EP3054357A1 - Mécanisme oscillateur d'horlogerie - Google Patents

Mécanisme oscillateur d'horlogerie Download PDF

Info

Publication number
EP3054357A1
EP3054357A1 EP15153657.0A EP15153657A EP3054357A1 EP 3054357 A1 EP3054357 A1 EP 3054357A1 EP 15153657 A EP15153657 A EP 15153657A EP 3054357 A1 EP3054357 A1 EP 3054357A1
Authority
EP
European Patent Office
Prior art keywords
resonators
clock oscillator
primary
elementary
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15153657.0A
Other languages
German (de)
English (en)
French (fr)
Inventor
Pascal Winkler
Jean-Luc Helfer
Gianni Di Domenico
Thierry Conus
Jean-Jacques Born
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETA SA Manufacture Horlogere Suisse
Original Assignee
ETA SA Manufacture Horlogere Suisse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ETA SA Manufacture Horlogere Suisse filed Critical ETA SA Manufacture Horlogere Suisse
Priority to EP15153657.0A priority Critical patent/EP3054357A1/fr
Priority to CH00140/15A priority patent/CH710692B1/fr
Priority to EP17192071.3A priority patent/EP3293584B1/fr
Priority to EP16152268.5A priority patent/EP3054358B1/fr
Priority to CN201610150689.5A priority patent/CN105843026B/zh
Priority to US15/013,539 priority patent/US9465363B2/en
Priority to RU2016103417A priority patent/RU2692817C2/ru
Priority to CN201620203744.8U priority patent/CN205539955U/zh
Priority to JP2016017696A priority patent/JP6114845B2/ja
Publication of EP3054357A1 publication Critical patent/EP3054357A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B29/00Frameworks
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/08Oscillators with coil springs stretched and unstretched axially
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/28Compensation of mechanisms for stabilising frequency for the effect of imbalance of the weights, e.g. tourbillon
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B43/00Protecting clockworks by shields or other means against external influences, e.g. magnetic fields
    • G04B43/002Component shock protection arrangements

Definitions

  • the invention relates to a clock oscillator comprising a structure and / or a frame, and a plurality of primary and distinct resonators, temporally and geometrically out of phase, and each comprising at least one inertial mass biased towards said structure or towards said frame by means of elastic return.
  • the invention also relates to a watch movement comprising at least one such watch oscillator.
  • the invention relates to a watch comprising at least one such movement.
  • the invention relates to the field of watch oscillators for watches, in particular for mechanical movements.
  • the exhaust must be robust, shock-resistant, and constructed to prevent entrapment (overturning).
  • the Swiss lever escapement has a low fuel efficiency of around 30%. This low yield is due to the fact that the movements of the exhaust are jerky, and that several parts are transmitted their movement via inclined planes that rub against each other.
  • the present invention aims to provide a high efficiency exhaust system.
  • the invention consists in the development of an architecture for continuous interactions, without saccades, between resonator and escape wheel. To do this, we must concede the use of at least a second resonator out of phase with respect to a first resonator.
  • the invention relates to a clock oscillator comprising a structure and / or a frame, and a plurality of primary and distinct resonators, out of phase temporally and geometrically, and each comprising at least one inertial mass biased towards said structure or towards said frame by an elastic return means, characterized in that said clock oscillator comprises coupling means arranged to allow the interaction of said primary resonators, said coupling means comprising motor means arranged to drive a mobile in motion which comprises means for drive and guide arranged to drive and guide a control means which is articulated with a plurality of transmission means each articulated, remote from said control means, with a said inertial mass of a said primary resonator, and further characterized in that that said primary resonators and said mobile are arranged with so that the axes of the joints of any two of said primary resonators and the axis of articulation of said control means are never coplanar.
  • the invention also relates to a watch movement comprising at least one such watch oscillator.
  • the invention relates to a watch comprising at least one such movement.
  • the invention relates to a mechanical watch 200 provided with balanced resonators, out of phase and maintained continuously.
  • the invention relates to a watch oscillator 1 comprising a structure 2 or / and a frame 4, and a plurality of primary resonators 10 and distinct.
  • These primary resonators 10 are phase-shifted temporally and geometrically. They each comprise at least one inertial mass 5, which is biased towards the structure 2, or the frame 4, by an elastic return means 6. In effect, it is meant by “distinct resonators” that each primary resonator 10 has its own inertial mass. 5 and its own elastic return means 6, in particular a spring.
  • this watch oscillator 1 comprises coupling means 11, which are arranged to allow the interaction of the primary resonators 10.
  • These coupling means 11 comprise motor means 12, which are arranged to drive a mobile 13.
  • This mobile 13 comprises driving and guiding means 14, which are arranged to drive and guide, preferably in a prisoner manner, a control means 15.
  • This control means 15 is articulated with a plurality of transmission means 16, each articulated, away from the control means 15, with an inertial mass 5 of a primary resonator 10.
  • the primary resonators 10 and the mobile 13 are arranged such that the axes of the joints of any two of the primary resonators 10 and the axis of articulation of the control means 15 are never coplanar. In other words, the projections of these axes in a common perpendicular plane are never aligned. It is understood that the axes of articulation may, in some embodiments, be virtual pivot axes.
  • the motor means 12 are arranged to drive the mobile 13 in a rotational movement around an axis of rotation A.
  • the driving and guiding means 14 consist of a groove 140 in which slides a finger 150 that comprises the control means 15.
  • this groove 140 is substantially radial with respect to the axis of rotation A of the mobile 13.
  • the mobile 13 replaces a conventional escape wheel, and is preferably downstream of a finishing train powered by a barrel or the like.
  • the transmission means 16 may in particular be made in the form of connecting rods 160, each having a first articulation 161 with the control means 15, and a second articulation 162 with the inertial mass 5 considered.
  • the first hinge 161 and the second hinge 162 together define a rod direction.
  • all the connecting rod directions are in pairs, at any time, an angle other than zero or ⁇ . Otherwise formulated, the vector product of the two directions of rods is different from zero.
  • the transmission means 16 are non-collinear connecting rods 160.
  • the mobile 13, subjected to a driving torque, and the coupling means 11 have an interaction geometry, which allows to essentially transmit tangential forces to these rods 160.
  • Elementary resonators are termed resonators that together constitute a primary resonator: they are mounted in a tuning fork so that the reactions and errors cancel each other out.
  • a number n of elementary resonators together constitute a primary resonator they are out of phase with each other by 2 ⁇ / n.
  • the figure 1 illustrates a general case of two elementary resonators 10A and 10B mass-spring type oscillating linearly and in different directions, and whose masses 5A and 5B are articulated to connecting rods 16A and 16B, which cooperate together in an articulated manner with a finger 150 , which constitutes the control means 15, which runs through a groove 140 of a wheel constituting the mobile 13, the motor means being represented in FIG. figure 4 which shows a detail at the articulation of the connecting rods on the control means 15.
  • the primary resonators 10 are rotary resonators.
  • the figure 2 illustrates such an example, where the primary resonators 10A, 10B, are balance-spiral assemblies, where the spirals 6A, 6B are attached at their outer turn to the structure 2, and at their inner turn to the pendulums 5A, 5B, which are articulated with ends 162A, 162B, connecting rods 16A, 16B, arranged in a manner similar to those of FIG. figure 1 .
  • the oscillator 1 is arranged so that the forces and the reaction torques of the primary resonators 10 on the support 2 (or on the frame 4 if they are all fixed on such a frame ) cancel each other out.
  • the forces cancel out because the center of mass does not move, when the axis of rotation passes through the center of mass.
  • the pairs cancel each other because each component in rotation is compensated by another component in inverse rotation.
  • the coupling between the resonators can be done via a flexible recess as in a tuning fork or via the connecting rods 160, or, more generally, the transmission means 16.
  • the coupling of the primary resonators 10 with respect to each other is then performed by a flexible embedding of each of the primary resonators 10 with respect to the common structure 2 or to the frame 4.
  • the resultant of the efforts and reaction torques of the primary resonators 10 with respect to the common structure 2 or frame 4, to which they are attached, is zero.
  • the primary rotary resonators 10 are arranged so that their centers of mass remain in a fixed position, at least during the normal oscillations of these primary resonators 10.
  • the clock oscillator 1 preferably comprises stop means to limit their stroke in case of shock or the like.
  • these primary resonators 10 have at least one identical resonance mode, they are arranged to vibrate in a phase shift between them of the value 2 ⁇ / n, where n is their number, and they are arranged according to a symmetry in space such that the resultant of the forces and torques applied by the primary resonators 10 on the structure 2, or on a frame 4 which supports them, is zero.
  • the primary resonators 10 are even in number, and they constitute pairs of pairs in which the inertial masses 5 are in phase-shifting of ⁇ relative to one another. .
  • At least one of the primary resonators 10 consists of a plurality of n elementary resonators 810.
  • These elementary resonators 810 each comprise at least one elementary mass 805 carried by an elastic elementary flexible blade 806, constituting an elastic return means, and which is arranged to work in bending, and which is embedded in a cross 804.
  • These elementary resonators 810 have at least one identical resonance mode, and are arranged to vibrate in a phase shift between them of the value 2 ⁇ / n, where n is the number of elementary resonators 810. They are arranged according to a symmetry in space , such that the resultant of the forces and torques applied by the elementary resonators 810 on the cross member 804 is zero.
  • This cross member 804 is fixed to the fixed support 2 by an elementary main elastic connection 803, whose rigidity is greater than the rigidity of each elementary elastic flexible blade 806, and whose damping is greater than the damping of each elementary flexible blade 806.
  • elementary resonators 810 are arranged in space so that the resultant of their operating errors due to gravitation is zero.
  • At least one of the primary resonators 10 consists of a pair of such elementary resonators 810.
  • the elementary inertial masses 805 are in phase-shifting ⁇ relative to one another.
  • this pair consists of identical elementary resonators 810, which are geometrically opposed and phase to each other.
  • each primary resonator 10 consists of such a pair of elementary resonators 810.
  • each primary resonator 10A, 10B thus forms, by the combination of two elementary resonators 8101, 8102, respectively 8103, 8104, an isochronous oscillator mechanism of tuning fork type called horned goat horns.
  • a cross 40A, respectively 40B is fixed to the fixed support 2 by a main elastic connection 3A, respectively 3B, whose rigidity is greater than the rigidity of each resilient flexible blade 61 A, 62A, respectively 61B, 62B. And the damping of this main elastic connection is greater than that of each flexible blade.
  • the fixed support 2 forms a monolithic assembly with these two primary monolithic structures.
  • the cross member 40A carries a pair of masses 5, labeled 51A and 52A, respectively 51B and 52B, mounted symmetrically on either side of the fixed support 2 and the main elastic linkage 3A, respectively 3B.
  • Each of these masses is mounted oscillatingly and biased by an elastic flexible blade 61 A, 62A, respectively 61B, 62B, which is a spiral, or a spiral assembly.
  • These spirals are each linked directly or indirectly to a mass at their inner turn, and attached to the cross 40A, respectively 40B, by its outer turn.
  • Each mass pivots around a virtual pivot axis of position determined relative to the cross 40A, respectively 40B.
  • Each virtual pivot axis is, in the rest position of the isochronous oscillator mechanism 1, coincides with the center of mass, of the respective mass.
  • the masses extend substantially parallel to each other in the rest position, in a transverse direction.
  • each spiral has a section or variable curvature along its development.
  • the variant of the figure 5 is a structure similar to that of the figure 3 , where each primary resonator 10A, 10B forms, by the combination of two elementary resonators 8101, 8102, respectively 8103, 8104, an isochronous oscillator mechanism of the so-called tuning fork type in H.
  • the elastic flexible blades 6: 61A, 62A, respectively 61B 62B, are no longer spirals, but straight and short blades, that is, less than the smallest value between four times their height or thirty times their thickness, this characteristic of short blade to limit the displacement of the center of mass concerned, and arranged on either side of a cross 40A, respectively 40B, with which it forms the horizontal bar of an H whose masses form the vertical bars. Due to the symmetry and the alignment, the longitudinal arrangement of the elastic flexible blades makes it possible to compensate the direction of greater displacement of the centers of mass, which move symmetrically with respect to the plane of symmetry.
  • Each primary resonator 10A, 10B thus rendered isochronous by one of these particular combinations of elementary resonators, advantageously comprises rotational abutments, and / or translational limit stops in the longitudinal and transverse directions, and / or abutments. limitation in translation in a direction perpendicular to the two preceding.
  • These stroke limiting means can be integrated, be part of a one-piece construction, and / or be reported.
  • the masses comprise, advantageously, stop means arranged to cooperate with complementary abutment means that the sleepers 40A, 40B comprise, to limit the displacement of the resilient flexible blades relative to these sleepers, in case of shocks or similar accelerations .
  • the figure 5 also illustrates an advantageous variant where the transmission means 16A, 16B, are resilient flexible blades. It is then possible to make a monolithic assembly comprising the structure 2, the primary resonators 10 as described above, in particular complete, and these resilient flexible blades, and the finger 150.
  • the Figures 6 and 7 illustrate variants where the connecting rods are beams having collars at both ends in place of the hubs.
  • the figure 6 illustrates a case of coupling of two primary resonators, the figure 7 of three such resonators.
  • the transmission means 16 thus comprise at least one monolithic rod arranged to cooperate with both the control means 15 and at least two inertial masses 5 of as many primary resonators 10, and comprise at least one flexible neck at the of each articulation zone.
  • FIGS. 1, 2 , 3 and 5 illustrate a clock oscillator 1 comprising two primary resonators 10.
  • the figure 8 illustrates a clock oscillator 1 comprising three primary resonators 10. This figure shows the application of the coupling of the figure 7 to the inertial masses 5A, 5B, 5C, of the three primary resonators 10A, 10B, 10C.
  • the figure 9 illustrates a clock oscillator 1 having four resonators. These four resonators may be four primary resonators 10. They may also be four elementary resonators, constituting two by two primary resonators: one composed of the elementary resonators 10A and 10C, phase shifted by ⁇ , the other of the elementary resonators 10B and 10D , also out of phase with ⁇ .
  • the figures 10 , 12, and 13 illustrate a variant where at least one elastic return means 6 also constitutes a rotary guide, which avoids the friction inherent in the use of pivots.
  • the figure 10 shows a transmission means 16 constituted by a flexible blade, in the configuration of the figure 9 .
  • This figure also shows angular stops: 71, 72, 710, 720, 76 on the mass 5, the respective complementary abutment surfaces 73, 74, 730, 740, 77 at the frame 4 on which is attached a short flexible blade 6, and an anti-shock abutment surface 75 on the mass 5, arranged to cooperate with a complementary surface 750 at the frame 4.
  • the motor means 12 are arranged to drive the mobile 13 in a rotational movement, and the mobile 13 and the drive and guide means 14 are arranged to apply to the control means 15 a substantially tangential force by relative to the rotation of the mobile 13.
  • the figure 11 illustrates a variant where the mobile 13 comprises a resilient structure 130 deformable, forming a rigid radially rigid guide tangentially, this deformable structure 130 comprises a housing 140 for cooperating with the finger 150 of the control means 15 at the main joint.
  • the elastic return means 6 of the primary resonators 10 comprise flexible blades
  • the primary resonators 10 and / or the common structure 2, and / or the frame 4 comprise radial stops and / or or angular and / or axial arranged to limit the deformations of the flexible blades and to avoid breaks in case of shocks or too high engine torque.
  • the watch oscillator 1 comprises a monolithic structure which groups together a common structure 4 towards which the inertial masses 5 are recalled by their elastic return means 6, the control means 15 and its articulations with the transmission means 16 , and the transmission means 16 with their joints to the inertial masses 5.
  • this monolithic structure further comprises the stops.
  • the orientation of the elastic return means 6 of the primary resonators 10 is optimized so that the operating errors due to the gravity vanish between the primary resonators 10.
  • the elastic return means 6 of the primary resonators 10 are virtual cross-blade pivots.
  • the primary resonators 10 are isochronous.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Electric Clocks (AREA)
EP15153657.0A 2015-02-03 2015-02-03 Mécanisme oscillateur d'horlogerie Withdrawn EP3054357A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP15153657.0A EP3054357A1 (fr) 2015-02-03 2015-02-03 Mécanisme oscillateur d'horlogerie
CH00140/15A CH710692B1 (fr) 2015-02-03 2015-02-03 Mécanisme oscillateur d'horlogerie.
EP17192071.3A EP3293584B1 (fr) 2015-02-03 2016-01-21 Mecanisme oscillateur d'horlogerie
EP16152268.5A EP3054358B1 (fr) 2015-02-03 2016-01-21 Mecanisme oscillateur d'horlogerie
CN201610150689.5A CN105843026B (zh) 2015-02-03 2016-02-02 钟表振荡器机构
US15/013,539 US9465363B2 (en) 2015-02-03 2016-02-02 Timepiece oscillator mechanism
RU2016103417A RU2692817C2 (ru) 2015-02-03 2016-02-02 Часовой колебательный механизм
CN201620203744.8U CN205539955U (zh) 2015-02-03 2016-02-02 钟表振荡器、包括该钟表振荡器的钟表机芯和手表
JP2016017696A JP6114845B2 (ja) 2015-02-03 2016-02-02 計時器発振器機構

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15153657.0A EP3054357A1 (fr) 2015-02-03 2015-02-03 Mécanisme oscillateur d'horlogerie

Publications (1)

Publication Number Publication Date
EP3054357A1 true EP3054357A1 (fr) 2016-08-10

Family

ID=52434684

Family Applications (3)

Application Number Title Priority Date Filing Date
EP15153657.0A Withdrawn EP3054357A1 (fr) 2015-02-03 2015-02-03 Mécanisme oscillateur d'horlogerie
EP16152268.5A Active EP3054358B1 (fr) 2015-02-03 2016-01-21 Mecanisme oscillateur d'horlogerie
EP17192071.3A Active EP3293584B1 (fr) 2015-02-03 2016-01-21 Mecanisme oscillateur d'horlogerie

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP16152268.5A Active EP3054358B1 (fr) 2015-02-03 2016-01-21 Mecanisme oscillateur d'horlogerie
EP17192071.3A Active EP3293584B1 (fr) 2015-02-03 2016-01-21 Mecanisme oscillateur d'horlogerie

Country Status (6)

Country Link
US (1) US9465363B2 (ja)
EP (3) EP3054357A1 (ja)
JP (1) JP6114845B2 (ja)
CN (2) CN105843026B (ja)
CH (1) CH710692B1 (ja)
RU (1) RU2692817C2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3324246A1 (fr) * 2016-11-16 2018-05-23 The Swatch Group Research and Development Ltd Protection d'un mecanisme resonateur a lames contre les chocs axiaux
CN110389519A (zh) * 2018-04-23 2019-10-29 Eta瑞士钟表制造股份有限公司 具有旋转柔性轴承的谐振器机构的抗震保护
EP3561607A1 (fr) 2018-04-23 2019-10-30 ETA SA Manufacture Horlogère Suisse Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif
EP3561606A1 (fr) 2018-04-27 2019-10-30 The Swatch Group Research and Development Ltd Protection antichoc d'un résonateur à lames a pivot rcc
EP3627242A1 (fr) 2018-09-19 2020-03-25 The Swatch Group Research and Development Ltd Mecanisme d'echappement d'horlogerie magneto-mecanique optimise
EP3719584A1 (en) * 2019-04-02 2020-10-07 Ecole Polytechnique Fédérale de Lausanne (EPFL) Two degree of freedom oscillator system
EP4191346A1 (fr) 2021-12-06 2023-06-07 The Swatch Group Research and Development Ltd Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif
WO2024089541A1 (fr) 2022-10-18 2024-05-02 Goujon Pierre Dispositif d'affichage d'indications discrètes

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104693A2 (en) * 2014-01-13 2015-07-16 Ecole Polytechnique Federale De Lausanne (Epfl) General 2 degree of freedom isotropic harmonic oscillator and associated time base without escapement or with simplified escapement
WO2015104692A2 (en) 2014-01-13 2015-07-16 Ecole Polytechnique Federale De Lausanne (Epfl) Xy isotropic harmonic oscillator and associated time base without escapement or with simplified escapement
US9958832B2 (en) * 2014-09-09 2018-05-01 Eta Sa Manufacture Horlogere Suisse Method for synchronization of two timepiece oscillators with one gear train
CH710524A2 (fr) * 2014-12-18 2016-06-30 Swatch Group Res & Dev Ltd Résonateur d'horlogerie à lames croisées.
CH710692B1 (fr) * 2015-02-03 2021-09-15 Eta Sa Mft Horlogere Suisse Mécanisme oscillateur d'horlogerie.
US9983549B2 (en) * 2015-02-03 2018-05-29 Eta Sa Manufacture Horlogere Suisse Isochronous timepiece resonator
US20190227493A1 (en) * 2016-07-06 2019-07-25 Ecole Polytechnique Federale De Lausanne (Epfl) General 2 Degree of Freedom Isotropic Harmonic Oscillator and Associated Time Base Without Escapement or with Simplified Escapement
CH713055A2 (fr) * 2016-10-18 2018-04-30 Eta Sa Mft Horlogere Suisse Mouvement d'horlogerie comportant un mécanisme résonateur et un mécanisme d'échappement coopérant en transmission continue.
CH713056A2 (fr) 2016-10-18 2018-04-30 Eta Sa Mft Horlogere Suisse Mouvement mécanique d'horlogerie avec résonateur à deux degrés de liberté avec mécanisme d'entretien par galet roulant sur une piste.
CH713069A2 (fr) * 2016-10-25 2018-04-30 Eta Sa Mft Horlogere Suisse Montre mécanique avec résonateur rotatif isochrone, insensible aux positions.
FR3059792B1 (fr) * 2016-12-01 2019-05-24 Lvmh Swiss Manufactures Sa Dispositif pour piece d'horlogerie, mouvement horloger et piece d'horlogerie comprenant un tel dispositif
EP3336613B1 (fr) * 2016-12-16 2020-03-11 Association Suisse pour la Recherche Horlogère Resonateur pour piece d'horlogerie comportant deux balanciers agences pour osciller dans un meme plan
CH713288A1 (fr) * 2016-12-23 2018-06-29 Sa De La Manufacture Dhorlogerie Audemars Piguet & Cie Composant monolithique flexible pour pièce d'horlogerie.
WO2018215284A1 (fr) 2017-05-24 2018-11-29 Sa De La Manufacture D'horlogerie Audemars Piguet & Cie Dispositif de régulation pour pièce d'horlogerie avec oscillateur harmonique isotrope ayant des masses rotatives et une force de rappel commune
CH713829B1 (fr) * 2017-05-24 2022-01-14 Mft Dhorlogerie Audemars Piguet Sa Dispositif de régulation pour pièce d'horlogerie avec oscillateur harmonique isotrope ayant des masses rotatives et une force de rappel commune.
CH713960B1 (fr) * 2017-07-07 2023-08-31 Eta Sa Mft Horlogere Suisse Elément sécable pour oscillateur d'horlogerie.
CH714019A2 (fr) * 2017-07-26 2019-01-31 Eta Sa Mft Horlogere Suisse Mouvement mécanique d'horlogerie avec résonateur rotatif.
EP3692418A1 (fr) 2017-10-02 2020-08-12 Manufacture d'Horlogerie Audemars Piguet SA Dispositif de régulation pour pièce d'horlogerie avec oscillateur harmonique ayant des masses rotatives et une force de rappel commune
WO2019141789A1 (en) 2018-01-18 2019-07-25 Ecole polytechnique fédérale de Lausanne (EPFL) Horological oscillator
EP3561605B1 (fr) * 2018-04-25 2020-10-28 The Swatch Group Research and Development Ltd Mécanisme régulateur d'horlogerie à résonateurs articulés
EP3572885B1 (fr) * 2018-05-25 2022-04-20 ETA SA Manufacture Horlogère Suisse Oscillateur mécanique d'horlogerie isochrone en toute position
EP3739394A1 (en) 2019-05-16 2020-11-18 Ecole Polytechnique Fédérale de Lausanne (EPFL) Crank arrangement for driving a mechanical oscillator
EP3842876A1 (fr) * 2019-12-24 2021-06-30 The Swatch Group Research and Development Ltd Piece d horlogerie munie d'un mouvement mecanique et d'un dispositif de correction d'une heure affichee
EP3926412A1 (fr) * 2020-06-16 2021-12-22 Montres Breguet S.A. Mécanisme régulateur d'horlogerie
EP3982204A1 (fr) * 2020-10-08 2022-04-13 The Swatch Group Research and Development Ltd Resonateur d'horlogerie comportant au moins un guidage flexible

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR563314A (fr) * 1922-11-10 1923-12-03 Système oscillant mécaniquement pour le réglage de la marche et la commande d'horloges et mécanismes analogues
FR630831A (fr) * 1924-04-28 1927-12-09 Procédé et disposition pour la transmission de puissance entre des systèmes mécaniques et pour la commande de systèmes mécaniques
CH451021A (fr) * 1965-05-28 1968-05-15 Ebauches Sa Oscillateur symétrique à flexion pour pièce d'horlogerie
CH466993A (fr) * 1966-03-29 1969-02-14 Ebauches Sa Pièce d'horlogerie électromécanique
GB1293159A (en) * 1969-12-10 1972-10-18 Suwa Seikosha Kk A vibrator for an electric timepiece
WO2015104692A2 (en) * 2014-01-13 2015-07-16 Ecole Polytechnique Federale De Lausanne (Epfl) Xy isotropic harmonic oscillator and associated time base without escapement or with simplified escapement

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH474466A (de) * 1961-06-20 1969-06-30 Inventa Ag Verfahren zur Herstellung von Cyclodecen-(5)-on-(1)
DE1205464B (de) * 1961-08-24 1965-11-18 United States Time Corp Gangregler
CH452443A (fr) * 1964-07-10 1968-05-31 Movado Montres Oscillateur pour pièces d'horlogerie
CH481411A (fr) * 1967-06-27 1969-12-31 Movado Montres Résonateur de rotation mécanique pour appareil de mesure du temps
DE1805777A1 (de) * 1968-10-29 1970-05-21 Kienzle Uhrenfabriken Gmbh Schwingsystem
JP3614009B2 (ja) * 1998-12-21 2005-01-26 セイコーエプソン株式会社 圧電アクチュエータ、圧電アクチュエータの駆動方法、携帯機器および時計
DE602008006057D1 (de) * 2008-07-04 2011-05-19 Swatch Group Res & Dev Ltd Gekoppelte Resonatoren für Uhr
CH702062B1 (fr) * 2009-10-26 2022-01-31 Mft Dhorlogerie Audemars Piguet Sa Organe régulateur comportant au moins deux balanciers, un mouvement de montre ainsi qu'une pièce d'horlogerie comportant un tel organe.
WO2012010408A1 (fr) * 2010-07-19 2012-01-26 Nivarox-Far S.A. Mecanisme oscillant a pivot elastique et mobile de transmission d'energie
EP2730980B1 (fr) * 2012-11-09 2018-08-29 Nivarox-FAR S.A. Mécanisme horloger de limitation ou transmission
WO2015104693A2 (en) 2014-01-13 2015-07-16 Ecole Polytechnique Federale De Lausanne (Epfl) General 2 degree of freedom isotropic harmonic oscillator and associated time base without escapement or with simplified escapement
CH710692B1 (fr) * 2015-02-03 2021-09-15 Eta Sa Mft Horlogere Suisse Mécanisme oscillateur d'horlogerie.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR563314A (fr) * 1922-11-10 1923-12-03 Système oscillant mécaniquement pour le réglage de la marche et la commande d'horloges et mécanismes analogues
FR630831A (fr) * 1924-04-28 1927-12-09 Procédé et disposition pour la transmission de puissance entre des systèmes mécaniques et pour la commande de systèmes mécaniques
CH451021A (fr) * 1965-05-28 1968-05-15 Ebauches Sa Oscillateur symétrique à flexion pour pièce d'horlogerie
CH466993A (fr) * 1966-03-29 1969-02-14 Ebauches Sa Pièce d'horlogerie électromécanique
GB1293159A (en) * 1969-12-10 1972-10-18 Suwa Seikosha Kk A vibrator for an electric timepiece
WO2015104692A2 (en) * 2014-01-13 2015-07-16 Ecole Polytechnique Federale De Lausanne (Epfl) Xy isotropic harmonic oscillator and associated time base without escapement or with simplified escapement

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3324246A1 (fr) * 2016-11-16 2018-05-23 The Swatch Group Research and Development Ltd Protection d'un mecanisme resonateur a lames contre les chocs axiaux
US10394190B2 (en) 2016-11-16 2019-08-27 The Swatch Group Research And Development Ltd Protection of a blade resonator mechanism against axial shocks
US11175630B2 (en) 2018-04-23 2021-11-16 Eta Sa Manufacture Horlogere Suisse Anti shock protection for a resonator mechanism with rotary flexure bearing
EP3561609A1 (fr) 2018-04-23 2019-10-30 ETA SA Manufacture Horlogère Suisse Protection antichoc d'un mecanisme résonateur a guidage flexible rotatif
EP3561607A1 (fr) 2018-04-23 2019-10-30 ETA SA Manufacture Horlogère Suisse Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif
CN110389519B (zh) * 2018-04-23 2021-09-03 Eta瑞士钟表制造股份有限公司 钟表谐振器机构、钟表振荡器机构、钟表机芯和手表
CN110389519A (zh) * 2018-04-23 2019-10-29 Eta瑞士钟表制造股份有限公司 具有旋转柔性轴承的谐振器机构的抗震保护
EP3561606A1 (fr) 2018-04-27 2019-10-30 The Swatch Group Research and Development Ltd Protection antichoc d'un résonateur à lames a pivot rcc
US11454934B2 (en) 2018-04-27 2022-09-27 The Swatch Group Research And Development Ltd Shock protection for a strip resonator with RCC pivots
EP3627242A1 (fr) 2018-09-19 2020-03-25 The Swatch Group Research and Development Ltd Mecanisme d'echappement d'horlogerie magneto-mecanique optimise
EP3719584A1 (en) * 2019-04-02 2020-10-07 Ecole Polytechnique Fédérale de Lausanne (EPFL) Two degree of freedom oscillator system
EP4191346A1 (fr) 2021-12-06 2023-06-07 The Swatch Group Research and Development Ltd Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif
WO2024089541A1 (fr) 2022-10-18 2024-05-02 Goujon Pierre Dispositif d'affichage d'indications discrètes

Also Published As

Publication number Publication date
RU2692817C2 (ru) 2019-06-28
CN205539955U (zh) 2016-08-31
RU2016103417A (ru) 2017-08-07
JP2016142736A (ja) 2016-08-08
US9465363B2 (en) 2016-10-11
US20160223989A1 (en) 2016-08-04
EP3054358B1 (fr) 2019-08-28
CH710692B1 (fr) 2021-09-15
EP3293584A1 (fr) 2018-03-14
CH710692A2 (fr) 2016-08-15
JP6114845B2 (ja) 2017-04-12
EP3293584B1 (fr) 2022-03-30
RU2016103417A3 (ja) 2019-05-22
CN105843026A (zh) 2016-08-10
EP3054358A1 (fr) 2016-08-10
CN105843026B (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
EP3054358B1 (fr) Mecanisme oscillateur d'horlogerie
EP3254158B1 (fr) Resonateur isochrone d'horlogerie
EP3035127B1 (fr) Oscillateur d'horlogerie à diapason
EP3206089B1 (fr) Mécanisme résonateur d'horlogerie
EP3054356B1 (fr) Résonateur isochrone d'horlogerie
EP2995999B1 (fr) Synchronisation de résonateurs d'horlogerie
EP3561607B1 (fr) Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif
EP3561609B1 (fr) Protection antichoc d'un mecanisme résonateur a guidage flexible rotatif
EP3324246B1 (fr) Protection d'un mecanisme resonateur a lames contre les chocs axiaux
EP3312682B1 (fr) Resonateur a haut facteur de qualite pour montre mecanique
CH715526A2 (fr) Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif.
EP3316047B1 (fr) Montre mécanique avec résonateur rotatif isochrone, insensible aux positions
EP2887151B1 (fr) Elément oscillant pour mouvement horloger
EP3561606B1 (fr) Protection antichoc d'un résonateur à lames a pivot rcc
EP4047424A1 (fr) Composant à pivot flexible, notamment pour l' horlogerie
EP3637196B1 (fr) Oscillateur mécanique
CH714936A2 (fr) Protection antichoc d'un résonateur à lames à pivot RCC.
EP3451073A1 (fr) Oscillateur d'horlogerie a guidages flexibles a grande course angulaire
EP3692418A1 (fr) Dispositif de régulation pour pièce d'horlogerie avec oscillateur harmonique ayant des masses rotatives et une force de rappel commune
EP4191346B1 (fr) Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif
EP3572885B1 (fr) Oscillateur mécanique d'horlogerie isochrone en toute position
EP3812842B1 (fr) Dispositif de guidage en pivotement pour une masse pivotante et mécanisme résonateur d'horlogerie
CH719206A2 (fr) Mécanisme résonateur d'horlogerie à guidage flexible rotatif.
CH713837A2 (fr) Dispositif de régulation sur la base d'un oscillateur harmonique isotrope pour pièce d'horlogerie.
CH706403B1 (fr) Arbre équipé comportant un arbre lisse de balancier d'horlogerie, balancier équipé, ensemble balancier-spiral, assortiment, mouvement et pièce d'horlogerie.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170211