EP3065420B1 - Electromagnetic signal converter for a bone conduit earpiece - Google Patents

Electromagnetic signal converter for a bone conduit earpiece Download PDF

Info

Publication number
EP3065420B1
EP3065420B1 EP16158871.0A EP16158871A EP3065420B1 EP 3065420 B1 EP3065420 B1 EP 3065420B1 EP 16158871 A EP16158871 A EP 16158871A EP 3065420 B1 EP3065420 B1 EP 3065420B1
Authority
EP
European Patent Office
Prior art keywords
yoke
permanent magnet
coil
signal converter
longitudinal axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16158871.0A
Other languages
German (de)
French (fr)
Other versions
EP3065420A1 (en
Inventor
Franz Berl
Frank Jurisch
Klaus Hostniker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BHM-Tech Produktionsgesellschaft mbH
Original Assignee
BHM-Tech Produktionsgesellschaft mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BHM-Tech Produktionsgesellschaft mbH filed Critical BHM-Tech Produktionsgesellschaft mbH
Publication of EP3065420A1 publication Critical patent/EP3065420A1/en
Application granted granted Critical
Publication of EP3065420B1 publication Critical patent/EP3065420B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R11/00Transducers of moving-armature or moving-core type
    • H04R11/02Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R13/00Transducers having an acoustic diaphragm of magnetisable material directly co-acting with electromagnet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/006Interconnection of transducer parts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2209/00Details of transducers of the moving-coil, moving-strip, or moving-wire type covered by H04R9/00 but not provided for in any of its subgroups
    • H04R2209/022Aspects regarding the stray flux internal or external to the magnetic circuit, e.g. shielding, shape of magnetic circuit, flux compensation coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2209/00Details of transducers of the moving-coil, moving-strip, or moving-wire type covered by H04R9/00 but not provided for in any of its subgroups
    • H04R2209/024Manufacturing aspects of the magnetic circuit of loudspeaker or microphone transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window

Definitions

  • the magnetic bias causes a current-proportional force generated by the coil on the armature and thus an exact transfer of the electrical to mechanical vibrations. Without this magnetic bias, the force and thus mechanical deflection would be proportional to the square of the current, which would lead to considerable distortion due to the frequency doubling and suppression of the weak signals.
  • Bone conduction headphones convert electrical signals into mechanical vibrations and therefore act as vibration generators or electromagnetic signal transducers. This technology takes place under other use in hearing aids and is particularly suitable for people with impairment of the outer and middle ear, since in this case the sound cannot be transmitted mechanically to the cochlea.
  • Bone conduction hearing aids can, however, also be used in other hearing and communication systems where sound transmission via air to the eardrum is not possible, for example under water. In this way, bone conduction earphones can be used for communication systems for divers. Bone conduction hearing aids can also be used in communication systems wherever sound transmission via air is fundamentally possible, but due to ambient noise the transmitted sound would hardly be audible, as in heavy industry (e.g. in steelworks).
  • the acoustic signal to be transmitted to humans is usually recorded via a microphone (but it could also be transmitted as a radio signal), converted in the amplifier, processed and passed on to the electromagnetic signal converter as an electrical signal.
  • the electrical signals are fed to the coil, which sets the armature in vibration accordingly.
  • the oscillator serving as an anchor (bone conduction receiver) contacts the cranial bone, preferably the mastoid, the acoustic signal being transmitted in the form of tactile vibrations bypassing the middle ear directly into the inner ear, where it is converted into a nerve stimulus in the cochlea.
  • These bone conduction earphones are mostly installed in a carrier object, for example in a temple, a hair band or in an external housing for wearing in a hat.
  • the permanent magnet is constructed as a ring magnet, that is to say in the form of a hollow cylinder which surrounds a ring coil and on one The end face contacts a disk-shaped part of the yoke, the yoke plate, while on the other end face it faces the anchor while maintaining an air gap, a so-called working air gap.
  • a signal converter with a coil, a yoke, a soft magnetic armature and permanent magnets, which are arranged in the longitudinal direction overlapping with the coil.
  • both the magnetic flux excited by the magnetic flux of the permanent magnet and the magnetic flux excited by the coil use the same flux paths, namely in the longitudinal direction through the yoke, in particular through a rod-shaped part of the yoke (yoke core), radially through the armature in the ring magnet, in the longitudinal direction through the ring magnet and back into the yoke, in particular radially through the yoke plate back into the yoke core.
  • the coil flux must also overcome the high magnetic resistance of the ring magnet.
  • a high electrically excited flow (large ampere turns) is thus required to generate a specific magnetic flux change through the coil. This is synonymous with high current or high number of turns, in any case a high excitation power is required for the coil, which in turn leads to a short lifespan of the battery of the bone conduction earphone.
  • the US 2004/0028249 A1 relates to a signal converter for bone conduction hearing aids, this comprises a coil, a yoke for the coil and permanent magnets.
  • a signal converter for bone conduction hearing aids this comprises a coil, a yoke for the coil and permanent magnets.
  • two permanent magnets are used, which are arranged above and below the coil.
  • the permanent magnet, the yoke and the coil are surrounded by a soft magnetic housing which is separated from the yoke by an air gap in addition to the working air gap to the armature, so that the magnetic flux that can be generated by the coil through the soft magnetic housing onto a flow path outside the permanent magnet is steerable.
  • An air gap can be present between an end face of the yoke, in particular the yoke plate, facing the permanent magnet and the housing.
  • the yoke is the means for dividing the magnetic flux that can be generated by the coil into at least two flux paths.
  • the yoke already present can therefore be designed accordingly for the purpose according to the invention.
  • the yoke has a rod-shaped alignment along the longitudinal axis of the yoke Yoke core and a yoke plate arranged normal to the longitudinal axis, wherein the yoke core protrudes into the coil and the yoke plate faces an end face of the coil, and the magnetic flux that can be generated by the coil can be directed through the yoke plate onto a flow path outside the permanent magnet.
  • the yoke plate does not necessarily have to be plate-shaped in the sense of a prism (body of the same thickness with mutually parallel end faces), but can in principle also have other, non-prismatic shapes, such as the shape of a truncated cone or cone.
  • the yoke plate can be circular, in particular a circular disk, or rectangular, in particular a rectangular plate, viewed in the direction of the longitudinal axis of the yoke.
  • the dimension of the yoke plate normal to the longitudinal axis of the yoke is generally larger than the dimension of the yoke plate in the direction of the longitudinal axis of the yoke.
  • part of the yoke By arranging the permanent magnet on that side of the yoke, which - seen in the direction of the longitudinal axis of the yoke - is opposite the armature, part of the yoke, namely the yoke plate, is located between the coil and the permanent magnet and thus serves as a stray web for the magnetic fields of the Coil and permanent magnet. Some of the magnetic field lines that penetrate from the permanent magnet into the yoke plate run back into the permanent magnet and not through the entire yoke. For the magnetic flux of the coil, a lower total magnetic resistance results from the parallel connection of the permanent magnet resistor and the stray resistor, which means that a lower excitation power of the coil is sufficient for the same deflection of the armature.
  • the magnetic resistance is defined by considering the signal converter as a magnetic circuit.
  • a magnetic circuit is a closed path of a magnetic flux.
  • the Laws of magnetic flux are defined analogously to the laws in the electrical circuit.
  • the magnetic flux ⁇ is here considered analogously to the electrical current I, the magnetic resistance (the reluctance Rm) analogously to the electrical resistance (to the resistance R), and the magnetic voltage Vm analogously to the electrical voltage U.
  • the magnetic resistance Rm can be defined in the magnetic circuit as the quotient of the magnetic voltage Vm and the magnetic flux ⁇ .
  • Rare earth magnets are a group of permanent magnets that essentially consist of ferrous metals (Iron, cobalt) and rare earth metals (especially neodymium, samarium, praseodymium, dysprosium, terbium) are distinguished by the fact that they have a high magnetic remanence flux density B r and a high magnetic coercive field strength H cJ and thus a high magnetic energy density ( BH) max .
  • Common rare earth magnets consist of neodymium iron boron (Nd2Fe14B) or samarium cobalt (SmCo 5 and Sm 2 Co 17 ).
  • the magnetic energy density of rare earth magnets is usually many times higher than that of steel magnets, eg consisting of AlNiCo, due to the smaller dimensions of the rare earth magnet compared to a conventional ring magnet t the weight of the permanent magnet and thus the signal converter.
  • the permanent magnet will generally be designed as a circular disk, the center of the circular disk being on the longitudinal axis of the yoke.
  • the permanent magnet has a diameter that is smaller than the outside diameter of the coil, but larger than the inside diameter of the coil.
  • the permanent magnet could also be the same size or larger than the outside diameter of the coil.
  • the design of the dimensions of the permanent magnet is determined by the required magnetic flux and thus essentially the magnetic area A M.
  • the largest diameter of the yoke in particular the yoke plate, has the same outer diameter as the coil.
  • the signal converter can be constructed in such a way that an air gap, the so-called scattering gap, is present between a peripheral surface of the yoke, in particular a peripheral surface of the yoke plate, and the housing.
  • This air gap thus has, for example, the shape of a cylinder jacket.
  • the yoke in particular the yoke plate, has a recess in the end face which faces the permanent magnet, so that the permanent magnet is at least partially received in the yoke. This fixes the position of the permanent magnet and the yoke.
  • the soft magnetic housing has a recess which faces the permanent magnet, so that the permanent magnet is at least partially received in the housing.
  • One embodiment of the invention consists in that the end face of the permanent magnet contacts both the yoke, in particular the yoke plate, and the housing. In this way an additional air gap is avoided. This requires a good magnetization of the yoke plate and the housing, the magnetic field lines mainly run in this area.
  • Fig. 1 shows a conventional signal converter. It essentially consists of a yoke 1, a coil 2, a ring magnet 3 and a plate-shaped armature 4. A housing which surrounds all of the parts of the signal converter mentioned and protects against environmental influences is not shown here.
  • the yoke 1 like the coil 2, the ring magnet 3 and the armature 4, is rotationally symmetrical about the longitudinal axis 5. It is made in one piece, but has 5 regions with different diameters along the longitudinal axis, including a rod-shaped part, that is to say a central leg or yoke core 6 smaller diameter, and a disc-shaped part, ie a yoke plate 7 with a larger diameter.
  • the yoke core 6 is generally longer than the yoke plate 7.
  • the length of the yoke core 6 is dimensioned such that it completely penetrates the coil 2, which is placed on the yoke 1 concentrically thereon.
  • the yoke plate 7 is generally dimensioned such that it has at least the same or a larger diameter than the coil 2.
  • the yoke 1 can be made of magnetic stainless steel or mu-metal, for example.
  • the diameter of the yoke plate 7 is as large as that of the ring magnet 3.
  • the ring magnet 3 is arranged concentrically to the yoke 1 and here - measured in the direction of the longitudinal axis 5 - higher than the coil 2.
  • the ring magnet 3 is magnetized parallel to the longitudinal axis 5 and is eg designed as an AlNiCo magnet.
  • the ring magnet 3 is seated with an end face on that end face of the yoke plate 7 which faces the yoke core 6. With its other end face, the ring magnet 3 extends to the armature 4 up to a working air gap 8 for the armature 4.
  • the yoke core 6 also extends with its end face up to a working air gap 8 for the armature 4 to the armature 4.
  • the armature 4 can be made of the same material as the yoke 1.
  • the armature 4 is resiliently suspended, for example on the housing of the signal converter (not shown here), so that it can move freely relative to the yoke 1 and the ring magnet 3, and along the longitudinal axis 5.
  • Fig. 1 when considering the signal converter as a magnetic circuit, there is a series connection of the magnetic resistances of the working air gap 8, yoke core 6, yoke plate 7, ring magnet 3, working air gap 8 and armature 4. Both magnetic fluxes (electrically excited by coil 2 and permanently excited by ring magnet 3) use this path.
  • the magnetic one Resistance of the AlNiCo magnet because of its large magnet height (in the direction of the longitudinal axis 5) and the relatively small area (normal to the longitudinal axis 5) is very large and decisive for the arrangement.
  • FIG. 2 A signal converter according to the invention is shown. It essentially consists of a yoke 1, a coil 2, and a plate-shaped armature 4 and - in contrast to Fig. 1 - From a plate-shaped, here circular disc-shaped, permanent magnet 9 and a housing (or pot) 10, here consisting of jacket 12 and base plate (bottom) 11. A housing that encloses all of the parts of the signal converter mentioned and protects against environmental influences is not shown here .
  • the yoke 1 like the coil 2, the permanent magnet 9, the armature 4, and the housing 10, is rotationally symmetrical about the longitudinal axis 5 of the yoke 1.
  • the yoke 1 is made in one piece, but along the longitudinal axis 5 again has areas with different diameters, a yoke core 6 with a smaller diameter and a yoke plate 7 with a larger diameter. Both parts 6, 7 have a cylindrical shape here.
  • the yoke core 6 is generally longer than the yoke plate 7.
  • the length of the yoke core 6 is dimensioned such that it completely penetrates the coil 2, which is placed on the yoke 1 concentrically thereon.
  • the yoke core 6 has approximately the same length or height as the coil 2.
  • the yoke plate 7 is generally dimensioned such that it has at least the same - as here - or a larger diameter than the coil 2.
  • the yoke 1 can e.g. again be made of magnetic stainless steel or mu-metal.
  • the armature 4 can be made of the same material as the yoke 1.
  • the armature 4 is mechanically suspended, for example on a spring.
  • the magnetic bias of the soft magnetic circuit consisting of yoke 1, armature 4 and housing 10, by means of permanent magnets 9, the armature 4 of the yoke 1 and the housing 10 tightened and the calm working air gap 8 is established.
  • the coil 2 is energized and, depending on the polarity of the current, the magnetic flux of the permanent magnet 9 is increased or decreased. As a result, the magnetic force on the armature 4 changes and this moves in proportion to the change in current.
  • the movement of the anchor 4 is transmitted to the skull bone, for example via a housing.
  • the diameter of the permanent magnet 9 is smaller than that of the yoke plate 7. It is only about two thirds of the diameter of the disk-shaped part 7.
  • the permanent magnet 9 is arranged concentrically to the yoke 1 and here - measured in the direction of the longitudinal axis 5 - thinner than the coil 2 or the yoke plate 7.
  • the permanent magnet 9 is a rare earth magnet and magnetized parallel to the longitudinal axis 5.
  • the permanent magnet 9 contacts the yoke plate 7 with an end face on its end face, which faces away from the yoke core 6.
  • the permanent magnet 9 contacts the housing 10, namely its base plate 11, with its other end face.
  • the housing 10 is cup-shaped and here has a flat base plate 11 and a cylindrical jacket 12.
  • the housing 10 is made in one piece here. It can be made of the same soft magnetic material as the yoke 1 or the plate-shaped armature 4.
  • the housing 10 together with the armature 4 encloses the yoke 1, the coil 2 and the permanent magnet 9.
  • a working air gap 8 is provided between the end face of the cylindrical shell 12 of the housing 10 and the armature 4.
  • the armature 4 is elastically suspended from a housing of the signal converter, not shown here, so that it can oscillate in the direction of the longitudinal axis 5 in accordance with the variable magnetic field specified by the coil 2.
  • the yoke core 6 with its End face up to a working air gap 8 for the armature 4 to the armature 4.
  • the base plate 11 of the housing 10 has on its inside a circular disc-shaped recess, in which the permanent magnet 9 is inserted.
  • the depth of the recess - measured along the longitudinal axis 5 - corresponds here to about a quarter of the thickness of the permanent magnet 9, so that it still protrudes about half from the recesses.
  • the yoke plate 7 has a circular disk-shaped recess in the end face which faces the permanent magnet 9 and in which the permanent magnet 9 is inserted.
  • the depth of the recess - measured along the longitudinal axis 5 - also corresponds here to about a quarter of the thickness of the permanent magnet 9.
  • a radial distance of the permanent magnet 9 from the wall of each recess is provided. This distance is used for the simple centering of the permanent magnet 9 and above all the air gap (scattering gap) 14.
  • the recess in the yoke plate 7 is here the same size as that in the base plate 11.
  • an air gap 13 which here is annular. Its radial width - measured normal to the longitudinal axis 5 - here is about a third of the radius of the yoke plate 7, its axial height - measured in the direction of the longitudinal axis 5 - is smaller than the height of the permanent magnet 9. In other embodiments of the invention, the air gap 13 of course have other relative radial widths and axial heights. There is another air gap 14 between the peripheral surface of the yoke plate 7 and the jacket 12 of the housing 10. Its axial height - measured in the direction of the longitudinal axis 5 - corresponds to the height of the yoke plate 7.
  • the two air gaps 13, 14 merge into one another, so that a continuous, angled air gap is created between the peripheral surface of the permanent magnet 9 and the armature 4.
  • the air gaps 13, 14 are designed in connection with the permanent magnet 9 so that a sufficiently high magnetic bias is generated by the permanent magnet 9 and the magnetic resistances are kept as low as possible for the electrically excited flow of the coil 2. This applies in particular to the parallel connection of the magnetic resistances of permanent magnet 9, air gap 13 and air gap 14.
  • the working air gap 8 is predetermined by its function as an armature movement space. As a rule, no large magnetic resistances (magnetic voltage drops) should arise in the soft magnetic material.
  • the design of the signal converter, in particular the air gaps 13, 14, the permanent magnet 9, but also the shape and dimensions of the yoke plate 7, can again be carried out by calculating the above-mentioned magnetic circuit, where the individual components (magnetic conductor, magnetic resistances, magnetic coupling element ) are interconnected accordingly.
  • Fig. 3 are the field lines of the signal converter Fig. 1 drawn. Both the field lines 15 caused by the ring magnet 3 and the field lines 16 caused by the coil 2 are located continuously in the same areas. Namely, they run in the direction of the longitudinal axis 5 through the yoke core 6, radially through the armature 4 in the ring magnet 3, in the direction of the longitudinal axis 5 through the ring magnet 3 and radially through the yoke plate 7 back into the yoke core 6. This means that the Coil flux must overcome the high magnetic resistance of the ring magnet 3.
  • Fig. 4 are the field lines of the signal converter Fig. 2 drawn.
  • the field lines 15 caused by the permanent magnet 9 run partly through the same areas as the field lines 16 caused by the coil 2. They run in the direction of the longitudinal axis 5 through the yoke core 6, radially through the armature 4 into the jacket 12 of the housing 10, in the direction of the longitudinal axis 5 through the jacket 12 and radially through the base plate 11 of the housing 10 again in the longitudinal direction through the permanent magnet 9 into the yoke core 6.
  • the magnetic fields are guided by the arrangement of the yoke plate 7 between the permanent magnet 9 and the coil 2 in accordance with the soft magnets and split up as a function of the magnetic resistances, which are mainly determined by the air gaps 13, 14 and the permanent magnets 9.
  • field lines 15 of the permanent magnet 9 also form, which run only in the area of the permanent magnet 9, the yoke plate 7, the base plate 11 of the housing 10 and the cylindrical jacket 12 of the housing 10, but not in the direction of the longitudinal axis 5 over the height the yoke plate 7 also.
  • These field lines 15 therefore do not penetrate the coil 2, while other field lines 15 do very well, only there are so few that they are not shown here.
  • some of the field lines 16 of the coil 2 change their course: they do not reach the base plate 11 of the housing 10, but instead run through the yoke plate 7, and thus the Permanent magnets 9 evasive to close through the jacket 12 of the housing 10 or through the yoke core 6 of the armature 4 again.
  • some field lines 16 run from the armature 4 axially through the yoke core 6 in the direction of the permanent magnet 9, in front of the permanent magnet 9 radially through the yoke plate 7, then axially via the first air gap 13 to the base plate 11 of the housing 10 and radially outward via the base plate 11 in the Coat 12 and back into anchor 4.
  • a part of the magnetic field lines 16 of the magnetic field generated by the coil 2 between the yoke 1 and the housing 10 thus runs through the yoke plate 7 and not through the permanent magnet 9.
  • Fig. 5 shows a longitudinal section through an alternative signal converter according to the invention, only one half of the signal converter being shown schematically.
  • the signal converter in Fig. 5 is basically the same as in Fig. 2 built up, differs from Fig. 2 however, due to the fact that coil 2 and permanent magnet 9 have the same outer diameter, but which is smaller than the outer diameter of the yoke plate 7. This also results in other dimensions for the air gaps 13, 14.
  • the height of the coil 2 is also less than the height of the yoke core 6.
  • Fig. 6 is the longitudinal section Fig. 5 shown three times, in addition the magnetic field lines are drawn in with different electrical flooding.
  • the magnetic field is shown on the left without energizing the coil 2, in the middle with energizing the coil 2 ("100 A") in the sense of strengthening the magnetic field of the permanent magnet 9, on the right with energizing the coil 2 ("-100 A”), however in the sense of a compensation of the magnetic field of the permanent magnet 9. It is in the left The figure clearly shows that the density of the magnetic field lines within the coil 2 is low.
  • the subject signal converter is used in hearing and communication systems as well as for audio diagnostics, the associated bone conduction earphone (osteophone) is worn and used on the human or animal skull.
  • the size of the bone conduction earphone and thus the signal converter must be dimensioned according to the use.
  • its height from the base plate 11 of the housing 10 to the armature along the longitudinal axis 5 is approximately 2-10 mm, the diameter of the housing 10 or the approximately equally large armature 4-5 20 mm.
  • the disk-shaped permanent magnet has a thickness of 0.5-0.7 mm, for example, but the thickness can also be less than 0.5 mm or greater than 0.7 mm.
  • the diameter of the housing 10 can also be in the range of a few centimeters, for example up to 6 or 7 cm, or even up to 10 cm. Even larger signal converters, for example for animals larger than humans, are conceivable.
  • Another embodiment of a signal converter according to the invention would be the rectangular version, where the permanent magnet 9, yoke plate 7 and coil 2 have an essentially rectangular shape when viewed in the direction of the longitudinal axis 5.
  • the invention divides the magnetic fluxes and ensures a small magnetic resistance of the permanent magnet 9 due to its small height and large area, which can best be achieved by means of SE magnets.
  • the flow paths of the air gap 14 (scattering gap) and the air gap 13, which are connected in parallel from the point of view of the electrical excitation, in addition to the permanent magnet 9, bring about a further significant reduction in the magnetic Total resistance.
  • These “scatter paths” remove magnetic flux from the permanent magnetic excitation for magnetic bias from the working air gap 8.
  • the magnetic area is compared to that in Fig. 1 also bigger to compensate for this.
  • care must also be taken to ensure that the stray web, that is to say the yoke plate 7, is not saturated in its outer region, where both magnetic fluxes add up.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Electromagnets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

GEBIET DER ERFINDUNGFIELD OF THE INVENTION

Die Erfindung betrifft einen elektromagnetischen Signalwandler für einen Knochenleitungshörer (Osteophone), umfassend

  • ein weichmagnetisches Joch,
  • eine konzentrisch zur Längsachse des Jochs angeordnete und auf dem Joch aufsitzende elektrische Spule,
  • ein weichmagnetisches Gehäuse,
  • einen elastisch aufgehängten weichmagnetischen Anker, der, in Richtung der Längsachse des Jochs gesehen, durch einen Arbeitsluftspalt vom Joch und vom weichmagnetischen Gehäuse getrennt und entlang der Längsachse des Jochs beweglich ist, sowie
  • einen Permanentmagneten, der in Richtung der Längsachse des Jochs magnetisiert ist, um eine magnetische Vorspannung des Jochs und des Ankers zu erzeugen.
The invention relates to an electromagnetic signal converter for a bone conduction receiver (osteophone), comprising
  • a soft magnetic yoke,
  • an electrical coil arranged concentrically to the longitudinal axis of the yoke and seated on the yoke,
  • a soft magnetic housing,
  • an elastically suspended soft magnetic armature which, viewed in the direction of the longitudinal axis of the yoke, is separated from the yoke and the soft magnetic housing by a working air gap and is movable along the longitudinal axis of the yoke, and
  • a permanent magnet magnetized in the direction of the longitudinal axis of the yoke to generate a magnetic bias of the yoke and the armature.

Die magnetische Vorspannung bewirkt im Betrieb des elektromagnetischen Signalwandlers eine stromproportionale, durch die Spule erfolgende Krafterzeugung auf den Anker und somit eine exakte Übertragung der elektrischen in mechanische Schwingungen. Ohne diese magnetische Vorspannung wäre die Kraft und somit mechanische Auslenkung proportional zum Quadrat des Stromes, was zu einer erheblichen Verzerrung durch die Frequenzverdopplung und Unterdrückung der schwachen Signale führen würde.When the electromagnetic signal converter is in operation, the magnetic bias causes a current-proportional force generated by the coil on the armature and thus an exact transfer of the electrical to mechanical vibrations. Without this magnetic bias, the force and thus mechanical deflection would be proportional to the square of the current, which would lead to considerable distortion due to the frequency doubling and suppression of the weak signals.

STAND DER TECHNIKSTATE OF THE ART

Knochenleitungshörer, wie sie aus dem Stand der Technik bekannt sind, wandeln elektrische Signale in mechanische Schwingungen um und fungieren daher als Schwingungserzeuger bzw. elektromagnetische Signalwandler. Diese Technologie findet unter anderem bei Hörgeräten Anwendung und eignet sich insbesondere für Personen mit Beeinträchtigung des Außen- und Mittelohres, da in diesem Fall der Schall nicht mechanisch zur Cochlea übertragen werden kann. Knochenleitungshörer können jedoch auch in anderen Hör- und Kommunikationssystemen eingesetzt werden, wo eine Schallübertragung über Luft zum Trommelfell nicht möglich ist, etwa unter Wasser. So können Knochenleitungshörer für Kommunikationssysteme für Taucher zur Anwendung kommen. Auch dort, wo eine Schallübertragung über Luft grundsätzlich möglich ist, aber aufgrund von Umgebungslärm der übertragene Schall kaum hörbar wäre, wie in der Schwerindustrie (z.B. in Stahlwerken), können Knochenleitungshörer in Kommunikationssystemen verwendet werden.Bone conduction headphones, as are known from the prior art, convert electrical signals into mechanical vibrations and therefore act as vibration generators or electromagnetic signal transducers. This technology takes place under other use in hearing aids and is particularly suitable for people with impairment of the outer and middle ear, since in this case the sound cannot be transmitted mechanically to the cochlea. Bone conduction hearing aids can, however, also be used in other hearing and communication systems where sound transmission via air to the eardrum is not possible, for example under water. In this way, bone conduction earphones can be used for communication systems for divers. Bone conduction hearing aids can also be used in communication systems wherever sound transmission via air is fundamentally possible, but due to ambient noise the transmitted sound would hardly be audible, as in heavy industry (e.g. in steelworks).

Das an den Menschen zu übertragenden akustische Signal wird in der Regel über ein Mikrofon aufgenommen (es könnte aber auch als Funksignal übertragen werden), im Verstärker umgewandelt, aufbereitet und als elektrisches Signal an den elektromagnetischen Signalwandler weitergeleitet. Im Signalwandler werden die elektrischen Signale der Spule zugeführt, welche den Anker entsprechend in Schwingung versetzt. Der als Anker dienende Oszillator (Knochenleitungshörer) kontaktiert den Schädelknochen, vorzugsweise das Mastoid, wobei das akustische Signal in Form von taktilen Schwingungen unter Umgehung des Mittelohres direkt ins Innenohr übertragen wird, wo es in der Cochlea in einen Nervenreiz umgewandelt wird.The acoustic signal to be transmitted to humans is usually recorded via a microphone (but it could also be transmitted as a radio signal), converted in the amplifier, processed and passed on to the electromagnetic signal converter as an electrical signal. In the signal converter, the electrical signals are fed to the coil, which sets the armature in vibration accordingly. The oscillator serving as an anchor (bone conduction receiver) contacts the cranial bone, preferably the mastoid, the acoustic signal being transmitted in the form of tactile vibrations bypassing the middle ear directly into the inner ear, where it is converted into a nerve stimulus in the cochlea.

Diese Knochenleitungshörer sind meist in einem Trägerobjekt verbaut, beispielsweise in einem Brillenbügel, einem Haarreifen oder in einem externen Gehäuse zum Tragen in einer Kopfbedeckung.These bone conduction earphones are mostly installed in a carrier object, for example in a temple, a hair band or in an external housing for wearing in a hat.

Nachteilig am herkömmlichen Aufbau des Signalwandlers ist, dass der Permanentmagnet als Ringmagnet aufgebaut ist, also die Form eines Hohlzylinders hat, der eine Ringspule umgibt und an einer Stirnseite einen scheibenförmigen Teil des Jochs, die Jochplatte, kontaktiert, während er auf der anderen Stirnseite dem Anker unter Einhaltung eines Luftspalts, eines sogenannten Arbeitsluftspalts, zugewandt ist. So zeigt etwa die US 2004/0236176 A1 einen Signalwandler, mit einer Spule, einem Joch, einem weichmagnetischen Anker und Permanentmagneten, die in Längsrichtung mit der Spule überlappend angeordnet sind. Dies hat den Nachteil, dass sowohl der durch den magnetische Fluss des Permanentmagneten als auch der durch die Spule erregte magnetische Fluss die gleichen Flusspfade nutzen, nämlich in Längsrichtung durch das Joch, insbesondere durch einen stabförmigen Teil des Jochs (Jochkern), radial durch den Anker in den Ringmagneten, in Längsrichtung durch den Ringmagneten und wieder in das Joch, insbesondere radial durch die Jochplatte wieder in den Jochkern. Das bedeutet, dass auch der Spulenfluss den hohen magnetischen Widerstand des Ringmagneten überwinden muss. Somit wird zur Erzeugung einer bestimmten magnetischen Flussänderung durch die Spule eine hohe elektrisch erregte Durchflutung (große Amperewindungen) benötigt. Dies ist gleichbedeutend mit hohem Strom oder hoher Windungsanzahl, auf jeden Fall wird eine hohe Erregerleistung für die Spule benötigt, was wieder eine geringe Lebensdauer der Batterie des Knochenleitungshörers zur Folge hat.A disadvantage of the conventional design of the signal converter is that the permanent magnet is constructed as a ring magnet, that is to say in the form of a hollow cylinder which surrounds a ring coil and on one The end face contacts a disk-shaped part of the yoke, the yoke plate, while on the other end face it faces the anchor while maintaining an air gap, a so-called working air gap. So shows about US 2004/0236176 A1 a signal converter, with a coil, a yoke, a soft magnetic armature and permanent magnets, which are arranged in the longitudinal direction overlapping with the coil. This has the disadvantage that both the magnetic flux excited by the magnetic flux of the permanent magnet and the magnetic flux excited by the coil use the same flux paths, namely in the longitudinal direction through the yoke, in particular through a rod-shaped part of the yoke (yoke core), radially through the armature in the ring magnet, in the longitudinal direction through the ring magnet and back into the yoke, in particular radially through the yoke plate back into the yoke core. This means that the coil flux must also overcome the high magnetic resistance of the ring magnet. A high electrically excited flow (large ampere turns) is thus required to generate a specific magnetic flux change through the coil. This is synonymous with high current or high number of turns, in any case a high excitation power is required for the coil, which in turn leads to a short lifespan of the battery of the bone conduction earphone.

Die US 2004/0028249 A1 betrifft einen Signalwandler für Knochenleitungshörgeräte, dieser umfasst eine Spule, ein Joch für die Spule und Permanentmagnete. Um das statische und das dynamische Magnetfeld zu trennen, sodass das dynamische Feld nicht durch die Permanentmagneten verläuft, bedient man sich zweier Permanentmagnete, die ober- und unterhalb der Spule angeordnet sind. Auch beim Signalwandler der US 2003/0034705 A1 wird von einer Aufteilung der magnetischen Flüsse gesprochen, allerdings wird in keiner der beiden Veröffentlichungen ein Anker gezeigt.The US 2004/0028249 A1 relates to a signal converter for bone conduction hearing aids, this comprises a coil, a yoke for the coil and permanent magnets. In order to separate the static and the dynamic magnetic field so that the dynamic field does not run through the permanent magnets, two permanent magnets are used, which are arranged above and below the coil. Even with the signal converter US 2003/0034705 A1 one speaks of a division of the magnetic fluxes, however, neither anchor shows an anchor.

AUFGABE DER ERFINDUNGOBJECT OF THE INVENTION

Daher ist es eine Aufgabe der vorliegenden Erfindung, die Nachteile des Stands der Technik zu überwinden und einen elektromagnetischen Signalwandler der eingangs erwähnten Art zur Verfügung zu stellen, der weniger Erregerleistung für die Spule benötigt.It is therefore an object of the present invention to overcome the disadvantages of the prior art and to provide an electromagnetic signal converter of the type mentioned at the beginning which requires less excitation power for the coil.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Diese Aufgabe wird durch einen elektromagnetischen Signalwandler gemäß Anspruch 1 gelöst. Ausgehend von einem elektromagnetischen Signalwandler für einen Knochenleitungshörer, umfassend

  • ein weichmagnetisches Joch,
  • eine konzentrisch zur Längsachse des Jochs angeordnete und auf dem Joch aufsitzende elektrische Spule,
  • einen elastisch aufgehängten weichmagnetischen Anker, der, in Richtung der Längsachse des Jochs gesehen, durch einen Arbeitsluftspalt vom Joch und vom weichmagnetischen Gehäuse getrennt und entlang der Längsachse des Jochs beweglich ist, sowie
  • einen Permanentmagneten, der in Richtung der Längsachse des Jochs magnetisiert ist, um eine magnetische Vorspannung des Jochs und des Ankers zu erzeugen,
ist vorgesehen, dass der Permanentmagnet und die Spule einander in Richtung der Längsachse des Jochs nicht überlappen und Mittel vorgesehen sind, um den durch die Spule erzeugbaren magnetischen Fluss auf zumindest zwei Flusspfade aufzuteilen, wobei ein Flusspfad außerhalb des Permanentmagneten verläuft. Durch diese Mittel wird natürlich auch der magnetische Fluss des Permanentmagneten auf zumindest zwei Flusspfade aufgeteilt.This object is achieved by an electromagnetic signal converter according to claim 1. Starting from an electromagnetic signal converter for a bone conduction receiver, comprising
  • a soft magnetic yoke,
  • an electrical coil arranged concentrically to the longitudinal axis of the yoke and seated on the yoke,
  • an elastically suspended soft magnetic armature which, viewed in the direction of the longitudinal axis of the yoke, is separated from the yoke and the soft magnetic housing by a working air gap and is movable along the longitudinal axis of the yoke, and
  • a permanent magnet which is magnetized in the direction of the longitudinal axis of the yoke in order to generate a magnetic bias of the yoke and the armature,
It is provided that the permanent magnet and the coil do not overlap one another in the direction of the longitudinal axis of the yoke, and means are provided in order to divide the magnetic flux that can be generated by the coil into at least two flux paths, a flux path running outside the permanent magnet. These means naturally also divide the magnetic flux of the permanent magnet into at least two flux paths.

Das bedeutet, dass es zu einer Parallelschaltung des magnetischen Widerstands des Permanentmagneten und eines weiteren magnetischen Widerstands kommt, sodass der magnetische Widerstand des Permanentmagneten - im Vergleich zum Stand der Technik mit einander in Längsrichtung überlappender konzentrischer Spule und Permanentmagnet - verringert wird. Der von der Spule gesehene magnetische Gesamtwiderstand des magnetischen Kreises wird dadurch minimiert. Dadurch ist für die gleiche Auslenkung des Ankers eine geringere Erregerleistung der Spule ausreichend. Folglich verlängert sich gegenüber herkömmlichen Signalwandlern auch die Batteriebetriebsdauer. Die Verwendung eines flachen, plattenförmigen Permanentmagneten kann ebenfalls zur Reduzierung des magnetischen Gesamtwiderstands beitragen, wie noch erläutert wird.This means that there is a parallel connection of the magnetic resistance of the permanent magnet and a further magnetic resistance, so that the magnetic resistance of the permanent magnet - compared to the prior art with a longitudinally overlapping concentric coil and permanent magnet - is reduced. The total magnetic resistance of the magnetic circuit seen from the coil is thereby minimized. As a result, a lower excitation power of the coil is sufficient for the same deflection of the armature. As a result, the battery life is extended compared to conventional signal converters. The use of a flat, plate-shaped permanent magnet can also contribute to reducing the overall magnetic resistance, as will be explained.

Der Permanentmagnet, das Joch und die Spule sind beim erfindungsgemäßen Signalwandler von einem weichmagnetischen Gehäuse umgeben, das zusätzlich zum Arbeitsluftspalt zum Anker durch einen Luftspalt vom Joch getrennt ist, sodass der durch die Spule erzeugbare magnetische Fluss durch das weichmagnetische Gehäuse auf einen Flusspfad außerhalb des Permanentmagneten lenkbar ist. Zwischen einer, dem Permanentmagneten zugewandten Stirnfläche des Jochs, insbesondere der Jochplatte, und dem Gehäuse kann ein Luftspalt vorliegen.In the signal converter according to the invention, the permanent magnet, the yoke and the coil are surrounded by a soft magnetic housing which is separated from the yoke by an air gap in addition to the working air gap to the armature, so that the magnetic flux that can be generated by the coil through the soft magnetic housing onto a flow path outside the permanent magnet is steerable. An air gap can be present between an end face of the yoke, in particular the yoke plate, facing the permanent magnet and the housing.

Der durch die Spule erzeugbare magnetische Fluss kann am einfachsten durch das Joch auf einen Flusspfad außerhalb des Permanentmagneten lenkbar sein. Mit anderen Worten ist das Joch das Mittel, um den durch die Spule erzeugbaren magnetischen Fluss auf zumindest zwei Flusspfade aufzuteilen. Das ohnehin vorhandene Joch kann also für den erfindungsgemäßen Zweck entsprechend ausgeführt werden.The easiest way for the magnetic flux that can be generated by the coil to be directed through the yoke onto a flux path outside the permanent magnet. In other words, the yoke is the means for dividing the magnetic flux that can be generated by the coil into at least two flux paths. The yoke already present can therefore be designed accordingly for the purpose according to the invention.

Erfindungsgemäß ist vorgesehen, dass das Joch einen längs der Längsachse des Jochs ausgerichteten stabförmigen Jochkern und eine normal zur Längsachse angeordnete Jochplatte umfasst, wobei der Jochkern in die Spule ragt und die Jochplatte einer Stirnseite der Spule zugewandt ist, und der durch die Spule erzeugbare magnetische Fluss durch die Jochplatte auf einen Flusspfad außerhalb des Permanentmagneten lenkbar ist. Die Jochplatte muss dafür nicht zwingend plattenförmig im Sinne eines Prismas (Körper gleicher Dicke mit zueinander parallelen Stirnflächen) sein, sondern kann grundsätzlich auch andere, nicht prismatische Formen aufweisen, wie die Form eines Kegelstumpfs oder Kegels. Die Jochplatte kann, je nach Geometrie des Signalwandlers, in Richtung der Längsachse des Jochs gesehen z.B. kreisförmig, insbesondere eine Kreisscheibe, oder rechteckig, insbesondere eine rechteckige Platte sein. Die Abmessung der Jochplatte normal auf die Längsachse des Jochs ist in der Regel größer als die Abmessung der Jochplatte in Richtung der Längsachse des Jochs.According to the invention, it is provided that the yoke has a rod-shaped alignment along the longitudinal axis of the yoke Yoke core and a yoke plate arranged normal to the longitudinal axis, wherein the yoke core protrudes into the coil and the yoke plate faces an end face of the coil, and the magnetic flux that can be generated by the coil can be directed through the yoke plate onto a flow path outside the permanent magnet. The yoke plate does not necessarily have to be plate-shaped in the sense of a prism (body of the same thickness with mutually parallel end faces), but can in principle also have other, non-prismatic shapes, such as the shape of a truncated cone or cone. Depending on the geometry of the signal converter, the yoke plate can be circular, in particular a circular disk, or rectangular, in particular a rectangular plate, viewed in the direction of the longitudinal axis of the yoke. The dimension of the yoke plate normal to the longitudinal axis of the yoke is generally larger than the dimension of the yoke plate in the direction of the longitudinal axis of the yoke.

Durch eine Anordnung des Permanentmagneten auf jener Seite des Joches, die - in Richtung der Längsachse des Jochs gesehen - dem Anker gegenüber liegt, befindet sich ein Teil des Jochs, nämlich die Jochplatte, zwischen Spule und Permanentmagnet und dient somit als Streusteg für die Magnetfelder der Spule und des Permanentmagneten. Ein Teil der magnetischen Feldlinien, die aus dem Permanentmagneten in die Jochplatte eindringen, verlaufen wieder zurück in den Permanentmagneten und nicht durch das gesamte Joch. Für den magnetischen Fluss der Spule ergibt sich aus der Parallelschaltung von Permanentmagnetwiderstand und Streustegwiderstand ein niedrigerer magnetischer Gesamtwiderstand, wodurch für die gleiche Auslenkung des Ankers eine geringere Erregerleistung der Spule ausreicht.By arranging the permanent magnet on that side of the yoke, which - seen in the direction of the longitudinal axis of the yoke - is opposite the armature, part of the yoke, namely the yoke plate, is located between the coil and the permanent magnet and thus serves as a stray web for the magnetic fields of the Coil and permanent magnet. Some of the magnetic field lines that penetrate from the permanent magnet into the yoke plate run back into the permanent magnet and not through the entire yoke. For the magnetic flux of the coil, a lower total magnetic resistance results from the parallel connection of the permanent magnet resistor and the stray resistor, which means that a lower excitation power of the coil is sufficient for the same deflection of the armature.

Der magnetische Widerstand ist durch die Betrachtung des Signalwandlers als magnetischer Kreis definiert. Ein magnetischer Kreis ist ein geschlossener Pfad eines magnetischen Flusses. Die Gesetze des magnetischen Flusses sind analog zu den Gesetzen im elektrischen Stromkreis definiert. Der magnetische Fluss Φ wird hierbei analog zum elektrischen Strom I, der magnetische Widerstand (die Reluktanz Rm) analog zum elektrischen Widerstand (zur Resistanz R), und die magnetische Spannung Vm analog zur elektrischen Spannung U betrachtet. In Analogie zum elektrischen Widerstand kann man im magnetischen Kreis den magnetischen Widerstand Rm als Quotienten aus der magnetische Spannung Vm und des magnetischen Flusses Φ definieren.The magnetic resistance is defined by considering the signal converter as a magnetic circuit. A magnetic circuit is a closed path of a magnetic flux. The Laws of magnetic flux are defined analogously to the laws in the electrical circuit. The magnetic flux Φ is here considered analogously to the electrical current I, the magnetic resistance (the reluctance Rm) analogously to the electrical resistance (to the resistance R), and the magnetic voltage Vm analogously to the electrical voltage U. Analogous to the electrical resistance, the magnetic resistance Rm can be defined in the magnetic circuit as the quotient of the magnetic voltage Vm and the magnetic flux Φ.

Wenn der Permanentmagnet plattenförmig ausgebildet ist, seine Ausdehnung in Richtung der Längsachse des Jochs also klein ist im Vergleich zu seiner Ausdehnung normal zur Längsachse, ist der magnetische Widerstand des Permanentmagneten in Richtung der Längsachse ebenfalls klein, da der magnetische Widerstand proportional zur Dicke hM des plattenförmigen Permanentmagneten und umgekehrt proportional zur Fläche AM des Permanentmagneten ist: Rm = hM/(µ0 µp AM).If the permanent magnet is plate-shaped, its extent in the direction of the longitudinal axis of the yoke is therefore small compared to its extent normal to the longitudinal axis, the magnetic resistance of the permanent magnet in the direction of the longitudinal axis is also small, since the magnetic resistance proportional to the thickness h M of the plate-shaped permanent magnet and inversely proportional to the area A M of the permanent magnet: Rm = h M / (µ 0 µ p A M ).

Der plattenförmige Permanentmagnet kann besonders dünn und damit platzsparend und widerstandsarm (Rm = hM/(µ0 µ p AM) als Seltenerdmagnet ausgeführt sein. Unter dem Namen Seltenerdmagneten fasst man eine Gruppe von Permanentmagneten zusammen, die im Wesentlichen aus Eisenmetallen (Eisen, Kobalt) und Seltenerdmetallen (insbesondere Neodym, Samarium, Praseodym, Dysprosium, Terbium) bestehen. Sie zeichnen sich dadurch aus, dass sie gleichzeitig eine hohe magnetische Remanenzflussdichte Br und eine hohe magnetische Koerzitivfeldstärke HcJ und damit eine hohe magnetische Energiedichte (BH)max aufweisen. Gängige Seltenerdmagnete bestehen etwa aus Neodym-Eisen-Bor (Nd2Fe14B) oder Samarium-Kobalt (SmCo5 und Sm2Co17). Die magnetische Energiedichte von Seltenerdmagneten ist in der Regel um ein Vielfaches höher als jene von Stahlmagneten, z.B. bestehend aus AlNiCo. Durch die - im Vergleich zu einem herkömmlichen Ringmagneten - geringeren Dimensionen des Seltenerdmagneten verringert sich auch das Gewicht des Permanentmagneten und damit des Signalwandlers.The plate-shaped permanent magnet can be particularly thin and therefore space-saving and low-resistance (R m = h M / (µ 0 µ p A M ) as a rare earth magnet. Rare earth magnets are a group of permanent magnets that essentially consist of ferrous metals (Iron, cobalt) and rare earth metals (especially neodymium, samarium, praseodymium, dysprosium, terbium) are distinguished by the fact that they have a high magnetic remanence flux density B r and a high magnetic coercive field strength H cJ and thus a high magnetic energy density ( BH) max . Common rare earth magnets consist of neodymium iron boron (Nd2Fe14B) or samarium cobalt (SmCo 5 and Sm 2 Co 17 ). The magnetic energy density of rare earth magnets is usually many times higher than that of steel magnets, eg consisting of AlNiCo, due to the smaller dimensions of the rare earth magnet compared to a conventional ring magnet t the weight of the permanent magnet and thus the signal converter.

Der Permanentmagnet wird in der Regel aus Symmetriegründen als Kreisscheibe ausgebildet sein, wobei der Mittelpunkt der Kreisscheibe auf der Längsachse des Jochs liegt.For reasons of symmetry, the permanent magnet will generally be designed as a circular disk, the center of the circular disk being on the longitudinal axis of the yoke.

Besonders günstig ist es, wenn der Permanentmagnet einen Durchmesser aufweist, der kleiner als der Außendurchmesser der Spule, aber größer als der Innendurchmesser der Spule ist. Der Permanentmagnet könnte aber auch gleich groß oder größer als der Außendurchmesser der Spule sein. Bestimmend für die Auslegung der Abmessungen des Permanentmagneten ist der benötigte magnetische Fluss und somit im Wesentlichen die Magnetfläche AM.It is particularly favorable if the permanent magnet has a diameter that is smaller than the outside diameter of the coil, but larger than the inside diameter of the coil. The permanent magnet could also be the same size or larger than the outside diameter of the coil. The design of the dimensions of the permanent magnet is determined by the required magnetic flux and thus essentially the magnetic area A M.

Es kann vorgesehen sein, dass der größte Durchmesser des Jochs, insbesondere der Jochplatte, den gleichen Außendurchmesser aufweist wie die Spule.It can be provided that the largest diameter of the yoke, in particular the yoke plate, has the same outer diameter as the coil.

Der Signalwandler kann so aufgebaut sein, dass ein Luftspalt, der sogenannte Streuspalt, zwischen einer Umfangsfläche des Jochs, insbesondere einer Umfangsfläche der Jochplatte, und dem Gehäuse vorliegt. Dieser Luftspalt hat somit beispielsweise die Form eines Zylindermantels. Der Luftspalt zwischen Jochplatte und Gehäuse bewirkt eine Krafterzeugung gemäß F = B2∗A/2µo.The signal converter can be constructed in such a way that an air gap, the so-called scattering gap, is present between a peripheral surface of the yoke, in particular a peripheral surface of the yoke plate, and the housing. This air gap thus has, for example, the shape of a cylinder jacket. The air gap between the yoke plate and the housing creates a force according to F = B 2 ∗ A / 2µ o .

Es kann vorgesehen sein, dass das Joch, insbesondere die Jochplatte, eine Ausnehmung in der Stirnseite aufweist, die dem Permanentmagneten zugewandt ist, sodass der Permanentmagnet zumindest teilweise im Joch aufgenommen ist. Dies bewirkt eine Lagefixierung des Permanentmagneten sowie des Jochs.It can be provided that the yoke, in particular the yoke plate, has a recess in the end face which faces the permanent magnet, so that the permanent magnet is at least partially received in the yoke. This fixes the position of the permanent magnet and the yoke.

Analog und mit gleichem Effekt kann vorgesehen sein, dass das weichmagnetische Gehäuse eine Ausnehmung aufweist, die dem Permanentmagneten zugewandt ist, sodass der Permanentmagnet zumindest teilweise im Gehäuse aufgenommen ist.Analogously and with the same effect, it can be provided that the soft magnetic housing has a recess which faces the permanent magnet, so that the permanent magnet is at least partially received in the housing.

Eine Ausführungsform der Erfindung besteht darin, dass der Permanentmagnet mit seinen Stirnseiten sowohl mit dem Joch, insbesondere der Jochplatte, als auch mit dem Gehäuse in Kontakt steht. Auf diese Weise wird ein zusätzlicher Luftspalt vermieden. Dies bedingt eine gute Magnetisierung der Jochplatte und des Gehäuses, die magnetischen Feldlinien verlaufen hauptsächlich in diesem Bereich.One embodiment of the invention consists in that the end face of the permanent magnet contacts both the yoke, in particular the yoke plate, and the housing. In this way an additional air gap is avoided. This requires a good magnetization of the yoke plate and the housing, the magnetic field lines mainly run in this area.

KURZE BESCHREIBUNG DER FIGURENBRIEF DESCRIPTION OF THE FIGURES

Die Erfindung wird nun anhand von Ausführungsbeispielen näher erläutert. Die Zeichnungen sind beispielhaft und sollen den Erfindungsgedanken zwar darlegen, ihn aber keinesfalls einengen oder gar abschließend wiedergeben.The invention will now be explained in more detail by means of exemplary embodiments. The drawings are exemplary and are intended to illustrate the inventive concept, but in no way to narrow it down or even reproduce it conclusively.

Dabei zeigt:

Fig. 1
einen Längsschnitt durch einen schematisch dargestellten Signalwandler nach dem Stand der Technik,
Fig. 2
einen Längsschnitt durch einen schematisch dargestellten erfindungsgemäßen Signalwandler,
Fig. 3
den Längsschnitt aus Fig. 1 mit magnetischen Feldlinien,
Fig. 4
den Längsschnitt aus Fig. 2 mit magnetischen Feldlinien,
Fig. 5
einen Längsschnitt durch einen alternativen erfindungsgemäßen Signalwandler,
Fig. 6
Längsschnitte aus Fig. 5 mit unterschiedlichen magnetischen Feldlinien aufgrund unterschiedlicher Spulenanregung.
It shows:
Fig. 1
2 shows a longitudinal section through a schematically illustrated signal converter according to the prior art,
Fig. 2
2 shows a longitudinal section through a schematically illustrated signal converter according to the invention,
Fig. 3
the longitudinal section Fig. 1 with magnetic field lines,
Fig. 4
the longitudinal section Fig. 2 with magnetic field lines,
Fig. 5
2 shows a longitudinal section through an alternative signal converter according to the invention,
Fig. 6
Longitudinal cuts Fig. 5 with different magnetic field lines due to different coil excitation.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

Fig. 1 zeigt einen herkömmlichen Signalwandler. Er besteht im Wesentlichen aus einem Joch 1, einer Spule 2, einem Ringmagneten 3 und einem plattenförmigen Anker 4. Eine Umhausung, die alle genannten Teile des Signalwandlers umschließt und gegen Umwelteinflüsse schützt, ist hier nicht dargestellt. Fig. 1 shows a conventional signal converter. It essentially consists of a yoke 1, a coil 2, a ring magnet 3 and a plate-shaped armature 4. A housing which surrounds all of the parts of the signal converter mentioned and protects against environmental influences is not shown here.

Das Joch 1 ist, wie auch die Spule 2, der Ringmagnet 3 und der Anker 4, rotationssymmetrisch um die Längsachse 5 ausgebildet. Es ist einteilig hergestellt, weist aber längs der Längsachse 5 Bereiche mit unterschiedlichem Durchmesser auf, einen stabförmigen Teil, also einen Mittelschenkel oder Jochkern 6 mit kleinerem Durchmesser, und einen scheibenförmigen Teil, also eine Jochplatte 7 mit größerem Durchmesser. Der Jochkern 6 ist in der Regel länger als die Jochplatte 7. Die Länge des Jochkerns 6 ist so bemessen, dass er die Spule 2 ganz durchdringt, die konzentrisch zum Joch 1 auf dieses aufgesetzt ist. Die Jochplatte 7 ist in der Regel so bemessen, dass sie zumindest den gleichen oder einen größeren Durchmesser hat als die Spule 2. Das Joch 1 kann z.B. aus magnetischem Edelstahl oder Mu-Metall gefertigt sein.The yoke 1, like the coil 2, the ring magnet 3 and the armature 4, is rotationally symmetrical about the longitudinal axis 5. It is made in one piece, but has 5 regions with different diameters along the longitudinal axis, including a rod-shaped part, that is to say a central leg or yoke core 6 smaller diameter, and a disc-shaped part, ie a yoke plate 7 with a larger diameter. The yoke core 6 is generally longer than the yoke plate 7. The length of the yoke core 6 is dimensioned such that it completely penetrates the coil 2, which is placed on the yoke 1 concentrically thereon. The yoke plate 7 is generally dimensioned such that it has at least the same or a larger diameter than the coil 2. The yoke 1 can be made of magnetic stainless steel or mu-metal, for example.

In Fig. 1 ist der Durchmesser der Jochplatte 7 so groß wie jener des Ringmagneten 3. Der Ringmagnet 3 ist konzentrisch zum Joch 1 angeordnet und hier - in Richtung der Längsachse 5 gemessen - höher als die Spule 2. Der Ringmagnet 3 ist parallel zur Längsachse 5 magnetisiert und ist z.B. als AlNiCo-Magnet ausgeführt. Der Ringmagnet 3 sitzt mit einer Stirnfläche an jener Stirnfläche der Jochplatte 7, die dem Jochkern 6 zugewandt ist. Mit seiner anderen Stirnfläche reicht der Ringmagnet 3 bis auf einen Arbeitsluftspalt 8 für den Anker 4 an den Anker 4 heran. Auch der Jochkern 6 reicht mit seiner Stirnfläche bis auf einen Arbeitsluftspalt 8 für den Anker 4 an den Anker 4 heran.In Fig. 1 the diameter of the yoke plate 7 is as large as that of the ring magnet 3. The ring magnet 3 is arranged concentrically to the yoke 1 and here - measured in the direction of the longitudinal axis 5 - higher than the coil 2. The ring magnet 3 is magnetized parallel to the longitudinal axis 5 and is eg designed as an AlNiCo magnet. The ring magnet 3 is seated with an end face on that end face of the yoke plate 7 which faces the yoke core 6. With its other end face, the ring magnet 3 extends to the armature 4 up to a working air gap 8 for the armature 4. The yoke core 6 also extends with its end face up to a working air gap 8 for the armature 4 to the armature 4.

Der Anker 4 kann aus dem gleichen Material gefertigt sein wie das Joch 1. Der Anker 4 ist elastisch - etwa an der hier nicht dargestellten Umhausung des Signalwandlers - federnd aufgehängt, sodass er sich frei gegenüber dem Joch 1 und dem Ringmagneten 3 bewegen kann, und zwar längs der Längsachse 5.The armature 4 can be made of the same material as the yoke 1. The armature 4 is resiliently suspended, for example on the housing of the signal converter (not shown here), so that it can move freely relative to the yoke 1 and the ring magnet 3, and along the longitudinal axis 5.

In Fig. 1 liegt - bei der Betrachtung des Signalwandlers als Magnetkreis - eine Reihenschaltung der magnetischen Widerstände von Arbeitsluftspalt 8, Jochkern 6, Jochplatte 7, Ringmagnet 3, Arbeitsluftspalt 8 und Anker 4 vor. Beide magnetischen Flüsse (elektrisch erregt durch Spule 2 und permanenterregt durch Ringmagnet 3) benutzen diesen Pfad. Dabei ist der magnetische Widerstand des AlNiCo-Magneten wegen seiner großen Magnethöhe (in Richtung der Längsachse 5) und der relativ kleinen Fläche (normal zur Längsachse 5) sehr groß und bestimmend für die Anordnung.In Fig. 1 when considering the signal converter as a magnetic circuit, there is a series connection of the magnetic resistances of the working air gap 8, yoke core 6, yoke plate 7, ring magnet 3, working air gap 8 and armature 4. Both magnetic fluxes (electrically excited by coil 2 and permanently excited by ring magnet 3) use this path. The magnetic one Resistance of the AlNiCo magnet because of its large magnet height (in the direction of the longitudinal axis 5) and the relatively small area (normal to the longitudinal axis 5) is very large and decisive for the arrangement.

In Fig. 2 ist ein erfindungsgemäßer Signalwandler dargestellt. Er besteht im Wesentlichen aus einem Joch 1, einer Spule 2, und einem plattenförmigen Anker 4 sowie - im Unterschied zu Fig. 1 - aus einem plattenförmigen, hier kreisscheibenförmigen, Permanentmagneten 9 und einem Gehäuse (oder Topf) 10, hier bestehend aus Mantel 12 und Grundplatte (Boden) 11. Eine Umhausung, die alle genannten Teile des Signalwandlers umschließt und gegen Umwelteinflüsse schützt, ist hier nicht dargestellt.In Fig. 2 A signal converter according to the invention is shown. It essentially consists of a yoke 1, a coil 2, and a plate-shaped armature 4 and - in contrast to Fig. 1 - From a plate-shaped, here circular disc-shaped, permanent magnet 9 and a housing (or pot) 10, here consisting of jacket 12 and base plate (bottom) 11. A housing that encloses all of the parts of the signal converter mentioned and protects against environmental influences is not shown here .

Das Joch 1 ist, wie auch die Spule 2, der Permanentmagnet 9, der Anker 4, und das Gehäuse 10, rotationssymmetrisch um die Längsachse 5 des Jochs 1 ausgebildet. Das Joch 1 ist einteilig hergestellt, weist aber längs der Längsachse 5 wieder Bereiche mit unterschiedlichem Durchmesser auf, einen Jochkern 6 mit kleinerem Durchmesser und eine Jochplatte 7 mit größerem Durchmesser. Beide Teile 6, 7 haben hier eine zylindrische Form. Der Jochkern 6 ist in der Regel länger als die Jochplatte 7. Die Länge des Jochkerns 6 ist so bemessen, dass er die Spule 2 ganz durchdringt, die konzentrisch zum Joch 1 auf dieses aufgesetzt ist. Hier hat der Jochkern 6 ungefähr die gleiche Länge bzw. Höhe wie die Spule 2. Die Jochplatte 7 ist in der Regel so bemessen, dass sie zumindest den gleichen - wie hier - oder einen größeren Durchmesser hat als die Spule 2. Das Joch 1 kann z.B. wieder aus magnetischem Edelstahl oder Mu-Metall gefertigt sein. Der Anker 4 kann aus dem gleichen Material gefertigt sein wie das Joch 1.The yoke 1, like the coil 2, the permanent magnet 9, the armature 4, and the housing 10, is rotationally symmetrical about the longitudinal axis 5 of the yoke 1. The yoke 1 is made in one piece, but along the longitudinal axis 5 again has areas with different diameters, a yoke core 6 with a smaller diameter and a yoke plate 7 with a larger diameter. Both parts 6, 7 have a cylindrical shape here. The yoke core 6 is generally longer than the yoke plate 7. The length of the yoke core 6 is dimensioned such that it completely penetrates the coil 2, which is placed on the yoke 1 concentrically thereon. Here the yoke core 6 has approximately the same length or height as the coil 2. The yoke plate 7 is generally dimensioned such that it has at least the same - as here - or a larger diameter than the coil 2. The yoke 1 can e.g. again be made of magnetic stainless steel or mu-metal. The armature 4 can be made of the same material as the yoke 1.

Der Anker 4 ist, z.B. an einer Feder, mechanisch aufgehängt. Durch die magnetische Vorspannung des weichmagnetischen Kreises, bestehend aus Joch 1, Anker 4 und Gehäuse 10, mittels Permanentmagneten 9 wird der Anker 4 vom Joch 1 und vom Gehäuse 10 angezogen und der Ruhe-Arbeitsluftspalt 8 stellt sich ein. Die Spule 2 wird bestromt und je nach Polarität des Stroms wird der magnetische Fluss des Permanentmagneten 9 verstärkt oder vermindert. Dadurch ändert sich die magnetische Kraft auf den Anker 4 und dieser bewegt sich proportional zur Stromänderung. Die Bewegung des Ankers 4 wird - etwa über eine Umhausung - auf den Schädelknochen übertragen.The armature 4 is mechanically suspended, for example on a spring. The magnetic bias of the soft magnetic circuit, consisting of yoke 1, armature 4 and housing 10, by means of permanent magnets 9, the armature 4 of the yoke 1 and the housing 10 tightened and the calm working air gap 8 is established. The coil 2 is energized and, depending on the polarity of the current, the magnetic flux of the permanent magnet 9 is increased or decreased. As a result, the magnetic force on the armature 4 changes and this moves in proportion to the change in current. The movement of the anchor 4 is transmitted to the skull bone, for example via a housing.

Der Durchmesser des Permanentmagneten 9 ist hier kleiner als jener der Jochplatte 7. Er beträgt etwa nur zwei Drittel des Durchmessers des scheibenförmigen Teils 7. Der Permanentmagnet 9 ist konzentrisch zum Joch 1 angeordnet und hier - in Richtung der Längsachse 5 gemessen - dünner als die Spule 2 oder die Jochplatte 7. Der Permanentmagnet 9 ist ein Seltenerdmagnet und parallel zur Längsachse 5 magnetisiert. Der Permanentmagnet 9 berührt mit einer Stirnfläche die Jochplatte 7 an deren Stirnfläche, die dem Jochkern 6 abgewandt ist. Mit seiner anderen Stirnfläche kontaktiert der Permanentmagnet 9 das Gehäuse 10, nämlich dessen Grundplatte 11.The diameter of the permanent magnet 9 is smaller than that of the yoke plate 7. It is only about two thirds of the diameter of the disk-shaped part 7. The permanent magnet 9 is arranged concentrically to the yoke 1 and here - measured in the direction of the longitudinal axis 5 - thinner than the coil 2 or the yoke plate 7. The permanent magnet 9 is a rare earth magnet and magnetized parallel to the longitudinal axis 5. The permanent magnet 9 contacts the yoke plate 7 with an end face on its end face, which faces away from the yoke core 6. The permanent magnet 9 contacts the housing 10, namely its base plate 11, with its other end face.

Das Gehäuse 10 ist topfförmig und weist hier eine ebene Grundplatte 11 sowie einen zylindrischen Mantel 12 auf. Das Gehäuse 10 ist hier einteilig gefertigt. Es kann aus dem gleichen weichmagnetischen Material gefertigt sein wie das Joch 1 oder der plattenförmige Anker 4.The housing 10 is cup-shaped and here has a flat base plate 11 and a cylindrical jacket 12. The housing 10 is made in one piece here. It can be made of the same soft magnetic material as the yoke 1 or the plate-shaped armature 4.

Das Gehäuse 10 umschließt gemeinsam mit dem Anker 4 das Joch 1, die Spule 2 sowie den Permanentmagneten 9. Zwischen der Stirnfläche des zylindrischen Mantels 12 des Gehäuses 10 und dem Anker 4 ist ein Arbeitsluftspalt 8 vorgesehen. Der Anker 4 ist elastisch an einer hier nicht dargestellten Umhausung des Signalwandlers aufgehängt, damit er gemäß dem von der Spule 2 vorgegebenen variablen Magnetfeld in Richtung der Längsachse 5 schwingen kann. Ebenso reicht der Jochkern 6 mit seiner Stirnfläche bis auf einen Arbeitsluftspalt 8 für den Anker 4 an den Anker 4 heran.The housing 10 together with the armature 4 encloses the yoke 1, the coil 2 and the permanent magnet 9. A working air gap 8 is provided between the end face of the cylindrical shell 12 of the housing 10 and the armature 4. The armature 4 is elastically suspended from a housing of the signal converter, not shown here, so that it can oscillate in the direction of the longitudinal axis 5 in accordance with the variable magnetic field specified by the coil 2. Likewise, the yoke core 6 with its End face up to a working air gap 8 for the armature 4 to the armature 4.

Die Grundplatte 11 des Gehäuses 10 weist an ihrer Innenseite eine kreisscheibenförmige Ausnehmung auf, in welche der Permanentmagnet 9 eingesetzt ist. Die Tiefe der Ausnehmung - entlang der Längsachse 5 gemessen - entspricht hier etwa einem Viertel der Dicke des Permanentmagneten 9, sodass dieser noch etwa zur Hälfte aus den Ausnehmungen herausragt. Ebenso weist die Jochplatte 7 eine kreisscheibenförmige Ausnehmung in der Stirnseite auf, die dem Permanentmagneten 9 zugewandt ist und in die der Permanentmagnet 9 eingesetzt ist. Die Tiefe der Ausnehmung - entlang der Längsachse 5 gemessen - entspricht hier ebenfalls etwa einem Viertel der Dicke des Permanentmagneten 9. Es ist ein radialer Abstand des Permanentmagneten 9 zur Wand jeder Ausnehmung vorgesehen. Dieser Abstand dient der einfachen Zentrierung von Permanentmagnet 9 und vor allem des Luftspaltes (Streuspaltes) 14. Die Ausnehmung in der Jochplatte 7 ist hier gleich groß wie jene in der Grundplatte 11.The base plate 11 of the housing 10 has on its inside a circular disc-shaped recess, in which the permanent magnet 9 is inserted. The depth of the recess - measured along the longitudinal axis 5 - corresponds here to about a quarter of the thickness of the permanent magnet 9, so that it still protrudes about half from the recesses. Likewise, the yoke plate 7 has a circular disk-shaped recess in the end face which faces the permanent magnet 9 and in which the permanent magnet 9 is inserted. The depth of the recess - measured along the longitudinal axis 5 - also corresponds here to about a quarter of the thickness of the permanent magnet 9. A radial distance of the permanent magnet 9 from the wall of each recess is provided. This distance is used for the simple centering of the permanent magnet 9 and above all the air gap (scattering gap) 14. The recess in the yoke plate 7 is here the same size as that in the base plate 11.

Zwischen der, dem Permanentmagneten 9 zugewandten, Stirnfläche der Jochplatte 7 und der Grundplatte 11 des Gehäuses 10 liegt ein Luftspalt 13, der hier kreisringförmig ist. Seine radiale Breite - normal zur Längsachse 5 gemessen - beträgt hier etwa ein Drittel des Radius der Jochplatte 7, seine axiale Höhe - in Richtung der Längsachse 5 gemessen - ist hier kleiner als die Höhe des Permanentmagneten 9. Bei anderen Ausführungsformen der Erfindung kann der Luftspalt 13 selbstverständlich andere relative radiale Breiten und axiale Höhen aufweisen. Zwischen der Umfangsfläche der Jochplatte 7 und dem Mantel 12 des Gehäuses 10 befindet sich ein weiterer Luftspalt 14. Seine axiale Höhe - in Richtung der Längsachse 5 gemessen - entspricht der Höhe der Jochplatte 7.Between the end face of the yoke plate 7 facing the permanent magnet 9 and the base plate 11 of the housing 10 there is an air gap 13, which here is annular. Its radial width - measured normal to the longitudinal axis 5 - here is about a third of the radius of the yoke plate 7, its axial height - measured in the direction of the longitudinal axis 5 - is smaller than the height of the permanent magnet 9. In other embodiments of the invention, the air gap 13 of course have other relative radial widths and axial heights. There is another air gap 14 between the peripheral surface of the yoke plate 7 and the jacket 12 of the housing 10. Its axial height - measured in the direction of the longitudinal axis 5 - corresponds to the height of the yoke plate 7.

Die beiden Luftspalte 13, 14 gehen ineinander über, sodass ein durchgehender, abgewinkelter Luftspalt zwischen der Umfangsfläche des Permanentmagneten 9 und dem Anker 4 entsteht.The two air gaps 13, 14 merge into one another, so that a continuous, angled air gap is created between the peripheral surface of the permanent magnet 9 and the armature 4.

Die Luftspalte 13, 14 werden im Zusammenhang mit dem Permanentmagneten 9 so ausgelegt, dass eine genügend hohe magnetische Vorspannung durch den Permanentmagneten 9 erzeugt wird und für den elektrisch erregten Fluss der Spule 2 die magnetischen Widerstände so klein wie möglich gehalten werden. Dies betrifft besonders die Parallelschaltung der magnetischen Widerstände von Permanentmagnet 9, Luftspalt 13 und Luftspalt 14. Der Arbeitsluftspalt 8 ist durch seine Funktion als Ankerbewegungsraum vorgegeben. Im weichmagnetischen Material sollten in der Regel keine großen magnetischen Widerstände (magn. Spannungsabfälle) entstehen. Die Auslegung des Signalwandlers, insbesondere der Luftspalte 13, 14, des Permanentmagneten 9, aber auch der Form und Abmessungen der Jochplatte 7, kann wieder durch Berechnung des oben erwähnten magnetischen Kreises erfolgen, wo die einzelnen Bauelemente (magnetischer Leiter, magnetische Widerstände, magnetisches Koppelelement) entsprechend miteinander verschaltet sind.The air gaps 13, 14 are designed in connection with the permanent magnet 9 so that a sufficiently high magnetic bias is generated by the permanent magnet 9 and the magnetic resistances are kept as low as possible for the electrically excited flow of the coil 2. This applies in particular to the parallel connection of the magnetic resistances of permanent magnet 9, air gap 13 and air gap 14. The working air gap 8 is predetermined by its function as an armature movement space. As a rule, no large magnetic resistances (magnetic voltage drops) should arise in the soft magnetic material. The design of the signal converter, in particular the air gaps 13, 14, the permanent magnet 9, but also the shape and dimensions of the yoke plate 7, can again be carried out by calculating the above-mentioned magnetic circuit, where the individual components (magnetic conductor, magnetic resistances, magnetic coupling element ) are interconnected accordingly.

Der sich aus dem erfindungsgemäßen Signalwandler ergebende unterschiedliche Verlauf der magnetischen Feldlinien ist durch Vergleich der Fig. 3 und 4 ersichtlich. Dabei sind sowohl die Feldlinien 15 des jeweiligen Permanentmagneten, also des Ringmagneten 3 aus Fig. 1 und des scheibenförmigen Permanentmagneten 9 aus Fig. 2, als auch die Feldlinien 16 der Spule 2 dargestellt.The different course of the magnetic field lines resulting from the signal converter according to the invention is shown by comparing the 3 and 4 evident. Both the field lines 15 of the respective permanent magnet, that is to say the ring magnet 3, are off Fig. 1 and the disk-shaped permanent magnet 9 Fig. 2 , as well as the field lines 16 of the coil 2 are shown.

In Fig. 3 sind die Feldlinien des Signalwandlers aus Fig. 1 eingezeichnet. Sowohl die durch den Ringmagneten 3 hervorgerufenen Feldlinien 15 als auch die durch die Spule 2 hervorgerufenen Feldlinien 16 befinden sich durchgehend in den gleichen Bereichen. Sie verlaufen nämlich in Richtung der Längsachse 5 durch den Jochkern 6, radial durch den Anker 4 in den Ringmagneten 3, in Richtung der Längsachse 5 durch den Ringmagneten 3 und radial durch die Jochplatte 7 wieder in den Jochkern 6. Das bedeutet, dass auch der Spulenfluss den hohen magnetischen Widerstand des Ringmagneten 3 überwinden muss.In Fig. 3 are the field lines of the signal converter Fig. 1 drawn. Both the field lines 15 caused by the ring magnet 3 and the field lines 16 caused by the coil 2 are located continuously in the same areas. Namely, they run in the direction of the longitudinal axis 5 through the yoke core 6, radially through the armature 4 in the ring magnet 3, in the direction of the longitudinal axis 5 through the ring magnet 3 and radially through the yoke plate 7 back into the yoke core 6. This means that the Coil flux must overcome the high magnetic resistance of the ring magnet 3.

In Fig. 4 sind die Feldlinien des Signalwandlers aus Fig. 2 eingezeichnet. Zwar verlaufen auch hier die durch den Permanentmagneten 9 hervorgerufenen Feldlinien 15 zum Teil durch die gleichen Bereiche wie die durch die Spule 2 hervorgerufenen Feldlinien 16. Sie verlaufen nämlich in Richtung der Längsachse 5 durch den Jochkern 6, radial durch den Anker 4 in den Mantel 12 des Gehäuses 10, in Richtung der Längsachse 5 durch den Mantel 12 und radial durch die Grundplatte 11 des Gehäuses 10 wieder in Längsrichtung durch den Permanentmagneten 9 in den Jochkern 6.In Fig. 4 are the field lines of the signal converter Fig. 2 drawn. Here too, the field lines 15 caused by the permanent magnet 9 run partly through the same areas as the field lines 16 caused by the coil 2. They run in the direction of the longitudinal axis 5 through the yoke core 6, radially through the armature 4 into the jacket 12 of the housing 10, in the direction of the longitudinal axis 5 through the jacket 12 and radially through the base plate 11 of the housing 10 again in the longitudinal direction through the permanent magnet 9 into the yoke core 6.

Allerdings werden die Magnetfelder durch die Anordnung der Jochplatte 7 zwischen dem Permanentmagneten 9 und der Spule 2 entsprechend den Weichmagnetika geleitet und teilen sich in Abhängigkeit der magnetischen Widerstände auf, die hauptsächlich durch die Luftspalte 13, 14 und den Permanentmagneten 9 bestimmt werden. Auf diese Weise bilden sich auch Feldlinien 15 des Permanentmagneten 9, die nur im Bereich des Permanentmagneten 9, der Jochplatte 7, der Grundplatte 11 des Gehäuses 10 und des zylindrischen Mantels 12 des Gehäuses 10 verlaufen, jedoch in Richtung der Längsachse 5 nicht über die Höhe der Jochplatte 7 hinaus. Diese Feldlinien 15 dringen daher nicht in die Spule 2 ein, während andere Feldlinien 15 dies sehr wohl tun, nur sind es so wenige, dass diese hier nicht eingezeichnet sind.However, the magnetic fields are guided by the arrangement of the yoke plate 7 between the permanent magnet 9 and the coil 2 in accordance with the soft magnets and split up as a function of the magnetic resistances, which are mainly determined by the air gaps 13, 14 and the permanent magnets 9. In this way, field lines 15 of the permanent magnet 9 also form, which run only in the area of the permanent magnet 9, the yoke plate 7, the base plate 11 of the housing 10 and the cylindrical jacket 12 of the housing 10, but not in the direction of the longitudinal axis 5 over the height the yoke plate 7 also. These field lines 15 therefore do not penetrate the coil 2, while other field lines 15 do very well, only there are so few that they are not shown here.

Ebenso ändert ein Teil der Feldlinien 16 der Spule 2 ihren Verlauf: sie gelangen nicht bis zur Grundplatte 11 des Gehäuses 10, sondern verlaufen durch die Jochplatte 7, und damit dem Permanentmagneten 9 ausweichend, um sich durch den Mantel 12 des Gehäuses 10 bzw. durch den Jochkern 6 des wieder im Anker 4 zu schließen. So verlaufen einige Feldlinien 16 vom Anker 4 axial durch den Jochkern 6 Richtung Permanentmagnet 9, vor dem Permanentmagneten 9 radial durch die Jochplatte 7, dann axial über den ersten Luftspalt 13 zur Grundplatte 11 des Gehäuses 10 und radial nach außen über die Grundplatte 11 in den Mantel 12 und wieder in den Anker 4.Similarly, some of the field lines 16 of the coil 2 change their course: they do not reach the base plate 11 of the housing 10, but instead run through the yoke plate 7, and thus the Permanent magnets 9 evasive to close through the jacket 12 of the housing 10 or through the yoke core 6 of the armature 4 again. For example, some field lines 16 run from the armature 4 axially through the yoke core 6 in the direction of the permanent magnet 9, in front of the permanent magnet 9 radially through the yoke plate 7, then axially via the first air gap 13 to the base plate 11 of the housing 10 and radially outward via the base plate 11 in the Coat 12 and back into anchor 4.

Ein Teil der magnetischen Feldlinien 16 des durch die Spule 2 erzeugten Magnetfeldes zwischen Joch 1 und Gehäuse 10 verläuft also durch die Jochplatte 7 und nicht durch den Permanentmagneten 9.A part of the magnetic field lines 16 of the magnetic field generated by the coil 2 between the yoke 1 and the housing 10 thus runs through the yoke plate 7 and not through the permanent magnet 9.

Fig. 5 zeigt einen Längsschnitt durch einen alternativen erfindungsgemäßen Signalwandler, wobei nur eine Hälfte des Signalwandlers schematisch dargestellt ist. Der Signalwandler in Fig. 5 ist grundsätzlich gleich wie in Fig. 2 aufgebaut, unterscheidet sich von Fig. 2 jedoch dadurch, dass Spule 2 und Permanentmagnet 9 den gleichen Außendurchmesser haben, der aber kleiner ist als der Außendurchmesser der Jochplatte 7. Somit ergeben sich auch andere Dimensionen bei den Luftspalten 13, 14. Darüber hinaus ist in Fig. 5 auch die Höhe der Spule 2 geringer als die Höhe des Jochkerns 6. Fig. 5 shows a longitudinal section through an alternative signal converter according to the invention, only one half of the signal converter being shown schematically. The signal converter in Fig. 5 is basically the same as in Fig. 2 built up, differs from Fig. 2 however, due to the fact that coil 2 and permanent magnet 9 have the same outer diameter, but which is smaller than the outer diameter of the yoke plate 7. This also results in other dimensions for the air gaps 13, 14. In addition, in Fig. 5 the height of the coil 2 is also less than the height of the yoke core 6.

In Fig. 6 ist der Längsschnitte aus Fig. 5 dreimal dargestellt, zusätzlich sind die magnetischen Feldlinien bei unterschiedlicher elektrischer Durchflutung eingezeichnet. Links ist das Magnetfeld ohne Bestromung der Spule 2 dargestellt, in der Mitte mit Bestromung der Spule 2 ("100 A") im Sinne einer Verstärkung des Magnetfelds des Permanentmagneten 9, rechts mit Bestromung der Spule 2 ("-100 A"), allerdings im Sinne einer Kompensation des Magnetfelds des Permanentmagneten 9. Es ist in der linken Abbildung gut erkennbar, dass die Dichte der magnetischen Feldlinien innerhalb der Spule 2 gering ist.In Fig. 6 is the longitudinal section Fig. 5 shown three times, in addition the magnetic field lines are drawn in with different electrical flooding. The magnetic field is shown on the left without energizing the coil 2, in the middle with energizing the coil 2 ("100 A") in the sense of strengthening the magnetic field of the permanent magnet 9, on the right with energizing the coil 2 ("-100 A"), however in the sense of a compensation of the magnetic field of the permanent magnet 9. It is in the left The figure clearly shows that the density of the magnetic field lines within the coil 2 is low.

Der gegenständliche Signalwandler findet Verwendung in Hör- und Kommunikationssystemen sowie zur Audiodiagnostik, der zugehörige Knochenleitungshörer (Osteophon) wird getragen und angewendet am menschlichen oder tierischen Schädel. Entsprechend der Verwendung ist die Größe des Knochenleitungshörers und damit des Signalwandlers zu dimensionieren. Bei manchen Ausführungsvarianten des gegenständlichen Signalwandlers ist dieser sehr klein, dann beträgt seine Höhe von der Grundplatte 11 des Gehäuses 10 bis zum Anker längs der Längsachse 5 etwa 2-10 mm, der Durchmesser des Gehäuses 10 bzw. des etwa gleich großen Ankers 4 5-20 mm. Der scheibenförmige Permanentmagnet weist beispielsweise eine Dicke von 0,5-0,7 mm auf, die Dicke kann aber auch kleiner als 0,5 mm oder größer als 0,7 mm sein. Bei anderen Ausführungsvarianten kann der Durchmesser des Gehäuses 10 auch im Bereich von einigen Zentimetern liegen, etwa bis zu 6 oder 7 cm, oder sogar bis 10 cm. Auch noch größere Signalwandler, etwa für Tiere größer als der Mensch, sind denkbar.The subject signal converter is used in hearing and communication systems as well as for audio diagnostics, the associated bone conduction earphone (osteophone) is worn and used on the human or animal skull. The size of the bone conduction earphone and thus the signal converter must be dimensioned according to the use. In some design variants of the signal converter in question, it is very small, then its height from the base plate 11 of the housing 10 to the armature along the longitudinal axis 5 is approximately 2-10 mm, the diameter of the housing 10 or the approximately equally large armature 4-5 20 mm. The disk-shaped permanent magnet has a thickness of 0.5-0.7 mm, for example, but the thickness can also be less than 0.5 mm or greater than 0.7 mm. In other design variants, the diameter of the housing 10 can also be in the range of a few centimeters, for example up to 6 or 7 cm, or even up to 10 cm. Even larger signal converters, for example for animals larger than humans, are conceivable.

Eine andere Ausführungsform eines erfindungsgemäßen Signalwandlers wäre die rechteckige Ausführung, wo Permanentmagnet 9, Jochplatte 7 und Spule 2 in Richtung der Längsachse 5 gesehen eine im Wesentlichen rechteckige Form haben.Another embodiment of a signal converter according to the invention would be the rectangular version, where the permanent magnet 9, yoke plate 7 and coil 2 have an essentially rectangular shape when viewed in the direction of the longitudinal axis 5.

Die Erfindung, siehe insbesondere Fig. 2 und 5, teilt die magnetischen Flüsse auf und sorgt für einen kleinen magnetischen Widerstand des Permanentmagneten 9 durch geringe Höhe und große Fläche, was am besten durch SE-Magnete verwirklicht werden kann. Außerdem sorgen die aus Sicht der elektrischen Erregung parallelgeschalteten Flusspfade des Luftspalts 14 (Streuspaltes) und des Luftspaltes 13 neben dem Permanentmagneten 9 zu einer weiteren signifikanten Senkung des magnetischen Gesamtwiderstandes. Durch diese "Streuwege" wird dem Arbeitsluftspalt 8 zwar magnetischer Fluss der permanentmagnetischen Erregung zur magnetischen Vorspannung entzogen. Allerdings ist die Magnetfläche im Vergleich zu jener in Fig. 1 auch größer, um dies auszugleichen. Im Zuge der Auslegung des erfindungsgemäßen Signalwandlers ist auch darauf zu achten, dass der Streusteg, also die Jochplatte 7 in ihrem äußeren Bereich, wo beide magnetischen Flüsse sich addieren, nicht gesättigt wird.The invention, see in particular Fig. 2 and 5 , divides the magnetic fluxes and ensures a small magnetic resistance of the permanent magnet 9 due to its small height and large area, which can best be achieved by means of SE magnets. In addition, the flow paths of the air gap 14 (scattering gap) and the air gap 13, which are connected in parallel from the point of view of the electrical excitation, in addition to the permanent magnet 9, bring about a further significant reduction in the magnetic Total resistance. These “scatter paths” remove magnetic flux from the permanent magnetic excitation for magnetic bias from the working air gap 8. However, the magnetic area is compared to that in Fig. 1 also bigger to compensate for this. In the course of the design of the signal converter according to the invention, care must also be taken to ensure that the stray web, that is to say the yoke plate 7, is not saturated in its outer region, where both magnetic fluxes add up.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

11
Jochyoke
22nd
elektrische Spuleelectric coil
33rd
RingmagnetRing magnet
44th
Ankeranchor
55
LängsachseLongitudinal axis
66
Jochkern des Jochs 1Yoke core of yoke 1
77
Jochplatte des Jochs 1Yoke plate of yoke 1
88th
ArbeitsluftspaltWorking air gap
99
PermanentmagnetPermanent magnet
1010th
Gehäusecasing
1111
Grundplatte des Gehäuses 10Base plate of the housing 10
1212
zylindrischer Mantel des Gehäuses 10cylindrical casing of the housing 10
1313
Luftspalt (Streuspalt zwischen Jochplatte 6 und Grundplatte 11)Air gap (spreading gap between yoke plate 6 and base plate 11)
1414
Luftspalt (Streuspalt zwischen Jochplatte 6 und Mantel 12)Air gap (spreading gap between yoke plate 6 and jacket 12)
1515
Feldlinie des Permanentmagneten 9 oder des Ringmagneten 3Field line of the permanent magnet 9 or the ring magnet 3
1616
Feldlinie der Spule 2Field line of coil 2

Claims (11)

  1. An electromagnetic signal converter for an osteophone, comprising
    - a soft magnetic yoke (1),
    - an electrical coil (2) arranged concentrically to the longitudinal axis of the yoke (1) and set on the yoke (1),
    - a soft magnetic housing (10),
    - an elastically suspended, soft-magnetic armature (4) which, viewed in the direction of the longitudinal axis (5) of the yoke (1), is separated from the yoke (1) and from the soft magnetic housing (10) by a working air gap (8) and can move along the longitudinal axis (5) of the yoke (1), and
    - a permanent magnet (9) which is magnetized in the direction of the longitudinal axis (5) of the yoke (1) in order to generate a magnetic biasing voltage of the yoke (1) and of the armature (4), characterized in that the permanent magnet (9) and the coil (2) do not overlap one another in the direction of the longitudinal axis of the yoke (1) and that means is provided for dividing the magnetic flux that can be produced by the coil (2) onto at least two flux paths, wherein one flux path runs outside of the permanent magnet (9), and
    that the permanent magnet (9), yoke (1) and coil (2) are surrounded by a soft magnetic housing (10) which is separated by an air gap (13, 14) from the yoke (1) so that the magnetic flux which can be generated by the coil (2) can be guided by the soft magnetic housing (10) onto the flux path outside of the permanent magnet (9), and
    that the yoke (1) comprises a rod-shaped yoke core (6) aligned along the longitudinal axis (5) of the yoke and comprises a yoke plate (7) arranged normally to the longitudinal axis, wherein the yoke core (6) extends into the coil (2) and the yoke plate (7) faces a front side of the coil (2), and the magnetic flux which can be produced by the coil (2) can be guided by the yoke plate (7) onto the flux path outside of the permanent magnet (9), and
    that the permanent magnet (9) is arranged, as regards the yoke (1), lying opposite the armature (4).
  2. The signal converter according to Claim 1, characterized in that the magnetic flux which can be generated by the coil (2) can be guided by the yoke (1) onto the flux path outside of the permanent magnet (9).
  3. The signal converter according to one of Claims 1 to 2, characterized in that the permanent magnet (9) is constructed with a plate shape.
  4. The signal converter according to one of Claims 1 to 3, characterized in that the permanent magnet (9) is a rare earth magnet.
  5. The signal converter according to one of Claims 1 to 4, characterized in that the permanent magnet (9) is constructed as a circular disk wherein the middle point of the circular disk lies on the longitudinal axis (5) of the yoke (1).
  6. The signal converter according to one of Claims 1 to 5, characterized in that the permanent magnet (9) has a diameter that is smaller than the outside diameter of the coil (2) but greater than the inside diameter of the coil (2).
  7. The signal converter according to one of Claims 1 to 6, characterized in that the greatest diameter of the yoke (1), in particular of the yoke plate (7), has the same outside diameter as the coil (2).
  8. The signal converter according to one of Claims 3 to 7, characterized in that an air gap is present between a circumferential surface of the yoke (1), in particular a circumferential surface of the yoke plate (7) and the housing (10).
  9. The signal converter according to one of Claims 1 to 8, characterized in that the yoke (1), in particular the yoke plate (7), has a recess in its front side which faces the permanent magnet (9) so that the permanent magnet (9) is received at least partially in the yoke.
  10. The signal converter according to one of Claims 1 to 9, characterized in that the soft magnetic housing (10) has a recess which faces the permanent magnet (9) so that the permanent magnet (9) is received at least partially in the housing (10).
  11. The signal converter according to one of Claims 1 to 10, characterized in that the permanent magnet (9) makes contact with its front sides with the yoke (1), in particular the yoke plate (7) and also with the housing (10).
EP16158871.0A 2015-03-05 2016-03-07 Electromagnetic signal converter for a bone conduit earpiece Active EP3065420B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50175/2015A AT516871B1 (en) 2015-03-05 2015-03-05 Electromagnetic transducer for a bone conduction listener

Publications (2)

Publication Number Publication Date
EP3065420A1 EP3065420A1 (en) 2016-09-07
EP3065420B1 true EP3065420B1 (en) 2020-06-24

Family

ID=55484894

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16158871.0A Active EP3065420B1 (en) 2015-03-05 2016-03-07 Electromagnetic signal converter for a bone conduit earpiece

Country Status (5)

Country Link
US (1) US9699566B2 (en)
EP (1) EP3065420B1 (en)
CN (1) CN106060724B (en)
AT (1) AT516871B1 (en)
DK (1) DK3065420T3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290463B2 (en) * 2017-04-27 2019-05-14 Imatrex, Inc. Compact deflecting magnet
NZ771861A (en) 2018-06-15 2022-07-01 Shenzhen Shokz Co Ltd Bone conduction speaker and testing method therefor
EP4260572A1 (en) 2020-12-14 2023-10-18 BHM-Tech Produktionsgesellschaft m.b.H. Electromagnetic signal converter for a bone conduction receiver

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070053542A1 (en) * 2005-09-08 2007-03-08 Dong-Won Lee Bone conduction speaker

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE447948B (en) 1985-05-15 1986-12-22 Bo Hakansson Vibrator for hearing aid
SE516270C2 (en) 2000-03-09 2001-12-10 Osseofon Ab Electromagnetic vibrator
SE0002073L (en) 2000-06-02 2001-05-21 P & B Res Ab Vibrator for leg anchored and leg conduit hearing aids
SE523125C2 (en) 2001-06-21 2004-03-30 P & B Res Ab Vibrator for vibration generation in bone anchored hearing aids
WO2010025351A2 (en) * 2008-08-29 2010-03-04 The Peen State Research Foundation Methods and apparatus for reduced distortion balanced armature devices
IT1399082B1 (en) * 2010-03-25 2013-04-05 Claudio Lastrucci MOBILE MAGNETIC ELECTRO-MECHANICAL CONVERSION SYSTEM; ACOUSTIC DIFFUSER INCLUDING THIS SYSTEM AND A MOBILE ORGAN GENERATING ACOUSTIC WAVES.
WO2011163115A1 (en) * 2010-06-21 2011-12-29 Vibrant Med-El Hearing Technology Gmbh Electromagnetic bone conduction hearing device
CN104885481B (en) * 2012-07-09 2018-05-29 Med-El电气医疗器械有限公司 Electromagnetism bone conduction hearing device
CN203840522U (en) * 2014-03-24 2014-09-17 项泽玉 Mute bone conduction electromagnetic vibration transducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070053542A1 (en) * 2005-09-08 2007-03-08 Dong-Won Lee Bone conduction speaker

Also Published As

Publication number Publication date
EP3065420A1 (en) 2016-09-07
CN106060724A (en) 2016-10-26
US20160261958A1 (en) 2016-09-08
US9699566B2 (en) 2017-07-04
DK3065420T3 (en) 2020-09-21
AT516871A1 (en) 2016-09-15
AT516871B1 (en) 2018-03-15
CN106060724B (en) 2020-03-13

Similar Documents

Publication Publication Date Title
DE1815694C2 (en) Electrodynamic converter system
DE3730305C1 (en) speaker
DE4317775C2 (en) speaker
EP0804048B1 (en) Loudspeaker
DE19913558A1 (en) Loudspeaker construction for reduced production costs
EP3065420B1 (en) Electromagnetic signal converter for a bone conduit earpiece
DE3027048A1 (en) ELECTRIC ACOUSTIC TRANSMITTER FOR HIGH AID DEVICES
DE2331037B2 (en) Electroacoustic converter
DE102008005509A1 (en) Speaker device and loudspeaker stimulation method
DE2261501B2 (en) Electroacoustic converter
DE102008008899A1 (en) Charger with homogeneous magnetic field
DE1086748B (en) Sound recording or playback device
DE102016202658A1 (en) Speaker module for a hearing aid and hearing aid
DE3443907A1 (en) Dynamic telephone receiver capsule for persons with impaired hearing
DE2362001A1 (en) DYNAMIC SPEAKER WITH VIBRATING COIL
EP0208907B1 (en) Magnetic system for a dynamic loudspeaker
DE102006002875B4 (en) Transducer magnet system
DE969603C (en) Improvement in a sound reproducing device
AT381204B (en) Magnetic system for electrodynamic transducers in particular microphones and headphones
EP4260572A1 (en) Electromagnetic signal converter for a bone conduction receiver
DE102007035968A1 (en) Fanfare for a motor vehicle
DE959924C (en) Electroacoustic transducer, in particular earphone capsule in telephone systems
DE529541C (en) Electromagnet assembly
DE19942883B4 (en) Ribbon loudspeaker
DE112020007095T5 (en) Earphones with improved electrode alignment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170307

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180712

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 13/00 20060101AFI20190927BHEP

Ipc: H04R 25/00 20060101ALN20190927BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200110

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016010299

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04R0009020000

Ipc: H04R0013000000

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 25/00 20060101ALN20200424BHEP

Ipc: H04R 13/00 20060101AFI20200424BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 25/00 20060101ALN20200506BHEP

Ipc: H04R 13/00 20060101AFI20200506BHEP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20200519

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1285108

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010299

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200914

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200925

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201026

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010299

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210307

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210307

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1285108

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20230224

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230317

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 9

Ref country code: GB

Payment date: 20240322

Year of fee payment: 9