EP3011249B1 - Refroidissement de composants électroniques et/ou électriques par caloduc pulsé et élément de conduction thermique - Google Patents

Refroidissement de composants électroniques et/ou électriques par caloduc pulsé et élément de conduction thermique Download PDF

Info

Publication number
EP3011249B1
EP3011249B1 EP14729900.2A EP14729900A EP3011249B1 EP 3011249 B1 EP3011249 B1 EP 3011249B1 EP 14729900 A EP14729900 A EP 14729900A EP 3011249 B1 EP3011249 B1 EP 3011249B1
Authority
EP
European Patent Office
Prior art keywords
heat
cooling system
tube
serpentine coil
conduction element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14729900.2A
Other languages
German (de)
English (en)
Other versions
EP3011249A1 (fr
Inventor
Jean-Antoine Gruss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novaday
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Novaday
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novaday, Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Novaday
Publication of EP3011249A1 publication Critical patent/EP3011249A1/fr
Application granted granted Critical
Publication of EP3011249B1 publication Critical patent/EP3011249B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/51Cooling arrangements using condensation or evaporation of a fluid, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • F21V29/717Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements using split or remote units thermally interconnected, e.g. by thermally conductive bars or heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a cooling system for a device comprising electronic and / or electrical components to be cooled, the system comprising an oscillating heat pipe comprising a tube in which a coolant flows in a pulsed manner, the tube being wound so as to form a coil.
  • the invention also relates to a device comprising electronic and / or electrical components to be cooled and at least one such cooling system.
  • Cooling systems comprising heat pipes are also known from the documents US 2008/0117637 A1 , WO 2010/055542 A2 , EP 2444770 A1 , GB 2250087 A and US 6026890 A . All of these systems are complex and expensive to build and assemble. In addition, the use of two-phase thermosyphons leads to a very degraded or non-existent operation, when the heat source in heat exchange with the hot part of the heat pipes is located higher than the cold source.
  • the object of the present invention is to provide a cooling system that overcomes the disadvantages listed above.
  • an object of the invention is to provide such a cooling system that is inexpensive to produce and assemble, simple, having good performance, and regardless of the relative positions occupied by the hot and cold sources that are in exchange thermal with the cooling system.
  • a cooling system for a device comprising electronic and / or electrical components to be cooled
  • the system comprising an oscillating heat pipe having a tube in which a coolant circulates from pulsed way, the tube being wound to form a coil, and at least one thermal conduction member in contact with the components and in contact with a main surface of the coil, the thermal conduction member being in contact with a portion of said main surface so that the oscillating heat pipe has at least one hot evaporation portion of the coolant situated at the contact zone between the coil and the heat conduction element and serving to evacuate heat from the components and at least a cold part of condensation of the coolant located outside the contact zone between the coil and the heat conduction element and serving to dissipate the heat absorbed by the oscillatory heat pipe, each cold part of the oscillating heat pipe being in thermal contact by natural or forced convection with of the air and the oscillating heat pipe removes the calories previously captured from the components through this heat Thermal contact
  • a cooling system 10 for a device which itself comprises electronic and / or electrical components 100 to be cooled comprises an oscillating heat pipe 11 comprising a tube in which a coolant heat transfer fluid for example acetone at 50% of the internal volume total of the tube) flows in a pulsed manner.
  • the tube is wound so as to form a coil 12.
  • This oscillating heat-exchange type 11 is also known by the name of "pulsed heat pipe” or under the acronym "PHP" for "pulsating heat pipe” in English terminology.
  • the tube is partially filled with heat transfer fluid, in particular of heat transfer nature, which naturally takes the form of a succession of vapor bubbles and liquid plugs.
  • heat transfer fluid in particular of heat transfer nature, which naturally takes the form of a succession of vapor bubbles and liquid plugs.
  • This phase separation results mainly from surface tension forces.
  • the oscillating heat pipe 11 is heated in a hot part and cooled in a cold part, the resulting temperature differences generate both temporal and space, themselves associated with the generation and growth of vapor bubbles in the evaporator and their implosion in the condenser. These fluctuations act as a pumping system to transport liquid and vapor bubbles between hot and cold parts.
  • the components 100 are chosen in particular from at least one electronic circuit, a thyristor type electronic power component or a bipolar insulated gate transistor, a lighting device comprising light-emitting diodes, a photovoltaic device, a battery, a battery fuel or any other power system.
  • an orthonormal reference is associated with the oscillating heat pipe 11 with a longitudinal direction X, a lateral direction Y perpendicular to the direction X and a vertical direction Z perpendicular to the plane defined by the directions X and Y .
  • the cooling system 10 also comprises at least one heat conduction element 13 in contact with the components 100 and in contact with a main surface 12a of the coil 12.
  • the device as such comprises the electronic and / or electrical components 100 to be cooled and at least one such cooling system 10 for cooling these components 100 which are then in contact with the thermal conduction element 13, which last being in contact with the main surface 12a of the coil 12.
  • the components 100 comprise for example an electronic printed circuit 101 of the type "MPCB” (for "Metal Printed Circuit Board” in English terminology) equipped with light-emitting diodes 102, a collimator device 103 and a cover 104. On the figure 2 only circuit 101 and diodes 102 are shown.
  • MPCB Metal Printed Circuit Board
  • the heat conduction element 13 is preferably constituted by at least one plate or base fixed on the main surface 12a of the coil 12 and on which the components 100 are fixed.
  • the plate is fixed to the main surface 12a by brazing, welding, bonding, or any equivalent means and adapted to the desired function.
  • the circuit 101 is fixed to the plate for example by means of fixing screws.
  • a thermal interface material thermal grease, thermal conductive polymer or any equivalent solution
  • each plate is formed of a material having a thermal conductivity greater than 150 W ⁇ m -1 ⁇ K -1 .
  • the plate is advantageously metallic: it may preferably consist of aluminum or an alloy of aluminum or copper.
  • the first example according to Figures 1 to 3 , the second example according to the Figures 4 and 5 , the third example according to the Figures 9 and 10 , the fifth example according to the figure 13 and the sixth example according to the figure 14 correspond to a cooling system 10 in which a single metal plate is in contact with the main surface 12a of the coil 12, in a particular single zone thereof.
  • the fourth example according to figures 11 and 12 and the seventh example according to the figure 15 correspond to a cooling system 10 in which a plurality of platens are in contact with the main surface 12a of the coil 12, in different areas thereof.
  • the tube is wound in a main plane so as to form a planar coil 12.
  • the main plane is oriented along the longitudinal X and lateral Y directions so that any vector normal to this plane is parallel to the vertical direction Z.
  • the tube comprises two opposite main surfaces 12a and 12b, which are outer surfaces of the tube and forming the slice of the heat pipe.
  • Each of the two main surfaces 12a and 12b is advantageously flat and oriented in the main plane formed along the X and Y directions. These two surfaces are interconnected by a lateral surface defining the thickness of said tube.
  • a lower main surface 12a is defined, part of which is intended to be in contact with the heat conduction element 13 and an upper main surface 12b.
  • the thermal conduction element could be in contact with the upper main surface 12b.
  • the coil 12 thus comprises the upper main surface 12b, which is also flat and oriented in a plane (X, Y).
  • the thickness of the coil 12 corresponds to the shift in the Z direction between the main surfaces 12a and 12b.
  • the tube is wound so as to form a coil 12 of left shape.
  • the plate has significantly greater dimensions in the X and Y directions than in the Z direction. It is for example of parallelepipedal shape. It comprises two opposite faces in the direction Z respectively in mechanical contact with the main surface 12a of the coil 12 and with the components 100, here the circuit 101.
  • the area of the main surface 12a of the coil 12 in contact with the heat conduction element 13 is flat (preferably even in the case of a left-hand coil) and parallel to at least a plane in which the heat transfer fluid circulates inside the tube.
  • the tube is constituted by an extruded multiport tube delimiting channels 14 ( figure 3 ) parallel to each other, in each of which pulses circulates a fraction of the total amount of heat transfer fluid flowing in the tube.
  • the winding of the tube is carried out so that each channel 14 extends in a plane (X, Y) so that the fraction of heat transfer fluid circulating there flows in a plane (X, Y).
  • These flow planes are all parallel and offset in pairs, in particular along the direction Z.
  • the zone of the main surface 12a of the coil 12 in contact with the thermal conduction element 13 is parallel to these planes in which the heat transfer fluid circulate separately.
  • the extruded tube multiport is organized in particular so that the channels 14 are all shifted in pairs in the same direction, especially in the direction Z.
  • the tube then has the general shape a ribbon and the channels 14 are distributed along the width of this ribbon.
  • the width of this ribbon is directed in the direction Z.
  • the ribbon is wound in the aforementioned main plane to form the coil 12. All the channels 14 are parallel and stacked in the direction Z.
  • each channel 14 may be independent of each other and not communicate with each other fluidically about the heat transfer fluid.
  • the figure 16 corresponds to an embodiment in which each channel 14 has the form of an open loop.
  • each channel 14 constitutes an individual oscillatory heat pipe forming an open loop.
  • the embodiment according to the figure 17 provides that each channel 14 has the form of a closed loop.
  • each channel 14 constitutes an individual oscillatory heat pipe forming a closed loop.
  • FIG. 18 corresponds to an embodiment in which this conduit has the form of an open loop while the embodiment according to the figure 19 provides that this conduit has the form of a closed loop.
  • the embodiment of the figure 20 provides that at both ends of the multiport tube, all channels 14 are interconnected by a common collector 16 to all channels. It is possible to provide that only one end of the multiport tube is equipped with such a collector 16.
  • the common collector 16 is intended to allow a parallel connection of all the channels.
  • the coil 12 is of advantageously flat shape for reasons of ease of winding and bulk, it is preferably shaped so as to be among one of the following types: with parallel turns, with spirals in a square spiral, with turns circular spiral.
  • the first example according to Figures 1 to 3 , the second example according to the Figures 4 and 5 , the fifth example according to the figure 13 , the sixth example according to the figure 14 and the seventh example according to the figure 15 correspond to a cooling system 10 in which the coil 12 is shaped so as to have turns parallel to each other, for example in the longitudinal direction X.
  • the third example according to Figures 9 and 10 corresponds to a cooling system 10 in which the coil 12 is shaped so as to have spirals in a square spiral.
  • An advantage of this configuration is the fact of being able to provide a spacing between the turns having a lower value than in the configuration with parallel turns. This makes it possible to avoid too small radii of curvature on the multiport tube, which is detrimental to the performance of the oscillating heat pipe 11.
  • the spacing between the turns is smaller, it is possible to obtain a more compact assembly because more surface is developed for convection with air.
  • the spacing between the turns known to those skilled in the art, below which it is however necessary not to go down so as not to slow down the natural convection.
  • the volume in the center of the spiral can be used to house the control electronics of the diodes 102.
  • the fourth example according to figures 11 and 12 corresponds to a cooling system 10 in which the coil 12 is shaped so as to have circular spiral turns. It has the same advantages as the example with spiral spirals. Moreover, the radius of curvature of the multiport tube being further increased, the performance is improved compared to the example with spiral spirals square.
  • the oscillating heat pipe 11 comprises a hot part at each platen in contact with the main surface 12.
  • the hot part corresponds, at each platen, to the serpentine surface 12 delimited in the plane (X, Y) by the contour of the contact surface between said plate and the main surface 12a.
  • Each cold part is formed on the other hand outside the contact areas between the (the) plate (s) and the main surface 12a.
  • the oscillating heat pipe 11 may comprise one or more cold parts.
  • the first example according to Figures 1 to 3 , the second example according to the Figures 4 and 5 , the third example according to the Figures 9 and 10 and the sixth example according to the figure 14 each corresponds to a cooling system 10 in which the oscillating heat pipe 11 comprises a single hot portion (at the contact surface between the single plate and the main surface 12a) located in a central zone of the coil 12 in the direction X and two cold parts located in lateral zones of the coil 12 offset between them in the X direction and disposed on either side of the hot part in this direction X.
  • Each hot and cold part extends over the entire width of the heat pipe. oscillating 11 in the lateral direction Y.
  • the hot part is disposed only on part of the width of the heat pipe in the lateral direction Y.
  • the oscillating heat pipe It forms loops which are in natural convection in the air so as to constitute the two cold parts.
  • the fourth example according to figures 11 and 12 corresponds to a cooling system 10 in which the oscillating heat pipe 11 comprises four hot parts (at the level of the contact surface between the four plates and the main surface 12a) angularly distributed in the plane (X, Y) around the circular spiral and four cold parts delimited two by two by the hot parts. It goes without saying that the number of plates may be different from four.
  • the fifth example according to the figure 13 corresponds to a cooling system 10 in which the oscillating heat pipe 11 comprises a single hot part (at the contact surface between the single plate and the main surface 12a) located in a lateral zone of the coil 12 in the direction X and only one cold part located in the other lateral zone of the coil 12 in the X direction.
  • Each hot and cold part extends over the entire width of the oscillating heat pipe 11 in the lateral direction Y.
  • the hot part is arranged only on part of the width of the oscillating heat pipe 11 in the lateral direction Y.
  • the seventh example according to the figure 15 corresponds to a cooling system 10 in which the oscillatory heat pipe 11 comprises three hot parts (at the contact surface between the three plates constituting the heat conduction element 13 and the main surface 12a).
  • the three hot parts extend over the entire width of the oscillating heat pipe 11 in the lateral direction Y.
  • the three plates are spaced apart from each other in the direction X so as to delimit two cold parts.
  • the two plates are spaced from the lateral edges of the coil 12 so as to delimit two additional cold parts.
  • the oscillating heat pipe 11 comprises an alternation of four cold parts and three hot parts. It goes without saying that the number of plates may be different from three.
  • each cold part of the oscillating heat pipe 11 is in thermal contact by natural or forced convection with air. It is in this way that the oscillating heat pipe 11 evacuates the heat previously collected from the components 100.
  • the cooling system 10 may comprise a device for moving air, such as a fan not shown.
  • the system 10 may optionally comprise heat exchange fins 15 arranged between the turns of the coil 12 so as to connect them in pairs.
  • heat exchange fins 15 may be arranged at least at the level of said at least one cold part, or possibly at the level of said at least one hot part. They are for example formed of aluminum.
  • the figure 6 represents the case where such heat exchange fins 15 are absent between the turns of the coil 12.
  • the heat exchange fins 15 may be corrugated, perforated, offset, louvers .... More generally, they may have any other means for improving the heat exchange coefficient with the air to increase heat transfer in natural or forced convection.
  • fins 15 increases the compactness of the cooling system by increasing the exchange surface with air.
  • the solution described above has the advantage of being inexpensive to produce and assemble, to be simple while having good performance, and regardless of the relative positions occupied by the hot and cold sources that are in heat exchange with the 10.
  • the cooling system 10 described above has good performance irrespective of the spatial orientation of the oscillatory heat pipe 11 (to which the reference (X, Y, Z) is bound) in an absolute reference.
  • the cooling performance is very good even in the case illustrated on the figures 2 and 4 where the components 100 to be cooled, constituting the heat source in thermal coupling with the hot part of the pulsed heat pipe, is spatially disposed in an absolute reference above the cold parts of the pulsed heat pipe which are thermally coupled with the convection air natural or forced.
  • this solution has at least the advantage of reducing the thermal resistance in the hot and cold parts, not requiring complex assembly and being simple to implement and to achieve, to present very good thermal performance and to benefit from a high exchange surface between the channels of the coil and the air by natural or forced convection, to require little material and to be inexpensive.
  • Each component supplied with a current of 700 mA dissipates a heat power of 1.5 W for a luminous flux of about 220 lumens.
  • the thermal power to be dissipated is 37.5 W for a light output of 5500 lumens.
  • the plate has a dimension of 40 to 90 mm along the X and Y axes (width and length) and from 2 to 10 mm along the Z axis (thickness).
  • the length of each cold part of the tube is between 20 and 200 mm and the width of each cold part of the tube is between 40 and 200 mm.
  • the tube may comprise only one channel, preferably wound plane in the X, Y plane disposed on the side of the thermal conduction element.
  • the tube is optionally stiffened by a stiffening core, in particular a solid core directed along Z on the side opposite to the thermal conduction element with respect to the single channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

    Domaine technique de l'invention
  • L'invention concerne un système de refroidissement pour un dispositif comprenant des composants électroniques et/ou électriques à refroidir, le système comprenant un caloduc oscillant comprenant un tube dans lequel un fluide caloporteur circule de manière puisée, le tube étant enroulé de sorte à former un serpentin.
  • L'invention a pour objet également un dispositif comprenant des composants électroniques et/ou électriques à refroidir et au moins un tel système de refroidissement.
  • État de la technique
  • Il a déjà été imaginé, à l'image des solutions décrites dans les documents US7926982 , US20090147522 et US20090194254 , de refroidir des composants électroniques de type diodes électroluminescentes par l'utilisation d'un système de refroidissement incluant au moins un caloduc dont au moins une partie froide est en échange thermique avec une source froide par convection. Ils mettent en oeuvre un moyen d'échange thermique par convection avec la source froide, transmettant les calories captées par au moins un tube de conduction thermique les transmettant latéralement vers une pluralité de radiateurs de refroidissement en convection thermique avec l'air. La source froide nécessite malheureusement l'utilisation d'une convection forcée. D'autre part, le sens de circulation du caloduc est important. Il en résulte une difficulté de mise en oeuvre d'industrialisation en grande série. Des systèmes de refroidissement comportant des caloducs sont également connus des documents US 2008/0117637 A1 , WO 2010/055542 A2 , EP 2444770 A1 , GB 2250087 A et US 6026890 A . Tous ces systèmes sont complexes et coûteux à réaliser et à assembler. De plus, l'utilisation de thermosiphons diphasiques conduit à un fonctionnement très dégradé, voire inexistant, lorsque la source chaude en échange thermique avec la partie chaude des caloducs est située plus haut que la source froide.
  • Il est également connu d'utiliser des caloducs avec une structure capillaire qui peuvent dans une certaine mesure fonctionner dans une configuration où la source chaude est plus haute que la source froide. Néanmoins, cette solution nécessite des structures capillaires coûteuses et présente des performances intrinsèquement limitées par le capillaire.
  • Objet de l'invention
  • Le but de la présente invention est de proposer un système de refroidissement qui remédie aux inconvénients listés ci-dessus.
  • Notamment, un objet de l'invention est de fournir un tel système de refroidissement qui soit peu coûteux à réaliser et à assembler, simple, ayant de bonnes performances, et ce indépendamment des positions relatives occupées par les sources chaude et froide qui sont en échange thermique avec le système de refroidissement.
  • Ces objets peuvent être atteints par tout ou partie des revendications annexées, en particulier par un système de refroidissement pour un dispositif comportant des composants électroniques et/ou électriques à refroidir, le système comprenant un caloduc oscillant ayant un tube dans lequel un fluide caloporteur circule de manière puisée, le tube étant enroulé de sorte à former un serpentin, et au moins un élément de conduction thermique en contact avec les composants et en contact avec une surface principale du serpentin, l'élément de conduction thermique étant en contact sur une partie de ladite surface principale de sorte que le caloduc oscillant a au moins une partie chaude d'évaporation du fluide caloporteur située au niveau de la zone de contact entre le serpentin et l'élément de conduction thermique et servant à évacuer de la chaleur depuis les composants et au moins une partie froide de condensation du fluide caloporteur située en dehors de la zone de contact entre le serpentin et l'élément de conduction thermique et servant à dissiper la chaleur absorbée par le caloduc oscillant, chaque partie froide du caloduc oscillant étant en contact thermique par convection naturelle ou forcée avec de l'air et le caloduc oscillant évacue les calories précédemment captées depuis les composants par le biais dudit contact thermique et le tube est un tube extrudé multiport délimitant des canaux parallèles.
  • Description sommaire des dessins
  • D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés sur les dessins annexés, dans lesquels :
    • les figures 1 et 2 sont des vues en perspective d'un premier exemple de système de refroidissement selon l'invention,
    • la figure 3 est une vue de détails du tube multiport utilisé dans les figures 1 et 2,
    • les figures 4 et 5 sont des vues en perspective, respectivement à l'état assemblé et en éclaté, d'un deuxième exemple de système de refroidissement selon l'invention,
    • les figures 6 à 8 représentent en perspective trois modes de réalisation envisageables pour l'aménagement des parties froides du caloduc oscillant,
    • les figures 9 et 10 représentent un troisième exemple de système de refroidissement selon l'invention, respectivement en perspective et en vue de dessous,
    • les figures 11 et 12 représentent un quatrième exemple de système de refroidissement selon l'invention, respectivement en perspective et en vue de dessous,
    • les figures 13 à 15 représentent en perspective respectivement des cinquième, sixième et septième exemples de systèmes de refroidissement selon l'invention,
    • et les figures 16 à 20 illustrent cinq modes de réalisation possibles pour l'organisation du tube enroulé en serpentin.
    Description de modes préférentiels de l'invention
  • En référence aux figures 1 à 20, un système de refroidissement 10 pour un dispositif comprenant lui-même des composants électroniques et/ou électriques 100 à refroidir, comprend un caloduc oscillant 11 comportant un tube dans lequel un fluide caloporteur caloporteur par exemple de l'acétone à 50 % du volume intérieur total du tube) circule de manière puisée. Le tube est enroulé de sorte à former un serpentin 12. Ce type caloporteur oscillant 11 est aussi connu sous la dénomination de « caloduc puisé » ou sous l'acronyme « PHP » pour « pulsating heat pipe » en terminologie anglaise.
  • Dans le caloduc oscillant 11, le tube est partiellement rempli de fluide caloporteur, notamment de nature caloporteur, qui prend naturellement la forme d'une succession de bulles de vapeur et de bouchons de liquide. Cette séparation de phases résulte principalement des forces de tension superficielle. Lorsque le caloduc oscillant 11 est chauffé dans une partie chaude et refroidi dans une partie froide, les écarts de température résultants génèrent des fluctuations de pression à la fois temporelles et spatiales, elles-mêmes associées à la génération et à la croissance de bulles de vapeur dans l'évaporateur et à leur implosion dans le condenseur. Ces fluctuations agissent comme un système de pompage permettant de transporter le liquide et les bulles de vapeur entre les parties chaudes et froides.
  • Les composants 100 sont notamment choisis parmi au moins un circuit électronique, un composant électronique de puissance de type thyristor ou un transistor bipolaire à grille isolée, un dispositif d'éclairage comprenant des diodes électroluminescentes de puissance, un dispositif photovoltaïque, une batterie, une pile à combustible ou tout autre système de puissance.
  • Pour faciliter la compréhension de la suite de la description, un repère orthonormé est associé au caloduc oscillant 11 avec une direction longitudinale X, une direction latérale Y perpendiculaire à la direction X et une direction verticale Z perpendiculaire au plan défini par les directions X et Y.
  • Le système de refroidissement 10 comprend également au moins un élément de conduction thermique 13 en contact avec les composants 100 et en contact avec une surface principale 12a du serpentin 12.
  • Ainsi, le dispositif en tant que tel comprend les composants électroniques et/ou électriques 100 à refroidir et au moins un tel système de refroidissement 10 assurant le refroidissement de ces composants 100 qui sont alors en contact avec l'élément de conduction thermique 13, ce dernier étant en contact avec la surface principale 12a du serpentin 12.
  • Dans l'exemple illustré aux figures 4 et 5, les composants 100 comprennent par exemple un circuit imprimé électronique 101 de type « MPCB » (pour « Métal Printed Circuit Board » en terminologie anglosaxonne) équipé de diodes électroluminescentes 102, un dispositif collimateur 103 et un capot 104. Sur la figure 2, seuls le circuit 101 et les diodes 102 sont représentées.
  • L'élément de conduction thermique 13 est préférentiellement constitué par au moins une platine ou embase fixée sur la surface principale 12a du serpentin 12 et sur laquelle les composants 100 sont fixés. Ainsi, la platine est fixée à la surface principale 12a par brasage, soudure, collage, ou tout moyen équivalent et adapté à la fonction recherchée. Le circuit 101 est fixé à la platine par exemple par l'intermédiaire de vis de fixation. Un matériau d'interface thermique (graisse thermique, polymère conducteur thermique ou toute solution équivalente) peut être interposé entre la platine et le circuit 101.
  • Préférentiellement, chaque platine est formée dans un matériau présentant une conductivité thermique supérieure à 150 W·m-1·K-1. La platine est avantageusement métallique : elle peut être constituée préférentiellement d'aluminium ou d'un alliage d'aluminium ou de cuivre.
  • Ainsi, le premier exemple selon les figures 1 à 3, le deuxième exemple selon les figures 4 et 5, le troisième exemple selon les figures 9 et 10, le cinquième exemple selon la figure 13 et le sixième exemple selon la figure 14 correspondent à un système de refroidissement 10 dans lequel une seule platine métallique est en contact de la surface principale 12a du serpentin 12, dans une zone unique particulière de celle-ci. Le quatrième exemple selon les figures 11 et 12 et le septième exemple selon la figure 15 correspondent à un système de refroidissement 10 dans lequel plusieurs platines sont en contact de la surface principale 12a du serpentin 12, dans différentes zones de celle-ci.
  • Préférentiellement et de la manière illustrée dans tous les exemples de système 10, le tube est enroulé dans un plan principal de sorte à former un serpentin 12 de forme plane. Le plan principal est orienté selon les directions longitudinale X et latérale Y de sorte que tout vecteur normal à ce plan est parallèle à la direction verticale Z. Ainsi, dans ce mode de réalisation, le tube comporte deux surfaces principales 12a et 12b opposées, qui sont des surfaces extérieures du tube et formant la tranche du tube caloduc. Chacune des deux surfaces principales 12a et 12b est avantageusement plane et orientée dans le plan principal formé selon les directions X et Y. Ces deux surfaces sont reliées entre elles par une surface latérale définissant l'épaisseur dudit tube. Parmi les deux surfaces principales 12a et 12b, on définit une surface principale inférieure 12a dont une partie est destinée à être en contact avec l'élément de conduction thermique 13 et une surface principale supérieure 12b. L'élément de conduction thermique pourrait être en contact avec la surface principale supérieure 12b.
  • Dans l'exemple illustré, du côté opposé à l'élément de conduction thermique 13 suivant la direction Z, le serpentin 12 comprend donc la surface principale supérieure 12b, qui est également plane et orientée dans un plan (X, Y). L'épaisseur du serpentin 12 correspond au décalage suivant la direction Z entre les surfaces principales 12a et 12b.
  • Il est possible d'utiliser un tube de toute nature permettant une circulation pulsée du fluide caloporteur, par exemple selon le document CN10818999 . Mais contrairement à ce document où l'apport de chaleur et le refroidissement du caloduc oscillant sont réalisés respectivement aux deux extrémités du serpentin grâce à un échange convectif avec des gaz chauds et froids, la solution décrite ici prévoit une conduction thermique avec la source chaude à refroidir, au niveau d'une surface principale du tube.
  • Il reste toutefois envisageable que le tube soit enroulé de sorte à former un serpentin 12 de forme gauche.
  • La platine présente notamment des dimensions nettement supérieures dans les directions X et Y que suivant la direction Z. Elle est par exemple de forme parallélépipédique. Elle comprend deux faces opposées suivant la direction Z respectivement en contact mécanique avec la surface principale 12a du serpentin 12 et avec les composants 100, ici le circuit 101.
  • Ainsi, il ressort de ce qui précède que la zone de la surface principale 12a du serpentin 12 en contact avec l'élément de conduction thermique 13 est plane (préférentiellement même dans le cas d'un serpentin de forme gauche) et parallèle à au moins un plan dans lequel le fluide caloporteur circule à l'intérieur du tube. En effet, il sera détaillé plus loin que le tube est constitué par un tube extrudé multiport délimitant des canaux 14 (figure 3) parallèles entre eux, dans chacun desquels circule de manière pulsée une fraction de la quantité totale de fluide caloporteur circulant dans le tube. L'enroulement du tube est réalisé de sorte que chaque canal 14 s'étend dans un plan (X, Y) de sorte que la fraction de fluide caloporteur qui y circule s'écoule dans un plan (X, Y). Ces plans d'écoulement sont tous parallèles et décalés deux à deux, notamment selon la direction Z. La zone de la surface principale 12a du serpentin 12 en contact avec l'élément de conduction thermique 13 est parallèle à ces plans dans lesquels les fractions de fluide caloporteur circulent séparément.
  • Le tube extrudé multiport est notamment organisé de sorte que les canaux 14 sont tous décalés deux à deux selon une même direction, notamment selon la direction Z. Le tube présente alors la forme générale d'un ruban et les canaux 14 sont répartis suivant la largeur de ce ruban. La largeur de ce ruban est dirigée selon la direction Z. Suivant sa longueur, le ruban est enroulé dans le plan principal précédemment mentionné afin de constituer le serpentin 12. Tous les canaux 14 sont parallèles et empilés suivant la direction Z.
  • En référence aux figures 16 et 17, les canaux 14 peuvent être indépendants les uns des autres et ne pas communiquer entre eux de manière fluidique concernant le fluide caloporteur. La figure 16 correspond à un mode de réalisation dans lequel chaque canal 14 présente la forme d'une boucle ouverte. Ainsi, chaque canal 14 constitue un caloduc oscillant individuel formant une boucle ouverte. Alternativement, le mode de réalisation selon la figure 17 prévoit que chaque canal 14 présente la forme d'une boucle fermée. Ainsi, chaque canal 14 constitue un caloduc oscillant individuel formant une boucle fermée.
  • En référence aux figures 18 à 20, plusieurs des canaux 14, voire l'ensemble des canaux 14 délimités par le tube multiport, sont interconnectés entre eux, notamment à leurs extrémités, de sorte à former un conduit en forme de serpentin enroulé dans une direction perpendiculaire à la surface principale 12a, c'est-à-dire dans la direction Z dans l'exemple illustré. La figure 18 correspond à un mode de réalisation dans lequel ce conduit présente la forme d'une boucle ouverte tandis que le mode de réalisation selon la figure 19 prévoit que ce conduit présente la forme d'une boucle fermée.
  • Enfin, le mode de réalisation de la figure 20 prévoit qu'au niveau des deux extrémités du tube multiport, tous les canaux 14 soient reliés entre eux par un collecteur commun 16 à l'ensemble des canaux. Il est possible de prévoir que seule l'une des extrémités du tube multiport soit équipée d'un tel collecteur 16. Le collecteur commun 16 est destiné à permettre une mise en parallèle de tous les canaux.
  • De manière générale, la sélection et la mise en oeuvre d'un mode de réalisation choisi parmi ceux des figures 16 à 20 dépendent de la conception de bouchons d'extrémité destinés à être aboutés aux extrémités du tube de sorte à arranger les canaux 14 de la manière recherchée en fonction du mode de réalisation sélectionné.
  • Lorsque le serpentin 12 est de forme avantageusement plane pour des raisons de facilité d'enroulement et d'encombrement, il est préférentiellement conformé de sorte à être parmi l'un des types suivants : à spires parallèles, à spires en spirale carrée, à spires en spirale circulaire.
  • Ainsi, le premier exemple selon les figures 1 à 3, le deuxième exemple selon les figures 4 et 5, le cinquième exemple selon la figure 13, le sixième exemple selon la figure 14 et le septième exemple selon la figure 15 correspondent à un système de refroidissement 10 dans lequel le serpentin 12 est conformé de sorte à présenter des spires parallèles entre elles, par exemple selon la direction longitudinale X.
  • Le troisième exemple selon les figures 9 et 10 correspond à un système de refroidissement 10 dans lequel le serpentin 12 est conformé de sorte à présenter des spires en spirale carrée. Un avantage de cette configuration est le fait de pouvoir ménager un espacement entre les spires ayant une valeur plus faible que dans la configuration à spires parallèles. Ceci permet d'éviter des rayons de courbure trop faibles sur le tube multiport, ce qui nuit aux performances du caloduc oscillant 11. Par ailleurs, l'espacement entre les spires étant plus réduit, il est possible d'obtenir un ensemble plus compact car plus de surface est développée pour la convection avec l'air. Il existe une valeur minimale de l'espacement entre les spires, connue de l'homme du Métier, en dessous de laquelle il convient toutefois de ne pas descendre afin de ne pas freiner la convection naturelle. De plus, le volume au centre de la spirale peut servir à loger l'électronique de commande des diodes 102.
  • Enfin, le quatrième exemple selon les figures 11 et 12 correspond à un système de refroidissement 10 dans lequel le serpentin 12 est conformé de sorte à présenter des spires en spirales circulaire. Il présente les mêmes avantages que l'exemple à spires en spirale carrée. Par ailleurs, le rayon de courbure du tube multiport étant encore augmenté, les performances sont améliorées par rapport à l'exemple à spires en spirale carrée.
  • L'organisation des spires au sein du serpentin 12 peut toutefois être quelconque de sorte que les exemples illustrés ne sont en aucun cas limitatifs du champ d'application de la solution.
  • Il est rappelé que l'élément de conduction thermique 13 est constitué notamment par une ou plusieurs platines. De manière générale, par ces dispositions, l'élément de conduction thermique 13 est en contact via ladite au moins une platine sur une partie uniquement de la surface principale 12a de sorte que le caloduc oscillant 11 présente :
    • au moins une partie chaude d'évaporation du fluide caloporteur située au niveau de la zone de contact entre le serpentin 12 et l'élément de conduction thermique 13 et servant à évacuer de la chaleur depuis les composants,
    • et au moins une partie froide de condensation du fluide caloporteur située en dehors de la zone de contact entre le serpentin 12 et l'élément de conduction thermique 13 et servant à dissiper la chaleur absorbée par le caloduc oscillant 11.
  • En particulier, le caloduc oscillant 11 comprend une partie chaude au niveau de chaque platine en contact avec la surface principale 12. La partie chaude correspond, au niveau de chaque platine, à la surface de serpentin 12 délimitée dans le plan (X, Y) par le contour de la surface de contact entre ladite platine et la surface principale 12a. Chaque partie froide est par contre formée en dehors des zones de contact entre la(les) platine(s) et la surface principale 12a. En fonction de l'organisation du serpentin 12, du nombre et de la position de chaque platine, le caloduc oscillant 11 peut comporter une ou plusieurs parties froides.
  • Ainsi, le premier exemple selon les figures 1 à 3, le deuxième exemple selon les figures 4 et 5, le troisième exemple selon les figures 9 et 10 et le sixième exemple selon la figure 14 correspondent chacun à un système de refroidissement 10 dans lequel le caloduc oscillant 11 comprend une unique partie chaude (au niveau de la surface de contact entre l'unique platine et la surface principale 12a) située dans une zone centrale du serpentin 12 selon la direction X et deux parties froides situées dans des zones latérales du serpentin 12 décalées entre elles selon la direction X et disposées de part et d'autre de la partie chaude selon cette direction X. Chaque partie chaude et froide s'étend sur toute la largeur du caloduc oscillant 11 suivant la direction latérale Y. Toutefois, il pourrait être envisagé par exemple que la partie chaude ne soit disposée que sur une partie de la largeur du caloduc suivant la direction latérale Y. De chaque côté de la partie chaude centrale, le caloduc oscillant 11 forme des boucles qui sont en convection naturelle dans l'air de sorte à constituer les deux parties froides.
  • Le quatrième exemple selon les figures 11 et 12 correspond à un système de refroidissement 10 dans lequel le caloduc oscillant 11 comprend quatre parties chaudes (au niveau de la surface de contact entre les quatre platines et la surface principale 12a) réparties angulairement dans le plan (X, Y) autour de la spirale circulaire et quatre parties froides délimitées deux à deux par les parties chaudes. Il va de soi que le nombre de platines peut être différent de quatre.
  • Le cinquième exemple selon la figure 13 correspond à un système de refroidissement 10 dans lequel le caloduc oscillant 11 comprend une unique partie chaude (au niveau de la surface de contact entre l'unique platine et la surface principale 12a) située dans une zone latérale du serpentin 12 selon la direction X et une seule partie froide située dans l'autre zone latérale du serpentin 12 selon la direction X. Chaque partie chaude et froide s'étend sur toute la largeur du caloduc oscillant 11 suivant la direction latérale Y. Toutefois, il pourrait être envisagé par exemple que la partie chaude ne soit disposée que sur une partie de la largeur du caloduc oscillant 11 suivant la direction latérale Y.
  • Le septième exemple selon la figure 15 correspond à un système de refroidissement 10 dans lequel le caloduc oscillant 11 comprend trois parties chaudes (au niveau de la surface de contact entre les trois platines constitutives de l'élément de conduction thermique 13 et la surface principale 12a). Les trois parties chaudes s'étendent sur toute la largeur du caloduc oscillant 11 suivant la direction latérale Y. Les trois platines sont écartées l'une de l'autre selon la direction X de sorte à délimiter deux parties froides. De chaque côté latéral du caloduc oscillant suivant la direction X, les deux platines sont distantes des bords latéraux du serpentin 12 de sorte à délimiter deux parties froides supplémentaires. Ainsi, le caloduc oscillant 11 comprend une alternance de quatre parties froides et de trois parties chaudes. Il va de soi que le nombre de platines peut être différent de trois.
  • Dans tous les exemples de système 10, chaque partie froide du caloduc oscillant 11 est en contact thermique par convection naturelle ou forcée avec de l'air. C'est par ce biais que le caloduc oscillant 11 évacue les calories précédemment captées depuis les composants 100. Le système de refroidissement 10 peut comporter un dispositif de mise en mouvement de l'air, tel qu'un ventilateur non représenté.
  • En référence aux figures 7 et 8, le système 10 peut facultativement comprendre des ailettes d'échange thermique 15 agencées entre les spires du serpentin 12 de sorte à les relier deux à deux. De telles ailettes d'échange thermique 15 peuvent être agencées au moins au niveau de ladite au moins une partie froide, voire éventuellement au niveau de ladite au moins une partie chaude. Elles sont par exemple formées en aluminium. La figure 6 représente le cas où de telles ailettes d'échange thermique 15 sont absentes entre les spires du serpentin 12.
  • Ces ailettes d'échange thermique 15, fixées aux parois externes du tube entre deux spires adjacentes, permettent d'augmenter la surface d'échange en convection naturelle ou forcée de chaque partie froide munie de telles ailettes. Elles peuvent être en accordéon et fixées entre les spires du serpentin 12 de la manière représentée sur les figures 7 et 8. Elles peuvent être rectangulaires, triangulaires ou tout autre forme connue et adaptée.
  • Les ailettes d'échange thermique 15 peuvent être corruguées, perforées, décalées, à persiennes.... De manière plus générale, elles peuvent présenter tout autre moyen permettant d'améliorer le coefficient d'échange thermique avec l'air afin d'augmenter le transfert de chaleur en convection naturelle ou forcée.
  • En outre, l'utilisation d'ailettes 15 permet d'augmenter la compacité du système de refroidissement en augmentant la surface d'échange avec l'air.
  • La solution décrite précédemment présente l'avantage d'être peu coûteuse à réaliser et à assembler, d'être simple tout en présentant de bonnes performances, et ce indépendamment des positions relatives occupées par les sources chaude et froide qui sont en échange thermique avec le système de refroidissement 10. Autrement dit, le système de refroidissement 10 décrit précédemment présente de bonnes performances quelle que soit l'orientation spatiale du caloduc oscillant 11 (auquel le repère (X, Y, Z) est lié) dans un repère absolu. Ainsi, par exemple, les performances de refroidissement sont très bonnes même dans le cas illustré sur les figures 2 et 4 où les composants 100 à refroidir, constitutif de la source chaude en couplage thermique avec la partie chaude du caloduc pulsé, est disposée spatialement dans un repère absolu au-dessus des parties froides du caloduc pulsé qui sont en couplage thermique avec l'air par convection naturelle ou forcée.
  • De manière générale, cette solution présente au moins l'avantage de diminuer la résistance thermique dans les parties chaude et froide, de ne pas nécessiter d'assemblage complexe et d'être simple à mettre en oeuvre et à réaliser, de présenter de très bonnes performances thermiques et de bénéficier d'une surface d'échange élevée entre les canaux du serpentin et l'air par convection naturelle ou forcée, de nécessiter peu de matière et d'être peu onéreux.
  • Un exemple d'application est détaillé ci-dessous pour le refroidissement d'un luminaire comprenant 25 diodes électroluminescentes 102. Chaque composant alimenté sous un courant de 700mA dissipe une puissance thermique de 1,5 W pour un flux lumineux d'environ 220 lumens. Pour l'ensemble des 25 diodes 102, la puissance thermique à dissiper est donc de 37,5 W pour une puissance lumineuse de 5500 lumens.
  • Dans cet exemple, il sera pertinent de choisir un système de refroidissement 10 présentant les paramètres suivants :
    • nombre de spires : compris entre 2 et 20, ,
    • fluide caloporteur : acétone, méthanol, ammoniac, n-heptane, tétrafluoroéthane, fluorocarbones,
    • épaisseur des ailettes 15 : comprise entre 0,1 et 0,3 mm,
    • diamètre interne des canaux 14 : compris entre 0,5 et 4 mm,
    • hauteur du tube multiport : comprise entre 10 et 100 mm,
    • espace entre les spires du serpentin 12 : compris entre 2 et 30 mm,
    • espace entre les ailettes 15 : compris entre 1 et 15 mm.
  • La platine a une dimension de 40 à 90 mm suivant les axes X et Y (largeur et longueur) et de 2 à 10 mm suivant l'axe Z (épaisseur). La longueur de chaque partie froide du tube est comprise entre 20 et 200 mm et la largeur de chaque partie froide du tube est comprise entre 40 et 200mm.
  • La mise en oeuvre du dispositif peut prévoir les étapes suivantes :
    • extrusion du tube multiport,
    • fabrication du serpentin 12,
    • fabrication de la platine métallique,
    • fabrication des bouchons d'extrémité à mettre en place aux extrémités du tube multiport,
    • assemblage des composants 100,
    • brasage de l'ensemble,
    • remplissage du caloduc oscillant 11 avec le fluide caloporteur,
    • mise en place des diodes 102 sur le circuit 101,
    • mise en place du dispositif collimateur 103,
    • fixation du circuit 102 équipé des diodes 102 et du dispositif collimateur 103 sur la platine, par exemple grâce à des vis de fixation.
  • Des modélisations ont montré qu'il pouvait être intéressant de prévoir que la quantité totale de fluide caloporteur circulant dans le tube puisse ne circuler que dans au moins un desdits canaux 14, de préférence situé du côté de l'élément de conduction thermique.
  • Alternativement, le tube peut ne comprendre qu'un seul canal, de préférence enroulé de manière plane dans le plan X, Y, disposé du côté de l'élément de conduction thermique. Le tube est éventuellement rigidifié par une âme de rigidification, notamment une âme pleine dirigée selon Z du côté opposé à l'élément de conduction thermique par rapport à l'unique canal.

Claims (18)

  1. Système de refroidissement (10) pour un dispositif comportant des composants électroniques et/ou électriques (100) à refroidir, le système (10) comprenant un caloduc oscillant (11) ayant un tube dans lequel un fluide caloporteur circule de manière puisée, le tube étant enroulé de sorte à former un serpentin (12), et au moins un élément de conduction thermique (13) en contact avec les composants (100) et en contact avec une surface principale (12a) du serpentin (12), l'élément de conduction thermique (13) étant en contact sur une partie de ladite surface principale (12a) de sorte que le caloduc oscillant (11) a au moins une partie chaude d'évaporation du fluide caloporteur située au niveau de la zone de contact entre le serpentin (12) et l'élément de conduction thermique (13) et servant à évacuer de la chaleur depuis les composants (100) et au moins une partie froide de condensation du fluide caloporteur située en dehors de la zone de contact entre le serpentin (12) et l'élément de conduction thermique (13) et servant à dissiper la chaleur absorbée par le caloduc oscillant (11), caractérisé en ce que chaque partie froide du caloduc oscillant (11) est en contact thermique par convection naturelle ou forcée avec de l'air et le caloduc oscillant (11) évacue les calories précédemment captées depuis les composants (100) par le biais dudit contact thermique et en ce que le tube est un tube extrudé multiport délimitant des canaux (14) parallèles.
  2. Système de refroidissement (10) selon la revendication 1, caractérisé en ce que la zone de ladite surface principale (12a) du serpentin (12) en contact avec l'élément de conduction thermique (13) est plane et parallèle à au moins un plan dans lequel le fluide caloporteur circule.
  3. Système de refroidissement (10) selon l'une des revendications 1 ou 2, caractérisé en ce que le tube est enroulé dans un plan principal (X, Y) de sorte à former un serpentin (12) plan et en ce que ladite surface principale (12a) du serpentin (12) est plane et parallèle audit plan principal.
  4. Système de refroidissement (10) selon la revendication précédente, caractérisé en ce que les canaux (14) sont répartis selon une direction (Z) perpendiculaire au plan principal (X, Y).
  5. Système de refroidissement (10) selon la revendication 1, caractérisé en ce que le tube présente la forme générale d'un ruban enroulé dans un plan principal (X, Y) pour former un serpentin (12), les canaux (14) étant placés du côté de l'élément de conduction thermique et/ou répartis suivant la largeur de ce ruban, selon une direction (Z) perpendiculaire au plan principal (X, Y).
  6. Système de refroidissement (10) selon la revendication 3 ou 5, caractérisé en ce que le serpentin (12) plan est conformé de sorte à être parmi l'un des types suivants : à spires parallèles, à spires en spirale carrée, à spires en spirale circulaire.
  7. Système de refroidissement (10) selon l'une des revendications précédentes, caractérisé en ce que l'élément de conduction thermique (13) est constitué par au moins une platine fixée sur ladite surface principale (12a) du serpentin (12) et sur laquelle les composants (100) sont fixés.
  8. Système de refroidissement (10) selon la revendication précédente, caractérisé en ce que la platine est formée dans un matériau présentant une conductivité thermique supérieure à 150 W·m-1·K-1.
  9. Système de refroidissement (10) selon l'une des revendications précédentes, caractérisé en ce que le caloduc oscillant (11) comprend une partie chaude située dans une zone centrale du serpentin (12) et deux parties froides situées dans des zones latérales du serpentin (12) et disposées de part et d'autre de la partie chaude.
  10. Système de refroidissement (10) selon l'une des revendications précédentes, caractérisé en ce qu'il comprend des ailettes d'échange thermique (15) entre les spires du serpentin (12) au moins au niveau de ladite au moins une partie froide.
  11. Système de refroidissement (10) selon l'une des revendications précédentes, caractérisé en ce qu'une fraction de la quantité totale de fluide caloporteur circulant dans le tube circule dans chacun desdits canaux (14).
  12. Système de refroidissement (10) selon l'une des revendications 1 à 10, caractérisé en ce que la quantité totale de fluide caloporteur circulant dans le tube circule dans au moins un desdits canaux (14), de préférence situé du côté de l'élément de conduction thermique.
  13. Système de refroidissement (10) selon l'une des revendications précédentes, caractérisé en ce que les canaux (14) sont indépendants les uns des autres et ne communiquent pas entre eux de manière fluidique.
  14. Système de refroidissement (10) selon la revendication précédente, caractérisé en ce que chaque canal (14) s'étend dans un plan parallèle à un plan principal (X, Y).
  15. Système de refroidissement (10) selon l'une des revendications 1 à 12, caractérisé en ce que plusieurs desdits canaux (14) sont interconnectés entre eux, notamment à leurs extrémités, de sorte à former un conduit en forme de serpentin enroulé dans une direction (Z) perpendiculaire à ladite surface principale (12a).
  16. Système de refroidissement (10) selon l'une des revendications 1 à 8, caractérisé en ce que plusieurs, voire l'ensemble, des canaux (14) délimités par le tube multiport sont interconnectés entre eux, notamment à leurs extrémités, de sorte à former un conduit, de préférence enroulé de manière plane, disposé du côté de l'élément de conduction thermique, et éventuellement rigidifié par une âme de rigidification.
  17. Dispositif comprenant des composants électroniques et/ou électriques (100) à refroidir et au moins un système de refroidissement (10) selon l'une quelconque des revendications précédentes refroidissant lesdits composants (100) en contact avec l'élément de conduction thermique (13) en contact avec la surface principale (12a) du serpentin (12).
  18. Dispositif selon la revendication précédente, caractérisé en ce que les composants (100) sont choisis parmi au moins un circuit électronique, un composant électronique de puissance de type thyristor ou un transistor bipolaire à grille isolée, un dispositif d'éclairage comprenant des diodes électroluminescentes de puissance, un dispositif photovoltaïque, une batterie, une pile à combustible.
EP14729900.2A 2013-06-18 2014-06-13 Refroidissement de composants électroniques et/ou électriques par caloduc pulsé et élément de conduction thermique Active EP3011249B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1355744A FR3007122B1 (fr) 2013-06-18 2013-06-18 Refroidissement de composants electroniques et/ou electriques par caloduc pulse et element de conduction thermique
PCT/EP2014/062334 WO2014202474A1 (fr) 2013-06-18 2014-06-13 Refroidissement de composants electroniques et/ou electriques par caloduc pulse et element de conduction thermique

Publications (2)

Publication Number Publication Date
EP3011249A1 EP3011249A1 (fr) 2016-04-27
EP3011249B1 true EP3011249B1 (fr) 2018-09-05

Family

ID=49237342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14729900.2A Active EP3011249B1 (fr) 2013-06-18 2014-06-13 Refroidissement de composants électroniques et/ou électriques par caloduc pulsé et élément de conduction thermique

Country Status (3)

Country Link
EP (1) EP3011249B1 (fr)
FR (1) FR3007122B1 (fr)
WO (1) WO2014202474A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11112840B2 (en) 2019-08-22 2021-09-07 Abaco Systems, Inc. Electronics chassis with oscillating heat pipe (OHP)
US11849539B2 (en) 2020-08-13 2023-12-19 Toyota Motor Engineering & Manufacturing North America, Inc. Embedded cooling systems utilizing heat pipes

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2988578B1 (fr) * 2014-08-19 2021-05-19 ABB Schweiz AG Élément de refroidissement
EP3153808A1 (fr) * 2015-10-07 2017-04-12 ABB Technology Oy Appareil de refroidissement et procédé de fabrication
US10277096B2 (en) 2015-11-13 2019-04-30 General Electric Company System for thermal management in electrical machines
FR3051548B1 (fr) 2016-05-17 2018-05-25 Novaday Dispositif de refroidissement a caloduc pulse
ES2657338B2 (es) * 2016-09-02 2019-01-29 Eidopia S L Sistema opto-térmico basado en pletinas térmicas bidimensionales
DE102020200110A1 (de) * 2020-01-08 2021-07-08 Robert Bosch Gesellschaft mit beschränkter Haftung Kühlvorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2250087A (en) * 1990-11-22 1992-05-27 Actronics Kk Heat pipe
US6026890A (en) * 1995-06-29 2000-02-22 Actronics Kabushiki Kaisha Heat transfer device having metal band formed with longitudinal holes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672373B2 (en) * 2001-08-27 2004-01-06 Idalex Technologies, Inc. Method of action of the pulsating heat pipe, its construction and the devices on its base
US7345877B2 (en) * 2005-01-06 2008-03-18 The Boeing Company Cooling apparatus, system, and associated method
CN100572908C (zh) * 2006-11-17 2009-12-23 富准精密工业(深圳)有限公司 发光二极管灯具
US8919426B2 (en) * 2007-10-22 2014-12-30 The Peregrine Falcon Corporation Micro-channel pulsating heat pipe
ITTV20080145A1 (it) * 2008-11-14 2010-05-15 Uniheat Srl Sistema a tubo di calore oscillante a circuito chiuso in materiale polimerico
EP2444770B1 (fr) * 2010-10-20 2020-02-12 ABB Schweiz AG Échangeur de chaleur comprenant un caloduc pulsatif

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2250087A (en) * 1990-11-22 1992-05-27 Actronics Kk Heat pipe
US6026890A (en) * 1995-06-29 2000-02-22 Actronics Kabushiki Kaisha Heat transfer device having metal band formed with longitudinal holes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11112840B2 (en) 2019-08-22 2021-09-07 Abaco Systems, Inc. Electronics chassis with oscillating heat pipe (OHP)
US11849539B2 (en) 2020-08-13 2023-12-19 Toyota Motor Engineering & Manufacturing North America, Inc. Embedded cooling systems utilizing heat pipes

Also Published As

Publication number Publication date
WO2014202474A1 (fr) 2014-12-24
EP3011249A1 (fr) 2016-04-27
FR3007122B1 (fr) 2017-09-08
FR3007122A1 (fr) 2014-12-19

Similar Documents

Publication Publication Date Title
EP3011249B1 (fr) Refroidissement de composants électroniques et/ou électriques par caloduc pulsé et élément de conduction thermique
EP3355019B1 (fr) Dispositif de refroidissement
EP3207324B1 (fr) Caloduc plat avec fonction reservoir
US20100186820A1 (en) Solar electricity generation with improved efficiency
FR2690040A1 (fr) Radiateur du type à tube à évacuation de chaleur pour un dispositif électronique.
EP2874191B1 (fr) Dispositif hybride comprenant un module thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile, et un échangeur de chaleur de chaleur
FR2989323A1 (fr) Module de batteries comportant un dispositif de refroidissement comprenant un materiau de fusion
EP2901088A2 (fr) Dispositif de conditionnement thermique de fluide pour vehicule automobile et appareil de chauffage et/ou de climatisation correspondant
EP3548828B1 (fr) Dispositif de distribution d'un fluide réfrigérant à l'intérieur de tubes d'un échangeur de chaleur constitutif d'un circuit de fluide réfrigérant
EP3017486B1 (fr) Dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile
WO2013156554A1 (fr) Dispositif de regulation thermique pour module de batteries
EP2591513B1 (fr) Dispositif de génération de courant et/ou de tension à base de module thermoélectrique disposé dans un flux de fluide
FR3075333A1 (fr) Echangeur de chaleur pour vehicule
WO2014013035A1 (fr) Dispositif de contrôle thermique
EP3246648B1 (fr) Dispositif de refroidissement à caloduc pulsé
FR2996066A1 (fr) Dispositif de controle thermique pour module de batterie de vehicule automobile, procede de fabrication dudit dispositif de controle et module de batterie
EP2993436B1 (fr) Dispositif de gestion thermique à matériau à changement de phase pour véhicule automobile
FR3064117A1 (fr) Dispositif de regulation thermique de cellules de stockage d’energie electrique comprenant au moins deux echangeurs thermiques imbriques
FR3073612A1 (fr) Tube pour echangeur de chaleur avec dispositif de perturbation
EP2318785B1 (fr) Générateur thermique magnétocalorique
FR2751473A1 (fr) Structure d'antenne a modules actifs
WO2023099315A1 (fr) Elements de perturbation avances pour l'amelioration de la performance des tubes
EP3566014A1 (fr) Dispositif de diffusion thermique
WO2023001791A1 (fr) Elements de perturbation avances pour l'amelioration de la performance des tubes de radiateurs basse temperature
FR3075334A1 (fr) Echangeur de chaleur pour vehicule a dispositif de dissipation electriquement chauffant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 15/02 20060101ALI20161101BHEP

Ipc: F21V 29/71 20150101ALI20161101BHEP

Ipc: F21V 29/00 20150101ALI20161101BHEP

Ipc: F21Y 101/00 20160101AFI20161101BHEP

17Q First examination report despatched

Effective date: 20161122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014031750

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F28D0015020000

Ipc: F21Y0115100000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21Y 115/10 20160101AFI20180227BHEP

Ipc: F21V 29/71 20150101ALI20180227BHEP

Ipc: F21V 29/00 20150101ALI20180227BHEP

Ipc: F28D 15/02 20060101ALI20180227BHEP

INTG Intention to grant announced

Effective date: 20180319

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1038244

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014031750

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MOINAS AND SAVOYE SARL, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1038244

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014031750

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

26N No opposition filed

Effective date: 20190606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140613

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240626

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240613

Year of fee payment: 11