EP3001435A1 - Trockentransformatorkern - Google Patents

Trockentransformatorkern Download PDF

Info

Publication number
EP3001435A1
EP3001435A1 EP14186803.4A EP14186803A EP3001435A1 EP 3001435 A1 EP3001435 A1 EP 3001435A1 EP 14186803 A EP14186803 A EP 14186803A EP 3001435 A1 EP3001435 A1 EP 3001435A1
Authority
EP
European Patent Office
Prior art keywords
core
dry
enclosure
iron core
dry transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14186803.4A
Other languages
English (en)
French (fr)
Other versions
EP3001435B1 (de
Inventor
Rudolf Hanov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP14186803.4A priority Critical patent/EP3001435B1/de
Priority to DK14186803.4T priority patent/DK3001435T3/en
Priority to BR112017006229A priority patent/BR112017006229A2/pt
Priority to PCT/EP2015/071235 priority patent/WO2016050515A1/de
Priority to US15/510,912 priority patent/US10361024B2/en
Publication of EP3001435A1 publication Critical patent/EP3001435A1/de
Application granted granted Critical
Publication of EP3001435B1 publication Critical patent/EP3001435B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/23Corrosion protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F2003/005Magnetic cores for receiving several windings with perpendicular axes, e.g. for antennae or inductive power transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • H01F2027/328Dry-type transformer with encapsulated foil winding, e.g. windings coaxially arranged on core legs with spacers for cooling and with three phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures

Definitions

  • the invention relates to a dry-type transformer core comprising an iron core having a number of legs designed for winding connected by a number of yokes.
  • a dry-type transformer is a transformer which does not contain liquid insulating materials such as e.g. B. contains transformer oil. Dry transformers are commonly used as power transformers, in particular as such in electrical energy networks. They are therefore often three-phase designed as a three-phase AC transformer. Dry transformers are used especially where due to the proximity to persons or property oil-filled transformers or only with significant fire protection measures such. B. fire walls, can be placed. Also, oil catchment pits do not contribute to groundwater protection.
  • Dry transformer cores like liquid-filled transformers, are usually designed as two-core or three-core iron cores made of double-sided insulated electrical steel sheets.
  • the legs, which are provided with the coil windings are connected on both sides by yokes. Due to the use of thin magnetic sheets for core production, it must be held, fastened and pressed in various places. This has so far been achieved by bandaging, screwing and compression. If very thin, amorphous sheets are used, the mechanical stabilization of the core is even more complex.
  • the dry-transformer core comprises a housing molded onto the iron core, which surrounds the iron core substantially flush.
  • the invention is based on the consideration that both of the above-mentioned objects could be achieved by a housing, which on the one hand ensures the mechanical strength of the iron core by enclosing it flush, d. H. so that the individual electrical panels are held by the enclosure form-fitting in position, and on the other hand ensures by a complete encapsulation for a good corrosion protection.
  • the non-magnetic enclosure advantageously has an average permeability of between -1.01 and 1.01, preferably between -1.001 and 1.001.
  • the permeability number refers to the ratio of the permeability (ratio of the magnetic flux density to the magnetic field strength) of the housing to that of the vacuum.
  • the enclosure is thus advantageously made of a material whose permeability as far as possible corresponds to that of the vacuum.
  • the enclosure is predominantly made of a plastic.
  • plastic is meant here an organic, polymeric solid which is produced synthetically or semi-synthetically from monomeric organic molecules or biopolymers. Plastics usually meet the requirement of non-magnetisability, are easy to shape and have sufficient stability.
  • the enclosure is predominantly made of steel.
  • non-magnetic steels such as chromium-nickel steels are used, which have a corresponding permeability.
  • chromium-nickel steels are used, which have a corresponding permeability.
  • steels are relatively flexible moldable and have the necessary strength to stabilize the iron core.
  • steels are electrically conductive, so that electric field strength peaks are reduced, especially when the enclosure is rounded.
  • the housing is also grounded.
  • the enclosure is designed in several parts, one of the parts essentially enclosing one of the yokes.
  • the enclosure should be designed so that the iron core can be inserted in its individual sections, assembled and assembled.
  • the enclosure is designed so that coils can be guided over the individual iron core legs and their Umhausungsteil, and then a yoke can be applied. This is in turn enclosed by appropriate Umhausungs negligence.
  • the enclosure on its outside on a number of fastening devices.
  • This can include both the fastening devices for the installation of the transformer itself, as well as for the attachment of the windings.
  • the iron core is advantageously made of amorphous films. Especially with such iron cores, which need to be stabilized without housing particularly complex and where attachment is particularly difficult to accomplish, the use of a housing with corresponding fastening devices of very particular advantage.
  • the enclosure advantageously comprises an insulating part, which is designed such that no closed conductor loop is formed around the iron core.
  • an electrically conductive housing it is necessary to design these with a non-conductive interruption, which can be arranged virtually arbitrarily, only topologically so expanded and arranged that no closed loop can be formed around the iron core. As a result, namely short circuit turns are avoided.
  • the interruption can be made of a suitable insulating material.
  • a dry-type transformer advantageously comprises a described dry-type transformer core and a number of coils wound around the legs enclosed by the enclosure.
  • a trained according to the aforementioned type of dry transformer is advantageously for a rated voltage of more designed as 1 kV and / or a rated power of more than 50 kVA.
  • the enclosure of the iron core described above is of considerable advantage in the design.
  • the dry-type transformer is advantageously designed as a cast-resin transformer, d. H.
  • the insulation of the high voltage windings consists of cast resin.
  • the advantages achieved by the invention are, in particular, that the mechanical strength of the dry transformer core is ensured by the installation of the iron core in a non-magnetic housing as a supporting component, without consuming core bandages, core fittings or Kernpressvoriquesen would be needed.
  • the result is a completely encapsulated iron core, which is protected against corrosive influences.
  • the noise level is reduced, as this is essentially generated by the magnetostriction of the iron core, which is shielded by the housing.
  • the shape of the enclosure can follow the iron core shape and can also be made for round, oval or rectangular iron core sections.
  • the assembly of the enclosure can take place with consideration of an isolation with all known joining methods.
  • the illustrated dry-transformer cores 1 have an iron core 2 which is layered out of electric sheets.
  • the core is made up of amorphous foils. He is shown in dashed lines in all figures, since he is located within the housing 4.
  • the electrical steel sheets have a height decreasing in height and width to the edge of the iron core 2, so that result in the stacked in the electric sheets by the smaller dimension in each layer stages 6. As a result, a slightly rounded shape of the iron core 2 is achieved. In other, not shown embodiments, it may also be economical, for.
  • amorphous sheets have a rectangular core cross-section without rounding of the edges.
  • the windings comprise a common iron core 2.
  • the dry-transformer cores 1 shown in the figures are designed for core transformers.
  • leg 8 to be wound (also main leg) are connected at their ends by yokes 10 with each other.
  • the design of transformer cores is specified in a coding consisting of two numbers. The first number describes the number of wound legs 8, the second the number of return legs (this is understood to mean outer unwound legs in the shell transformer).
  • Each figure shows a 3/0-Trockentransformern core 1, d. H. a three-legged dry-transforming core 1 without a yoke leg, whose three legs 8 are provided for a winding.
  • the embodiments are only an example, the enclosure shown here with all the described properties can also be produced for any other configurations.
  • the housing 4 is made in all figures of a non-magnetic material, d. H. a material having a permeability number in the range of -1.01 to 1.01.
  • a non-magnetic material d. H. a material having a permeability number in the range of -1.01 to 1.01.
  • a plastic or in other embodiments chromium-nickel steel can be used.
  • the housing 4 is in each case integrally formed integrally with the iron core 2, that is to say it is designed such that it holds together the iron sheets of the iron core 2 in a form-fitting manner. It encloses the iron core 2 completely, so encapsulates it.
  • the enclosure 4 in this case each has a wall thickness of less than 1 cm, ie a few mm. Between the iron core 2 and enclosure 4 remaining void is filled with a suitable material.
  • the housing 4 is in each case made of several parts: First, a first part 12 is provided, which surrounds the upper yoke 10 and a second part 14, which surrounds the legs 8 and the lower yoke 10.
  • Both parts 12, 14 are in turn constructed in two parts as half-shells, so that in the manufacturing process, the iron core 2 can be inserted into the first half-shell and then connected the second half-shell for stabilization with the first half-shell.
  • FIG. 1 shows a dry transformer core 1 with a housing 4 with a round cross-section over the yokes 10 and legs 8. It follows the outer contour of the iron core. 2
  • FIG. 2 shows a dry-transformer core 1 with a housing 4 also round in cross-section over the yokes 10 and legs 8, which is shaped as well as the enclosure in FIG 4. However, it additionally has fastening devices 16, 18 in the manner of externally attached to the housing 4 eyelets on. There are fastening devices 16 for fixing the dry transformer core 1 when installing the transformer z. B. provided on carriers 20. Further fastening devices 18 serve to fix the windings, not shown.
  • the housing 4 in the FIG. 2 made of an electrically conductive material, for.
  • the housing 4 is initially grounded.
  • it includes two in FIG. 2 shown insulating parts 22 which are formed so that no closed conductor loop can form around the iron core 2.
  • the sides of the insulating parts 22 each form a rectangle whose sides run parallel to the axis of the respective leg 8 or yoke 10 on the inside, ie the surface of the wall 4 facing the adjacent leg 8 or yoke 10 and form a closed line here.
  • the insulating members 22 here interrupt the otherwise conductive body of the enclosure 4. Through the sides of the insulating parts 22 is a current flow avoided in the transformation 4 around the legs 10 and yokes 8 around.
  • FIG. 3 shows a dry-transforming core 1, the housing 4, the same fastening devices 16, 18 as that of the FIG. 2 having.
  • the cross section of the enclosure 4 is rectangular over the yokes 10 and legs 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Ein Trockentransformatorkern (1), umfassend einen Eisenkern (2) mit einer Anzahl von für eine Bewicklung ausgelegten Schenkeln (8), die durch eine Anzahl von Jochen (10) miteinander verbunden sind, soll einerseits besonders einfach herzustellen sein, und andererseits besonders gut gegen Korrosion geschützt sein. Dazu umfasst der Trockentransformatorkern (1) eine dem Eisenkern (2) angeformte Umhausung (4), die den Eisenkern (2) im Wesentlichen bündig umschließt.

Description

  • Die Erfindung betrifft einen Trockentransformatorkern, umfassend einen Eisenkern mit einer Anzahl von für eine Bewicklung ausgelegten Schenkeln, die durch eine Anzahl von Jochen miteinander verbunden sind.
  • Ein Trockentransformator ist ein Transformator, der keine flüssigen Isolierstoffe wie z. B. Transformatorenöl enthält. Trockentransformatoren werden üblicherweise als Leistungstransformatoren, insbesondere als solche in elektrischen Energienetzen eingesetzt. Sie sind daher häufig dreiphasig als Dreiphasenwechselstrom-Transformator ausgeführt. Trockentransformatoren werden besonders dort eingesetzt, wo wegen der räumlichen Nähe zu Personen oder Sachwerten ölgefüllte Transformatoren nicht oder nur mit erheblichen Maßnahmen zum Brandschutz, wie z. B. Brandschutzwänden, aufgestellt werden können. Auch entfallen Ölauffanggruben zum Grundwasserschutz.
  • Trockentransformatorkerne werden wie bei flüssigkeitsgefüllten Transformatoren üblicherweise als Zwei- oder Dreischenkeleisenkern aus beidseitig isolierten Elektroblechen ausgeführt. Die Schenkel, die mit den Spulenwicklungen versehen werden, sind dabei beiderseits durch Joche miteinander verbunden. Durch die Verwendung von dünnen Elektroblechen für die Kernherstellung muss dieser an diversen Stellen gehalten, befestigt und gepresst werden. Dies wird bislang durch Bandagierung, Verschraubung und Verpressung erreicht. Werden sehr dünne, amorphe Bleche verwendet, ist die mechanische Stabilisierung des Kernes noch aufwändiger.
  • Sollen Trockentransformatoren in Freiluft, im oder unter Wasser betrieben werden, müssen besondere Korrosionsschutzmaßnahmen für den gesamten Transformator, oder bei Aufstellung ohne Schutzgehäuse, für den Eisenkern vorgesehen werden. Wegen der geometrischen Gestalt des Eisenkernes ist hierbei eine aufwändige Beschichtung notwendig, um den Korrosionsschutz zu gewährleisten, da der Kern nicht von Öl umgeben ist.
  • Es ist daher Aufgabe der Erfindung, einen Trockentransformatorkern der eingangs genannten Art anzugeben, der einerseits besonders einfach herzustellen ist, und andererseits besonders gut gegen Korrosion geschützt ist.
  • Diese Aufgabe wird erfindungsgemäß gelöst, indem der Trockentransformatorkern eine dem Eisenkern angeformte Umhausung umfasst, die den Eisenkern im Wesentlichen bündig umschließt.
  • Die Erfindung geht dabei von der Überlegung aus, dass beide der oben genannten Aufgaben durch eine Umhausung gelöst werden könnten, die einerseits für die mechanische Festigkeit des Eisenkernes sorgt, indem sie ihn bündig umschließt, d. h. so dass die einzelnen Elektrobleche durch die Umhausung formschlüssig in ihrer Position gehalten werden, und andererseits durch eine vollständige Verkapselung für einen guten Korrosionsschutz sorgt.
  • Damit die Umhausung die magnetischen Eigenschaften des Transformators nicht negativ beeinflusst, ist sie vorteilhafterweise aus einem nichtmagnetischen Material gefertigt.
  • Insbesondere weist die nichtmagnetische Umhausung vorteilhafterweise eine mittlere Permeabilitätszahl zwischen -1,01 und 1,01, vorzugsweise zwischen -1,001 und 1,001 auf. Unter der Permeabilitätszahl wird hierbei das Verhältnis der Permeabilität (Verhältnis der magnetischen Flussdichte zur magnetischen Feldstärke) der Umhausung zu der des Vakuums verstanden. Die Umhausung ist somit vorteilhaft aus einem Material gefertigt, dessen Permeabilität soweit möglich der des Vakuums entspricht.
  • Um die magnetischen Eigenschaften des Transformators auch nicht durch einen zu hohen Abstand der die Umhausung umschließenden Wicklungen zum eigentlichen Eisenkern negativ zu beeinflussen, beträgt die Wanddicke der Umhausung vorteilhafterweise weniger als 1 cm. Unter der Wanddicke wird hierbei der Abstand der Außenfläche der Umhausung zur Außenfläche des Eisenkerns verstanden.
  • In vorteilhafter Ausgestaltung des Trockentransformatorkerns ist die die Umhausung vorwiegend aus einem Kunststoff gefertigt. Unter Kunststoff wird hierbei ein organischer, polymerer Festkörper verstanden, der synthetisch oder halbsynthetisch aus monomeren organischen Molekülen oder Biopolymeren hergestellt wird. Kunststoffe erfüllen in der Regel das Erfordernis der Nichtmagnetisierbarkeit, sind leicht zu formen und weisen eine ausreichende Stabilität auf.
  • In einer alternativen vorteilhaften Ausgestaltung des Trockentransformatorkerns ist die Umhausung vorwiegend aus Stahl gefertigt. Hierbei kommen nichtmagnetische Stähle wie z. B. Chrom-Nickel-Stähle zur Anwendung, die eine entsprechende Permeabilitätszahl aufweisen. Auch derartige Stähle sind vergleichsweise flexibel formbar und weisen die zur Stabilisierung des Eisenkerns nötige Festigkeit auf. Zudem sind Stähle elektrisch leitend, so dass elektrische Feldstärkeüberhöhungen verringert werden, insbesondere wenn die Umhausung gerundet ausgeführt ist.
  • Vorteilhafterweise ist hierbei die Umhausung auch geerdet.
  • In weiterer vorteilhafter Ausgestaltung des Trockentransformatorkerns ist die Umhausung mehrteilig ausgestaltet ist, wobei einer der Teile im Wesentlichen eines der Joche umschließt. Insgesamt sollte die Umhausung so ausgeführt werden, dass der Eisenkern in seinen einzelnen Abschnitten eingelegt, montiert und zusammengefügt werden kann. Insbesondere ist dabei die Umhausung so gestaltet, dass Spulen über die einzelnen Eisenkernschenkel und deren Umhausungsteil geführt werden können, und anschließend ein Joch aufgebracht werden kann. Dieses wird wiederum von entsprechenden Umhausungsteilen umschlossen.
  • Vorteilhafterweise weist die Umhausung auf ihrer Außenseite eine Anzahl von Befestigungsvorrichtungen auf. Dies kann sowohl die Befestigungsvorrichtungen für die Aufstellung des Transformators selbst umfassen, als auch für die Befestigung der Wicklungen.
  • Der Eisenkern besteht dabei vorteilhafterweise aus amorphen Folien. Gerade bei derartigen Eisenkernen, die ohne Umhausung besonders aufwändig stabilisiert werden müssen und bei denen eine Befestigung besonders schwierig zu bewerkstelligen ist, ist die Verwendung einer Umhausung mit entsprechenden Befestigungsvorrichtungen von ganz besonderem Vorteil.
  • Verbleibt durch eine etwas größere Ausbildung der Umhausung ein Zwischenraum zwischen Eisenkern und Umhausung, so ist dieser vorteilhafterweise mit einer geeigneten Masse verfüllt. Dies erhöht die Stabilität des entstehenden Transformatorkerns.
  • Die Umhausung umfasst vorteilhafterweise ein Isolierteil, welches derart ausgebildet ist, dass keine geschlossene Leiterschleife um den Eisenkern entsteht. Bei einer elektrisch leitenden Umhausung ist es erforderlich, diese mit einer nichtleitenden Unterbrechung auszugestalten, die praktisch beliebig angeordnet sein kann, nur topologisch so ausgedehnt und angeordnet sein muss, dass keine geschlossene Schleife um den Eisenkern gebildet werden kann. Hierdurch werden nämlich Kurzschlusswindungen vermieden. Die Unterbrechung kann aus einem geeigneten Isolationsmaterial gefertigt sein.
  • Ein Trockentransformator umfasst vorteilhafterweise einen beschriebenen Trockentransformatorkern sowie eine Anzahl von um die von der Umhausung umschlossenen Schenkel gewickelten Spulen.
  • Ein nach der vorgenannten Art ausgebildeter Trockentransformator ist vorteilhafterweise für eine Nennspannung von mehr als 1 kV und/oder eine Nennleistung von mehr als 50 kVA ausgelegt. Gerade bei Trockentransformatoren dieser Leistungsklasse ist die oben beschriebene Umhausung des Eisenkerns bei der Konstruktion von erheblichem Vorteil.
  • Der Trockentransformator ist dabei vorteilhafterweise als Gießharztransformator ausgelegt, d. h. die Isolierung der Oberspannungswicklungen besteht aus Gießharz.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch den Einbau des Eisenkerns in eine nichtmagnetische Umhausung als tragendes Bauteil die mechanische Festigkeit des Trockentransformatorkerns gewährleistet ist, ohne dass aufwändige Kernbandagen, Kernverschraubungen oder Kernpressvorrichtungen benötigt würden. Es entsteht ein vollständig gekapselter Eisenkern, der vor korrosiven Einflüssen geschützt ist. Zudem wird der Geräuschpegel reduziert, da dieser im Wesentlichen durch die Magnetostriktion des Eisenkernes erzeugt wird, der durch die Umhausung abgeschirmt wird.
  • Die Form der Umhausung kann der Eisenkernform folgen und kann auch für runde, ovale oder rechteckige Eisenkernquerschnitte hergestellt werden. Das Zusammenfügen der Umhausung kann unter Berücksichtigung einer Isolierstelle mit allen bekannten Fügeverfahren erfolgen.
  • Ausführungsbeispiele der Erfindung werden anhand einer Zeichnung näher erläutert. Darin zeigen:
  • FIG 1
    einen Trockentransformatorkern mit einer abgerundeten Umhausung, die den Eisenkern umschließt,
    FIG 2
    einen Trockentransformatorkern mit einer abgerundeten Umhausung, die den Eisenkern umschließt, und die eine Mehrzahl von Befestigungsvorrichtungen aufweist, und
    FIG 3
    einen Trockentransformatorkern mit einer im Schenkelquerschnitt rechteckigen Umhausung, die den Eisenkern umschließt, und die eine Mehrzahl von Befestigungsvorrichtungen aufweist.
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • Alle im Folgenden beschriebenen Figuren zeigen Trockentransformatorkerne 1, die für Gießharztransformatoren mit einer Nennspannung von mehr als 1 kV und/oder einer Nennleistung von mehr als 50 kVA ausgelegt sind und demnach eine entsprechende Größe aufweisen. Sie eignen sich insbesondere als Leistungstransformatoren in elektrischen Energienetzen. Im Folgenden werden zunächst die Gemeinsamkeiten der drei Figuren beschrieben.
  • Die gezeigten Trockentransformatorenkerne 1 verfügen über einen aus Elektroblechen geschichteten Eisenkern 2. In anderen Ausführungsbeispielen ist der Kern aus amorphen Folien aufgebaut. Er ist in allen Figuren gestrichelt dargestellt, da er sich innerhalb der Umhausung 4 befindet. Die Elektrobleche haben zum Rand des Eisenkerns 2 hin eine in Höhe und Breite geringer werdende Abmessung, so dass sich bei den übereinander gestapelten Elektroblechen durch die geringere Abmessung in jeder Lage Stufen 6 ergeben. Hierdurch wird eine etwas abgerundete Form des Eisenkerns 2 erreicht. In anderen, nicht gezeigten Ausführungsformen kann es auch wirtschaftlich sein, z. B. bei amorphen Blechen einen rechteckigen Kernquerschnitt ohne Abrundungen der Kanten zu haben.
  • Grundsätzlich unterscheidet man bei Transformatoren zwischen Manteltransformatoren und Kerntransformatoren, bzw. den Bezeichnungen in Englisch "shell type" und "core type". Bei beiden Arten umfassen die Wicklungen einen gemeinsamen Eisenkern 2. Sind Wicklung und Eisenkern 2 von äußeren Eisenwegen umschlossen oder ist der meiste Teil der leitenden Wicklungen, die z. B. aus Kupfer oder Aluminium bestehen können, von Eisen umschlossen, spricht man von Manteltransformatoren. Die in den Figuren gezeigten Trockentransformatorenkerne 1 sind jedoch für Kerntransformatoren ausgelegt.
  • Hierbei sind die zu bewickelnden Schenkel 8 (auch Hauptschenkel) an ihren Enden durch Joche 10 miteinander verbunden. Die Bauform von Transformatorkernen wird in einer Kodierung bestehend aus zwei Zahlen angegeben. Die erste Zahl beschreibt die Anzahl der bewickelten Schenkel 8, die zweite die Anzahl der Rückschlussschenkel (hierunter versteht man äußere unbewickelte Schenkel beim Manteltransformator).
  • Alle Figuren zeigen jeweils einen 3/0-Trockentransformatorkern 1, d. h. einen dreischenkligen Trockentransformatorkern 1 ohne Rückschlussschenkel, dessen drei Schenkel 8 für eine Bewicklung vorgesehen sind. Die Ausführungsbeispiele sind jedoch nur beispielhaft, die hier dargestellte Umhausung mit allen beschriebenen Eigenschaften ist auch für beliebige andere Konfigurationen herstellbar.
  • Die Umhausung 4 ist in allen Figuren aus einem nichtmagnetischen Material gefertigt, d. h. einem Material mit einer Permeabilitätszahl im Bereich von -1,01 bis 1,01. Hierfür kann in Ausführungsbeispielen ein Kunststoff oder in anderen Ausführungsbeispielen auch Chrom-Nickel-Stahl verwendet werden.
  • In den Figuren ist die Umhausung 4 jeweils bündig dem Eisenkern 2 angeformt, d. h. so ausgebildet, dass sie die Eisenbleche des Eisenkerns 2 formschlüssig zusammenhält. Sie umschließt den Eisenkern 2 vollständig, verkapselt diesen also. Die Umhausung 4 weist hierbei jeweils eine Wanddicke von weniger als 1 cm, d. h. wenigen mm auf. Zwischen dem Eisenkern 2 und Umhausung 4 verbleibender Leerraum ist mit einem geeigneten Material verfüllt. Die Umhausung 4 ist jeweils mehrteilig ausgeführt: Zunächst ist ein erster Teil 12 vorgesehen, der das obere Joch 10 umschließt und ein zweiter Teil 14, der die Schenkel 8 und das untere Joch 10 umschließt.
  • Beide Teile 12, 14 sind wiederum zweiteilig als Halbschalen aufgebaut, so dass im Herstellungsprozess der Eisenkern 2 in die erste Halbschale eingelegt werden kann und dann die zweite Halbschale zur Stabilisierung mit der ersten Halbschale verbunden.
  • Im Folgenden werden die Unterschiede der Ausführungsbeispiele in den verschiedenen Figuren erläutert.
  • FIG 1 zeigt einen Trockentransformatorkern 1 mit einer Umhausung 4 mit rundem Querschnitt über den Jochen 10 und Schenkeln 8. Sie folgt der Außenkontur des Eisenkerns 2.
  • FIG 2 zeigt einen Trockentransformatorkern 1 mit einer Umhausung 4 mit ebenfalls rundem Querschnitt über den Jochen 10 und Schenkeln 8, die ebenso geformt ist wie die Umhausung in FIG 4. Allerdings weist sie zusätzlich Befestigungsvorrichtungen 16, 18 in der Art von außen an der Umhausung 4 befestigten Ösen auf. Es sind Befestigungsvorrichtungen 16 zum Fixieren des Trockentransformatorkerns 1 beim Aufstellen des Transformators z. B. an Trägern 20 vorgesehen. Weitere Befestigungsvorrichtungen 18 dienen der Fixierung der nicht dargestellten Wicklungen.
  • Im Gegensatz zu den FIG 1 und FIG 3 ist die Umhausung 4 in der FIG 2 aus einem elektrisch leitenden Material gefertigt, z. B. dem bereits erwähnten Chrom-Nickel-Stahl. Hierbei ist die Umhausung 4 zunächst geerdet. Weiterhin umfasst sie zwei in FIG 2 dargestellte Isolierteile 22, die so ausgebildet sind, dass keine geschlossene Leiterschleife um den Eisenkern 2 entstehen kann. Im Ausführungsbeispiel der FIG 2 bilden die Seiten der Isolierteile 22 jeweils ein Rechteck, dessen Seiten parallel zur Achse des jeweiligen Schenkels 8 bzw. Jochs 10 an der Innenseite, d. h. der dem benachbarten Schenkel 8 bzw. Joch 10 zugewandten Fläche der Umwandung 4 verlaufen und hier eine geschlossene Linie bilden. Die Isolierteile 22 unterbrechen hier den ansonsten leitenden Körper der Umhausung 4. Durch die Seiten der Isolierteile 22 wird ein Stromfluss in der Umwandung 4 um die Schenkel 10 und Joche 8 herum vermieden.
  • FIG 3 zeigt einen Trockentransformatorkern 1, dessen Umhausung 4 die gleichen Befestigungsvorrichtungen 16, 18 wie der der FIG 2 aufweist. Allerdings ist der Querschnitt der Umhausung 4 über den Jochen 10 und Schenkeln 8 rechteckig.

Claims (15)

  1. Trockentransformatorkern (1), umfassend einen Eisenkern (2) mit einer Anzahl von für eine Bewicklung ausgelegten Schenkeln (8), die durch eine Anzahl von Jochen (10) miteinander verbunden sind, wobei der Trockentransformatorkern (1) eine dem Eisenkern (2) angeformte Umhausung (4) umfasst, die den Eisenkern (2) im Wesentlichen bündig umschließt.
  2. Trockentransformatorkern (1) nach Anspruch 1, bei dem die Umhausung (4) nichtmagnetisch ist.
  3. Trockentransformatorkern (1) nach einem der vorhergehenden Ansprüche, bei dem die Umhausung (4) eine mittlere Permeabilitätszahl zwischen -1,01 und 1,01, vorzugsweise zwischen -1,001 und 1,001 aufweist.
  4. Trockentransformatorkern (1) nach einem der vorhergehenden Ansprüche, bei dem die Wanddicke der Umhausung (4) weniger als 1 cm beträgt.
  5. Trockentransformatorkern (1) nach einem der vorhergehenden Ansprüche, bei dem die Umhausung (4) vorwiegend aus einem Kunststoff gefertigt ist.
  6. Trockentransformatorkern (1) nach einem der Ansprüche 1 bis 4, bei dem die Umhausung (4) vorwiegend aus Stahl gefertigt ist.
  7. Trockentransformatorkern (1) nach einem der vorhergehenden Ansprüche, bei dem die Umhausung (4) geerdet ist.
  8. Trockentransformatorkern (1) nach einem der vorhergehenden Ansprüche, bei dem die Umhausung (4) mehrteilig ausgestaltet ist, wobei einer der Teile (14) im Wesentlichen eines der Joche (10) umschließt.
  9. Trockentransformatorkern (1) nach einem der vorhergehenden Ansprüche, bei dem die Umhausung (4) auf ihrer Außenseite eine Anzahl von Befestigungsvorrichtungen (16, 18) aufweist.
  10. Trockentransformatorkern (1) nach einem der vorhergehenden Ansprüche, bei dem der Eisenkern (2) aus amorphen Folien besteht.
  11. Trockentransformatorkern (1) nach einem der vorhergehenden Ansprüche, bei dem ein zwischen Eisenkern (2) und Umhausung (4) verbleibender Zwischenraum verfüllt ist.
  12. Trockentransformatorkern (1) nach einem der vorhergehenden Ansprüche, bei dem die Umhausung (4) ein Isolierteil umfasst, welches derart ausgebildet ist, dass keine geschlossene Leiterschleife um den Eisenkern (2) entsteht.
  13. Trockentransformator, umfassend einen Trockentransformatorkern (1) nach einem der vorhergehenden Ansprüche sowie eine Anzahl von um die von der Umhausung (4) umschlossenen Schenkel (8) gewickelten Spulen.
  14. Trockentransformator nach Anspruch 13, ausgelegt für eine Nennspannung von mehr als 1 kV und/oder eine Nennleistung von mehr als 50 kVA.
  15. Trockentransformator nach Anspruch 13 oder 14, der als Gießharztransformator ausgelegt ist.
EP14186803.4A 2014-09-29 2014-09-29 Trockentransformatorkern Not-in-force EP3001435B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14186803.4A EP3001435B1 (de) 2014-09-29 2014-09-29 Trockentransformatorkern
DK14186803.4T DK3001435T3 (en) 2014-09-29 2014-09-29 The dry transformer core
BR112017006229A BR112017006229A2 (pt) 2014-09-29 2015-09-16 núcleo de transformador do tipo seco
PCT/EP2015/071235 WO2016050515A1 (de) 2014-09-29 2015-09-16 Trockentransformatorkern
US15/510,912 US10361024B2 (en) 2014-09-29 2015-09-16 Dry-type transformer core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14186803.4A EP3001435B1 (de) 2014-09-29 2014-09-29 Trockentransformatorkern

Publications (2)

Publication Number Publication Date
EP3001435A1 true EP3001435A1 (de) 2016-03-30
EP3001435B1 EP3001435B1 (de) 2017-11-15

Family

ID=51619086

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14186803.4A Not-in-force EP3001435B1 (de) 2014-09-29 2014-09-29 Trockentransformatorkern

Country Status (5)

Country Link
US (1) US10361024B2 (de)
EP (1) EP3001435B1 (de)
BR (1) BR112017006229A2 (de)
DK (1) DK3001435T3 (de)
WO (1) WO2016050515A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110632427A (zh) * 2019-10-08 2019-12-31 云南电力技术有限责任公司 一种配电变压器中铁心柱结构的判断方法及装置
WO2022053316A1 (de) * 2020-09-08 2022-03-17 Siemens Energy Global GmbH & Co. KG Transformator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018049520A1 (en) * 2016-09-16 2018-03-22 Energo Group Canada Inc. Losses reduction for electrical power distribution
DE102017223839A1 (de) * 2017-12-28 2019-07-04 Siemens Aktiengesellschaft Magnetkern mit Rückschlussschenkel
US10826297B2 (en) * 2018-11-06 2020-11-03 General Electric Company System and method for wind power generation and transmission in electrical power systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011107387A1 (de) * 2010-03-01 2011-09-09 Abb Technology Ag Trockentransformatorkern mit einem amorphen transformatorkern und trockentransformator
US20110248808A1 (en) * 2010-04-07 2011-10-13 Abb Technology Ag Outdoor dry-type transformer
US20130162386A1 (en) * 2011-12-23 2013-06-27 Abb Technology Ag Corrosion-resistant coating system for a dry-type transformer core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011107387A1 (de) * 2010-03-01 2011-09-09 Abb Technology Ag Trockentransformatorkern mit einem amorphen transformatorkern und trockentransformator
US20110248808A1 (en) * 2010-04-07 2011-10-13 Abb Technology Ag Outdoor dry-type transformer
US20130162386A1 (en) * 2011-12-23 2013-06-27 Abb Technology Ag Corrosion-resistant coating system for a dry-type transformer core

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110632427A (zh) * 2019-10-08 2019-12-31 云南电力技术有限责任公司 一种配电变压器中铁心柱结构的判断方法及装置
CN110632427B (zh) * 2019-10-08 2022-02-01 云南电力技术有限责任公司 一种配电变压器中铁心柱结构的判断方法及装置
WO2022053316A1 (de) * 2020-09-08 2022-03-17 Siemens Energy Global GmbH & Co. KG Transformator

Also Published As

Publication number Publication date
DK3001435T3 (en) 2018-01-22
US10361024B2 (en) 2019-07-23
BR112017006229A2 (pt) 2017-12-12
US20170271070A1 (en) 2017-09-21
EP3001435B1 (de) 2017-11-15
WO2016050515A1 (de) 2016-04-07

Similar Documents

Publication Publication Date Title
DE69728972T2 (de) Transformator/reactor
EP0102513B1 (de) Trockentransformator mit in Giessharz eingegossenen Wicklungen
EP3001435B1 (de) Trockentransformatorkern
EP1864304A2 (de) Transformator mit elektrischer abschirmung
DE102004025076B4 (de) Spulenanordnung und Verfahren zu deren Herstellung
EP3144944A1 (de) Elektrische wicklung, trockentransformator mit einer solchen elektrischen wicklung und verfahren zur herstellung einer elektrischen wicklung
WO2012031646A1 (de) Transformatorwicklung
DE69915808T2 (de) Aus streifen gewickelte induktionsspule mit verbesserter wärmeübertragung und kurzschlussfestigkeit
DE69629318T2 (de) Hochspannungs-/niederspannungstransformator mit thermoplastischer trockenisolation
DE1513870A1 (de) Hochspannungstransformator
DE102011075456B4 (de) Summenstromwandler und Fehlerstromschutzschalter
WO2004019351A1 (de) Wicklungsanordnung
DE683018C (de) Einleiterstromwandler mit zweiteiligem Durchfuehrungsisolator
DE2154398C3 (de) Spannungstransformator zur vertikalen Aufstellung mit einem gestreckten Magnetkern
DE102004008961B4 (de) Spulenkörper für geschlossenen magnetischen Kern und daraus hergestellte Entstördrossel
DE1638885A1 (de) Hochspannungswicklung
CH688116A5 (de) Stromkompensierte Mehrfachdrossel in Kompaktbauweise.
DE2503691A1 (de) Ringkernwandler
EP3001437B1 (de) Durchführungssystem
EP3721458B1 (de) Elektrisches gerät mit pressplatten zum verspannen eines magnetisierbaren kerns
EP0654803A1 (de) Induktiver elektrischer Wandler
DE3022070A1 (de) Schirmkoerper fuer bewickelte kernschenkel von transformatoren, drosselspulen u.dgl.
DE1590701C3 (de) Reduktionsdrossel für Fernmeldekabel
DE2251933C3 (de) Verfahren und Vorrichtung zur Herstellung von trockenisolierten Röhrensputen für Transformatoren, Drosseln oder dergl. Induktionsgeräte mit zwei oder mehr Lagen und Kühlkanälen
DE2653591A1 (de) Hochleistungs-transformator fuer ultra-hochspannung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160930

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170609

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 947022

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014006225

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180216

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014006225

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

26N No opposition filed

Effective date: 20180817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140929

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200921

Year of fee payment: 7

Ref country code: DK

Payment date: 20200922

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200813

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014006225

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201002

Year of fee payment: 7

Ref country code: CH

Payment date: 20201202

Year of fee payment: 7

Ref country code: IT

Payment date: 20200924

Year of fee payment: 7

Ref country code: DE

Payment date: 20201118

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014006225

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 947022

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210929

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210929

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210929

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930