EP3049543B1 - Production of high-grade manganese from ferromanganese by means of vaporization in a vacuum induction plant - Google Patents

Production of high-grade manganese from ferromanganese by means of vaporization in a vacuum induction plant Download PDF

Info

Publication number
EP3049543B1
EP3049543B1 EP14789775.5A EP14789775A EP3049543B1 EP 3049543 B1 EP3049543 B1 EP 3049543B1 EP 14789775 A EP14789775 A EP 14789775A EP 3049543 B1 EP3049543 B1 EP 3049543B1
Authority
EP
European Patent Office
Prior art keywords
manganese
protective gas
water cooling
evaporator
condensation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14789775.5A
Other languages
German (de)
French (fr)
Other versions
EP3049543A1 (en
Inventor
Johann Reichel
Lutz Rose
Jan Bader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3049543A1 publication Critical patent/EP3049543A1/en
Application granted granted Critical
Publication of EP3049543B1 publication Critical patent/EP3049543B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Definitions

  • the present invention relates to a process for the production of technically pure manganese by evaporation of carbonaceous ferromanganese in an induction vacuum vessel.
  • KR 20100077885 A discloses a process for producing engineered manganese by evaporation of carbonaceous ferromanganese in an induction vessel, the process being carried out under vacuum and at temperatures above the liquidus temperature of the manganese.
  • a ladle of liquid carbonaceous ferromanganese is placed in an induction evaporator which vaporizes and cools metal under a vacuum in the range of below 3 Torr, thereby precipitating the manganese vapor.
  • Manganese is one of the most important alloying elements in steelmaking. It is characterized by high strength and elongation. The production of steel grades with manganese takes place by adding manganese-containing alloying agents during the steelmaking process. These include Mn alloys produced in high carbon or high carbon reduction furnaces such as FeMnHC (HCFeMn) and FeMnLC (MCFeMn) alloys with medium FeMnMC (MCFeMn) and low carbon content. produced in secondary metallurgical plants. The manganese alloys are loaded in addition to the carbon contents mentioned also with other elements such as phosphorus and sulfur, so that the application of materials can not be used indefinitely.
  • Typical composition of manganese alloys in% by weight are: C Si P S Mn FeMnHC 7-8 1.5-4.5 0.2-0.4 12:03 65-82 FeMnMC 1.0 1.5-2.5 0.2-0.4 12:02 75-85 FeMnLC 0.2-0.7 1-2 0.1-0.3 12:02 78-92
  • Another way of Mangan strung is to heat the above manganese compounds so far, so that the manganese evaporates.
  • An object of the present invention is to provide a process for the continuous production of manganese by evaporation of the starting raw materials, which is inexpensive and thus economical.
  • the plant presented in the invention and the process represents an innovative technique not only in terms of continuous manganese production but also their potting.
  • the two-component system Mn-Fe represents various phases of the manganese-iron solution. As shown in the diagram below, the liquidus temperature of pure manganese is 1246 ° C.
  • the liquidus temperature is in the range 1246-1280 ° C. It defines the lowest temperature at which the liquid material starts to evaporate.
  • the vapor pressure as a function of the temperature has an exponentially increasing course.
  • the method provides that the liquefaction of the Mn vapors takes place continuously by means of the secondary cooler, which is arranged in the vapor stream within a vapor line and is formed in a conical shape for the purpose of improving the drop outflow.
  • the vacuum pump system is additionally equipped with a secondary water cooling system, a condenser and a filter.
  • the evaporation process is additionally supported with argon as an inert gas and forms a kind of inert gas atmosphere.
  • the technically pure manganese is continuously cooled with water, tapped and placed under the Argon protective gas atmosphere in a casting machine, where it can be poured into the desired formats.
  • the evaporation material to be evaporated may consist of various Mn concentrations, which in turn may then influence the rate of evaporation, temperature and inert gas flow rate.
  • the evaporation material is charged continuously or discontinuously in the induction evaporator.
  • Another object of the present invention is to provide an apparatus for carrying out the method according to the invention.
  • a device in particular by an evaporator in which the manganese alloy is used, the metal under vacuum, and generated by a vacuum pump and filter system in the range of 10-900 mbar and a temperature In the range of> 1248 ° C stirring with argon is inert as a protective gas and is cooled by a primary water cooling and a secondary water cooling, the Mn vapors are collected in a mobile condensation chamber at temperatures in the range 1350-1400 ° C in the liquid state and is continuously abstechbar by a siphon-like heated tap hole in a Verg screensschieb.
  • the evaporator is an induction evaporator, which is arranged on a hydraulic platform and designed to be vertically movable over it.
  • the mobile condensation chamber is designed to be horizontally movable.
  • the induction evaporator and the condensation chamber are gas-tightly connected to one another via a steam line operatively connected to the primary water cooling and the secondary water cooling.
  • the secondary water cooling within the steam line is arranged in the vapor stream above the condensation chamber.
  • the steam line is connected to a supply line for the protective gas (inert gas) and the protective gas (inert gas) is circulated in the steam line and the supply line, wherein manganese manganese can be separated by a secondary condenser assigned to the feed line and the protective gas (inert gas) via the feed line to the induction evaporator and thus the steam flow is fed back.
  • additional inert gas can be supplied via the feed to the circuit in order to compensate for the process-related losses and so to be able to regulate the concentration in the circulatory system.
  • additional protective gas can be introduced via a feed into the supply line, where it can be flushed back into the induction evaporator via a secondary filter.
  • the device 18 consists essentially of an induction evaporator 1, in which the FeMn introduced is kept at a temperature of 1600 - 1700 ° C in the liquid state.
  • the induction evaporator 1 is arranged in this embodiment on a hydraulic platform 9, which allows it to raise and lower.
  • At least one flushing pipe connection 19 is provided, which is connected to a supply line 15 and via which a protective gas, in this case argon, is introduced into the induction evaporator 1.
  • a protective gas in this case argon
  • the protective gas rises through the FeMn melt, where it collects with the vaporized portion of manganese at a pressure of 100 to 200 mbar in a vapor line 14 and is discharged in a vapor stream 17, shown here as arrows.
  • the steam line 14 is connected in a gas-tight manner to the induction evaporator 1.
  • the steam flow 17 located in the steam line 14 is conducted past a primary water cooling 4, which surrounds the steam line from the outside, and is cooled down at the same time.
  • a secondary water cooling 5 the steam flow 17 is cooled down to the extent that an aggregate state change of the manganese from gaseous to liquid occurs. In order to do this as efficiently and quickly as possible, it is provided to arrange the secondary water cooling 5 within the steam line 14 and in the steam flow 17.
  • the secondary water cooling 5 is conical and lies with the tapered side in the direction of the incoming vapor stream 17. In the figure, this is shown as an isosceles triangle.
  • the condensation chamber 2 can be connected in a gastight manner to the steam line 14.
  • the liquefied high-purity manganese collects and is maintained at a temperature of 1350 to 1400 ° C in the liquid state.
  • the movable condensation chamber 2 is associated with a siphon-like tap hole 13.
  • the tap hole 13 the manganese is tapped and placed in a casting machine 8.
  • the casting machine 8 is chambered and is also under a protective gas atmosphere 7 (argon) and is equipped with appropriate device means for applying and maintaining the protective gas atmosphere.
  • the manganese is poured into a final product 11 in the appropriate desired formats.
  • the final product 11 has a purity of 99.9% manganese.
  • the protective gas atmosphere is drawn off via a connection 20 by means of a vacuum pump 3 and fed back into the feed line 15.
  • the vaporized manganese still present in the protective gas is cooled down in a secondary condenser 12 and separated from the protective gas atmosphere.
  • the secondary capacitor 12 is for this purpose a vacuum pump with water cooling 6 available.
  • the inert gas purified by the manganese vapor is circulated in the supply line 15 and fed back into the induction evaporator via a feed 16 and a secondary filter 10. Via the feed 16, the circulation process returns lost protective gas to the cycle, so that a stable argon protective gas atmosphere is ensured at all times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von technisch reinem Mangan durch Verdampfung von kohlenstoffhaltigem Ferromangan in einem Induktionsvakuumgefäß.The present invention relates to a process for the production of technically pure manganese by evaporation of carbonaceous ferromanganese in an induction vacuum vessel.

Aus der KR 20100077885 A ist ein Verfahren zur Herstellung von technisch reinem Mangan durch Verdampfung von kohlenstoffhaltigem Ferromangan in einem Induktionsgefäß bekannt, wobei das Verfahren unter Vakuum und Temperaturen oberhalb der Liquidus-Temperatur des Mangans ausgeführt wird. Dabei wird eine Pfanne mit flüssigem kohlenstoffhaltigem Ferromangan in einen Induktionsverdampfer eingesetzt, das Metall unter Vakuum im Bereich von unter 3 Torr verdampft und abgekühlt, wobei die Mangandämpfe abgeschieden werden.From the KR 20100077885 A discloses a process for producing engineered manganese by evaporation of carbonaceous ferromanganese in an induction vessel, the process being carried out under vacuum and at temperatures above the liquidus temperature of the manganese. In this process, a ladle of liquid carbonaceous ferromanganese is placed in an induction evaporator which vaporizes and cools metal under a vacuum in the range of below 3 Torr, thereby precipitating the manganese vapor.

Mangan ist eins von den wichtigsten Legierungselementen bei der Stahlherstellung. Es zeichnet sich mit hoher Festigkeit und Dehnung aus. Die Erzeugung von Stahlsorten mit Mangan erfolgt durch Zugabe von manganhaltigen Legierungsmitteln während des Stahlherstellungsprozesses. Zu denen gehören Mn-Legierungen erzeugt in Hochöfen bzw. Reduktionsöfen mit hohem Kohlenstoffgehalt wie FeMnHC (HCFeMn) und Legierungen mit mittlerem FeMnMC (MCFeMn) und niedrigem Kohlestoffgehalt FeMnLC (LCFeMn). erzeugt in sekundärmetallurgischen Anlagen. Die Mangan-Legierungen sind außer mit den genannten Kohlenstoffgehalten auch mit weiteren Elementen wie Phosphor und Schwefel belastet, so dass die Anwendung der Materialien nicht unbegrenzt in Einsatz kommen kann.Manganese is one of the most important alloying elements in steelmaking. It is characterized by high strength and elongation. The production of steel grades with manganese takes place by adding manganese-containing alloying agents during the steelmaking process. These include Mn alloys produced in high carbon or high carbon reduction furnaces such as FeMnHC (HCFeMn) and FeMnLC (MCFeMn) alloys with medium FeMnMC (MCFeMn) and low carbon content. produced in secondary metallurgical plants. The manganese alloys are loaded in addition to the carbon contents mentioned also with other elements such as phosphorus and sulfur, so that the application of materials can not be used indefinitely.

Typische Zusammensetzung von Mangan-Legierungen in Gew. % sind: C Si P S Mn FeMnHC 7-8 1.5-4.5 0.2-0.4 0.03 65-82 FeMnMC 1.0 1.5-2.5 0.2-0.4 0.02 75-85 FeMnLC 0.2-0.7 1-2 0.1-0.3 0.02 78-92 Typical composition of manganese alloys in% by weight are: C Si P S Mn FeMnHC 7-8 1.5-4.5 0.2-0.4 12:03 65-82 FeMnMC 1.0 1.5-2.5 0.2-0.4 12:02 75-85 FeMnLC 0.2-0.7 1-2 0.1-0.3 12:02 78-92

Es wird allerdings immer öfter nach technisch reinem Mangan gefragt, um dem ständig wachsenden Ansprüchen der hochqualitativen Stahlherstellung nachzugehen. Derzeit wird technisch reines Mangan nur auf elektrolytischer Weise hergestellt, da reines Mangan technisch nicht durch die Reduktion mit Kohlenstoff gewonnen werden kann, da sich hierbei neben Mangan auch stabile Carbide, insbesondere Mn7C3, bilden.However, there is an increasing demand for technically pure manganese in order to meet the constantly growing demands of high-quality steel production. At present, technically pure manganese is only produced in an electrolytic manner, since pure manganese can not be obtained technically by reduction with carbon, since in addition to manganese there are also stable carbides, in particular Mn 7 C 3 .

Hierzu wird eine möglichst reine Mangansulfat-Lösung verwendet, die mit Edelstahl-Elektroden bei 5 -7 V elektrolysiert wird. An der Kathode entsteht dabei reines Mangan, an der Anode Sauerstoff, der mit Manganionen weiter zu Braunstein reagiert.

        2MnSO4 + 2 H2O → 2Mn + 2 H2SO4 + O2

For this purpose, a pure manganese sulfate solution is used, which is electrolysed with stainless steel electrodes at 5 -7 V. Pure manganese is produced at the cathode and oxygen at the anode, which reacts with manganese ions to form brownstone.

2MnSO 4 + 2H 2 O → 2Mn + 2H 2 SO 4 + O 2

Daneben sind auch die Gewinnung von Mangan durch die Reduktion von Manganoxiden mit Aluminium (Aluminothermie) oder Silicium bekannt.In addition, the extraction of manganese by the reduction of manganese oxides with aluminum (aluminothermy) or silicon are known.

Eine weitere Möglichkeit der Mangangewinnung besteht darin, die oben genannten Manganverbindungen soweit zu erhitzen, so dass das Mangan verdampf.Another way of Mangangewinnung is to heat the above manganese compounds so far, so that the manganese evaporates.

Allerdings entsteht reines Mangan erst bei Temperaturen über 1600° C, da erst bei dieser Temperatur ein Teil des Mangans zu verdampfen beginnt, so dass dieser Herstellungsweg bisher nicht wirtschaftlich anwendbar war.However, pure manganese is formed only at temperatures above 1600 ° C, since only at this temperature, a portion of the manganese begins to evaporate, so that this production route has not been economically applicable.

Eine Aufgabe der vorliegen Erfindung ist es, ein Verfahren zur kontinuierlichen Mangan-Herstellung durch Verdampfung der Ausgangrohstoffe zur Verfügung zu stellen, die kostengünstig und damit wirtschaftlich ist.An object of the present invention is to provide a process for the continuous production of manganese by evaporation of the starting raw materials, which is inexpensive and thus economical.

Diese Aufgabe wird durch die im Anspruch 1 angegebenen Merkmale gelöst, insbesondere dadurch, dass das Verfahren unter Vakuum und Temperaturen oberhalb der Liquidus-Temperatur des Mangans ausgeführt wird, wobei eine Pfanne mit flüssigem kohlenstoffhaltigem Ferromangan in einen Induktionsverdampfer eingesetzt wird, das Metall unter Vakuum, erzeugt und durch ein Vakuumpumpen- und Filtersystem im Bereich von 10-900 mbar und einer Temperatur im Bereich von > 1248°C rührend mit einem Inertgas verdampft und im weiteren Verlauf der Anlage mit Wasser gekühlt wird, wobei die Mn-Dämpfe in einer mobilen Kondensationskammer bei Temperaturen im Bereich 1350-1400°C verflüssigt und durch ein siphonartiges beheiztes Abstichloch kontinuierlich in eine Vergießmaschine abgestochen werden.This object is achieved by the features specified in claim 1, in particular, by carrying out the process under vacuum and temperatures above the liquidus temperature of the manganese using a ladle of liquid carbonaceous ferromanganese in an induction evaporator producing metal under vacuum and by a vacuum pumping and filtering system in the range of 10 -900 mbar and a temperature in the range of> 1248 ° C is vigorously evaporated with an inert gas and cooled in the further course of the plant with water, the Mn vapors liquefied in a mobile condensation chamber at temperatures in the range 1350-1400 ° C and by a siphon-type heated taphole are continuously tapped into a caster.

Die in der Erfindung präsentierte Anlage und das Verfahren stellt eine innovative Technik nicht nur im Sinne der kontinuierlichen Mangan-Herstellung aber auch ihres Vergießens dar.The plant presented in the invention and the process represents an innovative technique not only in terms of continuous manganese production but also their potting.

Im Folgenden sollen die metallurgischen Eigenschaften des Mangans beschrieben werden.In the following, the metallurgical properties of manganese are described.

Das Zweikomponentensystem Mn-Fe, stellt verschiedene Wandlungsphasen der Lösung Mangan-Eisen dar. Wie dem untenstehenden Diagramm zu entnehmen ist, liegt die Liquidustemperatur des reinen Mangans bei 1246°C.

Figure imgb0001
The two-component system Mn-Fe represents various phases of the manganese-iron solution. As shown in the diagram below, the liquidus temperature of pure manganese is 1246 ° C.
Figure imgb0001

Beim Mangangehalt von 65-92%, typischem Gehalt der Ferrolegierungen, liegt die Liquidustemperatur im Bereich 1246-1280°C. Sie definiert die niedrigste Temperatur bei der das Flüssigmaterial zu verdampfen beginnt. Der Dampfdruck in Abhängigkeit der Temperatur hat einen exponentiell wachsenden Verlauf.

Figure imgb0002
At the manganese content of 65-92%, typical content of the ferroalloys, the liquidus temperature is in the range 1246-1280 ° C. It defines the lowest temperature at which the liquid material starts to evaporate. The vapor pressure as a function of the temperature has an exponentially increasing course.
Figure imgb0002

Um die physikalischen Bedingungen des erfindungsgemäßen Verfahrens zu veranschaulichen, wird nachstehend die Verdampfungskinetik des Mangans beschrieben.In order to illustrate the physical conditions of the process according to the invention, the evaporation kinetics of manganese will be described below.

Die Verdampfungskinetik des Mangans ist eine Funktion des Druckes, der Temperatur und der Inertgasrate. Der Verdampfungsprozess selbst erfolgt durch Phasenumwandlung - Flüssigkeit / Gas (Dampf) bei gegebener Temperatur und dem Druck nach dem Gesetz der ersten Ordnung, wie in Gleichung (1) darstellt ist, dMn dt 1 τ Mn Mn *

Figure imgb0003
worin

  • (-dMn/dt) : Verdampfungsrate in % / min
  • τ : Phasenumwandlungskonstante in Minuten
  • [Mn]: aktuelle Mangan-Konzentration
  • [Mn*]:Mn-Gleichgewichtskonzentration bei aktuellem Prozesszustand (p,T, Inertgas) ist.
The evaporation kinetics of manganese is a function of pressure, temperature and inert gas rate. The evaporation process itself is carried out by phase transformation - liquid / gas (vapor) at a given temperature and the pressure according to the law of the first order, as represented in equation (1), - dMn dt - 1 τ Mn - Mn *
Figure imgb0003
wherein
  • (-dMn / dt): evaporation rate in% / min
  • τ: phase conversion constant in minutes
  • [Mn]: current manganese concentration
  • [Mn *]: Mn equilibrium concentration at current process state (p, T, inert gas).

Bei einem Phasengleichgewicht (Flüssigkeit - Gas) Mn * = Mn *

Figure imgb0004
ausgedrückt durch eine temperaturabhängige Konstante K(T), K T = p Mn a Mn = p Mn f Mn Mn *
Figure imgb0005
den Verdampfungsdruck pMn als auch durch den Aktivitätskoeefizient fMn als Funktion der Metallzusammensetzung wird das Mangangleichgewicht [Mn*] folgend dargestellt: Mn * = p Mn f Mn K T
Figure imgb0006
worin p Mn = N Mn N Mn + u Ar p
Figure imgb0007
Dabei gilt

  1. 1. NMn: Mn - Volumenstrom im Vakuumgefäß in Nm3/min, direkt proportional zur Verdampfungsrate ausgedrückt durch k(-dMn/dt),
  2. 2. uAr: eingeblasener Ar-Volumenstrom in das Vakuumgefäß in Nm3/min,
  3. 3. p: Druck innerhalb des Verdampfungsgefässes
At a phase equilibrium (liquid - gas) Mn * = Mn *
Figure imgb0004
expressed by a temperature-dependent constant K (T), K T = p Mn a Mn = p Mn f Mn Mn *
Figure imgb0005
the vaporization pressure pMn as well as the activity coefficient fMn as a function of the metal composition, the manganese balance [Mn *] is represented as follows: Mn * = p Mn f Mn K T
Figure imgb0006
wherein p Mn = N Mn N Mn + u Ar p
Figure imgb0007
It applies
  1. 1. NMn: Mn - volume flow in a vacuum vessel in Nm3 / min, directly proportional to the evaporation rate expressed by k (-dMn / dt),
  2. 2. uAr: blown Ar volumetric flow into the vacuum vessel in Nm3 / min,
  3. 3. p: pressure inside the evaporation vessel

Gleichungen (4) und (5) in Verbindung mit der Gleichung (1) ergeben den folgenden Zusammenhang: dMn dt = 1 τ Mn 1 f Mn K T k dMn dt k dMn dt + u Ar p

Figure imgb0008
Equations (4) and (5) in conjunction with equation (1) give the following relation: - dMn dt = 1 τ Mn - 1 f Mn K T k - dMn dt k - dMn dt + u Ar p
Figure imgb0008

Die Gleichung (6) gibt das Steuerprinzip angelehnt an die folgenden Größen wieder:

  • Metalltemperatur T, geregelt im Temperaturbereich größer als 1246°C mit einer induktiven Heizung
  • Gefäßdruck p, geregelt im Bereich 10 bis 900 mbar mittels eines Vakuumpumpensystems
  • Ar-Inertgasdurchflussrate uAr, geregelt im Bereich 0.05 bis 0.5 Nm3 / (tMetall min) mittels eines Einblassystems.
Equation (6) represents the control principle based on the following quantities:
  • Metal temperature T, regulated in the temperature range greater than 1246 ° C with an inductive heating
  • Vessel pressure p, regulated in the range 10 to 900 mbar by means of a vacuum pump system
  • Ar-inert gas flow rate uAr, controlled in the range 0.05 to 0.5 Nm3 / (tMetal min) by means of an injection system.

Hieraus ergeben sich alle relevanten Parameter zur Durchführung des erfindungsgemäßen Verfahrens mit der erfindungsgemäßen Vorrichtung.This results in all relevant parameters for carrying out the method according to the invention with the device according to the invention.

Das Verfahren sieht vor, dass die Verflüssigung der Mn-Dämpfe kontinuierlich mittels des sekundären Kühlers, der im Dampfstrom innerhalb einer Dampfleitung angeordnet und zwecks der Verbesserung des Tropfenabflusses in konischer Form ausgebildet ist, erfolgt.The method provides that the liquefaction of the Mn vapors takes place continuously by means of the secondary cooler, which is arranged in the vapor stream within a vapor line and is formed in a conical shape for the purpose of improving the drop outflow.

Das Vakuumpumpensystem ist zusätzlich mit einem sekundären Wasserkühlsystem, einem Kondensator und einem Filter ausgestattet. Der Verdampfungsprozess wird dabei zusätzlich mit Argon als Inertgas unterstützt und bildet quasi eine Schutzgasatmosphäre aus.The vacuum pump system is additionally equipped with a secondary water cooling system, a condenser and a filter. The evaporation process is additionally supported with argon as an inert gas and forms a kind of inert gas atmosphere.

Das technisch reine Mangan wird kontinuierlich mit Wasser gekühlt, abgestochen und unter der Argonschutzgasatmosphäre in eine Gießmaschine aufgegeben, wo es in entsprechend gewünschte Formate gegossen werden kann.The technically pure manganese is continuously cooled with water, tapped and placed under the Argon protective gas atmosphere in a casting machine, where it can be poured into the desired formats.

Während des Prozesses ist es vorgesehen, die Verdampfungsrate, Temperatur, Vakuumdruck und Inertgasdurchflussrate zu steuern. Das zu verdampfende Verdampfungsmaterial kann aus verschiedenen Mn-Konzentrationen bestehen, die dann wiederum die Verdampfungsrate, Temperatur und Inertgasdurchflussrate beeinflussen können.During the process, it is intended to control the rate of evaporation, temperature, vacuum pressure and inert gas flow rate. The evaporation material to be evaporated may consist of various Mn concentrations, which in turn may then influence the rate of evaporation, temperature and inert gas flow rate.

Auch soll es möglich sein, dass das Verdampfungsmaterial kontinuierlich oder diskontinuierlich in den Induktionsverdampfer chargiert wird.It should also be possible that the evaporation material is charged continuously or discontinuously in the induction evaporator.

Eine weitere Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens zur Verfügung zu stellen.Another object of the present invention is to provide an apparatus for carrying out the method according to the invention.

Diese weitere Aufgabe wird durch eine Vorrichtung gemäß der im Anspruch 9 angegebenen Merkmale gelöst, insbesondere dadurch einen Verdampfer in dem die Manganlegierung eingesetzt wird, das Metall unter Vakuum, erzeugt und durch ein Vakuumpumpen- und Filtersystem im Bereich von 10-900 mbar und einer Temperatur im Bereich von > 1248°C rührend mit Argon als Schutzgas verdampfbar ist und über eine primäre Wasserkühlung und über eine sekundäre Wasserkühlung gekühlt wird, wobei die Mn-Dämpfe in einer mobilen Kondensationskammer bei Temperaturen im Bereich 1350-1400°C im flüssigen Aggregatzustand gesammelt werden und durch ein siphonartiges beheiztes Abstichloch kontinuierlich in eine Vergießmaschine abstechbar ist.This further object is achieved by a device according to the features specified in claim 9, in particular by an evaporator in which the manganese alloy is used, the metal under vacuum, and generated by a vacuum pump and filter system in the range of 10-900 mbar and a temperature In the range of> 1248 ° C stirring with argon is inert as a protective gas and is cooled by a primary water cooling and a secondary water cooling, the Mn vapors are collected in a mobile condensation chamber at temperatures in the range 1350-1400 ° C in the liquid state and is continuously abstechbar by a siphon-like heated tap hole in a Vergießschieb.

In einer weiteren Ausführungsform ist der Verdampfer ein Induktionsverdampfer, der auf einer Hydraulikplattform angeordnet und über diese vertikal verfahrbar ausgebildet ist.In a further embodiment, the evaporator is an induction evaporator, which is arranged on a hydraulic platform and designed to be vertically movable over it.

Gemäß einer vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung ist die mobile Kondensationskammer horizontal verfahrbar ausgebildet.According to an advantageous embodiment of the device according to the invention, the mobile condensation chamber is designed to be horizontally movable.

In einer weiteren Ausführungsform sind der Induktionsverdampfer und die Kondensationskammer über eine, mit der primären Wasserkühlung und der sekundären Wasserkühlung wirkverbundenen Dampfleitung gasdicht miteinander verbunden.In a further embodiment, the induction evaporator and the condensation chamber are gas-tightly connected to one another via a steam line operatively connected to the primary water cooling and the secondary water cooling.

In einer besonders vorteilhaften Ausführungsform der erfindungemäßen Vorrichtung ist die sekundäre Wasserkühlung innerhalb der Dampfleitung im Dampfstrom über der Kondensationskammer angeordnet.In a particularly advantageous embodiment of the device according to the invention, the secondary water cooling within the steam line is arranged in the vapor stream above the condensation chamber.

Es ist vorgesehen, dass die Dampfleitung mit einer Zuleitung für das Schutzgas (Inertgas) verbunden ist und das Schutzgas (Inertgas) in der Dampfleitung und der Zuleitung im Kreislauf geführt wird, wobei dampfförmiges Mangan durch einen, der Zuleitung zugeordneten, sekundären Kondensator abgeschieden werden kann und das Schutzgas (Inertgas) über die Zuleitung den Induktionsverdampfer und damit dem Dampfstrom wieder zugeführt wird. Dabei ist es vorgesehen, dass auch zusätzliches Inertgas über die Einspeisung dem Kreislauf zugeführt werden kann, um die prozessbedingten Verluste ausgleichen zu können und so die Konzentration im Kreislaufsystem regulieren zu können.It is envisaged that the steam line is connected to a supply line for the protective gas (inert gas) and the protective gas (inert gas) is circulated in the steam line and the supply line, wherein manganese manganese can be separated by a secondary condenser assigned to the feed line and the protective gas (inert gas) via the feed line to the induction evaporator and thus the steam flow is fed back. It is envisaged that additional inert gas can be supplied via the feed to the circuit in order to compensate for the process-related losses and so to be able to regulate the concentration in the circulatory system.

Um die Konzentration an dem Schutzgas (Inertgas) im Kreislauf möglichst konstant zu halten, kann zusätzliches Schutzgas über eine Einspeisung in die Zuleitung eingeleitet werden, wo es über einen sekundären Filter wieder in den Induktionsverdampfer eingespült werden kann.In order to keep the concentration of the protective gas (inert gas) in the circulation as constant as possible, additional protective gas can be introduced via a feed into the supply line, where it can be flushed back into the induction evaporator via a secondary filter.

Die erfindungsgemäße Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens wird im Folgenden anhand einer beispielhaften Ausführungsform unter Bezugnahme auf die beigefügte Zeichnung näher erläutert.The device according to the invention for carrying out the method according to the invention is explained in more detail below with reference to an exemplary embodiment with reference to the accompanying drawings.

Die einzige Figur zeigt:

Fig. 1
eine schematische Ansicht der Vorrichtung zur Durchführung des Verfahrens als Prozessablaufmodell.
The only figure shows:
Fig. 1
a schematic view of the apparatus for performing the method as a process flow model.

Wie in der einzigen Figur dargestellt, besteht die Vorrichtung 18 im wesentlichen aus einem Induktionsverdampfer 1, in dem das eingebrachte FeMn bei einer Temperatur von 1600 - 1700°C im flüssigen Aggregatzustand gehalten wird. Der Induktionsverdampfer 1 ist in dieser Ausführungsform auf einer Hydraulikplattform 9 angeordnet, die es erlaubt diesen zu heben und zu senken.As shown in the single figure, the device 18 consists essentially of an induction evaporator 1, in which the FeMn introduced is kept at a temperature of 1600 - 1700 ° C in the liquid state. The induction evaporator 1 is arranged in this embodiment on a hydraulic platform 9, which allows it to raise and lower.

Im Bodenbereich des Induktionsverdampfers 1 ist mindestens ein Spülrohranschluss 19 vorgesehen, der mit einer Zuleitung 15 verbunden ist und über die ein Schutzgas, in diesem Fall Argon, in den Induktionsverdampfer 1 eingeleitet wird. Das Schutzgas steigt durch die FeMn - Schmelze nach oben, wo es sich mit dem verdampften Anteil des Mangans bei einem Druck von 100 bis 200 mbar in einer Dampfleitung 14 sammelt und in einem Dampfstrom 17, hier als Pfeile dargestellt, abgeführt wird. Die Dampfleitung 14 ist dabei gasdicht mit dem Induktionsverdampfer 1 verbunden.In the bottom region of the induction evaporator 1, at least one flushing pipe connection 19 is provided, which is connected to a supply line 15 and via which a protective gas, in this case argon, is introduced into the induction evaporator 1. The protective gas rises through the FeMn melt, where it collects with the vaporized portion of manganese at a pressure of 100 to 200 mbar in a vapor line 14 and is discharged in a vapor stream 17, shown here as arrows. The steam line 14 is connected in a gas-tight manner to the induction evaporator 1.

Der sich in der Dampfleitung 14 befindliche Dampfstrom 17 wird an einer primären Wasserkühlung 4, die die Dampfleitung von außen ummantelt, vorbeigeleitet und dabei heruntergekühlt. In einer sekundären Wasserkühlung 5 wird der Dampfstrom 17 soweit heruntergekühlt, das ein Aggregatzustandwechsel des Mangans von gasförmig nach flüssig eintritt. Um dies so effizient und schnell wie möglich ausführen zu können, ist dabei vorgesehen, die sekundäre Wasserkühlung 5 innerhalb der Dampfleitung 14 und im Dampfstrom 17 anzuordnen.The steam flow 17 located in the steam line 14 is conducted past a primary water cooling 4, which surrounds the steam line from the outside, and is cooled down at the same time. In a secondary water cooling 5, the steam flow 17 is cooled down to the extent that an aggregate state change of the manganese from gaseous to liquid occurs. In order to do this as efficiently and quickly as possible, it is provided to arrange the secondary water cooling 5 within the steam line 14 and in the steam flow 17.

Die sekundäre Wasserkühlung 5 ist dabei konisch ausgebildet und liegt mit der sich verjüngenden Seite in Richtung des ankommenden Dampfstromes 17. In der Figur ist dies als ein gleichschenkliges Dreieck dargestellt.The secondary water cooling 5 is conical and lies with the tapered side in the direction of the incoming vapor stream 17. In the figure, this is shown as an isosceles triangle.

Unterhalb der sekundären Wasserkühlung 5 ist eine horizontal verfahrbare Kondensationskammer 2 angeordnet. Auch die Kondensationskammer 2 kann gasdicht mit der Dampfleitung 14 verbunden werden.Below the secondary water cooling 5, a horizontally movable condensation chamber 2 is arranged. The condensation chamber 2 can be connected in a gastight manner to the steam line 14.

In der horizontal verfahrbar ausgebildeten Kondensationskammer 2 sammelt sich das verflüssigte hochreine Mangan und wird bei einer Temperatur von 1350 bis 1400°C im flüssigen Aggregatzustand gehalten.In the horizontally movable formed condensation chamber 2, the liquefied high-purity manganese collects and is maintained at a temperature of 1350 to 1400 ° C in the liquid state.

Der verfahrbaren Kondensationskammer 2 ist ein siphonartiges Abstichloch 13 zugeordnet. Über das Abstichloch 13 wird das Mangan abgestochen und in eine Gießmaschine 8 aufgegeben. Die Gießmaschine 8 ist gekammert ausgebildet und steht auch unter einer Schutzgasatmosphäre 7 (Argon) und ist mit entsprechenden Vorrichtungsmitteln zur Beaufschlagung und Aufrechterhaltung der Schutzgasatmosphäre ausgerüstet. In der Gießmaschine wird das Mangan zu einem Endprodukt 11 in die entsprechend gewünschten Formate vergossen. Das Endprodukt 11 hat einen Reinheitsgrad von 99,9 % Mangan.The movable condensation chamber 2 is associated with a siphon-like tap hole 13. About the tap hole 13, the manganese is tapped and placed in a casting machine 8. The casting machine 8 is chambered and is also under a protective gas atmosphere 7 (argon) and is equipped with appropriate device means for applying and maintaining the protective gas atmosphere. In the casting machine, the manganese is poured into a final product 11 in the appropriate desired formats. The final product 11 has a purity of 99.9% manganese.

Während die manganhaltigen Dämpfe im Dampfstrom 17 an der sekundären Wasserkühlung 5 kondensieren, wird über einen Anschluss 20 die Schutzgasatmosphäre mittels einer Vakuumpumpe 3 abgesaugt und wieder in die Zuleitung 15 eingespeist. Das in dem Schutzgas noch befindliche verdampfte Mangan wird in einem sekundären Kondensator 12 heruntergekühlt und von der Schutzgasatmosphäre abgeschieden. Dem sekundären Kondensator 12 steht hierfür eine Vakuumpumpe mit Wasserkühlung 6 zur Verfügung.While the manganese-containing vapors in the vapor stream 17 condense on the secondary water cooling 5, the protective gas atmosphere is drawn off via a connection 20 by means of a vacuum pump 3 and fed back into the feed line 15. The vaporized manganese still present in the protective gas is cooled down in a secondary condenser 12 and separated from the protective gas atmosphere. The secondary capacitor 12 is for this purpose a vacuum pump with water cooling 6 available.

Das vom Mangandampf gereinigte Schutzgas wird in der Zuleitung 15 im Kreislauf geführt und über eine Einspeisung 16 und ein sekundär Filter 10 wieder in den Induktionsverdampfer geleitet. Über die Einspeisung 16 wird dem Kreislauf durch den Prozessverlauf verlorengegangenes Schutzgas wieder zugeführt, so dass eine stabile Argon - Schutzgasatmosphäre mit jederzeit sichergestellt wird.The inert gas purified by the manganese vapor is circulated in the supply line 15 and fed back into the induction evaporator via a feed 16 and a secondary filter 10. Via the feed 16, the circulation process returns lost protective gas to the cycle, so that a stable argon protective gas atmosphere is ensured at all times.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1.1.
Induktionsverdampferinduction evaporator
2.Second
Kondensationskammercondensation chamber
3.Third
Vakuumpumpevacuum pump
4.4th
primäre Wasserkühlungprimary water cooling
5.5th
sekundäre Wasserkühlungsecondary water cooling
6.6th
Vakuumpumpe mit WasserkühlsystemVacuum pump with water cooling system
7.7th
ArgonschutzatmosphäreArgon protective atmosphere
8.8th.
Gießmaschinecasting machine
9.9th
Hydraulikplattformhydraulic platform
10.10th
Sekundärfiltersecondary filter
11.11th
Endproduktend product
12.12th
sekundär Kondensatorsecondary capacitor
13.13th
Abstichlochtap hole
14.14th
Dampfleitungsteam line
15.15th
Zuleitungsupply
16.16th
Einspeisungfeed
17.17th
Dampfstromsteam power
18.18th
Vorrichtungcontraption
19.19th
Spülrohranschlussflush pipe connection
20.20th
Anschlussconnection

Claims (15)

  1. Method of producing technically pure manganese by vaporisation of ferromanganese with carbon content in an induction vessel, wherein the method is performed under vacuum and temperatures above the liquidus temperature of the manganese, wherein a ladle with liquid ferromanganese containing carbon is inserted into an induction evaporator (1), the metal is produced under vacuum and vaporised by a vacuum pump system (3) and filter system (10) in the range of 10 to 900 mbar and a temperature in the region of > 1248° C under agitation with an inert gas and in the further course of the plant is cooled with water by a primary cooler (4), wherein the manganese vapours are liquefied in a mobile condensation chamber (2) at temperatures in the range of 1350 to 1400° C by a secondary cooler (5), continuously tapped off into a casting machine (8) through a siphon-like heated tap hole, and cast to form the end product (11).
  2. Method according to claim 1, characterised in that the liquefying of the manganese vapours is carried out continuously by means of the secondary cooler (5), which is arranged in the vapour flow (17) within a vapour duct (14) and which for the purpose of improvement in drip outflow is of conical form.
  3. Method according to claim 1, characterised in that the vacuum pump system is additionally equipped with a secondary water cooling system (6), a condenser (12) and a filter (13).
  4. Method according to claim 1, characterised in that the vaporisation process is additionally assisted with argon as inert gas.
  5. Method according to claim 1, characterised in that the technically pure manganese is continuously cooled with water, tapped off and delivered under an argon protective gas atmosphere to a casting machine (8).
  6. Method according to claim 1, characterised in that the vaporisation rate is controlled by temperature, vacuum pressure and inert gas throughflow rate.
  7. Method according to claim 1, characterised in that the vaporisation material consists of different manganese concentrations.
  8. Method according to claim 7, characterised in that the vaporisation material is continuously or discontinuously charged into the induction evaporator (1).
  9. Device for carrying out the method according to claims 1 to 8, wherein the metal is produced under vacuum in an evaporator (1), into which the manganese alloy is charged, and can be evaporated by a vacuum pump system (3) and filter system (13) in the range of 10 to 900 mbar and a temperature in the region of > 1248° C under agitation with argon as protective gas and is cooled by way of primary water cooling means (4) and secondary water cooling means (5), wherein the manganese vapours are collected in a mobile condensation chamber (2) at temperatures in the range of 1350 to 1400° C in the liquid aggregate state and can be continuously tapped off into a casting machine (8) via a siphon-like heated tap hole (13).
  10. Device according to claim 9, characterised in that the evaporator (1) is an induction evaporator which is arranged on a hydraulic platform (9) and constructed to be vertically movable by way of this.
  11. Device according to claim 9, characterised in that the mobile condensation chamber (2) is constructed to be horizontally movable.
  12. Device according to claim 10 and 11, characterised in that the induction evaporator (1) and the condensation chamber (2) are gas-tightly connected together by way of a vapour duct (14) operatively connected with the primary water cooling means (4) and the secondary water cooling means (5).
  13. Device according to claim 12, characterised in that the secondary water cooling means (5) is arranged within the vapour duct (14) in the vapour flow (17) above the condensation chamber (2).
  14. Device according to claim 13, characterised in that the vapour duct (14) is connected with a feed line (15) for the protective gas and the protective gas is conducted in the vapour duct (14) and the feed line (15) in a circuit, wherein vaporous manganese can be separated off by a secondary condenser (12) associated with the feed line (15) and the protective gas is fed back to the circuit by way of the feed line (15) to the induction evaporator (1).
  15. Device according to claim 14, characterised in that the protective gas is reintroducible from the condensation chamber (2) by way of a feed (16) into the feed line (15) and can be flushed by way of a secondary filter (10) into the induction evaporator (1) and additional protective gas can similarly be fed by way of the feed (16) to the vapour flow (17).
EP14789775.5A 2013-09-25 2014-08-14 Production of high-grade manganese from ferromanganese by means of vaporization in a vacuum induction plant Active EP3049543B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013016366.8A DE102013016366A1 (en) 2013-09-25 2013-09-25 Production of high quality manganese from ferromanganese by evaporation in a vacuum induction plant
PCT/DE2014/000413 WO2015043560A1 (en) 2013-09-25 2014-08-14 Production of high-grade manganese from ferromanganese by means of vaporization in a vacuum induction plant

Publications (2)

Publication Number Publication Date
EP3049543A1 EP3049543A1 (en) 2016-08-03
EP3049543B1 true EP3049543B1 (en) 2018-04-11

Family

ID=51798945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14789775.5A Active EP3049543B1 (en) 2013-09-25 2014-08-14 Production of high-grade manganese from ferromanganese by means of vaporization in a vacuum induction plant

Country Status (6)

Country Link
EP (1) EP3049543B1 (en)
KR (1) KR102279028B1 (en)
BR (1) BR112016006204A2 (en)
DE (1) DE102013016366A1 (en)
RU (1) RU2674178C2 (en)
WO (1) WO2015043560A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105018723B (en) * 2015-07-08 2017-12-19 湖南双创部落信息咨询服务有限责任公司 Chemical combination and efficient filter-pressing device in electrolytic manganese process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2986461A (en) * 1957-12-21 1961-05-30 Pechiney Prod Chimiques Sa Manufacture of refined manganese
US3054670A (en) * 1960-01-23 1962-09-18 Electro Chimie Metal Process of producing manganese
SU1148885A1 (en) * 1983-11-18 1985-04-07 Сибирский ордена Трудового Красного Знамени металлургический институт им.Серго Орджоникидзе Method of melting metallic manganese
KR101064991B1 (en) * 2008-12-29 2011-09-16 주식회사 포스코 Process and apparatus for producing high-purity manganese
JP5636515B2 (en) 2012-01-10 2014-12-03 Jx日鉱日石金属株式会社 High purity manganese and method for producing the same

Also Published As

Publication number Publication date
RU2016115909A (en) 2017-10-26
KR20160065898A (en) 2016-06-09
KR102279028B1 (en) 2021-07-19
WO2015043560A1 (en) 2015-04-02
RU2016115909A3 (en) 2018-06-25
RU2674178C2 (en) 2018-12-05
BR112016006204A2 (en) 2017-08-01
DE102013016366A1 (en) 2015-03-26
EP3049543A1 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
EP2804964B1 (en) Process and apparatus for vacuum distillation of high-purity magnesium
DE1291760B (en) Process and device for discontinuous and continuous vacuum melting and casting of steel and steel-like alloys (super alloys)
DE3024697A1 (en) METHOD AND DEVICE FOR PRODUCING ALLOYED OR UNALLOYED REACTIVE METALS
DE60024666T2 (en) Manufacturing method for a porous metal body
DE102006056482B4 (en) Apparatus and method for processing non-ferrous metals
EP2878684B1 (en) Method for controlling the decarbonisation potential of a metal melt containing carbon during an oxygen/inert gas blowing and vacuum treatment
CN105308196B (en) The production method of Maraging steel and the miniaturization method of field trash
EP3049543B1 (en) Production of high-grade manganese from ferromanganese by means of vaporization in a vacuum induction plant
EP0280765B1 (en) Method of and installation for producing castings from pressure treated melts from steel alloys
DE2002544B2 (en) METALLOTHERMAL PRODUCTION METHOD OF MAGNESIUM
EP3022325B1 (en) Apparatus and method for sequential melting and refining in a continuous process
DE2018770C3 (en) Directionally solidified, fiber-reinforced composite material made of high-temperature alloys from a polyvariant system and process for its production
DE4212936C2 (en) Process and arrangement for producing low-gas and non-porous cast aluminum alloys
DE2504610C3 (en) Process for the production of metallic zirconium
EP3572539A1 (en) Method for generating a nbti alloy
DE1483647C3 (en) Heating for a melting furnace in a device for the production of nitrogen-alloyed ingots
DE867005C (en) Method and device for leaching aluminum from contaminated metal or alloys
DE2060673C3 (en) Apparatus for the production of phosphides
DE2100498C3 (en) Method and device for reducing a metal chloride from the group of zirconium tetrachloride, hafnium tetrachloride or niobium pentachloride
DE722449C (en) Process for the extraction of metallic magnesium by thermal reduction of raw materials containing magnesium oxide or the like using an iron-silicon-aluminum alloy for the reduction
EP1558768B1 (en) Method for the production of corrosion-resistant steels and cast irons by alloying with a polymerized, fullerene-like carbon
DE3624622C2 (en)
DE2607156A1 (en) Pure hydrogen prodn. from impure gas mixt. - in compressed gas bottle contg. a granular metal packing
DE2017278C (en) Process for dephosphorization of aluminum alloys
DE1533949C2 (en) Device for the continuous production of vacuum steel from pig iron

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20161018

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 988096

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014007951

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180411

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180712

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014007951

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

26N No opposition filed

Effective date: 20190114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180814

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140814

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180411

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180811

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 988096

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190814

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230821

Year of fee payment: 10