2018-06-11
CY1117687T1 (en) 2017-05-17
PT2948184T (en) 2016-07-08
HUE037250T2 (en) 2018-08-28
CL2016001760A1 (en) 2017-06-09
RU2019114963A (en) 2019-07-17
RU2016132759A3 (en) 2018-08-14
US9421278B2 (en) 2016-08-23
NO3069735T3 (en) 2018-08-11
DK3069735T3 (en) 2018-05-22
US20160008486A1 (en) 2016-01-14
CN105899236A (en) 2016-08-24
ES2575508T3 (en) 2016-06-29
MX368396B (en) 2019-10-01
US20180140711A1 (en) 2018-05-24
RU2689779C2 (en) 2019-05-29
ES2668984T3 (en) 2018-05-23
MX2016009070A (en) 2016-09-09
CA2935433A1 (en) 2015-07-16
RU2019114963A3 (en) 2021-09-28
PT3069735T (en) 2018-05-18
PL2948184T3 (en) 2016-11-30
SG11201605602XA (en) 2016-08-30
AU2019264575B2 (en) 2020-10-29
US11382982B2 (en) 2022-07-12
WO2015104385A3 (en) 2015-08-27
HRP20160697T1 (en) 2016-07-15
EP3069735B1 (en) 2018-03-14
JP2018039809A (en) 2018-03-15
CY1120288T1 (en) 2019-07-10
JP6342517B2 (en) 2018-06-13
AU2015205509B2 (en) 2019-08-15
JP2017503858A (en) 2017-02-02
CA2935433C (en) 2019-04-02
WO2015104385A2 (en) 2015-07-16
CN105899236B (en) 2019-07-26
EP2948184B1 (en) 2016-03-23
JP6430603B2 (en) 2018-11-28
HRP20180876T1 (en) 2018-07-13
RU2016132759A (en) 2018-02-16
MX2019011494A (en) 2019-11-01
ZA201800350B (en) 2019-07-31

Similar Documents

Publication Publication Date Title
US11382982B2 (en) Duocarmycin ADCs showing improved in vivo antitumor activity
US9427480B2 (en) Duocarmycin ADCs for use in treatment of endometrial cancer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2948184

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170321

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015008952

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A61K0047480000

Ipc: A61P0035000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: A61P 35/00 20060101AFI20170904BHEP

Ipc: A61K 47/50 20170101ALI20170904BHEP

INTG Intention to grant announced

Effective date: 20171005

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2948184

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 978264

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015008952

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3069735

Country of ref document: PT

Date of ref document: 20180518

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20180427

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180516

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2668984

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180523

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20180876

Country of ref document: HR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20180876

Country of ref document: HR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180314

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E037250

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015008952

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20180876

Country of ref document: HR

Payment date: 20190108

Year of fee payment: 5

Ref country code: GR

Ref legal event code: EP

Ref document number: 20180401549

Country of ref document: GR

Effective date: 20190109

26N No opposition filed

Effective date: 20181217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190109

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20180876

Country of ref document: HR

Payment date: 20200103

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602015008952

Country of ref document: DE

Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015008952

Country of ref document: DE

Owner name: BYONDIS B.V., NL

Free format text: FORMER OWNER: SYNTHON BIOPHARMACEUTICALS B.V., NIJMEGEN, NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BYONDIS B.V., NL

Free format text: FORMER OWNER: SYNTHON BIOPHARMACEUTICALS B.V., NL

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: BYONDIS B.V., NL

Ref country code: HR

Ref legal event code: PNAN

Ref document number: P20180876

Country of ref document: HR

Owner name: BYONDIS B.V., NL

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: BYONDIS B.V.

Effective date: 20200511

REG Reference to a national code

Ref country code: FI

Ref legal event code: PCE

Owner name: BYONDIS B.V.

REG Reference to a national code

Ref country code: HU

Ref legal event code: HC9C

Owner name: BYONDIS B.V., NL

Free format text: FORMER OWNER(S): SYNTHON BIOPHARMACEUTICALS B.V., NL

REG Reference to a national code

Ref country code: SK

Ref legal event code: TC4A

Ref document number: E 27496

Country of ref document: SK

Owner name: BYONDIS B.V., CM NIJMEGEN, NL

Effective date: 20200629

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: BYONDIS B.V.; NL

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: SYNTHON BIOPHARMACEUTICALS B.V.

Effective date: 20200615

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: BYONDIS B.V.; NL

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT DE NOM DU PROPRIETAIRE; FORMER OWNER NAME: SYNTHON BIOPHARMACEUTICALS B.V.

Effective date: 20200515

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 978264

Country of ref document: AT

Kind code of ref document: T

Owner name: BYONDIS B.V, NL

Effective date: 20200803

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20180876

Country of ref document: HR

Payment date: 20201218

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 978264

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180314

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20180876

Country of ref document: HR

Payment date: 20211220

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20180876

Country of ref document: HR

Payment date: 20221221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230127

Year of fee payment: 9

Ref country code: IE

Payment date: 20230127

Year of fee payment: 9

Ref country code: FR

Payment date: 20230125

Year of fee payment: 9

Ref country code: FI

Payment date: 20230127

Year of fee payment: 9

Ref country code: ES

Payment date: 20230201

Year of fee payment: 9

Ref country code: DK

Payment date: 20230127

Year of fee payment: 9

Ref country code: CH

Payment date: 20230130

Year of fee payment: 9

Ref country code: BG

Payment date: 20230118

Year of fee payment: 9

Ref country code: AT

Payment date: 20221221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230109

Year of fee payment: 9

Ref country code: SE

Payment date: 20230127

Year of fee payment: 9

Ref country code: IT

Payment date: 20230120

Year of fee payment: 9

Ref country code: HU

Payment date: 20221218

Year of fee payment: 9

Ref country code: GR

Payment date: 20230127

Year of fee payment: 9

Ref country code: GB

Payment date: 20230127

Year of fee payment: 9

Ref country code: DE

Payment date: 20230127

Year of fee payment: 9

Ref country code: CY

Payment date: 20221222

Year of fee payment: 9

Ref country code: BE

Payment date: 20230127

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231219

Year of fee payment: 10

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20180876

Country of ref document: HR

Payment date: 20231219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20231221

Year of fee payment: 10

Ref country code: PT

Payment date: 20231219

Year of fee payment: 10

Ref country code: MT

Payment date: 20231221

Year of fee payment: 10

Ref country code: LT

Payment date: 20231219

Year of fee payment: 10

Ref country code: HR

Payment date: 20231219

Year of fee payment: 10

Ref country code: CZ

Payment date: 20231221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231220

Year of fee payment: 10

Ref country code: NL

Payment date: 20240126

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240126

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240129

Year of fee payment: 10

Ref country code: ES

Payment date: 20240201

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20231222

Year of fee payment: 10

Ref country code: FI

Payment date: 20240125

Year of fee payment: 10

Ref country code: DE

Payment date: 20240129

Year of fee payment: 10

Ref country code: CY

Payment date: 20231221

Year of fee payment: 10

Ref country code: BG

Payment date: 20240129

Year of fee payment: 10

Ref country code: CH

Payment date: 20240202

Year of fee payment: 10

Ref country code: GB

Payment date: 20240129

Year of fee payment: 10