EP3062055A1 - Wärmetauscher, insbesondere für ein kraftfahrzeug - Google Patents

Wärmetauscher, insbesondere für ein kraftfahrzeug Download PDF

Info

Publication number
EP3062055A1
EP3062055A1 EP16153351.8A EP16153351A EP3062055A1 EP 3062055 A1 EP3062055 A1 EP 3062055A1 EP 16153351 A EP16153351 A EP 16153351A EP 3062055 A1 EP3062055 A1 EP 3062055A1
Authority
EP
European Patent Office
Prior art keywords
channel
plate
heat exchanger
exchanger according
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16153351.8A
Other languages
English (en)
French (fr)
Other versions
EP3062055B1 (de
Inventor
Yavuz Altunkaya
Tobias Fetzer
Wilhelm Grauer
Boris Kerler
Jonas Kühndel
Marco Renz
Volker Velte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP3062055A1 publication Critical patent/EP3062055A1/de
Application granted granted Critical
Publication of EP3062055B1 publication Critical patent/EP3062055B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0075Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements the plates having openings therein for circulation of the heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0081Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by a single plate-like element ; the conduits for one heat-exchange medium being integrated in one single plate-like element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages

Definitions

  • the present invention relates to a heat exchanger, in particular for a motor vehicle.
  • Heat exchangers are used, for example, in motor vehicles to cool the fresh air charged by means of an exhaust-gas turbocharger in a fresh-air system interacting with the internal combustion engine of the motor vehicle.
  • the fresh air to be cooled is introduced into the heat exchanger, where it interacts thermally with a likewise introduced into the heat exchanger coolant and emits heat in this way to the coolant.
  • Such a heat exchanger may be configured, for example, as a plate heat exchanger and having a plurality of plate assemblies each having a pair of plates stacked in a stacking direction, wherein between the plates of a pair of plates a fresh air path is formed through which the fresh air to be cooled is passed.
  • the aforementioned coolant can be fluidically separated from the fresh air to be cooled, which can be set in thermal interaction with the fresh air to be cooled by the plates of the plate arrangement .
  • rib structures may be provided between adjacent plate assemblies which increase the interaction area of the plates available for thermal interaction. Such constructions are known to those skilled in the art by the term "fin-tube heat exchanger".
  • a heat exchanger comprises a plurality of channel devices for flowing through with a first fluid, which are arranged adjacent to one another along a stacking direction.
  • each channel device has a pair of plates with a first and a second plate, which define in the stacking direction a first fluid channel for flowing through the first fluid.
  • the term "plate” is to be used herein in a comprehensive sense and in particular includes any kind of substantially flat-shaped components. Also plates with on this, in particular sections, trained three-dimensional structures and pot-shaped plates are expressly included in the term "plate” used here.
  • Two adjacent channel devices in the stacking direction are arranged at a distance from one another, so that a second fluid channel for flowing through a second fluid, which is fluidically separated from the first fluid channel, is formed by the intermediate space formed between the two channel devices.
  • a plurality of channel elements is provided, which are each connected to both the first and the second plate.
  • the heat exchanger according to the invention is designed such that the two adjacent in or opposite to the stacking direction interstices of the channel device, each forming a second fluid channel, through the channel elements communicate fluidly with each other.
  • inventive arrangement of the individual channel elements causes the channel housing of the channel elements can be advantageously almost completely surrounded by the first fluid, preferably the air to be cooled. This leads to a comparison with conventional heat exchangers thermal interaction of the first fluid with the flowing through the individual channel elements second fluid, that is preferably a coolant. As a result, this leads to a heat exchanger with improved efficiency.
  • the channel element is designed as a tubular body which comprises a circumferential wall partially delimiting a channel interior.
  • the channel interior is frontally limited by a first passage opening and by a second passage opening opposite this first passage opening.
  • the peripheral wall has a wall thickness of at most 2 mm, preferably of at most 1.5 mm, particularly preferably of at most 1 mm. In this way, the weight of the heat exchanger can be kept low even with a large number of installed channel elements.
  • the channel members may be integrally formed on the first and second plates of their associated plate pair. This measure is useful if the heat exchanger is to be produced by means of an additive manufacturing process.
  • a particularly uniform heating or cooling performance can be achieved in the heat exchanger in a further preferred embodiment, in which for each channel element in the first plate of the associated channel device a first Plate breakthrough and in the second plate of the same channel device a second plate breakthrough is provided.
  • the respective channel element is arranged in the first fluid channel delimited by the two plates such that the first plate breakthrough of the first plate communicates fluidically with the second plate breakthrough via the channel interior of the channel element.
  • At least the channel elements and the plate pairs of the channel devices of the heat exchanger can be produced by means of an additive manufacturing method.
  • the entire heat exchanger is produced by means of such an additive manufacturing method.
  • additive manufacturing process in this case includes all manufacturing processes that build the component directly from a computer model out in layers. Such production processes are also known by the term “rapid forming".
  • rapid forming includes in particular production processes for the rapid and flexible production of components by means of tool-free production directly from CAD data.
  • the use of an additive manufacturing method allows the production of the heat exchanger according to the invention without component-specific investment means such as tool molds or the like. and almost no geometric restrictions.
  • the additive manufacturing method it is possible to construct the design of the heat exchanger functionally bound.
  • the individual components of the heat exchanger, the plate pairs of the channel devices, and the individual channel elements and their interfaces to the plate pairs can be greatly simplified.
  • small parts such as sealing elements or separately formed fastening elements, such as struts or the like, usually exist in a variety of shapes and a large number.
  • the heat exchanger may be integrally formed.
  • Such a one-piece design is formed in particular when using the above-proposed additive manufacturing process, in particular laser melting.
  • a one-piece design of the heat exchanger eliminates the very costly and therefore costly attaching the individual components of the heat exchanger together.
  • the additive manufacturing process may include laser melting.
  • a laser melting process is used for producing channel elements and plate pairs, preferably for producing the entire heat exchanger.
  • the components of the heat exchanger can be made directly from 3D CAD data. Basically, the components of the heat exchanger during laser sintering tool-free and layered based on the three-dimensional CAD model associated with the heat exchanger.
  • the channel elements and the plate pairs of the channel devices are manufactured by means of said additive manufacturing process.
  • the heat exchanger can also be integrally formed.
  • Such a one-piece design is formed in particular when using the above-proposed additive manufacturing process, in particular laser melting.
  • a one-piece design of the heat exchanger eliminates the very costly and therefore costly attaching the individual components of the heat exchanger together.
  • the channel elements can each be designed as hollow cylinders extending along an axial direction.
  • a particularly stable support to the adjacent channel devices can be achieved.
  • Such a hollow cylinder has a diameter measured transversely to the axial axis which is at most 1 mm, preferably at most 0.5 mm, particularly preferably at most 0.3 mm.
  • the peripheral wall of the channel element in a cross section perpendicular to the axial direction has a round, preferably elliptical, most preferably circular, geometry.
  • a heat exchanger with such a geometry is particularly easy to produce when using an additive manufacturing process.
  • Particularly advantageous flow characteristics and, associated therewith, a particularly high efficiency of the heat exchanger result in a structural design of the heat exchanger such that the first plate breakthrough of the first plate is aligned in an axial direction with the two through holes of the channel element and with the corresponding second plate breakthrough of the second plate.
  • Said axial direction can be defined by a direction which in turn is orthogonal to a plane defined by the first plate plate plane.
  • a plurality of first plate openings may be provided in the first plate, which are arranged with respect to a plan view of the first plate like a grid with a plurality of first raster lines, but in any case with at least two raster lines on this.
  • a plurality of second plate openings be provided, which are arranged with respect to a plan view of the second plate like a grid with a plurality of second raster lines, but in any case with at least two raster lines on this.
  • the mechanical stability of the heat exchanger can be further increased in a further preferred embodiment by a constructive embodiment is selected in which the first plate openings of two adjacent raster lines are arranged offset from one another.
  • a stable attachment of the individual channel devices to one another in the stacking direction is achieved by providing a holding device between two stacked channel devices, which connects a first plate of a channel device to a second plate of the channel device adjacent in the stacking direction.
  • the respective holding device may comprise a plurality of, in particular strut-like, holding elements, which are supported on the first and the second plate.
  • a wall thickness of the peripheral wall of the channel elements is at most 0.5 mm, preferably at most 0.2 mm.
  • the two adjacent stacking plates which limit the space between two adjacent channel devices, Part of a flat tube, which limits in this way the second fluid channel. This facilitates the realization of the heat exchanger in flat construction.
  • FIG. 1 shows an example of a heat exchanger according to the invention in a perspective view.
  • the FIG. 2 shows the heat exchanger of FIG. 1 in a sectional view along the section plane II-II of FIG. 1 ,
  • the heat exchanger 1 comprises a plurality of channel devices 2 for the flow through with a first fluid F 1 , which are stacked along a stacking direction S.
  • a first fluid F 1 which are stacked along a stacking direction S.
  • FIG. 1 For example, three stacked channel devices 2 stacked in the stacking direction S are shown; in variants of the example, however, this number may vary.
  • each channel means 2 a pair of plates 3, with a first and a second plate 3a, 3b, the limit in the stacking direction S has a first fluid channel 4a for through-flow of the first fluid f1.
  • channel devices 2 are at a distance one above the other, so that a fluidically separated from the first fluid channel 4a second fluid channel 4b is formed for flowing through with a second fluid F 2 by the resulting between the adjacent channel means 2 intermediate space.
  • first fluid channel 4a is corresponding to the FIGS. 1 and 2 in each case a plurality of channel elements 6 are arranged.
  • the channel elements 6 extend in the example scenario in the stacking direction A and are connected both to the first plate 3a and to the second channel plate 3b of the first fluid channel 4a in the stacking direction S bounding plate pair 3.
  • the channel elements 6 may be integrally formed on the first and second plates 3a, 3b of their associated plate pair 3.
  • a flowing through a certain, a second fluid channel 4b intermediate space 5 flowing fluid F 2 can thus through the channel elements 6 in a in or against the stacking direction S adjacent, also a second fluid channel 4b forming gap 5 arrive.
  • the second fluid F 2 may be a coolant by means of which the first fluid F 1 - for example fresh air charged by means of an exhaust-gas turbocharger - is to be cooled before it is introduced into an internal combustion engine.
  • the channel elements 6 as in the FIGS. 1 and 2 may be formed as a tubular body 7.
  • Each tubular body 7 has, in the example scenario, a circumferential wall 8 which partially delimits a channel interior 9.
  • the channel interior 9 is delimited by a first through opening 10a and by a second through opening 10b lying opposite this first through opening 10a.
  • the peripheral wall 8 of the channel element 6 has in this example a wall thickness of at most 2 mm, preferably of at most 1.5 mm, more preferably of at most 1 mm. In this way, the weight of the heat exchanger 1 can be kept low.
  • a first plate opening 11a is provided in the relevant first plate 3a for each channel element 6, and a second plate opening 11b is provided in the relevant second plate 3b.
  • the channel element 6 in question is arranged in the first fluid channel 4 a delimited by the two plates 3 a, 3 b so that the first plate opening 11 a of the first plate 3 a communicates fluidically with the second plate opening 11 b via the channel interior 9 of the channel element 6.
  • the second fluid can thus from the gap 5 through the first plate breakthrough 11 a of the first plate 3 a and the first passage opening 10, the channel element 6 to flow through the channel interior 9.
  • the channel elements 6 can each be designed as hollow cylinders extending along an axial direction A.
  • the axial direction A and the stacking direction S are identical.
  • the axial direction A is orthogonal to a plate plane E defined by the first plate 3a of the plate pairs 3.
  • the channel elements 6 designed as hollow cylinders have a diameter measured transversely to the axial axis A which is at most 1 mm, preferably at most 0.5 mm, especially preferably at most 0.3 mm. This makes it possible to provide a plurality of channel elements 6 and in this way to extremely increase the effective heat-interaction area between the two fluids compared to conventional heat exchangers.
  • peripheral walls 8 of the channel elements 6 in a cross section perpendicular to the axial direction A a round, preferably one in FIG. 1 illustrated elliptical geometry. Also, a circular geometry (not shown) is conceivable. In other variants of the example, other geometries can be realized.
  • a wall thickness of the peripheral wall 8 of the channel elements 6 may be at most 0.5 mm, preferably at most 0.2 mm.
  • the channel elements 6 and plate pairs 3 shown in the figures with the first and second plates 3a, 3b of the plate pairs 3 of the heat exchanger 1 are manufactured by means of an additive manufacturing process. All may be preferred essential components of the heat exchanger 1, in extreme cases the complete heat exchanger, are produced by means of such an additive manufacturing process.
  • the use of an additive manufacturing method allows the production of the heat exchanger 1 without component-specific investment means, such as tool molds or the like. and almost no geometric restrictions.
  • the additive manufacturing process it is possible to construct the design of the heat exchanger 1 functionally bound - and no longer tool-bound.
  • the individual components of the heat exchanger 1, such as the plate pairs 3 and the channel pairs 6 connecting the plate pairs 3 can be formed integrally with each other directly in the course of the manufacturing process.
  • the provision of small parts such as sealing elements for sealing the channel elements 6 can thus largely or even completely eliminated.
  • the additive manufacturing process presented here may also include so-called laser sintering.
  • laser sintering This means that, at least for producing the plate pairs 3 and the channel elements 6, in extreme cases for producing the entire heat exchanger 1, a laser sintering method is used, which is also known to the person skilled in the art under the term "laser melting".
  • laser melting the components of the heat exchanger can be made directly from 3D CAD data.
  • the said components of the heat exchanger 1 during the laser melting process are manufactured without tools and in layers on the basis of a three-dimensional CAD model assigned to the heat exchanger 1.
  • FIG. 2 can recognize the aligned in the first plates 3a first plate apertures 11 a in the axial direction A and the stacking direction S both with the two through holes 10a, 10b of the first plate breakthrough 11a associated channel element 6 as well the associated, provided in the second plate 3b second plate openings 11b.
  • the first plate apertures 11a provided in the first plate 3a are arranged in a grid-like manner with a plurality of first grid lines 12 with respect to a plan view of the first plate 3a in the axial direction A or stacking direction S, respectively.
  • the second plate openings 11b formed in the second plate 3b are also arranged with a plurality of second raster lines 12b with respect to a plan view of the second plate 3b in the axial direction A or in the stacking direction S.
  • the associated grid-like arrangement of the channel elements 6 leads to an improved mechanical rigidity of the heat exchanger 1. This applies in particular to the in FIG. 1 shown variant in which the first plate openings 11a of two adjacent first raster lines 12a and in an analogous manner, the second plate openings 11b of two adjacent second raster lines 12b are arranged offset from one another.
  • Each holding device 13 comprises a plurality of strut-like holding elements 14, which are arranged between the first and second plates 3a, 3b of two adjacent channel devices 2 in the respective intermediate space 5.
  • the strut-like holding elements 14 are supported at one end on the intermediate plate 5 in the stacking direction S limiting second plate 3b and the other end of the gap 5 against the stacking direction S limiting first plate 3a from.
  • the heat exchanger 1 may also be formed in one piece. Such a one-piece design is formed in particular when using the above-proposed additive manufacturing process, in particular laser melting. In a one-piece design of the heat exchanger eliminates the very costly and therefore costly attaching the individual components of the heat exchanger together. It is understood that in the case of a one-piece construction of the heat exchanger 1, the terms used herein such as e.g. "first plate 3a" remain valid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft einen Wärmetauscher (1), - mit einer Mehrzahl von Kanaleinrichtungen (2), welche entlang einer Stapelrichtung (S) stapelartig aufeinander angeordnet sind, - wobei jede Kanaleinrichtung (2) ein Plattenpaar (3) mit einer ersten und einer zweiten Platte (3a, 3b) aufweist, die in der Stapelrichtung (S) einen ersten Fluidkanal (4a) begrenzen, - wobei zwei in Stapelrichtung (S) benachbarte Kanaleinrichtungen (2) im Abstand zueinander angeordnet sind, so dass durch einen zwischen den beiden benachbarten Kanaleinrichtungen (2) gebildeten Zwischenraum (5) ein fluidisch vom ersten Fluidkanal (4a) getrennter zweiter Fluidkanal (4b) ist, - wobei im ersten Fluidkanal (4a) wenigstens einer Kanaleinrichtung (2), vorzugsweise aller Kanaleinrichtungen (2), eine Mehrzahl von Kanalelementen (6) vorgesehen ist, welche sowohl mit der ersten als auch mit der zweiten Platte (3a, 3b) verbunden sind, so dass die beiden entlang der Stapelrichtung (S) benachbarten Zwischenräume (5) der Kanaleinrichtung (2) mittels der Kanalelemente (6) fluidisch miteinander verbunden sind.

Description

  • Die vorliegende Erfindung betrifft einen Wärmetauscher, insbesondere für ein Kraftfahrzeug.
  • Als Wärmetauscher oder Wärmeübertrager wird gemeinhin eine Vorrichtung bezeichnet, die Wärme von einem Stoffstrom auf einen anderen Stoffstrom überträgt. Wärmetauscher kommen beispielsweise in Kraftfahrzeugen zum Einsatz, um in einer mit der Brennkraftmaschine des Kraftfahrzeugs zusammenwirkenden Frischluftanlage die mittels eines Abgasturboladers aufgeladene Frischluft zu kühlen. Hierzu wird die zu kühlende Frischluft in den Wärmetauscher eingeleitet, wo sie thermisch mit einem ebenfalls in den Wärmetauscher eingeleiteten Kühlmittel wechselwirkt und auf diese Weise Wärme an das Kühlmittel abgibt.
  • Ein derartiger Wärmetauscher kann beispielsweise als Plattenwärmetauscher ausgestaltet sein und mehrere Platten-Anordnungen mit jeweils einem Plattenpaar aufweisen, die in einer Stapelrichtung aufeinander gestapelt sind, wobei zwischen den Platten eines Plattenpaars ein Frischluft-Pfad ausgebildet wird, durch den die zu kühlende Frischluft geführt wird. Zwischen zwei Platten-Anordnungen, also in einem zwischen zwei benachbarten Plattenpaaren ausgebildeten Zwischenraum, kann fluidisch getrennt von der zu kühlenden Frischluft das bereits genannte Kühlmittel geführt werden, welches durch die Platten der Platten-Anordnung in thermische Wechselwirkung mit der zu kühlenden Frischluft gesetzt werden kann. Zur Verbesserung des Wärmeaustauschs können zwischen benachbarten Platten-Anordnungen Rippenstrukturen vorgesehen werden, welche die für die thermische Wechselwirkung zur Verfügung stehende Wechselwirkungsfläche der Platten erhöhen. Derartige Konstruktionen sind dem einschlägigen Fachmann unter dem Begriff "Rippe-Rohr-Wärmetauscher" bekannt.
  • Es ist eine Aufgabe der vorliegenden Erfindung, bei der Entwicklung von Wärmetauschern, insbesondere für Kraftfahrzeuge, neue Wege aufzuzeigen.
  • Diese Aufgabe wird durch einen Wärmetauscher gemäß dem unabhängigen Patentanspruch 1 gelöst. Bevorzugte Ausführungsformen sind Gegenstand der abhängigen Patentansprüche.
  • Ein erfindungsgemäßer Wärmetauscher umfasst eine Mehrzahl von Kanaleinrichtungen zur Durchströmung mit einem ersten Fluid, welche entlang einer Stapelrichtung benachbart zueinander angeordnet sind. Dabei weist jede Kanaleinrichtung ein Plattenpaar mit einer ersten und einer zweiten Platte auf, die in der Stapelrichtung einen ersten Fluidkanal zum Durchströmen mit dem ersten Fluid begrenzen. Der Begriff "Platte" soll vorliegend in einem umfassenden Wortsinn verwendet werden und umfasst insbesondere jedwede Art im Wesentlichen flächig ausgebildeter Bauteile. Auch Platten mit auf dieser, insbesondere abschnittsweise, ausgebildeten dreidimensionalen Strukturen sowie topfartig ausgebildete Platten sind von dem hier verwendeten Begriff "Platte" ausdrücklich umfasst.
  • Zwei in der Stapelrichtung benachbarte Kanaleinrichtungen sind im Abstand zueinander angeordnet, so dass durch den zwischen den beiden Kanaleinrichtungen gebildeten Zwischenraum ein zweiter Fluidkanal zum Durchströmen mit einem zweiten Fluid ausgebildet wird, welcher fluidisch vom ersten Fluidkanal getrennt ist. Im ersten Fluidkanal wenigstens einer Kanaleinrichtung, vorzugsweise aller Kanaleinrichtungen, ist eine Mehrzahl von Kanalelementen vorgesehen, welche jeweils sowohl mit der ersten als auch mit der zweiten Platte verbunden sind. Der erfindungsgemäße Wärmetauscher ist dabei derart ausgebildet, dass die beiden in bzw. entgegengesetzt der Stapelrichtung benachbarten Zwischenräume der Kanaleinrichtung, die jeweils einen zweiten Fluidkanal ausbilden, durch die Kanalelemente fluidisch miteinander kommunizieren. Eine solche, erfindungsgemäße Anordnung der einzelnen Kanalelemente führt dazu, dass die Kanalgehäuse der Kanalelemente auf vorteilhafte Weise nahezu vollständig vom ersten Fluid, vorzugsweise der zu kühlenden Luft, umströmt werden können. Dies führt zu einer gegenüber herkömmlichen Wärmetauschern verbesserten thermischen Wechselwirkung des ersten Fluids mit dem durch die einzelnen Kanalelemente strömenden zweiten Fluid, also vorzugsweise einem Kühlmittel. Im Ergebnis führt dies zu einem Wärmetauscher mit verbesserter Effizienz.
  • Bei einer bevorzugten Ausführungsform ist das Kanalelement als Rohrkörper ausgebildet, der eine einen Kanalinnenraum teilweise begrenzenden Umfangswand umfasst. Bei dieser Ausgestaltung wird der Kanalinnenraum stirnseitig durch eine erste Durchgangsöffnung und durch eine dieser ersten Durchgangsöffnung gegenüberliegende, zweite Durchgangsöffnung begrenzt.
  • In einer vorteilhaften Weiterbildung weist die Umfangswand eine Wanddicke von höchstens 2mm, bevorzugt von höchstens 1,5mm, besonders bevorzugt von höchstens 1 mm auf. Auf diese Weise kann das Eigengewicht des Wärmetauschers auch bei einer großen Anzahl von verbauten Kanalelementen gering gehalten werden.
  • In einer anderen bevorzugten Ausführungsform können die Kanalelemente integral an der ersten und zweiten Platte des ihnen zugeordneten Plattenpaars ausgeformt sein. Diese Maßnahme bietet sich an, wenn der Wärmetauscher mittels eines additiven Herstellungsverfahrens hergestellt werden soll.
  • Eine besonders gleichmäßige Heiz- bzw. Kühlleistung lässt sich im Wärmetauscher in einer weiteren bevorzugten Ausführungsform erzielen, bei welcher für jedes Kanalelement in der ersten Platte der zugehörigen Kanaleinrichtung ein erster Plattendurchbruch und in der zweiten Platte derselben Kanaleinrichtung ein zweiter Plattendurchbruch vorgesehen ist. Dabei ist das jeweilige Kanalelement derart in dem von den beiden Platten begrenzten ersten Fluidkanal angeordnet, dass der erste Plattendurchbruch der ersten Platte über den Kanalinnenraum des Kanalelements fluidisch mit dem zweiten Plattendurchbruch kommuniziert.
  • In einer vorteilhaften Ausführungsform können wenigstens die Kanalelemente und die Plattenpaare der Kanaleinrichtungen des Wärmetauschers mittels eines additiven Herstellungsverfahrens hergestellt sein. Besonders bevorzugt ist der gesamte Wärmetauscher mittels eines solchen additiven Herstellungsverfahrens hergestellt. Vom dem Begriff "additives Herstellungsverfahren" sind vorliegend alle Herstellungsverfahren umfasst, welche das Bauteil unmittelbar aus einem Computer-modell heraus schichtweise aufbauen. Derartige Herstellungsverfahren sind auch unter dem Begriff "Rapid Forming" bekannt. Unter dem Begriff "Rapid Forming" sind dabei insbesondere Produktionsverfahren zur schnellen und flexiblen Herstellung von Bauteilen mittels werkzeugloser Fertigung direkt aus CAD-Daten gefasst. Die Verwendung eines additiven Herstellungsverfahrens ermöglicht die Herstellung des erfindungsgemäßen Wärmetauschers ohne bauteilspezifische Investitionsmittel wie z.B. Werkzeugformen o.ä. und nahezu ohne geometrische Einschränkungen. Mittels des additiven Herstellungsverfahrens ist es möglich, die Gestaltung des Wärmetauschers funktionsgebunden zu konstruieren. Damit können die einzelnen Bauteile des Wärmetauschers die Plattenpaare der Kanaleinrichtungen, sowie die einzelnen Kanalelemente sowie deren Schnittstellen zu den Plattenpaaren stark vereinfacht werden. Insbesondere entfallen bei herkömmlichen, unter Verwendung anderer Verfahren hergestellten Wärmetauschern zumeist in vielfältiger Form und großer Anzahl vorhandene Kleinteile wie etwa Dichtungselemente oder jeweils separat ausgebildete Befestigungselemente wie beispielsweise Streben o.ä.
  • Alternativ oder zusätzlich kann der Wärmetauscher einstückig ausgebildet sein. Eine solche, einstückige Ausbildung bildet sich insbesondere bei Verwendung des vorangehend vorgestellten additiven Herstellungsverfahrens, insbesondere des Laserschmelzens, an. Bei einer einstückigen Ausbildung des Wärmetauschers entfällt das sehr aufwändige und somit kostenintensive Befestigen der einzelnen Komponenten des Wärmetauschers aneinander.
  • In einer besonders bevorzugten Ausführungsform kann das additive Herstellungsverfahren das Laserschmelzen umfassen. Dies bedeutet, dass zum Herstellen von Kanalelementen und Plattenpaaren, vorzugsweise zum Herstellen des gesamten Wärmetauschers, ein Laserschmelzverfahren verwendet wird. Mittels eines solchen Verfahrens können die Komponenten des Wärmetauschers direkt aus 3D-CAD-Daten hergestellt werden. Grundsätzlich werden die Bauteile des Wärmetauschers beim Lasersintern werkzeuglos und schichtweise auf Basis des dem Wärmetauscher zugeordneten dreidimensionalen CAD-Modells gefertigt.
  • Bevorzugt sind nicht nur die Kanalelemente und die Plattenpaare der Kanaleinrichtungen, sondern der gesamte Wärmetauscher mittels besagten additiven Herstellungsverfahren hergestellt.
  • Vorzugsweise kann Wärmetauscher auch einstückig ausgebildet sein. Eine solche, einstückige Ausbildung bildet sich insbesondere bei Verwendung des vorangehend vorgestellten additiven Herstellungsverfahrens, insbesondere des Laserschmelzens, an. Bei einer einstückigen Ausbildung des Wärmetauschers entfällt das sehr aufwändige und somit kostenintensive Befestigen der einzelnen Komponenten des Wärmetauschers aneinander.
  • In einer vorteilhaften Weiterbildung können die Kanalelemente jeweils als sich entlang einer axialen Richtung erstreckende Hohlzylinder ausgebildet sein. Auf diese Weise kann bei geeigneter Anordnung der Hohlzylinder eine besonders stabile Abstützung an den benachbarten Kanalvorrichtungen erzielt werden. Ein solcher Hohlzylinder weist einen quer zur axialen Achse gemessenen Durchmesser auf, der höchstens 1 mm, bevorzugt höchstens 0,5mm, besonders bevorzugt höchstens 0,3mm, beträgt.
  • In einer anderen bevorzugten Ausführungsform besitzt die Umfangswand des Kanalelements in einem Querschnitt senkrecht zur axialen Richtung eine runde, vorzugsweise eine elliptische, höchst vorzugsweise eine kreisrunde, Geometrie. Ein Wärmetauscher mit einer derartigen Geometrie ist insbesondere bei Anwendung eines additiven Herstellungsverfahrens auf besonders einfache Weise herzustellen.
  • Besonders vorteilhafte Strömungseigenschaften und damit verbunden eine besonders hohe Effizienz des Wärmetauschers ergeben sich bei einer konstruktiven Ausgestaltung des Wärmetauschers derart, dass der erste Plattendurchbruch der ersten Platte in einer axialen Richtung mit den beiden Durchgangsöffnungen des Kanalelements und mit dem entsprechenden zweiten Plattendurchbruch der zweiten Platte fluchtet. Besagte axiale Richtung kann dabei durch eine Richtung definiert sein, die wiederum orthogonal zu einer durch die erste Platte definierten Plattenebene verläuft.
  • Besonders zweckmäßig kann in der ersten Platte eine Mehrzahl von ersten Plattendurchbrüchen vorgesehen sein, die bezüglich einer Draufsicht auf die erste Platte rasterartig mit einer Mehrzahl von ersten Rasterzeilen, in jedem Fall jedoch mit wenigstens zwei Rasterzeilen, auf dieser angeordnet sind. Alternativ oder zusätzlich kann auch in der zweiten Platte eine solche Mehrzahl von zweiten Plattendurchbrüchen vorgesehen sein, die bezüglich einer Draufsicht auf die zweite Platte rasterartig mit einer Mehrzahl von zweiten Rasterzeilen, in jedem Fall jedoch mit wenigstens zwei Rasterzeilen, auf dieser angeordnet sind. Beide Maßnahmen, für sich genommen oder in Kombination, führen zu einer erhöhten mechanischen Stabilität des Wärmetauschers.
  • Die mechanische Stabilität des Wärmetauschers kann in einer weiteren bevorzugten Ausführungsform nochmals erhöht werden, indem eine konstruktive Ausgestaltungsform gewählt wird, bei welcher die ersten Plattendurchbrüche zweier benachbarter Rasterzeilen versetzt zueinander angeordnet sind.
  • Eine stabile Befestigung der einzelnen Kanaleinrichtungen aneinander in Stapelrichtung wird erreicht, indem zwischen zwei in Stapelrichtung benachbarten Kanaleinrichtungen eine Haltevorrichtung vorgesehen wird, welche eine erste Platte einer Kanaleinrichtung mit einer zweiten Platte der in Stapelrichtung benachbarten Kanaleinrichtung verbindet.
  • Besonders zweckmäßig kann die jeweilige Haltevorrichtung eine Mehrzahl von, insbesondere strebenartig ausgebildeten, Haltelementen umfassen, die sich an der ersten und der zweiten Platte abstützen.
  • In einer weiteren bevorzugten Ausführungsform beträgt eine Wanddicke der Umfangswand der Kanalelemente höchstens 0,5mm, vorzugsweise höchstens 0,2mm. Mittels dieser Maßnahme kann das Eigengewicht des Wärmetauschers auch bei einer sehr großen Anzahl von Kanalelementen relativ gering gehalten werden.
  • Besonders zweckmäßig können die beiden in Stapelrichtung benachbarten Platten, die den Zwischenraum zwischen zwei benachbarten Kanaleinrichtungen begrenzen, Teil eines Flachrohrs sein, das auf diese Weise den zweiten Fluidkanal begrenzt. Dies erleichtert die Realisierung des Wärmetauschers in Flachbauweise.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen.
  • Es zeigen, jeweils schematisch
  • Fig. 1
    ein Beispiel eines erfindungsgemäßen Wärmetauschers in einer perspektiven Ansicht,
    Fig. 2
    den Wärmetauscher der Figur 1 in einer Schnittdarstellung entlang der Schnittebene II-II der Figur 1.
  • Figur 1 zeigt ein Beispiel eines erfindungsgemäßen Wärmetauschers in einer perspektivischen Darstellung. Die Figur 2 zeigt den Wärmtauscher der Figur 1 in einer Schnittdarstellung entlang der Schnittebene II-II der Figur 1. Der Wärmetauscher 1 umfasst eine Mehrzahl von Kanaleinrichtungen 2 zur Durchströmung mit einem ersten Fluid F1, welche entlang einer Stapelrichtung S stapelartig aufeinander angeordnet sind. Im Beispiel der Figur 1 sind exemplarisch drei in Stapelrichtung S aufeinandergestapelte Kanaleinrichtungen 2 dargestellt; in Varianten des Beispiels kann diese Anzahl aber variieren.
  • Wie Figur 1 erkennen lässt, weist jede Kanaleinrichtung 2 ein Plattenpaar 3 mit einer ersten und einer zweiten Platte 3a, 3b auf, die in der Stapelrichtung S einen ersten Fluidkanal 4a zum Durchströmen mit dem ersten Fluid F1 begrenzen. Jeweils zwei in Stapelrichtung S benachbarte Kanaleinrichtungen 2 sind im Abstand übereinander, so dass durch den zwischen den benachbarten Kanaleinrichtungen 2 entstehenden Zwischenraum 5 ein fluidisch vom ersten Fluidkanal 4a getrennten zweiten Fluidkanal 4b zum Durchströmen mit einem zweiten Fluid F2 ausgebildet wird.
  • In dem zwischen den Plattenpaaren 3a, 3b einer Kanaleinrichtung 2 ausgebildeten ersten Fluidkanal 4a ist entsprechend den Figuren 1 und 2 jeweils eine Mehrzahl von Kanalelementen 6 angeordnet. Die Kanalelemente 6 erstrecken sich im Beispielszenario in Stapelrichtung A und sind sowohl mit der ersten Platte 3a als auch mit der zweiten Kanalplatte 3b des den ersten Fluidkanal 4a in Stapelrichtung S begrenzenden Plattenpaars 3 verbunden. Mittels der Kanalelemente 6 werden die beiden dem Plattenpaar 3 der Kanaleinrichtung 2 in bzw. entgegen der Stapelrichtung S benachbarten Zwischenräume 5 fluidisch miteinander verbunden. Die Kanalelemente 6 können dabei integral an der ersten und zweiten Platte 3a, 3b des ihnen zugeordneten Plattenpaars 3 ausgeformt sein.
  • Ein durch einen bestimmten, einen zweiten Fluidkanal 4b ausbildenden Zwischenraum 5 strömendes Fluid F2 kann also durch die Kanalelemente 6 in einen in oder entgegen der Stapelrichtung S benachbarten, ebenfalls einen zweiten Fluidkanal 4b ausbildenden Zwischenraum 5 gelangen. Beim zweiten Fluid F2 kann es sich um ein Kühlmittel handeln, mittels welchem das erste Fluid F1 - beispielsweise mittels eines Abgasturboladers aufgeladene Frischluft - vor dem Einbringen in eine Brennkraftmaschine abgekühlt werden soll. Die thermische Wechselwirkung zwischen den beiden Fluiden F1, F2 erfolgt in dem hier vorgestellten Wärmetauscher 1 durch die ersten und zweiten Platten 3a, 3b der Plattenpaare 3 hindurch, die jeweils einen ersten Fluidkanal 4a fluidisch von einem zweiten Fluidkanal 4b trennen, sowie über die Kanalelemente 6, welche ebenfalls für eine fluidische Trennung des ersten Fluidkanal 4a vom zweiten Fluidkanal 4b sorgen. Hierzu können die Kanalelemente 6 wie in den Figuren 1 und 2 dargestellt als Rohrkörper 7 ausgebildet sein. Jeder Rohrkörper 7 weist im Beispielszenario eine Umfangswand 8 auf, welche einen Kanalinnenraum 9 teilweise begrenzt. Stirnseitig wird der Kanalinnenraum 9 durch eine erste Durchgangsöffnung 10a und durch eine dieser ersten Durchgangsöffnung 10a gegenüberliegende, zweite Durchgangsöffnung 10b begrenzt. Die Umfangswand 8 des Kanalelements 6 besitzt dabei im Beispielszenario eine Wanddicke von höchstens 2mm, bevorzugt von höchstens 1,5mm, besonders bevorzugt von höchstens 1 mm. Auf diese Weise kann das Eigengewicht des Wärmetauschers 1 gering gehalten werden.
  • Um die in Stapelrichtung S benachbarten Zwischenräume 5 mittels der rohrförmig ausgebildeten Kanalelemente 6 fluidisch miteinander zu verbinden, ist in der betreffenden ersten Platte 3a für jedes Kanalelement 6 ein erster Plattendurchbruch 11a und in der betreffenden zweiten Platte 3b ein zweiter Plattendurchbruch 11 b vorgesehen. Das betreffende Kanalelement 6 ist dabei derart in dem von den beiden Platten 3a, 3b begrenzten ersten Fluidkanal 4a angeordnet, dass der erste Plattendurchbruch 11a der ersten Platte 3a über den Kanalinnenraum 9 des Kanalelements 6 fluidisch mit dem zweiten Plattendurchbruch 11 b kommuniziert. Das zweite Fluid kann also aus dem Zwischenraum 5 durch den ersten Plattendurchbruch 11a der ersten Platte 3a und die erste Durchgangsöffnung 10 das Kanalelements 6 durch den Kanalinnenraum 9 hindurchströmen. Anschließend tritt es durch die zweite Durchgangsöffnung 10b und den zweiten Plattendurchbruch 11 b der zweiten Platte 3b desselben Plattenpaars 3 in den in Stapelrichtung S benachbarten Zwischenraum 5 ein. Als Wechselwirkungsflächen zwischen den beiden Fluiden stehen also alle Umfangswände 8 der Kanalelemente sowie die ersten und zweiten Platten 3a, 3b der Kanaleinrichtungen 2 zur Verfügung.
  • Grundsätzlich können die Kanalelemente 6 jeweils als sich entlang einer axialen Richtung A erstreckende Hohlzylinder ausgebildet sein. Im Beispielszenario sind die axiale Richtung A und die Stapelrichtung S identisch. Gleichzeitig verläuft die axiale Richtung A orthogonal zu einer durch die ersten Platte 3a der Plattenpaare 3 definierte Plattenebene E. Die als Hohlzylinder ausgebildeten Kanalelemente 6 weisen einen quer zur axialen Achse A gemessenen Durchmesser auf, der höchstens 1 mm, bevorzugt höchstens 0,5mm, besonders bevorzugt höchstens 0,3mm, beträgt. Dies erlaubt es, eine Vielzahl von Kanalelementen 6 vorzusehen und auf diese Weise die effektive Wärme-Wechselwirkungsfläche zwischen den beiden Fluiden gegenüber herkömmlichen Wärmetauschern extrem zu erhöhen.
  • Im Beispielszenario besitzen die Umfangswände 8 der Kanalelemente 6 in einem Querschnitt senkrecht zur axialen Richtung A eine runde, vorzugsweise eine in Figur 1 dargestellte elliptische Geometrie. Auch eine kreisrunde Geometrie (nicht gezeigt) ist denkbar. In weiteren Varianten des Beispiels können auch andere Geometrien realisiert sein. Eine Wanddicke der Umfangswand 8 der Kanalelemente 6 kann höchstens 0,5mm, vorzugsweise höchstens 0,2mm, betragen.
  • Die in den Figuren dargestellten Kanalelemente 6 und Plattenpaare 3 mit den ersten und zweiten Platten 3a, 3b der Plattenpaare 3 des Wärmetauschers 1 sind mittels eines additiven Herstellungsverfahrens hergestellt. Bevorzugt können alle wesentlichen Komponenten des Wärmetauschers 1, im Extremfall der vollständige Wärmetauscher, mittels eines solchen additiven Herstellungsverfahrens hergestellt werden. Die Verwendung eines additiven Herstellungsverfahrens gestattet die Herstellung des Wärmetauschers 1 ohne bauteilspezifische Investitionsmittel, wie z.B. Werkzeugformen o.ä. und nahezu ohne geometrische Einschränkungen. Mittels des additiven Herstellungsverfahrens ist es möglich, die Gestaltung des Wärmetauschers 1 funktionsgebunden - und nicht mehr werkzeuggebunden - zu konstruieren. Damit können die einzelnen Komponenten des Wärmetauschers 1 wie beispielsweise die Plattenpaare 3 sowie die die Plattenpaare 3 verbindenden Kanalelemente 6 direkt im Zuge des Herstellungsverfahrens integral aneinander ausgeformt werden. Die Bereitstellung von Kleinteilen wie beispielsweise Dichtungselementen zum Abdichten der Kanalelemente 6 kann somit weitgehend oder sogar vollständig entfallen.
  • Das hier vorgestellte additive Herstellungsverfahren kann auch das sogenannte Lasersintern umfassen. Dies bedeutet, dass wenigstens zum Herstellen der Plattenpaare 3 und der Kanalelemente 6, im Extremfall zum Herstellen des gesamten Wärmetauschers 1 ein Lasersinterverfahren verwendet wird, welches dem einschlägigen Fachmann auch unter dem Begriff "Laserschmelzen" bekannt ist. Mittels eines solchen Verfahrens können die Komponenten des Wärmetauschers direkt aus 3D-CAD-Daten hergestellt werden. Grundsätzlich werden die genannten Komponenten des Wärmetauschers 1 beim Laserschmelzverfahren werkzeuglos und schichtweise auf Basis eines dem Wärmetauscher 1 zugeordneten dreidimensionalen CAD-Modells gefertigt.
  • Wie die Darstellung der Figur 2 erkennen lässt, fluchten die in den ersten Platten 3a ausgebildeten ersten Plattendurchbrüche 11 a in der axialen Richtung A bzw. der Stapelrichtung S sowohl mit den beiden Durchgangsöffnungen 10a, 10b des dem ersten Plattendurchbruch 11a zugeordneten Kanalelements 6 als auch mit den zugeordneten, in der zweiten Platte 3b vorgesehenen zweiten Plattendurchbrüchen 11b.
  • Betrachtet man die Darstellung der Figur 1, so erkennt man weiterhin, dass die in der ersten Platte 3a vorgesehenen ersten Plattendurchbrüche 11a bezüglich einer Draufsicht auf die erste Platte 3a in axialer Richtung A bzw. Stapelrichtung S rasterartig - mit einer Mehrzahl von ersten Rasterzeilen 12 - auf dieser angeordnet sind. Entsprechend sind auch die der zweiten Platte 3b ausgebildeten zweiten Plattendurchbrüche 11 b bezüglich einer Draufsicht auf die zweite Platte 3b in axialer Richtung A bzw. in Stapelrichtung S rasterartig mit einer Mehrzahl von zweiten Rasterzeilen 12b auf dieser angeordnet. Die damit verbundene rasterartige Anordnung der Kanalelemente 6 führt zu einer verbesserten mechanischen Steifigkeit des Wärmetauschers 1. Dies gilt in besonderem Maße für die in Figur 1 gezeigte Variante, bei welcher die ersten Plattendurchbrüche 11a zweier benachbarter erster Rasterzeilen 12a und in analoger Weise die zweiten Plattendurchbrüche 11 b zweier benachbarter zweiter Rasterzeilen 12b versetzt zueinander angeordnet sind.
  • Die Befestigung der einzelnen Kanaleinrichtung 2 in Stapelrichtung S aneinander kann mittels einer in Figur 1 nur schematisch angedeuteten Haltevorrichtung 13 erfolgen. Jede Haltevorrichtung 13 umfasst eine Mehrzahl von strebenartig ausgebildeten Halteelementen 14, die zwischen den ersten und zweiten Platten 3a, 3b zweier benachbarter Kanaleinrichtungen 2 im jeweiligen Zwischenraum 5 angeordnet sind. Die strebenartig ausgebildeten Halteelemente 14 stützen sich einenends an der den Zwischenraum 5 in Stapelrichtung S begrenzenden zweiten Platte 3b und anderenends an der den Zwischenraum 5 entgegen der Stapelrichtung S begrenzenden ersten Platte 3a ab.
  • Alternativ dazu können die beiden in Stapelrichtung S benachbarten Platten 3b, 3a, die den Zwischenraum 5 zwischen zwei benachbarten Kanaleinrichtungen 2 begrenzen, Teil eines Flachrohrs (nicht gezeigt) sein, welches auf diese Weise den zweiten Fluidkanal 4b begrenzt. Dies erleichtert die Herstellung des Wärmetauschers 1 in Flachbauweise, insbesondere mittels des bereits erwähnten additiven Herstellungsverfahrens.
  • Es versteht sich, dass in den vorangehend erläuterten Figuren nur die wesentlichen Komponenten des erfindungsgemäßen Wärmetauschers 1 in schematischer Darstellung dargestellt sind. Konstruktive Details, die dem einschlägigen Fachmann aus seinem Fachwissen heraus bekannt sind, wie etwa ein Sammler zum Sammeln des zweiten Fluids F2 nach dem Durchströmen durch die verschiedenen Kanalelemente 6 sowie Befestigungselemente oder Abstützelemente zum Befestigen bzw. Abstützen der einzelnen Kanalelemente 6 am Gehäuse' usw. sind in den Figuren der Übersichtlichkeit halber nicht dargestellt.
  • Der Wärmetauscher 1 kann auch einstückig ausgebildet sein. Eine solche, einstückige Ausbildung bildet sich insbesondere bei Verwendung des vorangehend vorgestellten additiven Herstellungsverfahrens, insbesondere des Laserschmelzens, an. Bei einer einstückigen Ausbildung des Wärmetauschers entfällt das sehr aufwändige und somit kostenintensive Befestigen der einzelnen Komponenten des Wärmetauschers aneinander. Es versteht sich, dass im Falle einer einstückigen Ausbildung des Wärmetauschers 1 die vorliegend verwendeten Bezeichnungen wie z.B. "erste Platte 3a" gültig bleiben.

Claims (16)

  1. Wärmetauscher (1),
    - mit einer Mehrzahl von Kanaleinrichtungen (2) zur Durchströmung mit einem ersten Fluid (F1), welche entlang einer Stapelrichtung (S) stapelartig übereinander angeordnet sind,
    - wobei jede Kanaleinrichtung (2) ein Plattenpaar (3) mit einer ersten und einer zweiten Platte (3a, 3b) aufweist, die in der Stapelrichtung (S) einen ersten Fluidkanal (4a) zum Durchströmen mit dem ersten Fluid (F1) begrenzen,
    - wobei zwei in Stapelrichtung (S) benachbarte Kanaleinrichtungen (2) im Abstand zueinander angeordnet sind, so dass durch einen zwischen den beiden benachbarten Kanaleinrichtungen (2) gebildeten Zwischenraum (5) ein fluidisch vom ersten Fluidkanal (4a) getrennter zweiter Fluidkanal (4b) zum Durchströmen mit einem zweiten Fluid (F2) gebildet ist,
    - wobei im ersten Fluidkanal (4a) wenigstens einer Kanaleinrichtung (2), vorzugsweise aller Kanaleinrichtungen (2), eine Mehrzahl von Kanalelementen (6) vorgesehen ist, welche sowohl mit der ersten als auch mit der zweiten Platte (3a, 3b) verbunden sind, so dass die beiden entlang der Stapelrichtung (S) benachbarten Zwischenräume (5) der Kanaleinrichtung (2) mittels der Kanalelemente (6) fluidisch miteinander kommunizieren.
  2. Wärmetauscher nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Kanalelement (6) als Rohrkörper (7) ausgebildet ist, der eine einen Kanalinnenraum (9) teilweise begrenzenden Umfangswand (8) umfasst, wobei der Kanalinnenraum (9) stirnseitig durch eine erste Durchgangsöffnung (10a) und eine dieser gegenüberliegende zweite Durchgangsöffnung (10b) begrenzt ist.
  3. Wärmetauscher nach Anspruch 2,
    dadurch gekennzeichnet, dass
    die Umfangswand (8) eine Wanddicke von höchstens 2mm, bevorzugt von höchstens 1,5mm, besonders bevorzugt von höchstens 1 mm, aufweist.
  4. Wärmetauscher nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass
    - für jedes Kanalelement (6) in der ersten Platte (3a) ein erster Plattendurchbruch (11a) und in der zweiten Platte (3b) ein zweiter Plattendurchbruch (11 b) vorgesehen ist,
    - die Kanalelemente (6) derart in dem von den beiden Platten (3a, 3b) begrenzten ersten Fluidkanal (4a) angeordnet sind, dass der erste Plattendurchbruch (11a) der ersten Platte (3a) über den Kanalinnenraum (9) des Kanalelements (6) fluidisch mit dem zweiten Plattendurchbruch (11 b) kommuniziert.
  5. Wärmetauscher nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - wenigstens die Kanalelemente (6) und die Plattenpaare (3) des Wärmetauschers (1) mittels eines additiven Herstellungsverfahrens hergestellt sind, und/oder dass
    - der Wärmetauscher (1) einstückig ausgebildet ist.
  6. Wärmetauscher nach Anspruch 5,
    dadurch gekennzeichnet, dass
    das additive Herstellungsverfahren ein Laserschmelzverfahren umfasst.
  7. Wärmetauscher nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - das Kanalelement (6) als sich entlang einer axialen Richtung (A) erstreckender Hohlzylinder ausgebildet ist,
    - der Hohlzylinder einen quer zur axialen Achse (A) gemessenen Durchmesser aufweist, der höchstens 1 mm, bevorzugt höchstens 0,5mm, besonders bevorzugt höchstens 0,3mm, beträgt.
  8. Wärmetauscher nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Kanalelemente (6) integral an der ersten und zweiten Platte (3a, 3b) des ihnen zugeordneten Plattenpaars (3) ausgeformt sind.
  9. Wärmetauscher nach einem der Ansprüche 2 bis 8,
    dadurch gekennzeichnet, dass
    das die Umfangswand (8) des Kanalelements (6) in einem Querschnitt senkrecht zur axialen Richtung (A) eine runde, vorzugsweise eine elliptische, höchst vorzugsweise eine kreisrunde Geometrie aufweist.
  10. Wärmetauscher nach einem der Ansprüche 3 bis 9,
    dadurch gekennzeichnet, dass
    der erste Plattendurchbruch der ersten Platte in der axialen Richtung mit den beiden Durchgangsöffnungen des Kanalelements und mit dem zugeordneten zweiten Plattendurchbruch der zweiten Platte fluchtet.
  11. Wärmetauscher nach einem der Ansprüche 3 bis 9,
    dadurch gekennzeichnet, dass
    - in der ersten Platte (3a) eine Mehrzahl von ersten Plattendurchbrüchen (11a) vorgesehen ist, die bezüglich einer Draufsicht auf die erste Platte (3a) rasterartig mit einer Mehrzahl von ersten Rasterzeilen (12a) auf dieser angeordnet sind, und/oder dass
    - in der zweiten Platte (3b) eine Mehrzahl von zweiten Plattendurchbrüchen (11 b) vorgesehen ist, die bezüglich einer Draufsicht auf die zweite Platte (3b) rasterartig mit einer Mehrzahl von zweiten Rasterzeilen (12b) auf dieser angeordnet sind.
  12. Wärmetauscher nach Anspruch 11,
    dadurch gekennzeichnet, dass
    - die ersten Plattendurchbrüche zweier benachbarter erster Rasterzeilen versetzt zueinander angeordnet sind,
    - die zweiten Plattendurchbrüche zweier benachbarter zweiter Rasterzeilen versetzt zueinander angeordnet sind.
  13. Wärmetauscher nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    zwischen zwei in Stapelrichtung (S) benachbarten Kanaleinrichtungen (2) eine Haltevorrichtung (13) vorgesehen ist, welche eine erste Platte (3a) einer bestimmten Kanaleinrichtung mit einer zweiten Platte (3b) der in Stapelrichtung (S) benachbarten Kanaleinrichtung (2) verbindet.
  14. Wärmetauscher nach Anspruch 13,
    dadurch gekennzeichnet, dass
    die Haltevorrichtung (13) eine Mehrzahl von strebenartig ausgebildeten, Haltelementen (14), umfasst, die sich an der ersten und der zweiten Platte (3a, 3b) abstützen.
  15. Wärmetauscher nach einem der Ansprüche 2 bis 14,
    dadurch gekennzeichnet, dass
    eine Wanddicke der Umfangswand (8) der Kanalelemente höchstens 0,5mm, vorzugsweise höchstens 0,2mm beträgt.
  16. Wärmetauscher nach einem der Ansprüche 2 bis 14,
    dadurch gekennzeichnet, dass
    die einen Zwischenraum (5) zwischen zwei in der Stapelrichtung (S) benachbarten Kanaleinrichtungen (6) begrenzende beiden Platten (3a, 3b) Teil eines den zweiten Fluidkanal (5b) begrenzenden Flachrohrs sind.
EP16153351.8A 2015-02-26 2016-01-29 Wärmetauscher, insbesondere für ein kraftfahrzeug Active EP3062055B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015203471.2A DE102015203471A1 (de) 2015-02-26 2015-02-26 Wärmetauscher, insbesondere für ein Kraftfahrzeug

Publications (2)

Publication Number Publication Date
EP3062055A1 true EP3062055A1 (de) 2016-08-31
EP3062055B1 EP3062055B1 (de) 2019-05-08

Family

ID=55272324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16153351.8A Active EP3062055B1 (de) 2015-02-26 2016-01-29 Wärmetauscher, insbesondere für ein kraftfahrzeug

Country Status (2)

Country Link
EP (1) EP3062055B1 (de)
DE (1) DE102015203471A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312538A1 (de) * 2016-10-20 2018-04-25 Hamilton Sundstrand Corporation Rippenrohrwärmetauscher
WO2019011476A1 (de) * 2017-07-10 2019-01-17 Linde Aktiengesellschaft Fluidleitungsvorrichtung und verfahren zum mischen von fluiden
WO2019073277A1 (en) * 2017-10-13 2019-04-18 Volvo Truck Corporation HEAT EXCHANGER AND ADDITIVE HEAT EXCHANGER MANUFACTURING METHOD
CN115235263A (zh) * 2022-09-21 2022-10-25 杭州沈氏节能科技股份有限公司 一种换热通道结构和换热器
WO2023246028A1 (zh) * 2022-06-23 2023-12-28 西安热工研究院有限公司 一种仿生叶脉流道结构换热板及具有其的换热器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202019102083U1 (de) 2019-04-11 2019-04-18 Mahle International Gmbh Kühlfluiddurchströmte Wellrippenanordnung und Kraftfahrzeugbauteil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1134239A (en) * 1966-07-14 1968-11-20 Apv Co Ltd Improvements in or relating to heat exchangers
GB1156524A (en) * 1966-07-14 1969-06-25 Apv Co Ltd Improvements in or relating to Heat Exchangers
US5025856A (en) * 1989-02-27 1991-06-25 Sundstrand Corporation Crossflow jet impingement heat exchanger
US5628363A (en) * 1995-04-13 1997-05-13 Alliedsignal Inc. Composite continuous sheet fin heat exchanger
EP2636982A2 (de) * 2012-03-06 2013-09-11 Honeywell International, Inc. Rohrförmige Wärmetauschersystem
TWM469450U (zh) * 2013-01-21 2014-01-01 Huang-Han Chen 冷凝排
EP2746561A1 (de) * 2012-12-24 2014-06-25 BorgWarner Inc. Leitung für einen Wärmetauscher eines Abgasrückführungssystems eines Verbrennungsmotors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795166B1 (fr) * 1999-06-21 2001-09-07 Valeo Thermique Moteur Sa Echangeur de chaleur a plaques, en particulier pour le refroidissement d'une huile de vehicule automobile
DE10328638A1 (de) * 2003-06-26 2005-01-20 Modine Manufacturing Co., Racine Wärmetauscher in gehäuseloser Plattenbauweise
GB0427362D0 (en) * 2004-12-14 2005-01-19 Sustainable Engine Systems Ltd Heat exchanger
DE102013215241A1 (de) * 2013-06-27 2014-12-31 Robert Bosch Gmbh Wärmeübertrager

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1134239A (en) * 1966-07-14 1968-11-20 Apv Co Ltd Improvements in or relating to heat exchangers
GB1156524A (en) * 1966-07-14 1969-06-25 Apv Co Ltd Improvements in or relating to Heat Exchangers
US5025856A (en) * 1989-02-27 1991-06-25 Sundstrand Corporation Crossflow jet impingement heat exchanger
US5628363A (en) * 1995-04-13 1997-05-13 Alliedsignal Inc. Composite continuous sheet fin heat exchanger
EP2636982A2 (de) * 2012-03-06 2013-09-11 Honeywell International, Inc. Rohrförmige Wärmetauschersystem
EP2746561A1 (de) * 2012-12-24 2014-06-25 BorgWarner Inc. Leitung für einen Wärmetauscher eines Abgasrückführungssystems eines Verbrennungsmotors
TWM469450U (zh) * 2013-01-21 2014-01-01 Huang-Han Chen 冷凝排

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312538A1 (de) * 2016-10-20 2018-04-25 Hamilton Sundstrand Corporation Rippenrohrwärmetauscher
US20180112932A1 (en) * 2016-10-20 2018-04-26 Hamilton Sundstrand Corporation Tube-fin heat exchanger
WO2019011476A1 (de) * 2017-07-10 2019-01-17 Linde Aktiengesellschaft Fluidleitungsvorrichtung und verfahren zum mischen von fluiden
WO2019073277A1 (en) * 2017-10-13 2019-04-18 Volvo Truck Corporation HEAT EXCHANGER AND ADDITIVE HEAT EXCHANGER MANUFACTURING METHOD
CN111201414A (zh) * 2017-10-13 2020-05-26 沃尔沃卡车集团 热交换器和用于制造热交换器的增材制造方法
CN111201414B (zh) * 2017-10-13 2022-03-22 沃尔沃卡车集团 热交换器和用于制造热交换器的增材制造方法
US11788801B2 (en) 2017-10-13 2023-10-17 Volvo Truck Corporation Heat exchanger and an additive manufacturing method for manufacturing a heat exchanger
WO2023246028A1 (zh) * 2022-06-23 2023-12-28 西安热工研究院有限公司 一种仿生叶脉流道结构换热板及具有其的换热器
CN115235263A (zh) * 2022-09-21 2022-10-25 杭州沈氏节能科技股份有限公司 一种换热通道结构和换热器

Also Published As

Publication number Publication date
EP3062055B1 (de) 2019-05-08
DE102015203471A1 (de) 2016-09-01

Similar Documents

Publication Publication Date Title
EP3062055B1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
EP3062054B1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
EP3265738B1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
DE102009056183A1 (de) Abgasreinigungskomponente mit Umlenkfläche und Verfahren zu deren Herstellung
EP1906130A2 (de) Wärmetauscher zur Abgaskühlung, Verfahren zur Herstellung eines Wärmetauschers
EP2588826A2 (de) Wärmetauscher
WO2015082685A1 (de) Wärmeübertrager und verfahren zum herstellen eines wärmeübertragers
DE102011077838A1 (de) Wärmetauscher und Verfahren zur Herstellung eines Wärmetauschers
WO2016146296A1 (de) Wärmetauscher, insbesondere für eine abwärmenutzungseinrichtung
DE102012205844A1 (de) Wärmetauscher
DE102018122259A1 (de) Zylinderkopf für eine Brennkraftmaschine und Verfahren zur Herstellung eines Zylinderkopfes
EP3062057B1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
DE102015204014A1 (de) Wärmetauscher, insbesondere für ein Kraftfahrzeug
DE102012217869A1 (de) Wärmeübertrager
EP1819458B1 (de) Verfahren zur herstellung eines wärmetauschers
EP2481899A1 (de) Wärmetauscher
WO2016146294A1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
DE102020105454A1 (de) Verfahren zur Herstellung eines Mikrokanalbündel-Wärmetauschers und Verwendung eines Mikrokanalwärmetauschers
EP2161428A1 (de) Ladeluftkühler, insbesondere für Grossmotoren
EP2503275B1 (de) Wärmeübertrager
DE102015012554A1 (de) Gusskörper eines Zylinderkurbelgehäuses und Verfahren zur Herstellung mit Verwendung einer Gießform mit filigranem einstückigen Einsatzkern
DE102014203102A1 (de) Plattenwärmetauscher für ein Elektrokraftfahrzeug
DE102013219517A1 (de) Wärmeübertrager
DE102017218122A1 (de) Wärmeübertrager, insbesondere Batteriekühler, zum Temperieren von Batteriemodulen eines Kraftfahrzeugs
DE102012111928A1 (de) Wärmetauscher für eine Verbrennungskraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170228

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 3/08 20060101AFI20181121BHEP

Ipc: F28D 9/00 20060101ALI20181121BHEP

INTG Intention to grant announced

Effective date: 20181219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1130831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004492

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190508

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004492

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

26N No opposition filed

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200129

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1130831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Free format text: CASE NUMBER:

Effective date: 20240527