EP3020043B1 - Facteur d'échelle optimisé pour l'extension de bande de fréquence dans un décodeur de signaux audiofréquences - Google Patents

Facteur d'échelle optimisé pour l'extension de bande de fréquence dans un décodeur de signaux audiofréquences Download PDF

Info

Publication number
EP3020043B1
EP3020043B1 EP14749907.3A EP14749907A EP3020043B1 EP 3020043 B1 EP3020043 B1 EP 3020043B1 EP 14749907 A EP14749907 A EP 14749907A EP 3020043 B1 EP3020043 B1 EP 3020043B1
Authority
EP
European Patent Office
Prior art keywords
frequency
filter
band
frequency band
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14749907.3A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3020043A1 (fr
Inventor
Magdalena KANIEWSKA
Stéphane RAGOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Orange SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49753286&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3020043(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Orange SA filed Critical Orange SA
Publication of EP3020043A1 publication Critical patent/EP3020043A1/fr
Application granted granted Critical
Publication of EP3020043B1 publication Critical patent/EP3020043B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/087Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters using mixed excitation models, e.g. MELP, MBE, split band LPC or HVXC
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/72Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for transmitting results of analysis
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/005Correction of errors induced by the transmission channel, if related to the coding algorithm
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding

Definitions

  • the present invention relates to the field of coding / decoding and audio-frequency signal processing (such as speech, music or other signals) for their transmission or storage.
  • the invention relates to a method and an apparatus for determining an optimized scale factor for adjusting the level of an excitation signal or, in a similar manner, a filter during a band extension. frequency in a decoder or a processor performing audio-frequency signal enhancement.
  • state of the art audio signal coding (mono) consists of perceptual encoding by transform or subband, with parametric coding of high frequencies by tape replication.
  • a review of conventional speech and audio coding methods can be found in the books WB Kleijn and KK Paliwal (Eds.), Speech Coding and Synthesis, Elsevier, 1995 ; M. Bosi, RE Goldberg, Introduction to Digital Audio Coding and Standards, Springer 2002 ; J. Benesty, MM Sondhi, Y. Huang (Eds.), Handbook of Speech Processing, Springer 2008 .
  • 3GPP AMR-WB Adaptive Multi-Rate Wideband codec (decoder and decoder), which operates at an input / output frequency of 16 kHz and in which the signal is divided into two sub-bands, the low band (0-6.4 kHz) which is sampled at 12.8 kHz and coded by CELP model and the high band (6.4-7 kHz) which is parametrically reconstructed by " band extension " ( or BWE for "Bandwidth Extension” with or without additional information depending on the mode of the current frame.
  • band extension or BWE for "Bandwidth Extension
  • the limitation of the coded band of the AMR-WB codec at 7 kHz is essentially related to the fact that the transmit frequency response of the broadband terminals has been approximated at the time of standardization (ETSI / 3GPP then ITU-T T) according to the frequency mask defined in the ITU-T P.341 standard and more precisely by using a so-called "P341" filter defined in the ITU-T G.191 standard. which cuts frequencies above 7 kHz (this filter respects the mask defined in P.341).
  • a signal sampled at 16 kHz may have a defined audio band of 0 to 8000 Hz; the AMR-WB codec thus introduces a limitation of the high band in comparison with the theoretical bandwidth of 8 kHz.
  • the 3GPP AMR-WB speech codec was standardized in 2001 mainly for circuit-mode (CS) telephony applications over GSM (2G) and UMTS (3G). This same codec was also standardized in 2003 in the ITU-T as Recommendation G.722.2 "Wideband coding speech at around 16kbit / s using Adaptive Multi-Rate Wideband (AMR-WB)".
  • the principle of band extension in the AMR-WB codec is rather rudimentary. Indeed, the high band (6.4-7 kHz) is generated by formatting a white noise through a temporal envelope (applied in the form of gains per subframe) and frequency (by the application of a linear prediction synthesis filter or LPC for "Linear Predictive Coding").
  • This band extension technique is illustrated in figure 1 .
  • the present invention improves the situation.
  • an additional filter of a lower order than the filter of the first frequency band to be equalized makes it possible to avoid overestimations of energy in the high frequencies which could result from local fluctuations of the envelope and which can disrupt the equalization of the prediction filters.
  • the band extension method comprises a step of applying the optimized scaling factor to the extended excitation signal.
  • the application of the optimized scaling factor is combined with the filtering step in the second frequency band.
  • the coefficients of the additional filter are obtained by truncation of the transfer function of the linear prediction filter of the first frequency band to obtain a lower order.
  • the coefficients of the additional filter are modified according to a criterion of stability of the additional filter.
  • the optimized scaling factor is calculated to avoid annoying artifacts that might arise in the event that the higher order filter frequency response of the first band near the common frequency would reveal a peak or a valley. of the signal.
  • additional information can be used to improve the quality of the extended signal for a predetermined mode of operation.
  • the invention relates to a decoder comprising a device as described.
  • It relates to a computer program comprising code instructions for implementing the steps of the method of determining an optimized scale factor as described, when these instructions are executed by a processor.
  • the invention relates to a storage medium, readable by a processor, integrated or not to the device for determining an optimized scaling factor, possibly removable, storing a computer program implementing a method of determining a optimized scaling factor as previously described.
  • the figure 3 illustrates an exemplary decoder, compatible with the AMR-WB / G.722.2 standard, in which there is a band extension comprising a determination of an optimized scale factor according to one embodiment of the method of the invention, implemented implemented by the tape extension device illustrated by block 309.
  • AMR-WB decoding which operates with an output sampling frequency of 16 kHz
  • the CELP decoding (BF for low frequencies) still operates at the internal frequency of 12.8 kHz, as in AMR-WB, and the band extension (HF for high frequencies) used for the invention operates at the frequency of 16 kHz
  • the syntheses BF and HF are combined (block 312) at the frequency fs after adequate resampling (block 306 and internal processing block 311).
  • the combination of the low and high bands may be done at 16 kHz, after resampling the low band of 12.8 to 16 kHz, before resampling the combined signal at the frequency fs .
  • the decoder makes it possible to extend the decoded low band (50-6400 Hz taking into account the high-pass filtering at 50 Hz at the decoder, 0-6400 Hz in the general case) with an extended band whose width varies, ranging from approximately 50-6900 Hz to 50-7700 Hz depending on the mode implemented in the current frame.
  • the extension of the excitation is carried out in the frequency domain in a band of 5000 to 8000 Hz, to allow bandpass filtering of width 6000 to 6900 or 7700 Hz.
  • the HF gain correction information (0.8 kbit / s) transmitted at 23.85 kbit / s is decoded here. Its use is detailed below, with reference to the figure 4 .
  • the high band synthesis part is performed in block 309 representing the band extension device used for the invention and which is detailed in FIG. figure 7 in one embodiment.
  • a delay (block 310) is introduced to synchronize the outputs of the blocks 306 and 307 and the high band synthesized at 16 kHz is resampled from 16 kHz to the fs frequency (block output 311).
  • the value of the delay T depends on how to synthesize the high band signal, the frequency fs as well as the post-processing of the low frequencies. Thus, in general, the value of T in the block 310 will have to be adjusted according to the specific implementation.
  • the low and high bands are then combined (added) in block 312 and the resulting synthesis is post-processed by high-order 50 Hz (type IIR) high-pass filtering whose coefficients depend on the frequency fs (block 313) and output postprocessing with optional "noisegate” application similar to G.718 (block 314).
  • high-order 50 Hz type IIR
  • the block 400 from a decoded excitation signal in a first frequency band u ( n ), performs a band extension to obtain an extended excitation signal u HB ( n ) on at least a second frequency band.
  • the optimized scale factor estimation according to the invention is independent of how to obtain the signal u HB ( n ) .
  • a condition regarding its energy is important, however. Indeed, it is necessary that the energy of the high band of 6000 to 8000 Hz is at a level similar to the energy of the band 4000 to 6000 Hz of the decoded excitation signal at the output of the block 302. since the low-band signal is de-emphasized (block 305), it is also necessary to apply the de-emphasis to the high-band excitation signal, either by using an own de-emphasis filter or by multiplying by a constant factor which corresponds to a mean attenuation of mentioned filter. This condition does not apply to the 23.85 kbit / s rate that uses the additional information transmitted by the encoder. In this case, the energy of the high band excitation signal must be consistent with the signal energy corresponding to the encoder, as explained later.
  • the frequency band extension may for example be implemented in the same way as for the AMR-WB decoder described with reference to FIG. figure 1 in blocks 100 to 102, from a white noise.
  • this band extension can be performed from a combination of a white noise and a decoded excitation signal as illustrated and subsequently described for blocks 700 to 707 of FIG. figure 7 .
  • the tape expansion module may also be independent of the decoder and may extend a band of an existing audio signal stored or transmitted to the expansion module, with an analysis of the audio signal to extract one excitation and a LPC filter.
  • the excitation signal at the input of the extension module is no longer a decoded signal but a signal extracted after analysis, as well as the coefficients of the linear prediction filter of the first frequency band used in the method of determining the optimized scale factor in an implementation of the invention.
  • the determination of the optimized scale factor is also performed by the determination (in 401a) of a linear prediction filter called additional filter, of a lower order than the linear prediction filter of the first frequency band 1 / ⁇ (z ), the coefficients of the additional filter being obtained from the parameters decoded or extracted from the first frequency band.
  • the optimized scaling factor is then calculated (at 401b) based on at least one of these coefficients to be applied to the extended excitation signal u HB ( n ).
  • an extended excitation signal u HB (n) is obtained during a frequency band extension method E601 which comprises a decoding or extraction step, in a first so-called low band frequency band, an excitation signal and parameters of the first frequency band, for example the coefficients of the linear prediction filter of the first frequency band.
  • a step E602 determines a linear prediction filter called additional filter, of a lower order than that of the first frequency band. To determine this filter, the parameters of the first decoded or extracted frequency band are used.
  • this step is performed by truncation of the transfer function of the linear prediction filter of the low band to obtain a lower filter order, for example 2. These coefficients can then be modified according to a criterion of stability as explained above with reference to the figure 4 .
  • a step E603 is implemented to calculate the optimized scale factor to be applied to the extended excitation signal.
  • This optimized scale factor is for example calculated from the frequency response of the additional filter at a common frequency between the low band (first frequency band) and the high band (second frequency band). A minimum value that can be chosen between the frequency response of this filter and those of the low band and high band filters. This avoids the overestimation of energy that could exist in state-of-the-art methods.
  • This step of calculating the optimized scale factor is for example described above with reference to the figure 4 and to Figures 5a and 5b .
  • Step E604 performed by block 402 or 409 (depending on the decoding rate) for the band extension, applies the optimized scaling factor thus calculated to the extended excitation signal so as to obtain an extended excitation signal.
  • the optimized scaling factor device 708 is integrated in a tape expansion device described now with reference to the figure 7 .
  • This optimized scale factor determination device illustrated by block 708 implements the method of determining the optimized scale factor described above with reference to FIG. figure 6 .
  • the band extension block 400 of the figure 4 includes blocks 700 to 707 of the figure 7 described now.
  • a decoded or analytically estimated low band excitation signal is received ( u ( n )).
  • the band extension here uses the decoded excitation at 12.8 kHz (exc2 or u ( n )) at the output of the block 302 of the figure 3 .
  • the generation of the oversampled and extended excitation is carried out in a frequency band ranging from 5 to 8 kHz including a second frequency band (6.4-8kHz) greater than the first band of frequency (0-6.4 kHz).
  • the generation of an extended excitation signal is effected at least on the second frequency band but also on a part of the first frequency band.
  • this signal is transformed to obtain an excitation signal spectrum U ( k ) by the time-frequency transformation module 500.
  • the DCT-IV transformation is implemented by FFT according to the algorithm called " Evolved DCT (EDCT)" described in the article by DM Zhang, HT Li, A Low Complexity Transform - Evolved DCT, IEEE 14th International Conference on Computational Science and Engineering (CSE), Aug. 2011, pp. 144-149 , and implemented in ITU-T G.718 Annex B and G.729.1 Annex E.
  • EDCT Evolved DCT
  • the DCT-IV transformation may be replaced with other short-term time-frequency transformations of the same length and in the field of excitation, such as an FFT (for " Fast Fourier Transform "in English ) or DCT-II ( Discrete Cosine Transform - Type II).
  • FFT Fast Fourier Transform
  • DCT-II Discrete Cosine Transform - Type II
  • MDCT for "Modified Discrete Cosine Tranform" in English.
  • the delay T in the block 310 of the figure 3 should be adjusted (reduced) adequately according to the additional delay due to the analysis / synthesis by this transform.
  • This approach preserves the original spectrum in this band and avoids introducing distortions in the 5000-6000 Hz band during the addition of HF synthesis with BF synthesis - particularly the signal phase (implicitly represented in the DCT-IV domain) in this band is preserved.
  • the band 6000-8000 Hz of U HB 1 ( k ) is here defined by copying the 4000-6000 Hz band of U ( k ) since the value of start_band is preferably fixed at 160.
  • the value of start_band can be made adaptive around the value of 160.
  • the details of the adaptation of the value start_band are not described here because they go beyond the scope of the invention without changing the scope.
  • the noise generation block 702 For some broadband signals (sampled at 16 kHz), the high band (> 6 kHz) may be noisy, harmonic or have a mixture of noise and harmonics. In addition, the level of harmonicity in the 6000-8000 Hz band is generally correlated with that of the lower frequency bands.
  • the noise in the 6000-8000 Hz band
  • U HBN k - 1 + 13849 k 240 , ⁇ , 319 with the convention that U HBN (239) in the current frame corresponds to the value U HBN (319) of the previous frame.
  • this noise generation can be replaced by other methods.
  • the combination block 703 can be realized in different ways.
  • G HBN is a normalization factor for equalizing the energy level between the two signals
  • the coefficient ⁇ (between 0 and 1) is adjusted according to parameters estimated from the decoded low band and the coefficient ⁇ (between 0 and 1) depends on ⁇ .
  • N ( k 1 , k 2 ) is the set of indices k for which the index coefficient k is classified as being associated with noise.
  • This set can be obtained for example by detecting the local peaks in U '( k ) verifying
  • and considering that these lines are not associated with noise, ie (by applying the negation of the previous condition): NOT at b at ⁇ k ⁇ b
  • other methods of calculating the noise energy are possible, for example by taking the median value of the spectrum on the band in question or by applying a smoothing to each frequency line before calculating the energy per band.
  • the calculation of ⁇ may be replaced by other methods.
  • different parameters by limiting its value between 0 and 1.
  • the factors ⁇ and ⁇ may be adapted to take account of the fact that noise injected into a given band of the signal is generally perceived as stronger than a harmonic signal at the same energy in the same band.
  • block 703 realizes the equivalent of block 101 of the figure 1 to normalize the white noise according to an excitation which is on the other hand here in the frequency domain, already extended to the rate of 16 kHz; in addition, the mix is limited to the band 6000-8000 Hz.
  • an embodiment of block 703 may be considered, where the spectra, U HB 1 ( k ) or G HBN U HBN ( k ), are selected (switched) adaptively, which amounts to allowing only the values 0 or 1 for ⁇ ; this approach amounts to classifying the type of excitation to be generated in the 6000-8000 Hz band
  • the block 704 optionally carries out a dual operation of application of bandpass filter frequency response and deemphasis filtering (or deemphasis) in the frequency domain.
  • the deemphasis filtering may be performed in the time domain, after block 705 or even before block 700; however, in this case, bandpass filtering performed in block 704 may leave some low frequency components of very low levels that are amplified by de-emphasis, which may slightly discern the decoded low band. For this reason, it is preferred here to perform the deemphasis in the frequency domain.
  • the HF synthesis is not de-emphasized.
  • the high frequency signal is on the contrary de-emphasized so as to bring it back into a domain consistent with the low signal. frequencies (0-6.4 kHz) coming out of block 305 of the figure 3 . This is important for the estimation and subsequent adjustment of the energy of the HF synthesis.
  • the de-emphasis can be performed in an equivalent way in the time domain after inverse DCT.
  • band-pass filtering is applied with two separate parts: one fixed high-pass, the other adaptive low-pass (flow-rate function).
  • This filtering is performed in the frequency domain.
  • bandpass filtering can be adapted by defining a single filtering step combining the high-pass and low-pass filtering.
  • the bandpass filtering may be performed in an equivalent manner in the time domain (as in block 112 of the present invention). figure 1 ) with different filter coefficients according to the flow rate, after a reverse DCT step.
  • this step it is advantageous to carry out this step directly in the frequency domain because the filtering is carried out in the field of LPC excitation and therefore the problems of circular convolution and edge effects are very limited in this field. .
  • This excitation sampled at 16 kHz is then optionally scaled by gains defined by subframe of 80 samples (block 707).
  • the realization of the block 706 differs from that of the block 101 of the figure 1 because the energy at the current frame is taken into account in addition to that of the sub-frame. This makes it possible to have the ratio of the energy of each sub-frame with respect to the energy of the frame. Energy ratios (or relative energies) are compared rather than the absolute energies between low band and high band.
  • this scaling step makes it possible to keep in the high band the energy ratio between the subframe and the frame in the same way as in the low band.
  • the block 708 then performs a scaling factor calculation by subframe of the signal (steps E602 to E 603 of the figure 6 ), as previously described with reference to the figure 6 and detailed in figure 4 and 5 .
  • this filtering can be done in the same way as that described for block 111 of the figure 1 of the AMR-WB decoder, however the order of the filter goes to 20 at the rate of 6.6, which does not significantly change the quality of the synthesized signal.
  • the step of filtering by a linear prediction filter 710 for the second frequency band is combined with the application of the optimized scaling factor, which reduces the processing complexity.
  • the filtering steps 1 / ⁇ (z / ⁇ ) and the application of the optimized scaling factor g HB 2 are combined with a single filtering step g HB 2 / ⁇ (z / ⁇ ) to reduce the processing complexity. .
  • the coding of the low band (0-6.4 kHz) may be replaced by a CELP coder other than that used in AMR-WB, for example the CELP coder in G.718 to 8. kbit / s.
  • a CELP coder other than that used in AMR-WB, for example the CELP coder in G.718 to 8. kbit / s.
  • other encoders in wide band or operating at frequencies higher than 16 kHz in which the coding of the low band operates at an internal frequency at 12.8 kHz could be used.
  • the invention can be obviously adapted to other sampling frequencies than 12.8 kHz, when a low frequency encoder operates at a sampling frequency lower than that of the original or reconstructed signal.
  • the low band decoding does not use a linear prediction, it does not have an excitation signal to be extended, in this case it will be possible to carry out an LPC analysis of the reconstructed signal in the current frame and calculate an LPC excitation. so as to be able to apply the invention.
  • the excitation ( u ( n )) is resampled, for example by linear interpolation or "spline" cubic, from 12.8 to 16 kHz before transformation (for example DCT-IV)
  • This variant has the defect of being more complex, because the transform (DCT-IV) of the excitation is then calculated over a greater length and the resampling is not carried out in the field of the transformed.
  • all the calculations necessary for the estimation of the gains can be carried out in a logarithmic domain.
  • the low band excitation u ( n ) and the LPC 1 / ⁇ (z) filter will be estimated per frame, by LPC analysis of a low band signal whose band must be extended.
  • the low band excitation signal is then extracted by analyzing the audio signal.
  • the low band audio signal is resampled before the excitation extraction step, so that the excitation extracted from the audio signal (by linear prediction) is already resolved. sampled.
  • the illustrated tape extension at figure 7 applies in this case to a low band which is not decoded but analyzed.
  • the figure 8 represents an embodiment of a device for determining an optimized scale factor 800 according to the invention. This may be an integral part of an audio-frequency signal decoder or equipment receiving decoded or non-decoded audio signals.
  • This type of device comprises a PROC processor cooperating with a memory block BM having a memory storage and / or work MEM.
  • a PROC processor cooperating with a memory block BM having a memory storage and / or work MEM.
  • Such a device comprises an input module E adapted to receive a decoded or extracted excitation audio signal in a first so-called low band frequency band ( u ( n ) or U ( k )) and the parameters of a linear prediction synthesis filter ( ⁇ ( z )). It comprises an output module S adapted to transmit the synthesized and optimized high frequency signal (u HB '(n)) for example to a filtering module such as block 710 of FIG. figure 7 or a resampling module like module 311 of the figure 3 .
  • a filtering module such as block 710 of FIG. figure 7 or a resampling module like module 311 of the figure 3 .
  • the memory block may advantageously comprise a computer program comprising code instructions for carrying out the steps of the method for determining an optimized scale factor to be applied to an excitation signal or to a filter within the meaning of FIG. invention, when these instructions are executed by the processor PROC, and in particular the steps of determination (E602) of a linear prediction filter called additional filter, of order less than the linear prediction filter of the first frequency band, the coefficients additional filter being obtained from the parameters decoded or extracted from the first frequency band, calculation (E603) of an optimized scale factor according to at least the coefficients of the additional filter.
  • the description of the figure 6 takes the steps of an algorithm of such a computer program.
  • the computer program can also be stored on a memory medium readable by a reader of the device or downloadable in the memory space thereof.
  • the memory MEM generally records all the data necessary for the implementation of the method.
  • the device thus described may also include the functions of applying the optimized scaling factor to the extended excitation signal, frequency band extension, low band decoding and other processing functions. described for example in figure 3 and 4 in addition to the optimized scale factor determination functions according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
EP14749907.3A 2013-07-12 2014-07-04 Facteur d'échelle optimisé pour l'extension de bande de fréquence dans un décodeur de signaux audiofréquences Active EP3020043B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1356909A FR3008533A1 (fr) 2013-07-12 2013-07-12 Facteur d'echelle optimise pour l'extension de bande de frequence dans un decodeur de signaux audiofrequences
PCT/FR2014/051720 WO2015004373A1 (fr) 2013-07-12 2014-07-04 Facteur d'échelle optimisé pour l'extension de bande de fréquence dans un décodeur de signaux audiofréquences

Publications (2)

Publication Number Publication Date
EP3020043A1 EP3020043A1 (fr) 2016-05-18
EP3020043B1 true EP3020043B1 (fr) 2017-02-08

Family

ID=49753286

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14749907.3A Active EP3020043B1 (fr) 2013-07-12 2014-07-04 Facteur d'échelle optimisé pour l'extension de bande de fréquence dans un décodeur de signaux audiofréquences

Country Status (11)

Country Link
US (8) US10446163B2 (es)
EP (1) EP3020043B1 (es)
JP (4) JP6487429B2 (es)
KR (4) KR102315639B1 (es)
CN (4) CN105378837B (es)
BR (4) BR122017018553B1 (es)
CA (4) CA3109028C (es)
FR (1) FR3008533A1 (es)
MX (1) MX354394B (es)
RU (4) RU2756434C2 (es)
WO (1) WO2015004373A1 (es)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2631906A1 (en) * 2012-02-27 2013-08-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Phase coherence control for harmonic signals in perceptual audio codecs
CN105976830B (zh) * 2013-01-11 2019-09-20 华为技术有限公司 音频信号编码和解码方法、音频信号编码和解码装置
FR3008533A1 (fr) * 2013-07-12 2015-01-16 Orange Facteur d'echelle optimise pour l'extension de bande de frequence dans un decodeur de signaux audiofrequences
TWI557726B (zh) * 2013-08-29 2016-11-11 杜比國際公司 用於決定音頻信號的高頻帶信號的主比例因子頻帶表之系統和方法
US20160323425A1 (en) * 2015-04-29 2016-11-03 Qualcomm Incorporated Enhanced voice services (evs) in 3gpp2 network
US9830921B2 (en) * 2015-08-17 2017-11-28 Qualcomm Incorporated High-band target signal control
US10825467B2 (en) * 2017-04-21 2020-11-03 Qualcomm Incorporated Non-harmonic speech detection and bandwidth extension in a multi-source environment
US20190051286A1 (en) * 2017-08-14 2019-02-14 Microsoft Technology Licensing, Llc Normalization of high band signals in network telephony communications
TWI684368B (zh) * 2017-10-18 2020-02-01 宏達國際電子股份有限公司 獲取高音質音訊轉換資訊的方法、電子裝置及記錄媒體
TWI809289B (zh) * 2018-01-26 2023-07-21 瑞典商都比國際公司 用於執行一音訊信號之高頻重建之方法、音訊處理單元及非暫時性電腦可讀媒體
CN110660409A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 一种扩频的方法及装置
JP2022527111A (ja) * 2019-04-03 2022-05-30 ドルビー ラボラトリーズ ライセンシング コーポレイション スケーラブル音声シーンメディアサーバ
CN115136236A (zh) * 2020-02-25 2022-09-30 索尼集团公司 信号处理装置、信号处理方法和程序
RU2747368C1 (ru) * 2020-07-13 2021-05-04 федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ мониторинга и управления информационной безопасностью подвижной сети связи
CN114333856A (zh) * 2021-12-24 2022-04-12 南京西觉硕信息科技有限公司 给定线性预测系数时后半帧语音信号的求解方法、装置及***

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9206143A (pt) * 1991-06-11 1995-01-03 Qualcomm Inc Processos de compressão de final vocal e para codificação de taxa variável de quadros de entrada, aparelho para comprimir im sinal acústico em dados de taxa variável, codificador de prognóstico exitado por córdigo de taxa variável (CELP) e descodificador para descodificar quadros codificados
US5455888A (en) * 1992-12-04 1995-10-03 Northern Telecom Limited Speech bandwidth extension method and apparatus
SE502244C2 (sv) * 1993-06-11 1995-09-25 Ericsson Telefon Ab L M Sätt och anordning för avkodning av ljudsignaler i ett system för mobilradiokommunikation
JP3189614B2 (ja) * 1995-03-13 2001-07-16 松下電器産業株式会社 音声帯域拡大装置
US6002352A (en) * 1997-06-24 1999-12-14 International Business Machines Corporation Method of sampling, downconverting, and digitizing a bandpass signal using a digital predictive coder
US7072832B1 (en) * 1998-08-24 2006-07-04 Mindspeed Technologies, Inc. System for speech encoding having an adaptive encoding arrangement
US6453287B1 (en) * 1999-02-04 2002-09-17 Georgia-Tech Research Corporation Apparatus and quality enhancement algorithm for mixed excitation linear predictive (MELP) and other speech coders
JP4792613B2 (ja) * 1999-09-29 2011-10-12 ソニー株式会社 情報処理装置および方法、並びに記録媒体
FI119576B (fi) 2000-03-07 2008-12-31 Nokia Corp Puheenkäsittelylaite ja menetelmä puheen käsittelemiseksi, sekä digitaalinen radiopuhelin
US6889182B2 (en) * 2001-01-12 2005-05-03 Telefonaktiebolaget L M Ericsson (Publ) Speech bandwidth extension
AUPR433901A0 (en) * 2001-04-10 2001-05-17 Lake Technology Limited High frequency signal construction method
US6732071B2 (en) * 2001-09-27 2004-05-04 Intel Corporation Method, apparatus, and system for efficient rate control in audio encoding
US7512535B2 (en) * 2001-10-03 2009-03-31 Broadcom Corporation Adaptive postfiltering methods and systems for decoding speech
US6895375B2 (en) * 2001-10-04 2005-05-17 At&T Corp. System for bandwidth extension of Narrow-band speech
DE60208426T2 (de) * 2001-11-02 2006-08-24 Matsushita Electric Industrial Co., Ltd., Kadoma Vorrichtung zur signalkodierung, signaldekodierung und system zum verteilen von audiodaten
CN1669358A (zh) * 2002-07-16 2005-09-14 皇家飞利浦电子股份有限公司 音频编码
US7299190B2 (en) * 2002-09-04 2007-11-20 Microsoft Corporation Quantization and inverse quantization for audio
JP4676140B2 (ja) * 2002-09-04 2011-04-27 マイクロソフト コーポレーション オーディオの量子化および逆量子化
US7451091B2 (en) * 2003-10-07 2008-11-11 Matsushita Electric Industrial Co., Ltd. Method for determining time borders and frequency resolutions for spectral envelope coding
WO2005040749A1 (ja) * 2003-10-23 2005-05-06 Matsushita Electric Industrial Co., Ltd. スペクトル符号化装置、スペクトル復号化装置、音響信号送信装置、音響信号受信装置、およびこれらの方法
CA2457988A1 (en) * 2004-02-18 2005-08-18 Voiceage Corporation Methods and devices for audio compression based on acelp/tcx coding and multi-rate lattice vector quantization
KR101079066B1 (ko) * 2004-03-01 2011-11-02 돌비 레버러토리즈 라이쎈싱 코오포레이션 멀티채널 오디오 코딩
FI119533B (fi) * 2004-04-15 2008-12-15 Nokia Corp Audiosignaalien koodaus
US20070147518A1 (en) * 2005-02-18 2007-06-28 Bruno Bessette Methods and devices for low-frequency emphasis during audio compression based on ACELP/TCX
DE602005025027D1 (de) * 2005-03-30 2011-01-05 Nokia Corp Quellencodierung und/oder -decodierung
AU2006232361B2 (en) * 2005-04-01 2010-12-23 Qualcomm Incorporated Methods and apparatus for encoding and decoding an highband portion of a speech signal
PL1875463T3 (pl) * 2005-04-22 2019-03-29 Qualcomm Incorporated Układy, sposoby i urządzenie do wygładzania współczynnika wzmocnienia
FR2888699A1 (fr) * 2005-07-13 2007-01-19 France Telecom Dispositif de codage/decodage hierachique
US7974713B2 (en) * 2005-10-12 2011-07-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Temporal and spatial shaping of multi-channel audio signals
US8332216B2 (en) * 2006-01-12 2012-12-11 Stmicroelectronics Asia Pacific Pte., Ltd. System and method for low power stereo perceptual audio coding using adaptive masking threshold
US7831434B2 (en) * 2006-01-20 2010-11-09 Microsoft Corporation Complex-transform channel coding with extended-band frequency coding
ATE531037T1 (de) * 2006-02-14 2011-11-15 France Telecom Vorrichtung für wahrnehmungsgewichtung bei der tonkodierung/-dekodierung
US20080004883A1 (en) * 2006-06-30 2008-01-03 Nokia Corporation Scalable audio coding
US8032371B2 (en) * 2006-07-28 2011-10-04 Apple Inc. Determining scale factor values in encoding audio data with AAC
US9454974B2 (en) * 2006-07-31 2016-09-27 Qualcomm Incorporated Systems, methods, and apparatus for gain factor limiting
US8260609B2 (en) * 2006-07-31 2012-09-04 Qualcomm Incorporated Systems, methods, and apparatus for wideband encoding and decoding of inactive frames
CN101140759B (zh) * 2006-09-08 2010-05-12 华为技术有限公司 语音或音频信号的带宽扩展方法及***
KR101565919B1 (ko) * 2006-11-17 2015-11-05 삼성전자주식회사 고주파수 신호 부호화 및 복호화 방법 및 장치
KR100905585B1 (ko) * 2007-03-02 2009-07-02 삼성전자주식회사 음성신호의 대역폭 확장 제어 방법 및 장치
US8392198B1 (en) * 2007-04-03 2013-03-05 Arizona Board Of Regents For And On Behalf Of Arizona State University Split-band speech compression based on loudness estimation
PL2165328T3 (pl) * 2007-06-11 2018-06-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kodowanie i dekodowanie sygnału audio zawierającego część impulsową i część stacjonarną
KR101373004B1 (ko) * 2007-10-30 2014-03-26 삼성전자주식회사 고주파수 신호 부호화 및 복호화 장치 및 방법
US8515767B2 (en) * 2007-11-04 2013-08-20 Qualcomm Incorporated Technique for encoding/decoding of codebook indices for quantized MDCT spectrum in scalable speech and audio codecs
US20090201983A1 (en) * 2008-02-07 2009-08-13 Motorola, Inc. Method and apparatus for estimating high-band energy in a bandwidth extension system
CN101281748B (zh) * 2008-05-14 2011-06-15 武汉大学 用编码索引实现的空缺子带填充方法及编码索引生成方法
WO2010003254A1 (en) * 2008-07-10 2010-01-14 Voiceage Corporation Multi-reference lpc filter quantization and inverse quantization device and method
WO2010031049A1 (en) * 2008-09-15 2010-03-18 GH Innovation, Inc. Improving celp post-processing for music signals
US8463599B2 (en) * 2009-02-04 2013-06-11 Motorola Mobility Llc Bandwidth extension method and apparatus for a modified discrete cosine transform audio coder
JP4932917B2 (ja) 2009-04-03 2012-05-16 株式会社エヌ・ティ・ティ・ドコモ 音声復号装置、音声復号方法、及び音声復号プログラム
US8571231B2 (en) * 2009-10-01 2013-10-29 Qualcomm Incorporated Suppressing noise in an audio signal
RU2591011C2 (ru) * 2009-10-20 2016-07-10 Фраунхофер-Гезелльшафт цур Фёрдерунг дер ангевандтен Форшунг Е.Ф. Кодер аудиосигнала, декодер аудиосигнала, способ кодирования или декодирования аудиосигнала с удалением алиасинга (наложения спектров)
CA2683983A1 (en) 2009-10-21 2011-04-21 Carbon Solutions Inc. Stabilization and remote recovery of acid gas fractions from sour wellsite gas
US8484020B2 (en) * 2009-10-23 2013-07-09 Qualcomm Incorporated Determining an upperband signal from a narrowband signal
CN102044250B (zh) * 2009-10-23 2012-06-27 华为技术有限公司 频带扩展方法及装置
US8380524B2 (en) * 2009-11-26 2013-02-19 Research In Motion Limited Rate-distortion optimization for advanced audio coding
US8455888B2 (en) * 2010-05-20 2013-06-04 Industrial Technology Research Institute Light emitting diode module, and light emitting diode lamp
KR101461774B1 (ko) * 2010-05-25 2014-12-02 노키아 코포레이션 대역폭 확장기
US8600737B2 (en) * 2010-06-01 2013-12-03 Qualcomm Incorporated Systems, methods, apparatus, and computer program products for wideband speech coding
US8862465B2 (en) * 2010-09-17 2014-10-14 Qualcomm Incorporated Determining pitch cycle energy and scaling an excitation signal
US8924200B2 (en) * 2010-10-15 2014-12-30 Motorola Mobility Llc Audio signal bandwidth extension in CELP-based speech coder
CN103035248B (zh) * 2011-10-08 2015-01-21 华为技术有限公司 音频信号编码方法和装置
PL2791937T3 (pl) * 2011-11-02 2016-11-30 Wytworzenie rozszerzenia pasma wysokiego sygnału dźwiękowego o poszerzonym paśmie
EP2774148B1 (en) * 2011-11-03 2014-12-24 Telefonaktiebolaget LM Ericsson (PUBL) Bandwidth extension of audio signals
US8909539B2 (en) * 2011-12-07 2014-12-09 Gwangju Institute Of Science And Technology Method and device for extending bandwidth of speech signal
CN102930872A (zh) * 2012-11-05 2013-02-13 深圳广晟信源技术有限公司 用于宽带语音解码中基音增强后处理的方法及装置
JP6096934B2 (ja) * 2013-01-29 2017-03-15 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. 周波数拡張されたオーディオ信号を生成するためのデコーダ、復号化方法、符号化された信号を生成するためのエンコーダ、およびコンパクトな選択サイド情報を使用する符号化方法
FR3008533A1 (fr) * 2013-07-12 2015-01-16 Orange Facteur d'echelle optimise pour l'extension de bande de frequence dans un decodeur de signaux audiofrequences
CN104517610B (zh) * 2013-09-26 2018-03-06 华为技术有限公司 频带扩展的方法及装置
CN104517611B (zh) * 2013-09-26 2016-05-25 华为技术有限公司 一种高频激励信号预测方法及装置
US10163447B2 (en) * 2013-12-16 2018-12-25 Qualcomm Incorporated High-band signal modeling
US9542955B2 (en) * 2014-03-31 2017-01-10 Qualcomm Incorporated High-band signal coding using multiple sub-bands
US9697843B2 (en) * 2014-04-30 2017-07-04 Qualcomm Incorporated High band excitation signal generation
JP2017145792A (ja) 2016-02-19 2017-08-24 株式会社ケーヒン インテークマニホールドにおけるセンサ取付構造
RU2636700C1 (ru) * 2016-03-18 2017-11-27 Акционерное общество "Лаборатория Касперского" Способ устранения уязвимостей устройств, имеющих выход в Интернет
TWI596952B (zh) * 2016-03-21 2017-08-21 固昌通訊股份有限公司 耳道式耳機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2016528539A (ja) 2016-09-15
BR122017018553B1 (pt) 2022-04-19
JP6515157B2 (ja) 2019-05-15
CA3108924A1 (en) 2015-01-15
KR20170103042A (ko) 2017-09-12
CA3109028C (en) 2024-01-30
US10438600B2 (en) 2019-10-08
RU2016104466A (ru) 2017-08-18
BR122017018556B1 (pt) 2022-03-29
RU2017144519A (ru) 2019-02-15
BR122017018557B1 (pt) 2021-08-03
WO2015004373A1 (fr) 2015-01-15
US10943594B2 (en) 2021-03-09
RU2668058C2 (ru) 2018-09-25
RU2017144518A3 (es) 2021-05-07
CN105378837B (zh) 2019-09-13
US20160203826A1 (en) 2016-07-14
RU2016104466A3 (es) 2018-05-28
JP6515158B2 (ja) 2019-05-15
US10943593B2 (en) 2021-03-09
US20190385626A1 (en) 2019-12-19
US20190371350A1 (en) 2019-12-05
EP3020043A1 (fr) 2016-05-18
RU2017144518A (ru) 2019-02-15
US20190385625A1 (en) 2019-12-19
CA3108921C (en) 2024-01-30
RU2756435C2 (ru) 2021-09-30
KR20170103996A (ko) 2017-09-13
CN107527629A (zh) 2017-12-29
RU2756434C2 (ru) 2021-09-30
KR20170103995A (ko) 2017-09-13
CN107527629B (zh) 2022-01-04
CA2917795A1 (en) 2015-01-15
CA2917795C (en) 2021-11-30
CN105378837A (zh) 2016-03-02
US10438599B2 (en) 2019-10-08
MX354394B (es) 2018-02-23
KR20160030555A (ko) 2016-03-18
JP2017215618A (ja) 2017-12-07
JP2017215619A (ja) 2017-12-07
KR102315639B1 (ko) 2021-10-21
US20180082699A1 (en) 2018-03-22
US10354664B2 (en) 2019-07-16
JP6487429B2 (ja) 2019-03-20
BR112016000337B1 (pt) 2021-02-23
MX2016000255A (es) 2016-04-28
CN107527628B (zh) 2021-03-30
JP6515147B2 (ja) 2019-05-15
US10783895B2 (en) 2020-09-22
RU2017144515A3 (es) 2021-04-19
FR3008533A1 (fr) 2015-01-16
KR102423081B1 (ko) 2022-07-21
RU2017144515A (ru) 2019-02-15
RU2751104C2 (ru) 2021-07-08
US20180018982A1 (en) 2018-01-18
CN107527628A (zh) 2017-12-29
RU2017144519A3 (es) 2021-04-19
US20190378527A1 (en) 2019-12-12
JP2017215601A (ja) 2017-12-07
US20180018983A1 (en) 2018-01-18
CA3109028A1 (en) 2015-01-15
US10446163B2 (en) 2019-10-15
CN107492385A (zh) 2017-12-19
CN107492385B (zh) 2022-02-11
US10672412B2 (en) 2020-06-02
KR102343019B1 (ko) 2021-12-27
CA3108921A1 (en) 2015-01-15
KR102319881B1 (ko) 2021-11-02

Similar Documents

Publication Publication Date Title
EP3020043B1 (fr) Facteur d'échelle optimisé pour l'extension de bande de fréquence dans un décodeur de signaux audiofréquences
EP3014611B1 (fr) Extension améliorée de bande de fréquence dans un décodeur de signaux audiofréquences
EP3330966B1 (fr) Extension améliorée de bande de fréquence dans un décodeur de signaux audiofréquences

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: RAGOT, STEPHANE

Inventor name: KANIEWSKA, MAGDALENA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 867179

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014006746

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170208

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 867179

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014006746

Country of ref document: DE

Owner name: KONINKLIJKE PHILIPS N.V., NL

Free format text: FORMER OWNER: ORANGE, PARIS, FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170509

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170208

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170508

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KONINKLIJKE PHILIPS N.V.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014006746

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170704

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170704

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014006746

Country of ref document: DE

Representative=s name: EISENFUEHR SPEISER PATENTANWAELTE RECHTSANWAEL, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R039

Ref document number: 602014006746

Country of ref document: DE

Ref country code: DE

Ref legal event code: R008

Ref document number: 602014006746

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: S72Z

Free format text: COUNTERCLAIM LODGED; COUNTERCLAIM FOR REVOCATION LODGED AT THE PATENTS COURT ON 30 SEPTEMBER 2022 (HP-2020-000010)

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230725

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 10

Ref country code: DE

Payment date: 20230726

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R040

Ref document number: 602014006746

Country of ref document: DE