EP3032107B1 - Turbomolecular pump - Google Patents

Turbomolecular pump Download PDF

Info

Publication number
EP3032107B1
EP3032107B1 EP15191438.9A EP15191438A EP3032107B1 EP 3032107 B1 EP3032107 B1 EP 3032107B1 EP 15191438 A EP15191438 A EP 15191438A EP 3032107 B1 EP3032107 B1 EP 3032107B1
Authority
EP
European Patent Office
Prior art keywords
pump
rotor
blade
stator
turbomolecular pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15191438.9A
Other languages
German (de)
French (fr)
Other versions
EP3032107A2 (en
EP3032107A3 (en
Inventor
Florian Bader
Jan Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP3032107A2 publication Critical patent/EP3032107A2/en
Publication of EP3032107A3 publication Critical patent/EP3032107A3/en
Application granted granted Critical
Publication of EP3032107B1 publication Critical patent/EP3032107B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface

Definitions

  • the invention relates to a turbomolecular pump with at least one turbomolecular pump stage, which comprises at least one blade rotor which is rotatably mounted about an axis.
  • turbomolecular pumps are generally known and are e.g. used in the semiconductor industry and in physical research to generate the high vacuum required there.
  • the turbomolecular pump is characterized by a blade rotor, also referred to below as a rotor, the structure of which is reminiscent of the rotor of a turbine.
  • the blade rotor interacts with a blade stator, also referred to below as the stator, and usually rotates at such a high speed that the tangential speed of the individual rotor blades is of a similar order of magnitude to the average thermal speed of the particles to be conveyed.
  • With a vertical pumping direction from top to bottom the majority of the particles collide with an underside of an angled rotor blade. A pumping action results from a preferred direction of the underside of the rotor blade in the pumping direction.
  • the rotor must also be surrounded by a wall to prevent the particles from flowing back outside the rotor area.
  • a wall is formed, for example, from the inside of a housing containing the turbomolecular pump stage or from the inside of stator spacer rings arranged between individual stator disks.
  • This wall has a cylindrical inner surface which is arranged concentrically to the rotor and whose preferred direction points radially inward and thus in the pumping direction. Particles by themselves or after colliding with a rotor blade on the cylindrical inner surface of the wall, there is no longer any pumping action.
  • a turbomolecular pump according to the preamble of claim 1 is known from the EP 0 568 069 A2 known.
  • a turbomolecular pump having the features of claim 1, and in particular in that a wall which at least partially surrounds the blade rotor is provided with at least one depression on at least one pump-effective subarea of its side facing the blade rotor, the depression being a spiral or has a helical course and / or the pump-effective portion is designed as a Holweck stator.
  • the performance of the turbomolecular pump can be improved by giving particles that strike the wall a preferred direction in the pumping direction.
  • the pumping speed and the compression can be increased on an existing flange with an existing pump.
  • the invention enables the technical adaptation of a static component of the turbomolecular pump. Static components are not exposed to such high mechanical loads like rotor components. They can therefore be changed and installed without qualification. For this reason, further developments of turbomolecular pumps are particularly advantageous in terms of development technology if they only relate to static components, as is possible here according to the invention.
  • the depression has a spiral or helical shape.
  • the depression therefore has a thread course which corresponds to the course of the depression in Gaede thread pumps or molecular pumps according to Holweck.
  • the depression can be designed as a helix.
  • the spiral or screw-shaped course of the depression advantageously has the same direction of rotation as the blade rotor.
  • the pump-effective part of the wall is alternatively or additionally designed as a Holweck stator.
  • the Holweck stator which is known per se, is applied to a turbomolecular pump stage with a few constructive measures.
  • the pumping action is further improved if the depression has a course with an axial component and / or with a slope different from zero. This gives the particles a preferred direction, also with an axial component. The pumping action in the axial direction is thus improved.
  • the depression can furthermore be designed in the manner of a groove or channel. This further improves the guidance of the particles in their preferred direction.
  • a groove or such a channel can be made particularly easily in an inside wall.
  • the pump-effective partial area is advantageously provided with a plurality of, in particular non-contiguous, depressions.
  • the depressions can advantageously run parallel to one another.
  • the pumping action of the inside of the wall can be increased in particular in proportion to the number of depressions. Disjointed and / or parallel depressions can also be introduced particularly easily and prevent backflow between the depressions.
  • the wall can advantageously be formed by a housing surrounding the blade rotor.
  • the pump-effective section is formed on the inside of the housing. This means that there is no need to insert an additional wall into the pump housing.
  • the recess can also be made by casting the housing or by milling.
  • the housing can represent the outer housing of the pump. As a result, even fewer individual parts are required.
  • the wall can also be formed, for example, by a ring element surrounding the blade rotor and the pump-effective partial area can be formed on the inside of the ring element.
  • the ring element is easy to machine and assemble, but represents an additional part of the vacuum pump.
  • the ring element can be designed to be arranged between two stator disks and thus to define their axial distance between them.
  • the ring element can in particular be a spacer ring, a spacer ring, a spacer sleeve and / or a spacer sleeve.
  • the blade rotor comprises a plurality of rotor disks arranged axially one after the other, integrally connected to one another or separate.
  • the pump performance of the turbomolecular pump can be further improved by several rotor disks.
  • the pump-effective partial area extends in the axial direction only over a subset of rotor disks, preferably comprising the rotor disk closest to the suction side of the pump, in particular over exactly one rotor disk.
  • the pumping effect can be improved particularly effectively by the depression according to the invention.
  • At least some blades of a blade stator interacting with the blade rotor can be connected to the wall. This results in a simpler construction of the turbomolecular pump.
  • the pump-effective subarea can advantageously be located axially outside of blades of a blade stator interacting with the blade rotor.
  • the pump-effective subarea is then only arranged opposite the blades of the blade rotor, that is to say not at the level of the stator.
  • a pump-effective region of the wall can extend at least substantially over the entire axial length of the turbomolecular pump.
  • a blade stator which interacts with the blade rotor comprises a plurality of stator disks arranged axially one after the other, the pump-effective partial region being located only axially between the stator disks and / or axially adjacent to at least one of the stator disks.
  • the pump-effective subarea can be formed by the inner sides of stator spacer rings located between stator disks and thus at the level of a rotor disk. This facilitates the insertion of the depression.
  • blades of a blade stator interacting with the blade rotor each have an angle of attack in a radially outer end region which is at least approximately equal to a slope of the depression.
  • the depression extends at least substantially parallel to the alignment or the angle of attack of the stator blades. This further improves the forwarding of the particles.
  • the blades of the blade rotor each have an angle of attack in a radially outer end region which differs between 45 ° and 90 ° from an increase in the depression.
  • the depression is arranged perpendicularly or at an acute angle to the rotor blades.
  • the pump-effective sub-area has a plurality of parallel depressions which are separated from one another by webs, the number of webs being at least approximately equal to the number of blades per stator disk of a blade stator interacting with the blade rotor. It can be advantageous to provide the same number of depressions or as many webs as stator blades. Furthermore, the number of rotor blades can also be the same as the number of stator blades. The probability of passage of the individual particles can thereby be further improved.
  • the stator blades can be firmly connected to the webs on the inside of the wall, in particular they can be made of material.
  • the stator blades can thus spring from the webs between the depressions.
  • the depressions can also extend between the stator blades.
  • the depressions can also extend continuously over several turbomolecular pump stages or over several alternately arranged rotor and stator disks.
  • the depressions can be designed as multi-start internal threads. In this way, an improved continuous particle flow in the pump-effective sub-area can be achieved.
  • a depression according to the invention can also be arranged on the inside of a stator spacer ring. This facilitates the manufacture of turbomolecular pumps with several turbomolecular pump stages or with several alternating rotor and stator disks.
  • the object of the invention also achieves a turbomolecular pump with at least one turbomolecular pump stage, which is surrounded at least in a partial axial area by a Holweck stator, the pump-effective side of which faces the blade rotor of the turbomolecular pump stage.
  • the invention combines a turbomolecular pump stage with a Holweck pump stage or creates a hybrid pump stage from these two pump types.
  • Fig. 1 shows, purely by way of example, a typical basic structure of a turbomolecular pump with a turbomolecular pump section 56 and a Holweck pump section 58.
  • the turbomolecular pump comprises a rotor shaft 36 which is rotatable in a housing 38 by a ball or generally a roller bearing 30 on the discharge side and by a A radial bearing 32 designed as a permanent magnet bearing is mounted on the suction side 40 of the turbomolecular pump.
  • a plurality of rotor disks 12 are seated on the rotor shaft 36 and rotate together with the rotor shaft 36 during operation.
  • Stator disks 14 are arranged axially alternating with the rotor disks 12 between the rotor disks 12.
  • the stator disks 14 are in their mutual axial distance by spacer rings 54 set.
  • the spacer rings 54 each have a wall on their side facing the rotor disks 12, the wall according to the invention each having one or more depressions, for example according to the embodiment of FIG Fig. 5 , are provided.
  • the Fig. 2 shows a blade rotor 12 and a blade stator 14 of a turbomolecular pump stage.
  • the blade rotor is surrounded by a wall 16 in the radial direction.
  • the blade rotor 12 rotates about a concentric axis (not shown) with the direction of rotation 44.
  • Rotor blades 18, which are twisted in themselves, extend from radially inward to radially outward. That is, the angle of attack, which relates to the radially outer ends of the stator blades, is steeper than the angle of the origin of the rotor blades.
  • the blade rotor is also essentially designed as a disk, ie it extends essentially in the radial direction and has a thickness in the axial direction.
  • the blade stator 14 of the Fig. 2 is essentially the same as the blade rotor 12, but is, in a way, mirror-inverted.
  • the stator blades 20 likewise originate radially on the inside of the blade stator 14. However, they can also originate radially on the outside, for example on the wall 16.
  • the wall 16 surrounds the blade rotor 12 in the radial direction.
  • the wall 16 has depressions 22 on the inside, ie on the side facing the blade rotor.
  • the depressions 22 are each designed as a groove and extend helically in the axial direction.
  • Crosspieces 24 are formed between the depressions 22.
  • the number of depressions 22 and the number of webs 24 are in each case equal to the number of stator blades 20 and equal to the number of rotor blades 18.
  • the depressions 22 are arranged parallel to one another and parallel to the outer ends of the stator blades 20.
  • the pump direction is in Fig. 2 from top to bottom, i.e. axially downwards.
  • the Fig. 3 shows an alternative view of the turbomolecular pump stage of FIG Fig. 2 .
  • the blade rotor 12 and the blade stator 14 are arranged axially adjacent.
  • the blade rotor is radially enclosed by the wall 16.
  • the wall 16 has on its inside the depressions 22 and the webs 24 arranged between them.
  • the blade rotor 12 rotates with its rotor blades 18 within the wall 16.
  • the stator blades 20 of the blade stator 14 are arranged statically.
  • the pump-effective partial area that is to say the axial extent of the depressions 22, extends only over the axial width of the rotor blades 18.
  • the webs 24 between the depressions 22 run parallel to the depressions 22. They are narrower than the depressions 22.
  • the depressions 22 are designed as channel-like, rectangular grooves on the inside of the wall 16. Accordingly, the webs 24 are also rectangular.
  • the webs 24 and the depressions 22 extend parallel to the radially outer ends of the stator blades 20.
  • the webs 24 are each arranged in the circumferential direction at the same location as the stator blades 20.
  • the axially lower, i.e. in the Fig. 3 the rear ends of the depressions 22 are arranged between the stator blades 20 in the circumferential direction. A particle stream in a depression 22 can thereby flow freely between the stator blades 20.
  • the axially lower ends of the depressions 22 face the blade stator.
  • the Fig. 4 shows a schematic diagram of two turbomolecular pump stages.
  • a rotor region 26, a stator region 28, a further rotor region 26 and a further stator region 28 are arranged axially adjacent.
  • turbomolecular pump comprises two rotor and two stator disks, which together can also be referred to as a turbomolecular pump stage.
  • the pumping direction runs from top to bottom.
  • the rotor blades 18 move from left to right.
  • the stator blades 20 are arranged statically in the stator regions.
  • depressions 22 are arranged inside on a wall 16, not shown (e.g. after Fig. 2 or 3rd ) depressions 22 are arranged.
  • Crosspieces 24 are arranged between the depressions 22.
  • the webs 24 are made wider than the depressions 22.
  • the depressions 22 as well as the webs 24 are arranged parallel to the stator blades 20.
  • the angle of attack 46 of the stator blades 20 is therefore at their radially outer ends equal to the slope 48 of the depressions 22.
  • the depressions 22 are also located centrally between the stator blades 20 in the circumferential direction. The depressions 22 thus extend in the pumping direction from an upper suction side to a lower discharge side continuously over both turbomolecular pump stages shown.
  • the angle of incidence 50 of the rotor blades 18 is 90 ° greater than the angle of incidence 46 of the stator blades 20.
  • the rotor blades 18 and the stator blades 20 are therefore aligned perpendicular to one another at their radially outer ends.
  • the radially outer ends of the rotor blades 18 are therefore also arranged perpendicular to the slope 48 of the depressions 22.
  • FIG. 5 schematically shows some components of a turbomolecular pump according to the invention, specifically in a basic illustration a vane rotor 12 also known as a rotor disk with vanes 18, which is rotatably mounted on a rotor shaft 36 and of which only one rotor disk 12 is shown.
  • a vane rotor 12 also known as a rotor disk with vanes 18, which is rotatably mounted on a rotor shaft 36 and of which only one rotor disk 12 is shown.
  • the Blade rotor 12 rotates with rotor shaft 36 in rotor direction of rotation 44. As a result, it effects a pumping process in pumping direction 42 from an intake side 40 to an exhaust side 52.
  • the rotor disk 12 is shown in section.
  • the visible rotor blade 18 to the right of the axis of rotation 34 extends axially upward away from the viewer, while the visible rotor blade 18 to the left of the axis of rotation 34 extends axially upward to the viewer.
  • the rotor shaft 36 and the rotor disk 12 rotate about their axis of rotation 34.
  • the rotor shaft 36 is mounted radially and preferably also axially on the ejection side 52 with a roller bearing 30.
  • the roller bearing 30 can be designed, for example, as a ball bearing or as a cylindrical roller bearing.
  • the rotor shaft 36 is supported on the suction side 40 with a contactless and lubrication-free radial bearing 32, preferably with a magnetic bearing.
  • the blade rotor 12 of the Fig. 5 is surrounded by a housing 38.
  • the housing 38 has depressions 22 on its inner side facing the blade rotor 12.
  • a ring element such as a spacer ring 54 (cf. Fig. 1 ) can be provided with depressions 22 according to the invention, ie component 38 in Fig. 5 then represents such a spacer ring which interacts with the rotor disk 12 in the manner according to the invention.
  • the depressions 22 are arranged helically around the blade rotor 12 in the form of grooves.
  • the direction of rotation of the helical recesses 22 corresponds to the direction of rotation 44 of the blade rotor 12. In the Fig. 2 , 3rd and 5 the direction of rotation corresponds to that of a left-handed thread.
  • Crosspieces 24 are formed between the depressions 22.
  • the webs 24 are here just as wide as the depressions 22.
  • the pump-active partial area of the inner wall of the housing 38 goes into Fig. 5 axially in both directions beyond the blade rotor 12. In Fig. 5 the depressions 22 have an incline which is less than 45 °.
  • the depressions 22 are designed as vertically milled grooves.
  • a blade stator also referred to as a stator disk, can be arranged axially below and / or above the blade rotor 12.
  • Further turbomolecular pump stages can also be arranged axially above and below the blade rotor 12.
  • the structure can therefore, for example, correspond to the turbomolecular pump section Fig. 1 be chosen.
  • stator disk adjacent to the rotor disk 12.
  • two or more rotor disks can be arranged axially in direct succession before another stator disk follows, ie there are then at least one pair of immediately successive rotor disks, between which no stator disk is arranged in each case.
  • stator disks can also be provided, ie stator disks can also be dispensed with entirely, at least for a turbomolecular pump section of the turbomolecular pump.
  • a turbomolecular pump section of the turbomolecular pump For such a construction of one or more turbomolecular pump sections of a turbomolecular pump and for such a turbomolecular pump as a whole, which otherwise have a typical construction as for example in Fig. 1 protection can be shown separately.
  • Axial areas of such a pump section, in which there is no stator disk, can then have, according to the present invention, one or more ring-shaped or sleeve-shaped elements, each of which forms a wall surrounding the rotor disks, which on at least one pump-effective partial area of its side facing the rotor disks at least one recess is provided, but this is not mandatory.
  • a Holweck stator can therefore be arranged around the blade rotor of a turbomolecular pump stage according to the invention.
  • gas particles which are accelerated outwards by the rotor against the inner wall of the housing are deflected in an axial direction by a Holweck stator thread. This in turn makes the probability of passage increases in the conveying direction and thus improves the power density of a turbomolecular pump.
  • the particles to be conveyed hit a smooth surface in the radial gap between the radially outer end of the rotor blades and the inner wall of the housing or the inside of the stator spacer ring. There the particles stuck briefly and left this surface again with a cosine distribution, whereby they did not experience any other preferred direction.
  • the Holweck thread according to the invention more particles can now leave the inner wall of the housing or the inside of a wall facing the blade rotor with an axial component which points in the direction of the pump outlet, ie in the pumping direction.
  • Simulation results for a single-stage turbomolecular pump with nitrogen to be pumped resulted in the following:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

Die Erfindung betrifft eine Turbomolekularpumpe mit wenigstens einer Turbomolekularpumpstufe, die zumindest einen um eine Achse drehbar gelagerten Schaufelrotor umfasst.The invention relates to a turbomolecular pump with at least one turbomolecular pump stage, which comprises at least one blade rotor which is rotatably mounted about an axis.

Derartige Turbomolekularpumpen sind grundsätzlich bekannt und werden z.B. in der Halbleiterindustrie und in der physikalischen Forschung eingesetzt, um ein dort benötigtes Hochvakuum zu erzeugen. Die Turbomolekularpumpe zeichnet sich durch einen nachstehend auch als Rotor bezeichneten Schaufelrotor aus, dessen Aufbau an den Rotor einer Turbine erinnert. Der Schaufelrotor wirkt mit einem im Folgenden auch als Stator bezeichneten Schaufelstator zusammen und rotiert üblicherweise mit einer derart hohen Geschwindigkeit, dass die Tangentialgeschwindigkeit der einzelnen Rotorschaufeln in ähnlicher Größenordnung zu der mittleren thermischen Geschwindigkeit von zu fördernden Teilchen liegt. Bei einer senkrechten Pumprichtung von oben nach unten kollidiert die Mehrzahl der Teilchen mit einer Unterseite einer winklig angestellten Rotorschaufel. Durch eine Vorzugsrichtung der Unterseite der Rotorschaufel in Pumprichtung entsteht eine Pumpwirkung.Such turbomolecular pumps are generally known and are e.g. used in the semiconductor industry and in physical research to generate the high vacuum required there. The turbomolecular pump is characterized by a blade rotor, also referred to below as a rotor, the structure of which is reminiscent of the rotor of a turbine. The blade rotor interacts with a blade stator, also referred to below as the stator, and usually rotates at such a high speed that the tangential speed of the individual rotor blades is of a similar order of magnitude to the average thermal speed of the particles to be conveyed. With a vertical pumping direction from top to bottom, the majority of the particles collide with an underside of an angled rotor blade. A pumping action results from a preferred direction of the underside of the rotor blade in the pumping direction.

Der Rotor muss außerdem von einer Wand umgeben sein, um einen Rückfluss der Teilchen außerhalb des Rotorbereiches zu verhindern. Eine solche Wand wird z.B. von der Innenseite eines die Turbomolekularpumpstufe enthaltenden Gehäuses oder von den Innenseiten von zwischen einzelnen Statorscheiben angeordneten Statordistanzringen gebildet. Diese Wand weist eine zylindrische Innenfläche auf, die konzentrisch zu dem Rotor angeordnet ist und deren Vorzugsrichtung nach radial innen und somit in Pumprichtung zeigt. Teilchen, die von selbst oder nach Kollision mit einer Rotorschaufel auf die zylindrische Innenfläche der Wand treffen, erfahren dort keine Pumpwirkung mehr.The rotor must also be surrounded by a wall to prevent the particles from flowing back outside the rotor area. Such a wall is formed, for example, from the inside of a housing containing the turbomolecular pump stage or from the inside of stator spacer rings arranged between individual stator disks. This wall has a cylindrical inner surface which is arranged concentrically to the rotor and whose preferred direction points radially inward and thus in the pumping direction. Particles by themselves or after colliding with a rotor blade on the cylindrical inner surface of the wall, there is no longer any pumping action.

Eine Turbomolekularpumpe gemäß dem Oberberiff des Anspruchs 1 ist aus der EP 0 568 069 A2 bekannt.A turbomolecular pump according to the preamble of claim 1 is known from the EP 0 568 069 A2 known.

Vor diesem Hintergrund ist es die Aufgabe der Erfindung, die Leistung von Turbomolekularpumpen zu verbessern.Against this background, it is the object of the invention to improve the performance of turbomolecular pumps.

Diese Aufgabe wird durch eine Turbomolekularpumpe mit den Merkmalen des Anspruchs 1 gelöst, und insbesondere dadurch, dass eine den Schaufelrotor zumindest teilweise umgebende Wand auf wenigstens einem pumpwirksamen Teilbereich ihrer dem Schaufelrotor zugewandten Seite mit zumindest einer Vertiefung versehen ist, wobei die Vertiefung einen spiral- oder schraubenförmigen Verlauf aufweist und/oder der pumpwirksame Teilbereich als Holweckstator ausgebildet ist.This object is achieved by a turbomolecular pump having the features of claim 1, and in particular in that a wall which at least partially surrounds the blade rotor is provided with at least one depression on at least one pump-effective subarea of its side facing the blade rotor, the depression being a spiral or has a helical course and / or the pump-effective portion is designed as a Holweck stator.

Von Molekularpumpen z.B. nach Gaede oder Holweck ist bekannt, dass eine solche Vertiefung den zu fördernden Teilchen selbst eine weitere Vorzugsrichtung geben kann. Vorteilhaft dafür ist, wenn die Teilchen bereits eine Vorzugsrichtung besitzen, bevor sie in die Vertiefung eintreten, so dass die Mehrheit der Teilchen auf eine mit ihrer Normalen in Pumprichtung zeigende Fläche der Vertiefung trifft. Dies ist bei einem Schaufelrotor einer Turbomolekularpumpe, der gegenüber einer Vertiefung angeordnet ist, im Allgemeinen gegeben, da durch die Rotation der Rotorschaufeln eine tangentiale Geschwindigkeitskomponente der Teilchen im Allgemeinen nicht Null ist, sondern mit einem Betrag größer Null in Drehrichtung zeigt. Dadurch kann die Wand gewissermaßen selbst zu einem pumpaktiven Teilbereich werden.From molecular pumps e.g. according to Gaede or Holweck, it is known that such a depression can itself give the particles to be conveyed a further preferred direction. It is advantageous for this if the particles already have a preferred direction before they enter the depression, so that the majority of the particles strike a surface of the depression with their normal in the pumping direction. This is generally the case with a blade rotor of a turbomolecular pump, which is arranged opposite a depression, since the rotation of the rotor blades means that a tangential speed component of the particles is generally not zero, but points in the direction of rotation with an amount greater than zero. As a result, the wall itself can become a pump-active sub-area.

Die Leistung der Turbomolekularpumpe kann dadurch verbessert werden, dass Teilchen, die auf die Wand treffen, eine Vorzugsrichtung in Pumprichtung erhalten.The performance of the turbomolecular pump can be improved by giving particles that strike the wall a preferred direction in the pumping direction.

Es ist erfindungsgemäß besonders einfach und kostengrünstig, eine solche Vertiefung in die dem Schaufelrotor zugewandte Seite der Wand einzubringen. Eine solche Vertiefung kann beispielsweise einfach mit einem gewöhnlichen Fräswerkzeug eingebracht werden.According to the invention, it is particularly simple and inexpensive to make such a depression in the side of the wall facing the blade rotor. Such an indentation can, for example, be simply made with an ordinary milling tool.

Ferner können dadurch an einem bestehenden Flansch mit einer bestehenden Pumpe das Saugvermögen und die Kompression erhöht werden. Außerdem ermöglicht die Erfindung die technische Anpassung eines statischen Bauteils der Turbomolekularpumpe. Statische Bauteile sind nicht wie Rotorbauteile so hohen mechanischen Belastungen ausgesetzt. Sie können daher ohne Qualifizierung verändert und eingebaut werden. Deshalb sind Weiterentwicklungen von Turbomolekularpumpen entwicklungstechnisch besonders vorteilhaft, wenn sie lediglich - wie hier erfindungsgemäß möglich - statische Bauteile betreffen.Furthermore, the pumping speed and the compression can be increased on an existing flange with an existing pump. In addition, the invention enables the technical adaptation of a static component of the turbomolecular pump. Static components are not exposed to such high mechanical loads like rotor components. They can therefore be changed and installed without qualification. For this reason, further developments of turbomolecular pumps are particularly advantageous in terms of development technology if they only relate to static components, as is possible here according to the invention.

Erfindungsgemäß weist die Vertiefung einen spiral- oder schraubenförmigen Verlauf auf. Die Vertiefung besitzt also einen Gewindeverlauf, der dem Vertiefungsverlauf bei Gaede'schen Gewindepumpen oder Molekularpumpen nach Holweck entspricht. Die Vertiefung kann als Helix ausgebildet sein. Dadurch wird den Teilchen noch gleichmäßiger die gewünschte Vorzugsrichtung beigebracht. Der spiral- oder schraubenförmige Verlauf der Vertiefung besitzt vorteilhaft den gleichen Drehsinn wie der Schaufelrotor.According to the invention, the depression has a spiral or helical shape. The depression therefore has a thread course which corresponds to the course of the depression in Gaede thread pumps or molecular pumps according to Holweck. The depression can be designed as a helix. As a result, the desired preferred direction is imparted to the particles even more evenly. The spiral or screw-shaped course of the depression advantageously has the same direction of rotation as the blade rotor.

Der pumpwirksame Teilbereich der Wand ist alternativ oder zusätzlich als Holweckstator ausgebildet. So wird mit wenigen konstruktiven Maßnahmen der für sich bekannte Holweckstator auf eine Turbomolekularpumpstufe angewendet.The pump-effective part of the wall is alternatively or additionally designed as a Holweck stator. The Holweck stator, which is known per se, is applied to a turbomolecular pump stage with a few constructive measures.

Die Pumpwirkung wird weiter verbessert, wenn die Vertiefung einen Verlauf mit einer axialen Komponente und/oder mit einer von Null verschiedenen Steigung aufweist. Dadurch erhalten die Teilchen eine Vorzugsrichtung mit ebenfalls einer axialen Komponente. Die Pumpwirkung in axialer Richtung wird also verbessert.The pumping action is further improved if the depression has a course with an axial component and / or with a slope different from zero. This gives the particles a preferred direction, also with an axial component. The pumping action in the axial direction is thus improved.

Die Vertiefung kann ferner nut- oder kanalartig ausgebildet sein. Die Führung der Teilchen in ihrer Vorzugsrichtung wird dadurch weiter verbessert. Eine derartige Nut oder ein derartiger Kanal lässt sich besonders einfach in eine Wandinnenseite einbringen.The depression can furthermore be designed in the manner of a groove or channel. This further improves the guidance of the particles in their preferred direction. Such a groove or such a channel can be made particularly easily in an inside wall.

Vorteilhaft ist ferner der pumpwirksame Teilbereich mit einer Mehrzahl von, insbesondere unzusammenhängenden, Vertiefungen versehen. Dabei können die Vertiefungen vorteilhaft parallel zueinander verlaufen. Durch das Vorsehen mehrerer erfindungsgemäßer Vertiefungen kann die Pumpwirkung der Wandinnenseite insbesondere proportional zur Zahl der Vertiefungen verstärkt werden. Unzusammenhängende und/oder parallele Vertiefungen lassen sich ferner besonders einfach einbringen und verhindern ein Rückströmen zwischen den Vertiefungen.Furthermore, the pump-effective partial area is advantageously provided with a plurality of, in particular non-contiguous, depressions. The depressions can advantageously run parallel to one another. By providing several depressions according to the invention, the pumping action of the inside of the wall can be increased in particular in proportion to the number of depressions. Disjointed and / or parallel depressions can also be introduced particularly easily and prevent backflow between the depressions.

Die Wand kann vorteilhaft von einem den Schaufelrotor umgebenden Gehäuse gebildet sein. Der pumpwirksame Teilbereich ist dabei auf der Innenseite des Gehäuses ausgebildet. Dadurch braucht nicht eine zusätzliche Wand in das Pumpengehäuse eingebracht zu werden. Die Vertiefung lässt sich außerdem beim Gehäuseguss oder durch Einfräsung herstellen. Insbesondere kann das Gehäuse das Außengehäuse der Pumpe darstellen. Dadurch werden noch weniger Einzelteile benötigt.The wall can advantageously be formed by a housing surrounding the blade rotor. The pump-effective section is formed on the inside of the housing. This means that there is no need to insert an additional wall into the pump housing. The recess can also be made by casting the housing or by milling. In particular, the housing can represent the outer housing of the pump. As a result, even fewer individual parts are required.

Die Wand kann aber z.B. auch von einem den Schaufelrotor umgebenden Ringelement gebildet und der pumpwirksame Teilbereich auf der Innenseite des Ringelements ausgebildet sein. Das Ringelement ist einfach zu bearbeiten und zu montieren, stellt jedoch ein zusätzliches Teil der Vakuumpumpe dar. Das Ringelement kann dazu ausgebildet sein, zwischen zwei Statorscheiben angeordnet zu sein und so deren axialen Abstand zwischen einander festzulegen. Das Ringelement kann insbesondere ein Distanzring, ein Abstandsring, eine Distanzhülse und/oder eine Abstandshülse sein.However, the wall can also be formed, for example, by a ring element surrounding the blade rotor and the pump-effective partial area can be formed on the inside of the ring element. The ring element is easy to machine and assemble, but represents an additional part of the vacuum pump. The ring element can be designed to be arranged between two stator disks and thus to define their axial distance between them. The ring element can in particular be a spacer ring, a spacer ring, a spacer sleeve and / or a spacer sleeve.

Es kann also erfindungsgemäß vorgesehen sein, ohnehin vorhandene Elemente wie Ring- oder Hülsenelemente zwischen aufeinander folgenden Statorscheiben dazu zu nutzen, pumpwirksame Teilbereiche zu bilden, die auf ihrer dem Schaufelrotor zugewandten Seite mit zumindest einer Vertiefung versehen sind.It can therefore be provided according to the invention to use already existing elements such as ring or sleeve elements between successive stator disks to form pump-effective subareas which are provided with at least one recess on their side facing the blade rotor.

In einer vorteilhaften Ausführungsform umfasst der Schaufelrotor eine Mehrzahl von axial aufeinanderfolgend angeordneten, einstückig miteinander verbundenen oder separaten Rotorscheiben. Die Pumpleistung der Turbomolekularpumpe kann durch mehrere Rotorscheiben weiter verbessert werden.In an advantageous embodiment, the blade rotor comprises a plurality of rotor disks arranged axially one after the other, integrally connected to one another or separate. The pump performance of the turbomolecular pump can be further improved by several rotor disks.

Vorteilhaft kann vorgesehen sein, dass der pumpwirksame Teilbereich sich in axialer Richtung lediglich über eine, bevorzugt die der Ansaugseite der Pumpe am nächsten gelegene Rotorscheibe umfassende, Teilmenge von Rotorscheiben erstreckt, insbesondere über genau eine Rotorscheibe. An der in Pumprichtung ersten Rotorscheibe kann die Pumpwirkung durch die erfindungsgemäße Vertiefung besonders wirksam verbessert werden.It can advantageously be provided that the pump-effective partial area extends in the axial direction only over a subset of rotor disks, preferably comprising the rotor disk closest to the suction side of the pump, in particular over exactly one rotor disk. On the first rotor disk in the pumping direction, the pumping effect can be improved particularly effectively by the depression according to the invention.

Es können zumindest einige Schaufeln eines mit dem Schaufelrotor zusammenwirkenden Schaufelstators mit der Wand verbunden sein. Daraus ergibt sich ein einfacherer Aufbau der Turbomolekularpumpe.At least some blades of a blade stator interacting with the blade rotor can be connected to the wall. This results in a simpler construction of the turbomolecular pump.

Der pumpwirksame Teilbereich kann sich vorteilhaft axial außerhalb von Schaufeln eines mit dem Schaufelrotor zusammenwirkenden Schaufelstators befinden. Der pumpwirksame Teilbereich ist dann nur gegenüber den Schaufeln des Schaufelrotors, also nicht auf der Höhe des Stators, angeordnet.The pump-effective subarea can advantageously be located axially outside of blades of a blade stator interacting with the blade rotor. The pump-effective subarea is then only arranged opposite the blades of the blade rotor, that is to say not at the level of the stator.

Alternativ kann sich ein pumpwirksamer Bereich der Wand zumindest im Wesentlichen über die gesamte axiale Länge der Turbomolekularpumpe erstrecken.Alternatively, a pump-effective region of the wall can extend at least substantially over the entire axial length of the turbomolecular pump.

Vorteilhaft kann weiter vorgesehen sein, dass ein mit dem Schaufelrotor zusammenwirkender Schaufelstator eine Mehrzahl axial aufeinander folgend angeordneter Statorscheiben umfasst, wobei der pumpwirksame Teilbereich sich lediglich axial zwischen den Statorscheiben und/oder axial benachbart zu wenigstens einer der Statorscheiben befindet. Beispielsweise kann der pumpwirksame Teilbereich von den Innenseiten von jeweils zwischen Statorscheiben und somit auf der Höhe einer Rotorscheibe gelegenen Statordistanzringen gebildet sein. Dies erleichtert die Einbringung der Vertiefung.It can also be advantageously provided that a blade stator which interacts with the blade rotor comprises a plurality of stator disks arranged axially one after the other, the pump-effective partial region being located only axially between the stator disks and / or axially adjacent to at least one of the stator disks. For example, the pump-effective subarea can be formed by the inner sides of stator spacer rings located between stator disks and thus at the level of a rotor disk. This facilitates the insertion of the depression.

Vorteilhaft kann ferner vorgesehen sein, dass Schaufeln eines mit dem Schaufelrotor zusammenwirkenden Schaufelstators in einem radial äußeren Endbereich jeweils einen Anstellwinkel aufweisen, der zumindest näherungsweise gleich einer Steigung der Vertiefung ist. Die Vertiefung erstreckt sich dabei zumindest im Wesentlichen parallel zur Ausrichtung bzw. zu dem Anstellwinkel der Statorschaufeln. Dadurch wird die Weiterleitung der Teilchen weiter verbessert.It can also be advantageously provided that blades of a blade stator interacting with the blade rotor each have an angle of attack in a radially outer end region which is at least approximately equal to a slope of the depression. The depression extends at least substantially parallel to the alignment or the angle of attack of the stator blades. This further improves the forwarding of the particles.

In einer weiteren Ausführungsform weisen die Schaufeln des Schaufelrotors in einem radial äußeren Endbereich jeweils einen Anstellwinkel auf, der zwischen 45° und 90° von einer Steigung der Vertiefung verschieden ist. Die Vertiefung ist hierbei senkrecht oder in einem spitzen Winkel zu den Rotorschaufeln angeordnet.In a further embodiment, the blades of the blade rotor each have an angle of attack in a radially outer end region which differs between 45 ° and 90 ° from an increase in the depression. The depression is arranged perpendicularly or at an acute angle to the rotor blades.

Es kann vorteilhaft auch vorgesehen sein, dass der pumpwirksame Teilbereich eine Mehrzahl parallel verlaufender Vertiefungen aufweist, die durch Stege voneinander getrennt sind, wobei die Anzahl der Stege zumindest näherungsweise gleich der Anzahl von Schaufeln pro Statorscheibe eines mit dem Schaufelrotor zusammenwirkenden Schaufelstators ist. Es kann vorteilhaft sein, genauso viele Vertiefungen bzw. genauso viele Stege wie Statorschaufeln vorzusehen. Ferner kann auch die Anzahl der Rotorschaufeln gleich der Anzahl der Statorschaufeln sein. Dadurch kann die Durchtrittswahrscheinlichkeit der einzelnen Teilchen weiter verbessert werden.It can also advantageously be provided that the pump-effective sub-area has a plurality of parallel depressions which are separated from one another by webs, the number of webs being at least approximately equal to the number of blades per stator disk of a blade stator interacting with the blade rotor. It can be advantageous to provide the same number of depressions or as many webs as stator blades. Furthermore, the number of rotor blades can also be the same as the number of stator blades. The probability of passage of the individual particles can thereby be further improved.

Die Statorschaufeln können mit den Stegen der Wandinnenseite fest verbunden, insbesondere materialschlüssig ausgeführt, sein. Die Statorschaufeln können also den Stegen zwischen den Vertiefungen entspringen. Die Vertiefungen können sich außerdem zwischen den Statorschaufeln hindurch erstrecken. Die Vertiefungen können sich auch kontinuierlich über mehrere Turbomolekularpumpstufen oder über mehrere abwechselnd angeordnete Rotor- und Statorscheiben hinweg erstrecken. Die Vertiefungen können als mehrgängiges Innengewinde ausgeführt sein. So lässt sich eine verbesserte kontinuierliche Teilchenströmung in dem pumpwirksamen Teilbereich erreichen.The stator blades can be firmly connected to the webs on the inside of the wall, in particular they can be made of material. The stator blades can thus spring from the webs between the depressions. The depressions can also extend between the stator blades. The depressions can also extend continuously over several turbomolecular pump stages or over several alternately arranged rotor and stator disks. The depressions can be designed as multi-start internal threads. In this way, an improved continuous particle flow in the pump-effective sub-area can be achieved.

Eine erfindungsgemäße Vertiefung kann ferner auch auf der Innenseite eines Statordistanzrings angeordnet sein. Dies erleichtert die Fertigung besonders von Turbomolekularpumpen mit mehreren Turbomolekularpumpstufen oder mit mehreren abwechselnd angeordneten Rotor- und Statorscheiben.A depression according to the invention can also be arranged on the inside of a stator spacer ring. This facilitates the manufacture of turbomolecular pumps with several turbomolecular pump stages or with several alternating rotor and stator disks.

Die Aufgabe der Erfindung löst ferner eine Turbomolekularpumpe mit wenigstens einer Turbomolekularpumpstufe, die zumindest in einem Teilaxialbereich von einem Holweckstator umgeben ist, dessen pumpwirksame Seite dem Schaufelrotor der Turbomolekularpumpstufe zugewandt ist.The object of the invention also achieves a turbomolecular pump with at least one turbomolecular pump stage, which is surrounded at least in a partial axial area by a Holweck stator, the pump-effective side of which faces the blade rotor of the turbomolecular pump stage.

Die Erfindung kombiniert hierdurch eine Turbomolekularpumpstufe mit einer Holweckpumpstufe bzw. schafft eine Hybridpumpstufe aus diesen beiden Pumpentypen.As a result, the invention combines a turbomolecular pump stage with a Holweck pump stage or creates a hybrid pump stage from these two pump types.

Mögliche konkrete Ausgestaltungen auch dieser Pumpe sind vorstehend und in den abhängigen Ansprüchen angegeben.Possible specific configurations of this pump are given above and in the dependent claims.

Weitere Ausführungsformen der Erfindung sind in den abhängigen Ansprüchen, der Beschreibung sowie den Zeichnungen angegeben.Further embodiments of the invention are specified in the dependent claims, the description and the drawings.

Die Erfindung wird nachfolgend lediglich beispielhaft unter Bezugnahme auf die Zeichnungen erläutert.

Fig. 1
zeigt eine Schnittansicht einer erfindungsgemäßen Turbomolekularpumpe.
Fig. 2
zeigt in Perspektivansicht eine erfindungsgemäße Pumpstufe einer Turbomolekularpumpe.
Fig. 3
zeigt in einer anderen Perspektivansicht einen Teil der Pumpstufe von Fig. 2.
Fig. 4
zeigt eine Prinzipdarstellung einer erfindungsgemäßen Vertiefungsanordnung.
Fig. 5
zeigt in einer Prinzipdarstellung den Schaufelrotor einer erfindungsgemäßen Turbomolekularpumpstufe im Querschnitt längs der Drehachse des Rotors.
The invention is explained below by way of example only with reference to the drawings.
Fig. 1
shows a sectional view of a turbomolecular pump according to the invention.
Fig. 2
shows a perspective view of a pump stage of a turbomolecular pump according to the invention.
Fig. 3
shows in a different perspective view a part of the pump stage of FIG Fig. 2 .
Fig. 4
shows a schematic diagram of a deepening arrangement according to the invention.
Fig. 5
shows a schematic representation of the blade rotor of a turbomolecular pump stage according to the invention in cross section along the axis of rotation of the rotor.

Fig. 1 zeigt rein beispielhaft eine einen typischen Grundaufbau aufweisende Turbomolekularpumpe mit einem Turbomolekular-Pumpabschnitt 56 und einem Holweck-Pumpabschnitt 58. Die Turbomolekularpumpe umfasst eine Rotorwelle 36, die in einem Gehäuse 38 drehbar durch ein Kugel- oder allgemein ein Wälzlager 30 auf der Ausstoßseite und durch ein als Permanentmagnetlager ausgeführtes Radiallager 32 auf der Ansaugseite 40 der Turbomolekularpumpe gelagert ist. Auf der Rotorwelle 36 sitzen mehrere Rotorscheiben 12, die im Betrieb gemeinsam mit der Rotorwelle 36 rotieren. Zwischen den Rotorscheiben 12 sind Statorscheiben 14 axial alternierend mit den Rotorscheiben 12 angeordnet. Die Statorscheiben 14 sind in ihrem gegenseitigen axialen Abstand durch Distanz- oder Abstandsringe 54 festgelegt. Die Distanzringe 54 weisen auf ihrer den Rotorscheiben 12 zugewandten Seite jeweils eine Wand auf, die erfindungsgemäße jeweils mit einer oder mehreren Vertiefungen, z.B. nach der Ausführungsform der Fig. 5, versehen sind. Fig. 1 shows, purely by way of example, a typical basic structure of a turbomolecular pump with a turbomolecular pump section 56 and a Holweck pump section 58. The turbomolecular pump comprises a rotor shaft 36 which is rotatable in a housing 38 by a ball or generally a roller bearing 30 on the discharge side and by a A radial bearing 32 designed as a permanent magnet bearing is mounted on the suction side 40 of the turbomolecular pump. A plurality of rotor disks 12 are seated on the rotor shaft 36 and rotate together with the rotor shaft 36 during operation. Stator disks 14 are arranged axially alternating with the rotor disks 12 between the rotor disks 12. The stator disks 14 are in their mutual axial distance by spacer rings 54 set. The spacer rings 54 each have a wall on their side facing the rotor disks 12, the wall according to the invention each having one or more depressions, for example according to the embodiment of FIG Fig. 5 , are provided.

Die Fig. 2 zeigt einen Schaufelrotor 12 und einen Schaufelstator 14 einer Turbomolekularpumpstufe. Der Schaufelrotor ist in radialer Richtung von einer Wand 16 umgeben. Der Schaufelrotor 12 rotiert um eine nicht dargestellte, konzentrische Achse mit der Drehrichtung 44. Von radial innen nach radial außen erstrecken sich Rotorschaufeln 18, die in sich verwunden sind. Das heißt der Anstellwinkel, der sich auf die radial äußeren Enden der Statorschaufeln bezieht, ist steiler als der Winkel des Ursprungs der Rotorschaufeln. Der Schaufelrotor ist außerdem im Wesentlichen als Scheibe ausgeführt, d.h. er erstreckt sich im Wesentlichen in radialer Richtung und besitzt eine Dicke in axialer Richtung.The Fig. 2 shows a blade rotor 12 and a blade stator 14 of a turbomolecular pump stage. The blade rotor is surrounded by a wall 16 in the radial direction. The blade rotor 12 rotates about a concentric axis (not shown) with the direction of rotation 44. Rotor blades 18, which are twisted in themselves, extend from radially inward to radially outward. That is, the angle of attack, which relates to the radially outer ends of the stator blades, is steeper than the angle of the origin of the rotor blades. The blade rotor is also essentially designed as a disk, ie it extends essentially in the radial direction and has a thickness in the axial direction.

Der Schaufelstator 14 der Fig. 2 ist im Wesentlichen gleich dem Schaufelrotor 12, jedoch gewissermaßen spiegelverkehrt ausgeführt. Die Statorschaufeln 20 entspringen ebenfalls radial innen am Schaufelstator 14. Sie können jedoch auch radial außen, z.B. an der Wand 16, entspringen.The blade stator 14 of the Fig. 2 is essentially the same as the blade rotor 12, but is, in a way, mirror-inverted. The stator blades 20 likewise originate radially on the inside of the blade stator 14. However, they can also originate radially on the outside, for example on the wall 16.

Die Wand 16 umschließt den Schaufelrotor 12 in radialer Richtung. Auf der Innenseite, also auf der dem Schaufelrotor zugewandten Seite, weist die Wand 16 Vertiefungen 22 auf. Die Vertiefungen 22 sind jeweils als Nut ausgeführt und erstrecken sich schraubenförmig in axialer Richtung. Zwischen den Vertiefungen 22 sind Stege 24 ausgebildet. Zwischen den Stegen 24 besteht also eine Art Kanal in einem pumpwirksamen Teilbereich. Die Anzahl der Vertiefungen 22 und die Anzahl der Stege 24 sind jeweils gleich der Anzahl der Statorschaufeln 20 und gleich der Anzahl der Rotorschaufeln 18. Die Vertiefungen 22 sind parallel zueinander und parallel zu den äußeren Enden der Statorschaufeln 20 angeordnet. Die Pumprichtung richtet sich in Fig. 2 von oben nach unten, also axial nach unten.The wall 16 surrounds the blade rotor 12 in the radial direction. The wall 16 has depressions 22 on the inside, ie on the side facing the blade rotor. The depressions 22 are each designed as a groove and extend helically in the axial direction. Crosspieces 24 are formed between the depressions 22. There is a type of channel between the webs 24 in a pump-effective sub-area. The number of depressions 22 and the number of webs 24 are in each case equal to the number of stator blades 20 and equal to the number of rotor blades 18. The depressions 22 are arranged parallel to one another and parallel to the outer ends of the stator blades 20. The pump direction is in Fig. 2 from top to bottom, i.e. axially downwards.

Die Fig. 3 zeigt eine alternative Ansicht der Turbomolekularpumpstufe von Fig. 2. Axial benachbart sind der Schaufelrotor 12 und der Schaufelstator 14 angeordnet. Der Schaufelrotor ist von der Wand 16 radial umschlossen. Die Wand 16 weist auf ihrer Innenseite die Vertiefungen 22 und die dazwischen angeordneten Stege 24 auf. Der Schaufelrotor 12 rotiert mit seinen Rotorschaufeln 18 innerhalb der Wand 16. Die Statorschaufeln 20 des Schaufelstators 14 sind statisch angeordnet. Der pumpwirksame Teilbereich, also die Axialerstreckung der Vertiefungen 22, erstreckt sich nur über die axiale Breite der Rotorschaufeln 18.The Fig. 3 shows an alternative view of the turbomolecular pump stage of FIG Fig. 2 . The blade rotor 12 and the blade stator 14 are arranged axially adjacent. The blade rotor is radially enclosed by the wall 16. The wall 16 has on its inside the depressions 22 and the webs 24 arranged between them. The blade rotor 12 rotates with its rotor blades 18 within the wall 16. The stator blades 20 of the blade stator 14 are arranged statically. The pump-effective partial area, that is to say the axial extent of the depressions 22, extends only over the axial width of the rotor blades 18.

Die Stege 24 zwischen den Vertiefungen 22 verlaufen parallel zu den Vertiefungen 22. Dabei sind sie schmaler als die Vertiefungen 22 ausgeführt. Die Vertiefungen 22 sind als kanalartige, rechtwinklige Nuten auf der Innenseite der Wand 16 ausgeführt. Entsprechend sind die Stege 24 ebenfalls rechtwinklig ausgebildet. Die Stege 24 und die Vertiefungen 22 erstrecken sich parallel zu den radial äußeren Enden der Statorschaufeln 20. Die Stege 24 sind dabei jeweils in Umfangsrichtung an der gleichen Stelle wie die Statorschaufeln 20 angeordnet. Die axial unteren, also in der Fig. 3 die hinteren Enden der Vertiefungen 22 sind in Umfangsrichtung zwischen den Statorschaufeln 20 angeordnet. Ein Teilchenstrom in einer Vertiefung 22 kann dadurch ungehindert zwischen den Statorschaufeln 20 hindurchströmen. Die axial unteren Enden der Vertiefungen 22 sind dem Schaufelstator zugewandt.The webs 24 between the depressions 22 run parallel to the depressions 22. They are narrower than the depressions 22. The depressions 22 are designed as channel-like, rectangular grooves on the inside of the wall 16. Accordingly, the webs 24 are also rectangular. The webs 24 and the depressions 22 extend parallel to the radially outer ends of the stator blades 20. The webs 24 are each arranged in the circumferential direction at the same location as the stator blades 20. The axially lower, i.e. in the Fig. 3 the rear ends of the depressions 22 are arranged between the stator blades 20 in the circumferential direction. A particle stream in a depression 22 can thereby flow freely between the stator blades 20. The axially lower ends of the depressions 22 face the blade stator.

Die Fig. 4 zeigt in einer Prinzipdarstellung zwei Turbomolekularpumpstufen. Axial benachbart sind ein Rotorbereich 26, ein Statorbereich 28, ein weiterer Rotorbereich 26 und ein weiterer Statorbereich 28 angeordnet. Jeweils ein Rotorbereich 26 und ein benachbarter, axial unterhalb angeordneter Statorbereich 28 bilden eine Turbomolekularpumpstufe. Es sind also in Fig. 3 zwei Turbomolekularpumpstufen dargestellt.The Fig. 4 shows a schematic diagram of two turbomolecular pump stages. A rotor region 26, a stator region 28, a further rotor region 26 and a further stator region 28 are arranged axially adjacent. A rotor region 26 and an adjacent stator region 28 arranged axially below each form a turbomolecular pump stage. So it's in Fig. 3 two turbomolecular pump stages are shown.

Anstatt von "Stufen" kann auch von "Scheiben" gesprochen werden, d.h. diese exemplarisch dargestellte Turbomolekularpumpe umfasst zwei Rotor- und zwei Statorscheiben, die gemeinsam auch als Turbomolekularpumpstufe bezeichnet werden können.Instead of "steps" one can also speak of "disks", i.e. this exemplarily illustrated turbomolecular pump comprises two rotor and two stator disks, which together can also be referred to as a turbomolecular pump stage.

Die Pumprichtung verläuft von oben nach unten. In den Rotorbereichen 26 bewegen sich die Rotorschaufeln 18 von links nach rechts. In den Statorbereichen sind die Statorschaufeln 20 statisch angeordnet.The pumping direction runs from top to bottom. In the rotor areas 26, the rotor blades 18 move from left to right. The stator blades 20 are arranged statically in the stator regions.

Innen an einer nicht dargestellten Wand 16 (z.B. nach Fig. 2 oder 3) sind Vertiefungen 22 angeordnet. Zwischen den Vertiefungen 22 sind Stege 24 angeordnet. In dieser Ausführungsform sind die Stege 24 breiter als die Vertiefungen 22 ausgeführt. Die Vertiefungen 22 wie auch die Stege 24 sind parallel zu den Statorschaufeln 20 angeordnet. Der Anstellwinkel 46 der Statorschaufeln 20 ist also an ihren radial äußeren Enden gleich der Steigung 48 der Vertiefungen 22. Die Vertiefungen 22 sind außerdem in Umfangsrichtung mittig zwischen den Statorschaufeln 20 gelegen. Die Vertiefungen 22 erstrecken sich also in Pumprichtung von einer oberen Ansaugseite hin zu einer unteren Ausstoßseite durchgehend über beide dargestellte Turbomolekularpumpstufen hinweg.Inside on a wall 16, not shown (e.g. after Fig. 2 or 3rd ) depressions 22 are arranged. Crosspieces 24 are arranged between the depressions 22. In this embodiment, the webs 24 are made wider than the depressions 22. The depressions 22 as well as the webs 24 are arranged parallel to the stator blades 20. The angle of attack 46 of the stator blades 20 is therefore at their radially outer ends equal to the slope 48 of the depressions 22. The depressions 22 are also located centrally between the stator blades 20 in the circumferential direction. The depressions 22 thus extend in the pumping direction from an upper suction side to a lower discharge side continuously over both turbomolecular pump stages shown.

Der Anstellwinkel 50 der Rotorschaufeln 18 ist um 90° größer als der Anstellwinkel 46 der Statorschaufeln 20. Die Rotorschaufeln 18 und die Statorschaufeln 20 sind also an ihren radial äußeren Enden senkrecht zueinander ausgerichtet. Die radial äußeren Enden der Rotorschaufeln 18 sind daher auch senkrecht zur Steigung 48 der Vertiefungen 22 angeordnet.The angle of incidence 50 of the rotor blades 18 is 90 ° greater than the angle of incidence 46 of the stator blades 20. The rotor blades 18 and the stator blades 20 are therefore aligned perpendicular to one another at their radially outer ends. The radially outer ends of the rotor blades 18 are therefore also arranged perpendicular to the slope 48 of the depressions 22.

Die Fig. 5 zeigt schematisch einige Komponenten einer erfindungsgemäßen Turbomolekularpumpe, und zwar in einer Prinzipdarstellung einen auch als Rotorscheibe bezeichneten Schaufelrotor 12 mit Schaufeln 18, der auf einer Rotorwelle 36 drehfest gelagert und von dem nur eine Rotorscheibe 12 dargestellt ist. Der Schaufelrotor 12 rotiert mit der Rotorwelle 36 in der Rotordrehrichtung 44. Dadurch bewirkt er einen Pumpvorgang in der Pumprichtung 42 von einer Ansaugseite 40 hin zu einer Ausstoßseite 52. Die Rotorscheibe 12 ist geschnitten dargestellt. Die sichtbare Rotorschaufel 18 rechts der Rotationsachse 34 erstreckt sich nach axial oben vom Betrachter weg, während sich die sichtbare Rotorschaufel links der Rotationsachse 34 nach axial oben zum Betrachter hin erstreckt. Die Rotorwelle 36 und die Rotorscheibe 12 rotieren um ihre Rotationsachse 34.The Fig. 5 schematically shows some components of a turbomolecular pump according to the invention, specifically in a basic illustration a vane rotor 12 also known as a rotor disk with vanes 18, which is rotatably mounted on a rotor shaft 36 and of which only one rotor disk 12 is shown. Of the Blade rotor 12 rotates with rotor shaft 36 in rotor direction of rotation 44. As a result, it effects a pumping process in pumping direction 42 from an intake side 40 to an exhaust side 52. The rotor disk 12 is shown in section. The visible rotor blade 18 to the right of the axis of rotation 34 extends axially upward away from the viewer, while the visible rotor blade 18 to the left of the axis of rotation 34 extends axially upward to the viewer. The rotor shaft 36 and the rotor disk 12 rotate about their axis of rotation 34.

In Fig. 5 ist ferner die Rotorwelle 36 auf der Ausstoßseite 52 mit einem Wälzlager 30 radial und bevorzugt auch axial gelagert. Das Wälzlager 30 kann beispielsweise als Kugellager oder als Zylinderrollenlager ausgeführt sein. Auf der Ansaugseite 40 ist die Rotorwelle 36 mit einem berührungslosen und schmierungsfreien Radiallager 32, bevorzugt mit einem Magnetlager, gelagert.In Fig. 5 Furthermore, the rotor shaft 36 is mounted radially and preferably also axially on the ejection side 52 with a roller bearing 30. The roller bearing 30 can be designed, for example, as a ball bearing or as a cylindrical roller bearing. The rotor shaft 36 is supported on the suction side 40 with a contactless and lubrication-free radial bearing 32, preferably with a magnetic bearing.

Der Schaufelrotor 12 der Fig. 5 ist von einem Gehäuse 38 umgeben. Das Gehäuse 38 weist auf seiner dem Schaufelrotor 12 zugewandten Innenseite Vertiefungen 22 auf. Anstelle des Gehäuses 38 kann z.B. auch ein Ringelement, wie z.B. ein Distanzring 54 (vgl. Fig. 1), mit erfindungsgemäßen Vertiefungen 22 vorgesehen sein, d.h. die Komponente 38 in Fig. 5 stellt dann einen derartigen Distanzring dar, der in der erfindungsgemäßen Weise mit der Rotorscheibe 12 zusammenwirkt.The blade rotor 12 of the Fig. 5 is surrounded by a housing 38. The housing 38 has depressions 22 on its inner side facing the blade rotor 12. Instead of the housing 38, for example, a ring element, such as a spacer ring 54 (cf. Fig. 1 ) can be provided with depressions 22 according to the invention, ie component 38 in Fig. 5 then represents such a spacer ring which interacts with the rotor disk 12 in the manner according to the invention.

Die Vertiefungen 22 sind in Form von Nuten schraubenförmig um den Schaufelrotor 12 herum angeordnet. Der Drehsinn der schraubenförmigen Vertiefungen 22 entspricht der Rotordrehrichtung 44 des Schaufelrotors 12. In den Fig. 2, 3 und 5 entspricht der Drehsinn dem eines linksgängigen Gewindes. Zwischen den Vertiefungen 22 sind Stege 24 ausgebildet. Die Stege 24 sind hier genauso breit ausgeführt wie die Vertiefungen 22. Der pumpaktive Teilbereich der Innenwand des Gehäuses 38 geht in Fig. 5 axial in beide Richtungen über den Schaufelrotor 12 hinaus. In Fig. 5 besitzen die Vertiefungen 22 eine Steigung, die geringer ist als 45°. Die Vertiefungen 22 sind als senkrecht eingefräste Nuten ausgeführt.The depressions 22 are arranged helically around the blade rotor 12 in the form of grooves. The direction of rotation of the helical recesses 22 corresponds to the direction of rotation 44 of the blade rotor 12. In the Fig. 2 , 3rd and 5 the direction of rotation corresponds to that of a left-handed thread. Crosspieces 24 are formed between the depressions 22. The webs 24 are here just as wide as the depressions 22. The pump-active partial area of the inner wall of the housing 38 goes into Fig. 5 axially in both directions beyond the blade rotor 12. In Fig. 5 the depressions 22 have an incline which is less than 45 °. The depressions 22 are designed as vertically milled grooves.

Axial unterhalb und/oder oberhalb des Schaufelrotors 12 kann ein auch als Statorscheibe bezeichneter Schaufelstator benachbart angeordnet sein. Axial oberhalb und unterhalb des Schaufelrotors 12 können ferner weitere Turbomolekularpumpstufen angeordnet sein. Der Aufbau kann also z.B. entsprechend dem Turbomolekular-Pumpabschnitt gemäß Fig. 1 gewählt sein.A blade stator, also referred to as a stator disk, can be arranged axially below and / or above the blade rotor 12. Further turbomolecular pump stages can also be arranged axially above and below the blade rotor 12. The structure can therefore, for example, correspond to the turbomolecular pump section Fig. 1 be chosen.

Es ist alternativ auch möglich, keine zur Rotorscheibe 12 benachbarte Statorscheibe vorzusehen. Beispielsweise können zwei oder mehr Rotorscheiben axial unmittelbar aufeinander folgend angeordnet sein, bevor wieder eine Statorscheibe folgt, d.h. es sind dann wenigstens ein Paar von unmittelbar aufeinander folgenden Rotorscheiben vorhanden, zwischen denen jeweils keine Statorscheibe angeordnet ist. Es können auch ausschließlich Rotorscheiben vorgesehen sein, d.h. auf Statorscheiben kann auch ganz verzichtet werden, zumindest für einen Turbomolekular-Pumpabschnitt der Turbomolekularpumpe. Für einen derartigen Aufbau eines oder mehrerer Turbomolekular-Pumpabschnitte einer Turbomolekularpumpe und für eine derartige Turbomolekularpumpe insgesamt, die ansonsten einen typischen Aufbau wie z.B. in Fig. 1 gezeigt aufweisen kann, wird hiermit auch separat Schutz beansprucht. Axiale Bereiche eines solchen Pumpabschnitts, in denen sich keine Statorscheibe befindet, können dann gemäß der vorliegenden Erfindung ein oder mehrere ring- oder hülsenförmige Elemente aufweisen, die jeweils eine die Rotorscheiben umgebende Wand bilden, die auf wenigstens einem pumpwirksamen Teilbereich ihrer den Rotorscheiben zugewandten Seite mit zumindest einer Vertiefung versehen ist, wobei dies aber nicht zwingend ist.Alternatively, it is also possible not to provide a stator disk adjacent to the rotor disk 12. For example, two or more rotor disks can be arranged axially in direct succession before another stator disk follows, ie there are then at least one pair of immediately successive rotor disks, between which no stator disk is arranged in each case. Only rotor disks can also be provided, ie stator disks can also be dispensed with entirely, at least for a turbomolecular pump section of the turbomolecular pump. For such a construction of one or more turbomolecular pump sections of a turbomolecular pump and for such a turbomolecular pump as a whole, which otherwise have a typical construction as for example in Fig. 1 protection can be shown separately. Axial areas of such a pump section, in which there is no stator disk, can then have, according to the present invention, one or more ring-shaped or sleeve-shaped elements, each of which forms a wall surrounding the rotor disks, which on at least one pump-effective partial area of its side facing the rotor disks at least one recess is provided, but this is not mandatory.

Wie sich aus den Ausführungsbeispielen ergibt, kann also gemäß der Erfindung ein Holweckstator um den Schaufelrotor einer Turbomolekularpumpstufe herum angeordnet sein. Dadurch werden Gasteilchen, die vom Rotor nach außen gegen die Gehäuseinnenwand beschleunigt werden, durch ein Holweckstatorgewinde in eine axiale Richtung umgelenkt. Dadurch wird wiederum die Durchtrittswahrscheinlichkeit in Förderrichtung erhöht und somit die Leistungsdichte einer Turbomolekularpumpe verbessert.As can be seen from the exemplary embodiments, a Holweck stator can therefore be arranged around the blade rotor of a turbomolecular pump stage according to the invention. As a result, gas particles which are accelerated outwards by the rotor against the inner wall of the housing are deflected in an axial direction by a Holweck stator thread. This in turn makes the probability of passage increases in the conveying direction and thus improves the power density of a turbomolecular pump.

Bei aus dem Stand der Technik bekannten Anordnungen stießen die zu fördernden Teilchen in dem Radialspalt zwischen dem radial äußeren Ende der Rotorschaufeln und der Gehäuseinnenwand bzw. der Statordistanzringinnenseite gegen eine glatte Fläche. Dort blieben die Teilchen kurz haften und verließen diese Oberfläche wieder mit einer Kosinusverteilung, wobei sie keine weitere Vorzugsrichtung erfuhren. Durch die Erfindung und insbesondere das erfindungsgemäße Holweckgewinde können nun mehr Teilchen die Gehäuseinnenwand bzw. die dem Schaufelrotor zugewandte Innenseite einer Wand mit einer axialen Komponente verlassen, die in Richtung Pumpenauslass, also in Pumprichtung zeigt. Simulationsergebnisse für eine einstufige Turbomolekularpumpe mit zu förderndem Stickstoff haben folgendes ergeben: Ausgegangen wurde von einer Gehäuseinnenwand ohne Vertiefungen, einem Kompressionsverhältnis von K0 = 8,1 und einem Saugvermögen S0 = 2262 L/s. Mit Holweckgewinde verbesserte sich das Kompressionsverhältnis auf K0 = 8,8 und das Saugvermögen auf S0 = 2304 L/s.In the case of arrangements known from the prior art, the particles to be conveyed hit a smooth surface in the radial gap between the radially outer end of the rotor blades and the inner wall of the housing or the inside of the stator spacer ring. There the particles stuck briefly and left this surface again with a cosine distribution, whereby they did not experience any other preferred direction. By means of the invention and in particular the Holweck thread according to the invention, more particles can now leave the inner wall of the housing or the inside of a wall facing the blade rotor with an axial component which points in the direction of the pump outlet, ie in the pumping direction. Simulation results for a single-stage turbomolecular pump with nitrogen to be pumped resulted in the following: The starting point was a housing inner wall without depressions, a compression ratio of K 0 = 8.1 and a pumping speed S 0 = 2262 L / s. With Holweck thread, the compression ratio improved to K 0 = 8.8 and the pumping speed to S 0 = 2304 L / s.

BezugszeichenlisteReference list

1212th
Schaufelrotor, RotorscheibeBlade rotor, rotor disc
1414
Schaufelstator, StatorscheibeBlade stator, stator disc
1616
Wandwall
1818th
Schaufelshovel
2020th
Schaufelshovel
2222
Vertiefungdeepening
2424th
Stegweb
2626
RotorbereichRotor area
2828
StatorbereichStator area
3030th
Wälzlagerroller bearing
3232
Radiallager (Permanentmagnetlager)Radial bearing (permanent magnet bearing)
3434
RotationsachseAxis of rotation
3636
RotorwelleRotor shaft
3838
Gehäusecasing
4040
AnsaugseiteSuction side
4242
PumprichtungPump direction
4444
RotordrehrichtungDirection of rotor rotation
4646
Anstellwinkel der StatorschaufelnAngle of attack of the stator blades
4848
Steigung der VertiefungSlope of the depression
5050
Anstellwinkel der RotorschaufelnAngle of attack of the rotor blades
5252
AusstoßseiteDischarge side
5454
DistanzringSpacer ring
5656
Turbomolekular-PumpabschnittTurbomolecular pump section
5858
Holweck-PumpabschnittHolweck pump section

Claims (12)

  1. A turbomolecular pump comprising
    at least one turbomolecular pump stage which comprises at least one blade rotor (12) rotatably supported about an axis (34),
    wherein a wall (16) at least partly surrounding the blade rotor (12) is provided with at least one recess (22) at at least one pump-active part region of its side facing the blade rotor (12),
    characterized in that
    the recess (22) has a spiral or helical course; and/or in that the pump-active part region is configured as a Holweck stator.
  2. A turbomolecular pump in accordance with claim 1,
    characterized in that
    the recess (22) has a course with an axial component and/or with a pitch which differs from zero.
  3. A turbomolecular pump in accordance with one of the preceding claims,
    characterized in that
    the recess (22) is groove-like or channel-like.
  4. A turbomolecular pump in accordance with any one of the preceding claims,
    characterized in that
    the pump-active part region is provided with a plurality of recesses (22), in particular non-contiguous recesses (22), with the recesses (22) in particular extending in parallel with one another.
  5. A turbomolecular pump in accordance with any one of the preceding claims,
    characterized in that
    the wall (16) is formed by a housing (38) surrounding the blade rotor (12) and the pump-active part region is formed at the inner side of the housing (38), with the housing (38) in particular being the outer housing of the pump.
  6. A turbomolecular pump in accordance with any one of the preceding claims,
    characterized in that
    the wall (16) is formed by at least one ring element which surrounds the blade rotor (12) and which is in particular configured as a separate insert; and in that the pump-active part region is formed at the inner side of the ring element, with the ring element in particular being a distance ring (54), a spacer ring, a distance sleeve and/or a spacer sleeve, which is arranged between two stator disks (14) following one another in the axial direction.
  7. A turbomolecular pump in accordance with any one of the preceding claims,
    characterized in that
    the blade rotor (12) comprises a plurality of rotor disks which are arranged axially following one another, which are connected in one piece to one another or which are separate; and/or in that
    the pump-active part region extends in the axial direction only over a partial quantity of rotor disks, preferably comprising the rotor disk disposed closest to the suction side (40) of the pump, and in particular extends over exactly one rotor disk.
  8. A turbomolecular pump in accordance with any one of the preceding claims,
    characterized in that
    at least some blades (20) of a blade stator (14) cooperating with the blade rotor (12) are connected to the wall (16), and/or in that the pump-active part region is located axially outside blades (20) of a blade stator (14) cooperating with the blade rotor (12).
  9. A turbomolecular pump in accordance with any one of the preceding claims,
    characterized in that
    a blade stator (14) cooperating with the blade rotor (12) comprises a plurality of stator disks (14) arranged axially following one another, with the pump-active part region only being present axially between the stator disks (14) and/or axially adjacent to at least one of the stator disks (14).
  10. A turbomolecular pump in accordance with any one of the preceding claims,
    characterized in that
    blades (20) of a blade stator (14) cooperating with the blade rotor (12) each have a blade angle (46), which is at least approximately equal to a pitch (48) of the recess (22), in a radially outer end region.
  11. A turbomolecular pump in accordance with any one of the preceding claims,
    characterized in that
    blades (18) of the blade rotor (12) each have a blade angle (48), which differs from a pitch (48) of the recess (22) by between 45° and 90°, in a radially outer end region.
  12. A turbomolecular pump in accordance with any one of the preceding claims,
    characterized in that
    the pump-active part region has a plurality of recesses (22) which extend in parallel and which are separated from one another by webs (24), with the number of webs (24) being at least approximately equal to the number of blades (20) per stator disk (14) of a blade stator (14) cooperating with the blade rotor.
EP15191438.9A 2014-12-08 2015-10-26 Turbomolecular pump Active EP3032107B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014118083.6A DE102014118083A1 (en) 2014-12-08 2014-12-08 TURBO MOLECULAR PUMP

Publications (3)

Publication Number Publication Date
EP3032107A2 EP3032107A2 (en) 2016-06-15
EP3032107A3 EP3032107A3 (en) 2016-08-31
EP3032107B1 true EP3032107B1 (en) 2020-04-15

Family

ID=53673823

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15191438.9A Active EP3032107B1 (en) 2014-12-08 2015-10-26 Turbomolecular pump

Country Status (2)

Country Link
EP (1) EP3032107B1 (en)
DE (1) DE102014118083A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2579028A (en) * 2018-11-14 2020-06-10 Edwards Ltd Molecular drag stage
CN114352553B (en) * 2021-12-31 2024-01-09 北京中科科仪股份有限公司 Vortex mechanism and compound molecular pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358373A (en) * 1992-04-29 1994-10-25 Varian Associates, Inc. High performance turbomolecular vacuum pumps
DE29717764U1 (en) * 1997-10-06 1997-11-20 Leybold Vakuum GmbH, 50968 Köln Stator for a turbomolecular vacuum pump
DE10010371A1 (en) * 2000-03-02 2001-09-06 Pfeiffer Vacuum Gmbh Turbomolecular pump
DE10111546A1 (en) * 2000-05-15 2002-01-03 Pfeiffer Vacuum Gmbh Gas friction pump
DE102013213815A1 (en) * 2013-07-15 2015-01-15 Pfeiffer Vacuum Gmbh vacuum pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3032107A2 (en) 2016-06-15
EP3032107A3 (en) 2016-08-31
DE102014118083A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
DE69506297T2 (en) Axial pumps
DE1817430A1 (en) Regenerative compressor
EP2295812B1 (en) Vacuum pump
DE102007037924A1 (en) Turbomachine with Ringkanalwandausnehmung
EP2495444A2 (en) Pump
CH674552A5 (en)
DE4006604A1 (en) DEVICE FOR FLUIDIZING, DEGASSING AND PUMPING A CELLULOSE FIBER MATERIAL SUSPENSION
DE2331614A1 (en) SIDE CHANNEL FAN
EP3032107B1 (en) Turbomolecular pump
EP2933497B1 (en) Vacuum pump
EP2994614A1 (en) Rotor for a thermal turbomachine
EP2835536B1 (en) Vacuum pump stage with special surface roughness yielding a lower gas friction
DE102015003224B4 (en) Self-priming pump
EP2994615A1 (en) Rotor for a thermal turbomachine
WO2009143920A1 (en) Radial fan
DE202011002809U1 (en) Stator element and high vacuum pump
DE10046766A1 (en) Compound-friction vacuum pump
EP2886870B1 (en) Vacuum pump with improved inlet geometry
EP3032106B1 (en) Vacuum pump
EP3877653B1 (en) Multi-stage hydraulic machine
EP4194700A1 (en) Vacuum pump with a holweck pump stage with variable holweck geometry
EP4375514A1 (en) Ventilator
EP2677175A1 (en) Multi-stage radial fan
DE3725164A1 (en) Molecular pump
DE2046745A1 (en) Vacuum pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/54 20060101ALI20160728BHEP

Ipc: F04D 29/32 20060101ALI20160728BHEP

Ipc: F04D 29/64 20060101ALI20160728BHEP

Ipc: F04D 19/04 20060101AFI20160728BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170130

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/68 20060101ALI20190924BHEP

Ipc: F04D 29/52 20060101ALI20190924BHEP

Ipc: F04D 19/04 20060101AFI20190924BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012269

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1257626

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200716

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200815

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012269

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

26N No opposition filed

Effective date: 20210118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201026

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201026

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1257626

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231026

Year of fee payment: 9

Ref country code: CZ

Payment date: 20231016

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 9